Podgląd testu : lo2@sp-09-trygonom-1-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10626 ⋅ Poprawnie: 178/286 [62%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Kąty ostre
\alpha i
\beta trójkąta prostokątnego spełniają warunek
\frac{\sin \alpha}{\sin\beta}=\frac{\sqrt{17}}{17} .
Oblicz
\cos\alpha i zapisz wynik w najprostszej nieskracalnej
postaci
\frac{a\sqrt{b}}{c} .
Podaj liczby a , b i
c .
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-10614 ⋅ Poprawnie: 689/1065 [64%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Kąt
\alpha jest kątem ostrym oraz
\tan\alpha=\frac{9}{8} .
Oblicz wartość wyrażenia
w=\frac{3\cos\alpha-2\sin\alpha}{\sin\alpha-5\cos\alpha} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-10620 ⋅ Poprawnie: 478/671 [71%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Kąt
\alpha jest kątem ostrym i
\tan \alpha=\frac{19}{21} .
Wówczas:
Odpowiedzi:
A. \alpha\in(40^{\circ},44^{\circ})
B. \alpha\in(44^{\circ},50^{\circ})
C. \alpha\in(36^{\circ},40^{\circ})
D. \alpha\in(50^{\circ},54^{\circ})
Zadanie 4. 1 pkt ⋅ Numer: pp-10665 ⋅ Poprawnie: 120/181 [66%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Odcinek
BD jest dwusieczną kąta na rysunku:
Miara kąta \varphi spełnia warunek:
Odpowiedzi:
A. 30^{\circ} \lessdot \varphi < 35^{\circ}
B. 35^{\circ} \lessdot \varphi < 40^{\circ}
C. 25^{\circ} \lessdot \varphi < 30^{\circ}
D. 20^{\circ} \lessdot \varphi < 25^{\circ}
Zadanie 5. 1 pkt ⋅ Numer: pp-10652 ⋅ Poprawnie: 493/638 [77%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
W trójkącie prostokątnym długość jednej z przyprostokątnych jest równa
12 , zaś długość przeciwprostokątnej jest równa
16 .
Oblicz tangens mniejszego kąta ostrego w tym trójkącie.
Odpowiedź:
Zadanie 6. 1 pkt ⋅ Numer: pp-10650 ⋅ Poprawnie: 282/395 [71%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Oblicz tangens najmiejszego kąta w trójkącie prostokątnym o bokach długości
\frac{5}{2} ,
6 ,
\frac{13}{2} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-11539 ⋅ Poprawnie: 345/416 [82%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Punkt
A zaznaczony na rysunku ma współrzędne
A=(-6,10) :
Oblicz tangens kąta
\alpha zaznaczonego na rysunku.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-10616 ⋅ Poprawnie: 367/612 [59%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Oblicz wartośc wyrażenia
w=
\tan^{2}60^{\circ}-\sin 60^{\circ}\cdot \cos 30^{\circ}-\sin 30^{\circ}\cdot \tan 30^{\circ}
.
Odpowiedź:
w=
(liczba zapisana dziesiętnie)
Zadanie 9. 1 pkt ⋅ Numer: pp-10660 ⋅ Poprawnie: 153/205 [74%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
» W trapezie prostokątnym
ABCD długość
ramienia
BC jest dwa razy większa od różnicy
długości jego podstaw.
Wyznacz miarę stopniową kąta ABC .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 1 pkt ⋅ Numer: pp-10634 ⋅ Poprawnie: 290/509 [56%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Kąt
\alpha należy do przedziału
(90^{\circ},180^{\circ}) i zachodzi równość
10\cos^2\alpha-1=\frac{3}{5} .
Oblicz
\sin\alpha .
Odpowiedź:
Zadanie 11. 1 pkt ⋅ Numer: pp-10623 ⋅ Poprawnie: 114/183 [62%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
« Wiadomo, że
\alpha i
\beta
są miarami kątów ostrych trójkąta prostokątnego oraz
64\sin^2\alpha+\cos^2\beta=1 .
Oblicz \tan\alpha .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-11538 ⋅ Poprawnie: 200/356 [56%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Kąt
\alpha jest ostry i spełnia warunek
\sin\alpha=\frac{2}{3} .
Oblicz wartość wyrażenia
\sin^2\alpha-\cos^2\alpha .
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż