Podgląd testu : lo2@sp-09-trygonom-1-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10626 ⋅ Poprawnie: 175/279 [62%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Kąty ostre
\alpha i
\beta trójkąta prostokątnego spełniają warunek
\frac{\sin \alpha}{\sin\beta}=\frac{\sqrt{5}}{5} .
Oblicz
\cos\alpha i zapisz wynik w najprostszej nieskracalnej
postaci
\frac{a\sqrt{b}}{c} .
Podaj liczby a , b i
c .
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-10640 ⋅ Poprawnie: 614/830 [73%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wiadomo, że kąt
\alpha jest ostry oraz
\tan\alpha=\frac{1}{5} .
Oblicz \sin\alpha .
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-10621 ⋅ Poprawnie: 309/534 [57%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wiadomo, że
\alpha=29^{\circ} oraz
\cos\alpha=x .
Zatem \cos 61^{\circ} jest równe:
Odpowiedzi:
A. \sqrt{1-x^2}
B. 1-x^2
C. \sqrt{1-x}
D. 1-x
Zadanie 4. 1 pkt ⋅ Numer: pp-10671 ⋅ Poprawnie: 254/401 [63%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« W trójkącie prostokątnym przyprostokątne mają długość
4\sqrt{3} i
5 .
Oblicz cosinus tego kąta ostrego, którego cosinus jest mniejszy.
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-10651 ⋅ Poprawnie: 341/491 [69%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
W trapezie prostokątnym kąt ostry ma miarę
45^{\circ} , a podstawy mają długości
4 i
7 .
Oblicz długość wysokości tego trapezu.
Odpowiedź:
Zadanie 6. 1 pkt ⋅ Numer: pp-10646 ⋅ Poprawnie: 148/276 [53%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Na płaszczyźnie dane są punkty
A=\left(6\sqrt{2},6\sqrt{6}\right) ,
B=\left(0,0\right) i
C=\left(6\sqrt{2},0\right) .
Kąt CBA ma miarę:
Odpowiedzi:
A. około 55^{\circ}
B. 60^{\circ}
C. 30^{\circ}
D. 75^{\circ}
Zadanie 7. 1 pkt ⋅ Numer: pp-10645 ⋅ Poprawnie: 463/594 [77%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
» Dane są długości boków
|BC|=8 i
|AC|=2 trójkąta prostokątnego
ABC o kącie ostrym
\beta .
Oblicz x=\sin\beta .
Odpowiedź:
Zadanie 8. 1 pkt ⋅ Numer: pp-10674 ⋅ Poprawnie: 264/697 [37%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Przekątna równoległoboku o kącie ostrym
\alpha o mierze
60^{\circ} i wysokości o długości
6\sqrt{3} , tworzy kąt prosty z jego bokiem.
Oblicz obwód tego równoległoboku.
Odpowiedź:
L=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-10657 ⋅ Poprawnie: 566/663 [85%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Przyprostokątne w trójkącie prostokątnym mają długości
1 oraz
\sqrt{3} .
Wyznacz miarę stopniową najmniejszego kąta w tym trójkącie.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 1 pkt ⋅ Numer: pp-10622 ⋅ Poprawnie: 333/543 [61%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Kąt
\alpha należy do przedziału
(90^{\circ},180^{\circ}) i zachodzi równość
\cos\alpha=-\frac{1}{4} .
Oblicz \tan\alpha .
Odpowiedź:
\tan\alpha=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-11388 ⋅ Poprawnie: 210/450 [46%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
« Kąt
\alpha jest kątem ostrym oraz
\sin\alpha+\cos\alpha=\frac{7}{5} .
Oblicz wartość wyrażenia (\sin\alpha-\cos\alpha)^2 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-10633 ⋅ Poprawnie: 65/88 [73%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
« Oblicz wartość wyrażenia
\log{\tan 35^{\circ}}+\log{\tan 45^{\circ}}+\log{\tan 55^{\circ}}
.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Rozwiąż