Podgląd testu : lo2@sp-09-trygonom-1-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10626 ⋅ Poprawnie: 175/279 [62%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Kąty ostre
\alpha i
\beta trójkąta prostokątnego spełniają warunek
\frac{\sin \alpha}{\sin\beta}=\frac{\sqrt{5}}{5} .
Oblicz
\cos\alpha i zapisz wynik w najprostszej nieskracalnej
postaci
\frac{a\sqrt{b}}{c} .
Podaj liczby a , b i
c .
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-10614 ⋅ Poprawnie: 684/1059 [64%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Kąt
\alpha jest kątem ostrym oraz
\tan\alpha=\frac{9}{2} .
Oblicz wartość wyrażenia
w=\frac{3\cos\alpha-2\sin\alpha}{\sin\alpha-5\cos\alpha} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-10620 ⋅ Poprawnie: 473/663 [71%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Kąt
\alpha jest kątem ostrym i
\tan \alpha=\frac{7}{9} .
Wówczas:
Odpowiedzi:
A. \alpha\in(36^{\circ},40^{\circ})
B. \alpha\in(32^{\circ},36^{\circ})
C. \alpha\in(40^{\circ},46^{\circ})
D. \alpha\in(46^{\circ},50^{\circ})
Zadanie 4. 1 pkt ⋅ Numer: pp-10671 ⋅ Poprawnie: 254/401 [63%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« W trójkącie prostokątnym przyprostokątne mają długość
3\sqrt{2} i
7 .
Oblicz cosinus tego kąta ostrego, którego cosinus jest mniejszy.
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-10651 ⋅ Poprawnie: 341/491 [69%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
W trapezie prostokątnym kąt ostry ma miarę
60^{\circ} , a podstawy mają długości
3 i
4 .
Oblicz długość wysokości tego trapezu.
Odpowiedź:
Zadanie 6. 1 pkt ⋅ Numer: pp-10648 ⋅ Poprawnie: 354/567 [62%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Oblicz długość wysokości trapezu równoramiennego o kącie ostrym
60^{\circ} i ramieniu długości
4\sqrt{2} .
Odpowiedź:
Zadanie 7. 1 pkt ⋅ Numer: pp-10645 ⋅ Poprawnie: 463/594 [77%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
» Dane są długości boków
|BC|=10 i
|AC|=2 trójkąta prostokątnego
ABC o kącie ostrym
\beta .
Oblicz x=\cos\beta .
Odpowiedź:
Zadanie 8. 1 pkt ⋅ Numer: pp-10639 ⋅ Poprawnie: 298/484 [61%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Oblicz wartość wyrażenia
\left(
\tan 30^{\circ}+\cot 30^{\circ}
\right)^2-\sin 60^{\circ}
.
Odpowiedź:
\left(\tan\alpha+\cot\beta\right)^2-\sin\gamma=
(liczba zapisana dziesiętnie)
Zadanie 9. 1 pkt ⋅ Numer: pp-10657 ⋅ Poprawnie: 567/664 [85%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Przyprostokątne w trójkącie prostokątnym mają długości
1 oraz
\sqrt{3} .
Wyznacz miarę stopniową najmniejszego kąta w tym trójkącie.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 1 pkt ⋅ Numer: pp-10634 ⋅ Poprawnie: 283/501 [56%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Kąt
\alpha należy do przedziału
(90^{\circ},180^{\circ}) i zachodzi równość
11\cos^2\alpha-4=\frac{7}{11} .
Oblicz
\sin\alpha .
Odpowiedź:
Zadanie 11. 1 pkt ⋅ Numer: pp-11388 ⋅ Poprawnie: 211/451 [46%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
« Kąt
\alpha jest kątem ostrym oraz
\sin\alpha+\cos\alpha=\frac{15}{11} .
Oblicz wartość wyrażenia (\sin\alpha-\cos\alpha)^2 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-11538 ⋅ Poprawnie: 199/351 [56%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Kąt
\alpha jest ostry i spełnia warunek
\sin\alpha=\frac{1}{2} .
Oblicz wartość wyrażenia
\sin^2\alpha-\cos^2\alpha .
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż