Podgląd testu : lo2@sp-09-trygonom-1-pp-2
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10627 ⋅ Poprawnie: 439/629 [69%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Kąt
\alpha spełnia warunki:
\alpha\in(0^{\circ},90^{\circ}) i
\tan\alpha=\frac{112}{15}.
Oblicz \sin\alpha.
Odpowiedź:
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10613 ⋅ Poprawnie: 429/641 [66%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
« Wiadomo, że kąt
\alpha jest ostry oraz
\tan\alpha=\frac{1}{7}.
Oblicz wartość wyrażenia \sin\alpha+\cos\alpha.
Odpowiedź:
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10637 ⋅ Poprawnie: 840/1239 [67%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Drabinę o długości
5 metrów oparto o pionowy mur,
a jej podstawę umieszczono w odległości
3 metrów od
tego muru.
Kąt \alpha, pod jakim ustawiono drabinę,
spełnia warunek:
Odpowiedzi:
|
A. 60^{\circ}\lessdot \alpha&\lessdot90^{\circ}
|
B. 30^{\circ}\lessdot \alpha&\lessdot45^{\circ}
|
|
C. 0^{\circ}\lessdot \alpha&\lessdot30^{\circ}
|
D. 45^{\circ}\lessdot \alpha&\lessdot60^{\circ}
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10665 ⋅ Poprawnie: 114/171 [66%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
« Odcinek
BD jest dwusieczną kąta na rysunku:
Miara kąta \varphi spełnia warunek:
Odpowiedzi:
|
A. 30^{\circ} \lessdot \varphi < 35^{\circ}
|
B. 20^{\circ} \lessdot \varphi < 25^{\circ}
|
|
C. 35^{\circ} \lessdot \varphi < 40^{\circ}
|
D. 25^{\circ} \lessdot \varphi < 30^{\circ}
|
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10652 ⋅ Poprawnie: 488/629 [77%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
W trójkącie prostokątnym długość jednej z przyprostokątnych jest równa
8, zaś długość przeciwprostokątnej jest równa
11.
Oblicz tangens mniejszego kąta ostrego w tym trójkącie.
Odpowiedź:
|
Zadanie 6. 1 pkt ⋅ Numer: pp-10651 ⋅ Poprawnie: 341/491 [69%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
W trapezie prostokątnym kąt ostry ma miarę
30^{\circ}, a podstawy mają długości
8 i
10.
Oblicz długość wysokości tego trapezu.
Odpowiedź:
|
Zadanie 7. 1 pkt ⋅ Numer: pp-10677 ⋅ Poprawnie: 75/120 [62%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
W trójkącie prostokątnym przyprostokątne mają długości
2 i
9.
Oblicz cosinus większego z kątów ostrych tego trójkąta.
Odpowiedź:
|
Zadanie 8. 1 pkt ⋅ Numer: pp-10616 ⋅ Poprawnie: 365/597 [61%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
Oblicz wartośc wyrażenia
w=
\tan^{2}30^{\circ}-\sin 60^{\circ}\cdot \cos 60^{\circ}-\sin 60^{\circ}\cdot \tan 60^{\circ}
.
Odpowiedź:
w=
(liczba zapisana dziesiętnie)
|
Zadanie 9. 1 pkt ⋅ Numer: pp-10662 ⋅ Poprawnie: 341/475 [71%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
Zapisz obwód trójkąta
ABC w postaci
p\cdot a:
Podaj p.
Odpowiedź:
p=
+
\cdot
√
(wpisz trzy liczby całkowite)
|
Zadanie 10. 1 pkt ⋅ Numer: pp-11507 ⋅ Poprawnie: 415/985 [42%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Kąt
\alpha jest ostry oraz
\tan\alpha=\frac{\sqrt{6}}{5}.
Oblicz wartość wyrażenia
\frac{2\sin\alpha-\cos\alpha}{\cos\alpha+2\sin\alpha}.
Odpowiedź:
|
Zadanie 11. 1 pkt ⋅ Numer: pp-11388 ⋅ Poprawnie: 211/451 [46%] |
Rozwiąż |
Podpunkt 11.1 (1 pkt)
« Kąt
\alpha jest kątem ostrym oraz
\sin\alpha+\cos\alpha=\frac{13}{11}.
Oblicz wartość wyrażenia (\sin\alpha-\cos\alpha)^2.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 12. 1 pkt ⋅ Numer: pp-11538 ⋅ Poprawnie: 199/351 [56%] |
Rozwiąż |
Podpunkt 12.1 (1 pkt)
Kąt
\alpha jest ostry i spełnia warunek
\sin\alpha=\frac{1}{7}.
Oblicz wartość wyrażenia
\sin^2\alpha-\cos^2\alpha.
Odpowiedź:
(wpisz dwie liczby całkowite)