Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10626 ⋅ Poprawnie: 175/279 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Kąty ostre \alpha i \beta trójkąta prostokątnego spełniają warunek \frac{\sin \alpha}{\sin\beta}=\frac{\sqrt{5}}{5}. Oblicz \cos\alpha i zapisz wynik w najprostszej nieskracalnej postaci \frac{a\sqrt{b}}{c}.

Podaj liczby a, b i c.

Odpowiedź:
\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10614 ⋅ Poprawnie: 684/1059 [64%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Kąt \alpha jest kątem ostrym oraz \tan\alpha=\frac{9}{2}.

Oblicz wartość wyrażenia w=\frac{3\cos\alpha-2\sin\alpha}{\sin\alpha-5\cos\alpha}.

Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10620 ⋅ Poprawnie: 473/663 [71%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Kąt \alpha jest kątem ostrym i \tan \alpha=\frac{7}{9}.

Wówczas:

Odpowiedzi:
A. \alpha\in(36^{\circ},40^{\circ}) B. \alpha\in(32^{\circ},36^{\circ})
C. \alpha\in(40^{\circ},46^{\circ}) D. \alpha\in(46^{\circ},50^{\circ})
Zadanie 4.  1 pkt ⋅ Numer: pp-10671 ⋅ Poprawnie: 254/401 [63%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « W trójkącie prostokątnym przyprostokątne mają długość 3\sqrt{2} i 7.

Oblicz cosinus tego kąta ostrego, którego cosinus jest mniejszy.

Odpowiedź:
\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10651 ⋅ Poprawnie: 341/491 [69%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 W trapezie prostokątnym kąt ostry ma miarę 60^{\circ}, a podstawy mają długości 3 i 4.

Oblicz długość wysokości tego trapezu.

Odpowiedź:
h= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10648 ⋅ Poprawnie: 354/567 [62%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Oblicz długość wysokości trapezu równoramiennego o kącie ostrym 60^{\circ} i ramieniu długości 4\sqrt{2}.
Odpowiedź:
h= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-10645 ⋅ Poprawnie: 463/594 [77%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Dane są długości boków |BC|=10 i |AC|=2 trójkąta prostokątnego ABC o kącie ostrym \beta.

Oblicz x=\cos\beta.

Odpowiedź:
x= \cdot
(wpisz trzy liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-10639 ⋅ Poprawnie: 298/484 [61%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Oblicz wartość wyrażenia \left( \tan 30^{\circ}+\cot 30^{\circ} \right)^2-\sin 60^{\circ} .
Odpowiedź:
\left(\tan\alpha+\cot\beta\right)^2-\sin\gamma= (liczba zapisana dziesiętnie)
Zadanie 9.  1 pkt ⋅ Numer: pp-10657 ⋅ Poprawnie: 567/664 [85%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
Przyprostokątne w trójkącie prostokątnym mają długości 1 oraz \sqrt{3}.

Wyznacz miarę stopniową najmniejszego kąta w tym trójkącie.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  1 pkt ⋅ Numer: pp-10634 ⋅ Poprawnie: 283/501 [56%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Kąt \alpha należy do przedziału (90^{\circ},180^{\circ}) i zachodzi równość 11\cos^2\alpha-4=\frac{7}{11}. Oblicz \sin\alpha.
Odpowiedź:
\sin\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-11388 ⋅ Poprawnie: 211/451 [46%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Kąt \alpha jest kątem ostrym oraz \sin\alpha+\cos\alpha=\frac{15}{11}.

Oblicz wartość wyrażenia (\sin\alpha-\cos\alpha)^2.

Odpowiedź:
(\sin\alpha-\cos\alpha)^2=
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-11538 ⋅ Poprawnie: 199/351 [56%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Kąt \alpha jest ostry i spełnia warunek \sin\alpha=\frac{1}{2}. Oblicz wartość wyrażenia \sin^2\alpha-\cos^2\alpha.
Odpowiedź:
\sin^2\alpha-\cos^2\alpha=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm