Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10627 ⋅ Poprawnie: 439/629 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Kąt \alpha spełnia warunki: \alpha\in(0^{\circ},90^{\circ}) i \tan\alpha=\frac{4}{3}.

Oblicz \sin\alpha.

Odpowiedź:
\sin\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10640 ⋅ Poprawnie: 614/830 [73%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wiadomo, że kąt \alpha jest ostry oraz \tan\alpha=\frac{5}{3}.

Oblicz \sin\alpha.

Odpowiedź:
\sin\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10637 ⋅ Poprawnie: 840/1239 [67%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Drabinę o długości 5 metrów oparto o pionowy mur, a jej podstawę umieszczono w odległości 2 metrów od tego muru.

Kąt \alpha, pod jakim ustawiono drabinę, spełnia warunek:

Odpowiedzi:
A. 45^{\circ}\lessdot \alpha&\lessdot60^{\circ} B. 30^{\circ}\lessdot \alpha&\lessdot45^{\circ}
C. 60^{\circ}\lessdot \alpha&\lessdot90^{\circ} D. 0^{\circ}\lessdot \alpha&\lessdot30^{\circ}
Zadanie 4.  1 pkt ⋅ Numer: pp-10665 ⋅ Poprawnie: 114/171 [66%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Odcinek BD jest dwusieczną kąta na rysunku:

Miara kąta \varphi spełnia warunek:

Odpowiedzi:
A. 25^{\circ} \lessdot \varphi < 30^{\circ} B. 35^{\circ} \lessdot \varphi < 40^{\circ}
C. 30^{\circ} \lessdot \varphi < 35^{\circ} D. 20^{\circ} \lessdot \varphi < 25^{\circ}
Zadanie 5.  1 pkt ⋅ Numer: pp-10651 ⋅ Poprawnie: 341/491 [69%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 W trapezie prostokątnym kąt ostry ma miarę 30^{\circ}, a podstawy mają długości 5 i 11.

Oblicz długość wysokości tego trapezu.

Odpowiedź:
h= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10650 ⋅ Poprawnie: 278/390 [71%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Oblicz tangens najmiejszego kąta w trójkącie prostokątnym o bokach długości \frac{27}{2}, 18, \frac{45}{2}.
Odpowiedź:
\tan\alpha=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-10677 ⋅ Poprawnie: 75/120 [62%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 W trójkącie prostokątnym przyprostokątne mają długości 4 i 8.

Oblicz sinus większego z kątów ostrych tego trójkąta.

Odpowiedź:
\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-10639 ⋅ Poprawnie: 298/484 [61%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Oblicz wartość wyrażenia \left( \tan 60^{\circ}+\cot 45^{\circ} \right)^2-\sin 30^{\circ} .
Odpowiedź:
\left(\tan\alpha+\cot\beta\right)^2-\sin\gamma= (liczba zapisana dziesiętnie)
Zadanie 9.  1 pkt ⋅ Numer: pp-10662 ⋅ Poprawnie: 341/475 [71%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
Zapisz obwód trójkąta ABC w postaci p\cdot a:

Podaj p.

Odpowiedź:
p= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10622 ⋅ Poprawnie: 333/543 [61%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Kąt \alpha należy do przedziału (90^{\circ},180^{\circ}) i zachodzi równość \cos\alpha=-\frac{1}{13}.

Oblicz \tan\alpha.

Odpowiedź:
\tan\alpha= \cdot
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-10635 ⋅ Poprawnie: 220/350 [62%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Dana jest równość \sin^2\alpha(1+\cos^2\alpha)+\cos^4\alpha-3=m gdzie \alpha jest kątem ostrym.

Oblicz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-10644 ⋅ Poprawnie: 346/447 [77%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Wiadomo, że 0^{\circ}\lessdot \alpha <90^{\circ} oraz \tan \alpha=13\sin\alpha.

Oblicz \cos\alpha.

Odpowiedź:
\cos\alpha=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm