Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10626 ⋅ Poprawnie: 178/286 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Kąty ostre \alpha i \beta trójkąta prostokątnego spełniają warunek \frac{\sin \alpha}{\sin\beta}=\frac{\sqrt{11}}{11}. Oblicz \cos\alpha i zapisz wynik w najprostszej nieskracalnej postaci \frac{a\sqrt{b}}{c}.

Podaj liczby a, b i c.

Odpowiedź:
\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10614 ⋅ Poprawnie: 689/1065 [64%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Kąt \alpha jest kątem ostrym oraz \tan\alpha=\frac{6}{5}.

Oblicz wartość wyrażenia w=\frac{3\cos\alpha-2\sin\alpha}{\sin\alpha-5\cos\alpha}.

Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10621 ⋅ Poprawnie: 316/544 [58%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wiadomo, że \alpha=55^{\circ} oraz \cos\alpha=x.

Zatem \cos 35^{\circ} jest równe:

Odpowiedzi:
A. \sqrt{1-x} B. \sqrt{1-x^2}
C. 1-x D. 1+x^2
Zadanie 4.  1 pkt ⋅ Numer: pp-10671 ⋅ Poprawnie: 260/413 [62%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « W trójkącie prostokątnym przyprostokątne mają długość 5\sqrt{3} i 3.

Oblicz cosinus tego kąta ostrego, którego cosinus jest mniejszy.

Odpowiedź:
\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10652 ⋅ Poprawnie: 493/638 [77%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 W trójkącie prostokątnym długość jednej z przyprostokątnych jest równa 5, zaś długość przeciwprostokątnej jest równa 7.

Oblicz tangens mniejszego kąta ostrego w tym trójkącie.

Odpowiedź:
\tan\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10651 ⋅ Poprawnie: 346/498 [69%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 W trapezie prostokątnym kąt ostry ma miarę 30^{\circ}, a podstawy mają długości 6 i 9.

Oblicz długość wysokości tego trapezu.

Odpowiedź:
h= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11539 ⋅ Poprawnie: 345/416 [82%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Punkt A zaznaczony na rysunku ma współrzędne A=(-5,7):
Oblicz tangens kąta \alpha zaznaczonego na rysunku.
Odpowiedź:
\tan\alpha=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-10616 ⋅ Poprawnie: 367/612 [59%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Oblicz wartośc wyrażenia w= \tan^{2}45^{\circ}-\sin 45^{\circ}\cdot \cos 30^{\circ}-\sin 30^{\circ}\cdot \tan 30^{\circ} .
Odpowiedź:
w= (liczba zapisana dziesiętnie)
Zadanie 9.  1 pkt ⋅ Numer: pp-10660 ⋅ Poprawnie: 153/205 [74%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
» W trapezie prostokątnym ABCD długość ramienia BC jest dwa razy większa od różnicy długości jego podstaw.

Wyznacz miarę stopniową kąta ABC.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  1 pkt ⋅ Numer: pp-10642 ⋅ Poprawnie: 327/557 [58%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Kąt \alpha jest ostry oraz 4\sin\alpha-\sqrt{3}\cos\alpha=0.

Oblicz \tan\alpha.

Odpowiedź:
\tan\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-10618 ⋅ Poprawnie: 415/627 [66%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Kąt \alpha jest ostry i \sin\alpha=\frac{\sqrt{3}}{8}.

Oblicz wartość wyrażenia \cos^2\alpha-2.

Odpowiedź:
\cos^2\alpha-2=
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-10630 ⋅ Poprawnie: 198/462 [42%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 » Kąty \alpha i \beta trójkata prostokątnego są ostre. Wówczas wyrażenie \frac{4\cos\alpha\cdot (3-3\sin^2\beta)\cdot \tan\alpha} {2\sin^2\alpha\cdot \cos\beta} jest równe:
Odpowiedzi:
A. 6 B. 2\sin\alpha
C. 6\tan\alpha D. 6\cos\alpha


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm