Podgląd testu : lo2@sp-09-trygonom-1-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10638 ⋅ Poprawnie: 1013/1633 [62%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Kąt
\alpha jest kątem ostrym w trójkącie prostokątnym.
Przeciwprostokątna tego trójkąta ma długość
6 , a
\cos\alpha=\frac{1}{3} .
Wynika z tego, że:
Odpowiedzi:
A. jedna z przyprostokątnych jest 3 razy krótsza od przeciwprostokątnej
B. przeciwprostokątna tego trójkąta jest dwa razy dłuższa od przyprostokątnej
C. przyprostokatna tego trójkąta ma długość 1
D. \sin\alpha=\frac{2}{3}
Zadanie 2. 1 pkt ⋅ Numer: pp-10613 ⋅ Poprawnie: 429/641 [66%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Wiadomo, że kąt
\alpha jest ostry oraz
\tan\alpha=\frac{1}{4} .
Oblicz wartość wyrażenia \sin\alpha+\cos\alpha .
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-10624 ⋅ Poprawnie: 262/412 [63%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Pod jakim kątem
\alpha padają na powierzchnię Ziemi promienie słoneczne, jeśli długość
cienia stojącego człowieka jest
2 razy mniejsza
od jego wzrostu?
Oblicz miarę stopniową kąta \alpha . Podaj wynik zaokrąglony do całych stopni.
Odpowiedź:
\alpha\ [^{\circ}]=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-10665 ⋅ Poprawnie: 114/171 [66%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Odcinek
BD jest dwusieczną kąta na rysunku:
Miara kąta \varphi spełnia warunek:
Odpowiedzi:
A. 20^{\circ} \lessdot \varphi < 25^{\circ}
B. 25^{\circ} \lessdot \varphi < 30^{\circ}
C. 30^{\circ} \lessdot \varphi < 35^{\circ}
D. 35^{\circ} \lessdot \varphi < 40^{\circ}
Zadanie 5. 1 pkt ⋅ Numer: pp-10653 ⋅ Poprawnie: 727/889 [81%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Dany jest trójkąt:
Oblicz długość odcinka BD .
Odpowiedź:
|BD|=
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-10646 ⋅ Poprawnie: 148/276 [53%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Na płaszczyźnie dane są punkty
A=\left(3\sqrt{7},3\sqrt{21}\right) ,
B=\left(0,0\right) i
C=\left(3\sqrt{7},0\right) .
Kąt CBA ma miarę:
Odpowiedzi:
A. 60^{\circ}
B. 30^{\circ}
C. 45^{\circ}
D. około 55^{\circ}
Zadanie 7. 1 pkt ⋅ Numer: pp-11539 ⋅ Poprawnie: 343/414 [82%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Punkt
A zaznaczony na rysunku ma współrzędne
A=(-1,8) :
Oblicz tangens kąta
\alpha zaznaczonego na rysunku.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-10616 ⋅ Poprawnie: 365/597 [61%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Oblicz wartośc wyrażenia
w=
\tan^{2}30^{\circ}-\sin 45^{\circ}\cdot \cos 60^{\circ}-\sin 30^{\circ}\cdot \tan 30^{\circ}
.
Odpowiedź:
w=
(liczba zapisana dziesiętnie)
Zadanie 9. 1 pkt ⋅ Numer: pp-10657 ⋅ Poprawnie: 566/663 [85%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Przyprostokątne w trójkącie prostokątnym mają długości
1 oraz
\sqrt{3} .
Wyznacz miarę stopniową najmniejszego kąta w tym trójkącie.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 1 pkt ⋅ Numer: pp-11507 ⋅ Poprawnie: 415/985 [42%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Kąt
\alpha jest ostry oraz
\tan\alpha=\frac{\sqrt{2}}{3} .
Oblicz wartość wyrażenia
\frac{2\sin\alpha-\cos\alpha}{\cos\alpha+2\sin\alpha} .
Odpowiedź:
Zadanie 11. 1 pkt ⋅ Numer: pp-10618 ⋅ Poprawnie: 415/624 [66%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Kąt
\alpha jest ostry i
\sin\alpha=\frac{\sqrt{3}}{3} .
Oblicz wartość wyrażenia \cos^2\alpha-2 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-10630 ⋅ Poprawnie: 191/451 [42%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
» Kąty
\alpha i
\beta
trójkata prostokątnego są ostre. Wówczas wyrażenie
\frac{\cos\alpha\cdot (4-4\sin^2\beta)\cdot \tan\alpha}
{6\sin^2\alpha\cdot \cos\beta}
jest równe:
Odpowiedzi:
A. \frac{2}{3}\tan\alpha
B. \frac{2}{3}\cos\alpha
C. \frac{2}{3}
D. \frac{1}{6}\sin\alpha
Rozwiąż