Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10632 ⋅ Poprawnie: 801/972 [82%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Kąt \alpha jest ostry i \cos\alpha=\frac{63}{65}.

Oblicz \sin\alpha.

Odpowiedź:
\sin\alpha=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10613 ⋅ Poprawnie: 429/641 [66%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wiadomo, że kąt \alpha jest ostry oraz \tan\alpha=\frac{6}{7}.

Oblicz wartość wyrażenia \sin\alpha+\cos\alpha.

Odpowiedź:
\sin\alpha+\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10624 ⋅ Poprawnie: 262/412 [63%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Pod jakim kątem \alpha padają na powierzchnię Ziemi promienie słoneczne, jeśli długość cienia stojącego człowieka jest 8 razy mniejsza od jego wzrostu?

Oblicz miarę stopniową kąta \alpha. Podaj wynik zaokrąglony do całych stopni.

Odpowiedź:
\alpha\ [^{\circ}]= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10671 ⋅ Poprawnie: 254/401 [63%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « W trójkącie prostokątnym przyprostokątne mają długość 6\sqrt{2} i 7.

Oblicz cosinus tego kąta ostrego, którego cosinus jest mniejszy.

Odpowiedź:
\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10653 ⋅ Poprawnie: 727/889 [81%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dany jest trójkąt:

Oblicz długość odcinka BD.

Odpowiedź:
|BD|= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10651 ⋅ Poprawnie: 341/491 [69%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 W trapezie prostokątnym kąt ostry ma miarę 60^{\circ}, a podstawy mają długości 2 i 11.

Oblicz długość wysokości tego trapezu.

Odpowiedź:
h= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11539 ⋅ Poprawnie: 343/414 [82%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Punkt A zaznaczony na rysunku ma współrzędne A=(-7,2):
Oblicz tangens kąta \alpha zaznaczonego na rysunku.
Odpowiedź:
\tan\alpha=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-10639 ⋅ Poprawnie: 298/484 [61%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Oblicz wartość wyrażenia \left( \tan 60^{\circ}+\cot 30^{\circ} \right)^2-\sin 60^{\circ} .
Odpowiedź:
\left(\tan\alpha+\cot\beta\right)^2-\sin\gamma= (liczba zapisana dziesiętnie)
Zadanie 9.  1 pkt ⋅ Numer: pp-10662 ⋅ Poprawnie: 341/475 [71%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
Zapisz obwód trójkąta ABC w postaci p\cdot a:

Podaj p.

Odpowiedź:
p= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10622 ⋅ Poprawnie: 333/543 [61%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Kąt \alpha należy do przedziału (90^{\circ},180^{\circ}) i zachodzi równość \cos\alpha=-\frac{1}{13}.

Oblicz \tan\alpha.

Odpowiedź:
\tan\alpha= \cdot
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-10618 ⋅ Poprawnie: 415/624 [66%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Kąt \alpha jest ostry i \sin\alpha=\frac{\sqrt{3}}{10}.

Oblicz wartość wyrażenia \cos^2\alpha-2.

Odpowiedź:
\cos^2\alpha-2=
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-10644 ⋅ Poprawnie: 346/447 [77%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Wiadomo, że 0^{\circ}\lessdot \alpha <90^{\circ} oraz \tan \alpha=13\sin\alpha.

Oblicz \cos\alpha.

Odpowiedź:
\cos\alpha=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm