Podgląd testu : lo2@sp-09-trygonom-1-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10627 ⋅ Poprawnie: 439/629 [69%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Kąt
\alpha spełnia warunki:
\alpha\in(0^{\circ},90^{\circ}) i
\tan\alpha=\frac{7}{24} .
Oblicz \sin\alpha .
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-10617 ⋅ Poprawnie: 398/560 [71%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wiadomo, że kąt
\alpha jest ostry oraz
\sin\alpha=\frac{6\sqrt{37}}{37} .
Oblicz wartość wyrażenia
1+\tan\alpha\cdot\cos\alpha .
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-10624 ⋅ Poprawnie: 262/412 [63%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Pod jakim kątem
\alpha padają na powierzchnię Ziemi promienie słoneczne, jeśli długość
cienia stojącego człowieka jest
8 razy mniejsza
od jego wzrostu?
Oblicz miarę stopniową kąta \alpha . Podaj wynik zaokrąglony do całych stopni.
Odpowiedź:
\alpha\ [^{\circ}]=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-10672 ⋅ Poprawnie: 462/656 [70%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Przeciwprostokątna trójkąta ma długość
12 , zaś
\alpha jest jednym z dwóch kątów ostrych tego trójkąta i
\sin\alpha=\frac{\sqrt{11}}{6} .
Oblicz długość a przyprostokątnej przyległej do kąta \alpha .
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-10661 ⋅ Poprawnie: 334/455 [73%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Przeciwprostokątna
AB trójkąta
ABC ma długość
\frac{17}{2} ,
a
\cos \sphericalangle B=\frac{8}{17} .
Oblicz długość przyprostokątnej BC tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 1 pkt ⋅ Numer: pp-10648 ⋅ Poprawnie: 354/567 [62%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Oblicz długość wysokości trapezu równoramiennego o kącie ostrym
60^{\circ} i ramieniu długości
11\sqrt{2} .
Odpowiedź:
Zadanie 7. 1 pkt ⋅ Numer: pp-10645 ⋅ Poprawnie: 463/594 [77%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
» Dane są długości boków
|BC|=8 i
|AC|=1 trójkąta prostokątnego
ABC o kącie ostrym
\beta .
Oblicz x=\cos\beta .
Odpowiedź:
Zadanie 8. 1 pkt ⋅ Numer: pp-10616 ⋅ Poprawnie: 365/597 [61%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Oblicz wartośc wyrażenia
w=
\tan^{2}60^{\circ}-\sin 30^{\circ}\cdot \cos 60^{\circ}-\sin 45^{\circ}\cdot \tan 45^{\circ}
.
Odpowiedź:
w=
(liczba zapisana dziesiętnie)
Zadanie 9. 1 pkt ⋅ Numer: pp-10662 ⋅ Poprawnie: 341/475 [71%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Zapisz obwód trójkąta
ABC w postaci
p\cdot a :
Podaj p .
Odpowiedź:
p=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-10611 ⋅ Poprawnie: 234/474 [49%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Kąt
\alpha jest ostry oraz
\tan\alpha=\frac{5}{2} .
Oblicz wartość wyrażenia \frac{2-\cos\alpha}{2+\cos\alpha} .
Odpowiedź:
Zadanie 11. 1 pkt ⋅ Numer: pp-10615 ⋅ Poprawnie: 609/917 [66%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
a=2
b=7
« Kąt
\alpha jest ostry i
\sin\alpha=\frac{\sqrt{2}}{7} .
Oblicz wartość wyrażenia 2\cos^2{\alpha}-1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-10644 ⋅ Poprawnie: 346/447 [77%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Wiadomo, że
0^{\circ}\lessdot \alpha <90^{\circ} oraz
\tan \alpha=13\sin\alpha .
Oblicz \cos\alpha .
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż