Podgląd testu : lo2@sp-09-trygonom-1-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10626 ⋅ Poprawnie: 178/286 [62%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Kąty ostre
\alpha i
\beta trójkąta prostokątnego spełniają warunek
\frac{\sin \alpha}{\sin\beta}=\frac{\sqrt{11}}{11} .
Oblicz
\cos\alpha i zapisz wynik w najprostszej nieskracalnej
postaci
\frac{a\sqrt{b}}{c} .
Podaj liczby a , b i
c .
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-10614 ⋅ Poprawnie: 689/1065 [64%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Kąt
\alpha jest kątem ostrym oraz
\tan\alpha=\frac{6}{5} .
Oblicz wartość wyrażenia
w=\frac{3\cos\alpha-2\sin\alpha}{\sin\alpha-5\cos\alpha} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-10621 ⋅ Poprawnie: 316/544 [58%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wiadomo, że
\alpha=55^{\circ} oraz
\cos\alpha=x .
Zatem \cos 35^{\circ} jest równe:
Odpowiedzi:
A. \sqrt{1-x}
B. \sqrt{1-x^2}
C. 1-x
D. 1+x^2
Zadanie 4. 1 pkt ⋅ Numer: pp-10671 ⋅ Poprawnie: 260/413 [62%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« W trójkącie prostokątnym przyprostokątne mają długość
5\sqrt{3} i
3 .
Oblicz cosinus tego kąta ostrego, którego cosinus jest mniejszy.
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-10652 ⋅ Poprawnie: 493/638 [77%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
W trójkącie prostokątnym długość jednej z przyprostokątnych jest równa
5 , zaś długość przeciwprostokątnej jest równa
7 .
Oblicz tangens mniejszego kąta ostrego w tym trójkącie.
Odpowiedź:
Zadanie 6. 1 pkt ⋅ Numer: pp-10651 ⋅ Poprawnie: 346/498 [69%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
W trapezie prostokątnym kąt ostry ma miarę
30^{\circ} , a podstawy mają długości
6 i
9 .
Oblicz długość wysokości tego trapezu.
Odpowiedź:
Zadanie 7. 1 pkt ⋅ Numer: pp-11539 ⋅ Poprawnie: 345/416 [82%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Punkt
A zaznaczony na rysunku ma współrzędne
A=(-5,7) :
Oblicz tangens kąta
\alpha zaznaczonego na rysunku.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-10616 ⋅ Poprawnie: 367/612 [59%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Oblicz wartośc wyrażenia
w=
\tan^{2}45^{\circ}-\sin 45^{\circ}\cdot \cos 30^{\circ}-\sin 30^{\circ}\cdot \tan 30^{\circ}
.
Odpowiedź:
w=
(liczba zapisana dziesiętnie)
Zadanie 9. 1 pkt ⋅ Numer: pp-10660 ⋅ Poprawnie: 153/205 [74%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
» W trapezie prostokątnym
ABCD długość
ramienia
BC jest dwa razy większa od różnicy
długości jego podstaw.
Wyznacz miarę stopniową kąta ABC .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 1 pkt ⋅ Numer: pp-10642 ⋅ Poprawnie: 327/557 [58%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Kąt
\alpha jest ostry oraz
4\sin\alpha-\sqrt{3}\cos\alpha=0 .
Oblicz \tan\alpha .
Odpowiedź:
Zadanie 11. 1 pkt ⋅ Numer: pp-10618 ⋅ Poprawnie: 415/627 [66%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Kąt
\alpha jest ostry i
\sin\alpha=\frac{\sqrt{3}}{8} .
Oblicz wartość wyrażenia \cos^2\alpha-2 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-10630 ⋅ Poprawnie: 198/462 [42%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
» Kąty
\alpha i
\beta
trójkata prostokątnego są ostre. Wówczas wyrażenie
\frac{4\cos\alpha\cdot (3-3\sin^2\beta)\cdot \tan\alpha}
{2\sin^2\alpha\cdot \cos\beta}
jest równe:
Odpowiedzi:
A. 6
B. 2\sin\alpha
C. 6\tan\alpha
D. 6\cos\alpha
Rozwiąż