Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10631 ⋅ Poprawnie: 368/645 [57%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wiadomo, że kąt \alpha jest ostry oraz \sin\alpha=\frac{5\sqrt{34}}{34}.

Oblicz wartość wyrażenia \sin \alpha-\cos\alpha.

Odpowiedź:
\sin\alpha-\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10641 ⋅ Poprawnie: 518/733 [70%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wiadomo, że kąt \alpha jest ostry oraz. \sin\alpha=\frac{4}{5}.

Oblicz \cos\alpha.

Odpowiedź:
\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10621 ⋅ Poprawnie: 309/534 [57%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wiadomo, że \alpha=74^{\circ} oraz \cos\alpha=x.

Zatem \cos 16^{\circ} jest równe:

Odpowiedzi:
A. \sqrt{1-x} B. 1-x
C. 1+x^2 D. \sqrt{1-x^2}
Zadanie 4.  1 pkt ⋅ Numer: pp-10670 ⋅ Poprawnie: 319/560 [56%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Trapez na rysunku jest prostokątny:

Miara kąta \alpha spełnia warunek:

Odpowiedzi:
A. \alpha=45^{\circ} B. 50^{\circ} \lessdot \alpha < 60^{\circ}
C. \alpha=30^{\circ} D. 30^{\circ} \lessdot \alpha < 35^{\circ}
Zadanie 5.  1 pkt ⋅ Numer: pp-10653 ⋅ Poprawnie: 727/889 [81%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dany jest trójkąt:

Oblicz długość odcinka BD.

Odpowiedź:
|BD|= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10680 ⋅ Poprawnie: 165/243 [67%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Oblicz sinus kąta ostrego utworzonego w trójkącie prostokątnym przez boki o długościach 7 i 10.
Odpowiedź:
\sin\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11539 ⋅ Poprawnie: 343/414 [82%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Punkt A zaznaczony na rysunku ma współrzędne A=(-8,9):
Oblicz tangens kąta \alpha zaznaczonego na rysunku.
Odpowiedź:
\tan\alpha=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-10639 ⋅ Poprawnie: 298/484 [61%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Oblicz wartość wyrażenia \left( \tan 60^{\circ}+\cot 45^{\circ} \right)^2-\sin 30^{\circ} .
Odpowiedź:
\left(\tan\alpha+\cot\beta\right)^2-\sin\gamma= (liczba zapisana dziesiętnie)
Zadanie 9.  1 pkt ⋅ Numer: pp-10662 ⋅ Poprawnie: 341/475 [71%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
Zapisz obwód trójkąta ABC w postaci p\cdot a:

Podaj p.

Odpowiedź:
p= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10611 ⋅ Poprawnie: 234/474 [49%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Kąt \alpha jest ostry oraz \tan\alpha=\frac{6}{5}.

Oblicz wartość wyrażenia \frac{2-\cos\alpha}{2+\cos\alpha}.

Odpowiedź:
\frac{2-\cos\alpha}{2+\cos\alpha}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-11388 ⋅ Poprawnie: 211/451 [46%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Kąt \alpha jest kątem ostrym oraz \sin\alpha+\cos\alpha=\frac{14}{11}.

Oblicz wartość wyrażenia (\sin\alpha-\cos\alpha)^2.

Odpowiedź:
(\sin\alpha-\cos\alpha)^2=
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-10630 ⋅ Poprawnie: 191/451 [42%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 » Kąty \alpha i \beta trójkata prostokątnego są ostre. Wówczas wyrażenie \frac{6\cos\alpha\cdot (4-4\sin^2\beta)\cdot \tan\alpha} {\sin^2\alpha\cdot \cos\beta} jest równe:
Odpowiedzi:
A. 24\cos\alpha B. 24
C. 6\sin\alpha D. 24\tan\alpha


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm