Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10638 ⋅ Poprawnie: 1013/1633 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Kąt \alpha jest kątem ostrym w trójkącie prostokątnym. Przeciwprostokątna tego trójkąta ma długość 6, a \cos\alpha=\frac{1}{3}.

Wynika z tego, że:

Odpowiedzi:
A. przyprostokatna tego trójkąta ma długość 1 B. przeciwprostokątna tego trójkąta jest dwa razy dłuższa od przyprostokątnej
C. \sin\alpha=\frac{2}{3} D. jedna z przyprostokątnych jest 3 razy krótsza od przeciwprostokątnej
Zadanie 2.  1 pkt ⋅ Numer: pp-10614 ⋅ Poprawnie: 663/1036 [63%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Kąt \alpha jest kątem ostrym oraz \tan\alpha=\frac{2}{7}.

Oblicz wartość wyrażenia w=\frac{3\cos\alpha-2\sin\alpha}{\sin\alpha-5\cos\alpha}.

Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10624 ⋅ Poprawnie: 262/412 [63%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Pod jakim kątem \alpha padają na powierzchnię Ziemi promienie słoneczne, jeśli długość cienia stojącego człowieka jest 2 razy mniejsza od jego wzrostu?

Oblicz miarę stopniową kąta \alpha. Podaj wynik zaokrąglony do całych stopni.

Odpowiedź:
\alpha\ [^{\circ}]= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10665 ⋅ Poprawnie: 114/171 [66%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Odcinek BD jest dwusieczną kąta na rysunku:

Miara kąta \varphi spełnia warunek:

Odpowiedzi:
A. 20^{\circ} \lessdot \varphi < 25^{\circ} B. 25^{\circ} \lessdot \varphi < 30^{\circ}
C. 30^{\circ} \lessdot \varphi < 35^{\circ} D. 35^{\circ} \lessdot \varphi < 40^{\circ}
Zadanie 5.  1 pkt ⋅ Numer: pp-10661 ⋅ Poprawnie: 334/455 [73%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Przeciwprostokątna AB trójkąta ABC ma długość \frac{13}{2}, a \cos \sphericalangle B=\frac{12}{13}.

Oblicz długość przyprostokątnej BC tego trójkąta.

Odpowiedź:
|BC|=
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10651 ⋅ Poprawnie: 341/491 [69%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 W trapezie prostokątnym kąt ostry ma miarę 45^{\circ}, a podstawy mają długości 3 i 10.

Oblicz długość wysokości tego trapezu.

Odpowiedź:
h= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-10645 ⋅ Poprawnie: 463/594 [77%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Dane są długości boków |BC|=7 i |AC|=1 trójkąta prostokątnego ABC o kącie ostrym \beta.

Oblicz x=\cos\beta.

Odpowiedź:
x= \cdot
(wpisz trzy liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-10639 ⋅ Poprawnie: 298/484 [61%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Oblicz wartość wyrażenia \left( \tan 30^{\circ}+\cot 45^{\circ} \right)^2-\sin 45^{\circ} .
Odpowiedź:
\left(\tan\alpha+\cot\beta\right)^2-\sin\gamma= (liczba zapisana dziesiętnie)
Zadanie 9.  1 pkt ⋅ Numer: pp-10657 ⋅ Poprawnie: 566/663 [85%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
Przyprostokątne w trójkącie prostokątnym mają długości 1 oraz \sqrt{3}.

Wyznacz miarę stopniową najmniejszego kąta w tym trójkącie.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  1 pkt ⋅ Numer: pp-10611 ⋅ Poprawnie: 234/474 [49%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Kąt \alpha jest ostry oraz \tan\alpha=\frac{2}{5}.

Oblicz wartość wyrażenia \frac{2-\cos\alpha}{2+\cos\alpha}.

Odpowiedź:
\frac{2-\cos\alpha}{2+\cos\alpha}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-10623 ⋅ Poprawnie: 109/175 [62%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Wiadomo, że \alpha i \beta są miarami kątów ostrych trójkąta prostokątnego oraz 9\sin^2\alpha+\cos^2\beta=1.

Oblicz \tan\alpha.

Odpowiedź:
\tan\alpha=
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-10644 ⋅ Poprawnie: 346/447 [77%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Wiadomo, że 0^{\circ}\lessdot \alpha <90^{\circ} oraz \tan \alpha=2\sin\alpha.

Oblicz \cos\alpha.

Odpowiedź:
\cos\alpha=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm