Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10638 ⋅ Poprawnie: 1013/1633 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Kąt \alpha jest kątem ostrym w trójkącie prostokątnym. Przeciwprostokątna tego trójkąta ma długość 6, a \cos\alpha=\frac{1}{3}.

Wynika z tego, że:

Odpowiedzi:
A. przyprostokatna tego trójkąta ma długość 1 B. jedna z przyprostokątnych jest 3 razy krótsza od przeciwprostokątnej
C. \sin\alpha=\frac{2}{3} D. przeciwprostokątna tego trójkąta jest dwa razy dłuższa od przyprostokątnej
Zadanie 2.  1 pkt ⋅ Numer: pp-10613 ⋅ Poprawnie: 429/641 [66%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wiadomo, że kąt \alpha jest ostry oraz \tan\alpha=\frac{4}{5}.

Oblicz wartość wyrażenia \sin\alpha+\cos\alpha.

Odpowiedź:
\sin\alpha+\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10609 ⋅ Poprawnie: 606/824 [73%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Kąt \alpha jest ostry i \sin \alpha=\frac{1}{4}.

Wówczas:

Odpowiedzi:
A. \cos\alpha=\frac{\sqrt{14}}{4} B. \cos\alpha=\frac{\sqrt{17}}{4}
C. \cos\alpha > \frac{\sqrt{14}}{4} D. \cos\alpha \lessdot \frac{\sqrt{14}}{4}
Zadanie 4.  1 pkt ⋅ Numer: pp-10672 ⋅ Poprawnie: 462/656 [70%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Przeciwprostokątna trójkąta ma długość 6, zaś \alpha jest jednym z dwóch kątów ostrych tego trójkąta i \sin\alpha=\frac{\sqrt{3}}{3}.

Oblicz długość a przyprostokątnej przyległej do kąta \alpha.

Odpowiedź:
a= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10652 ⋅ Poprawnie: 488/629 [77%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 W trójkącie prostokątnym długość jednej z przyprostokątnych jest równa 11, zaś długość przeciwprostokątnej jest równa 13.

Oblicz tangens mniejszego kąta ostrego w tym trójkącie.

Odpowiedź:
\tan\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10651 ⋅ Poprawnie: 341/491 [69%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 W trapezie prostokątnym kąt ostry ma miarę 45^{\circ}, a podstawy mają długości 4 i 12.

Oblicz długość wysokości tego trapezu.

Odpowiedź:
h= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-10676 ⋅ Poprawnie: 258/353 [73%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Dany jest trójkąt prostokątny o kątach ostrych \alpha i \beta, w którym \sin\alpha=\frac{\sqrt{6}}{4}.

Oblicz \cot \beta.

Odpowiedź:
\cot\beta= \cdot
(wpisz trzy liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-10616 ⋅ Poprawnie: 365/597 [61%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Oblicz wartośc wyrażenia w= \tan^{2}30^{\circ}-\sin 30^{\circ}\cdot \cos 45^{\circ}-\sin 30^{\circ}\cdot \tan 30^{\circ} .
Odpowiedź:
w= (liczba zapisana dziesiętnie)
Zadanie 9.  1 pkt ⋅ Numer: pp-10662 ⋅ Poprawnie: 341/475 [71%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
Zapisz obwód trójkąta ABC w postaci p\cdot a:

Podaj p.

Odpowiedź:
p= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10622 ⋅ Poprawnie: 333/543 [61%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Kąt \alpha należy do przedziału (90^{\circ},180^{\circ}) i zachodzi równość \cos\alpha=-\frac{1}{2}.

Oblicz \tan\alpha.

Odpowiedź:
\tan\alpha= \cdot
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-10618 ⋅ Poprawnie: 415/624 [66%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Kąt \alpha jest ostry i \sin\alpha=\frac{\sqrt{3}}{3}.

Oblicz wartość wyrażenia \cos^2\alpha-2.

Odpowiedź:
\cos^2\alpha-2=
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-10644 ⋅ Poprawnie: 346/447 [77%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Wiadomo, że 0^{\circ}\lessdot \alpha <90^{\circ} oraz \tan \alpha=2\sin\alpha.

Oblicz \cos\alpha.

Odpowiedź:
\cos\alpha=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm