Podgląd testu : lo2@sp-09-trygonom-1-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10632 ⋅ Poprawnie: 834/996 [83%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Kąt
\alpha jest ostry i
\cos\alpha=\frac{33}{65} .
Oblicz \sin\alpha .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-10613 ⋅ Poprawnie: 429/641 [66%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Wiadomo, że kąt
\alpha jest ostry oraz
\tan\alpha=\frac{6}{7} .
Oblicz wartość wyrażenia \sin\alpha+\cos\alpha .
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-10624 ⋅ Poprawnie: 262/412 [63%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Pod jakim kątem
\alpha padają na powierzchnię Ziemi promienie słoneczne, jeśli długość
cienia stojącego człowieka jest
7 razy mniejsza
od jego wzrostu?
Oblicz miarę stopniową kąta \alpha . Podaj wynik zaokrąglony do całych stopni.
Odpowiedź:
\alpha\ [^{\circ}]=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-10663 ⋅ Poprawnie: 400/663 [60%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Trójkąt
ABC jest prostokątny, a kąt
BCA jest prosty. Wiadomo, że
\cos\sphericalangle CAB=\frac{11}{61} i
|AB|=\frac{61}{2} .
Oblicz długość boku BC .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10658 ⋅ Poprawnie: 116/177 [65%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
» W trójkącie równoramiennym
ABC poprowadzono
wysokość
AS , która utworzyła z podstawą kąt o mierze
24^{\circ} (zobacz rysunek).
Ramię tego trójkąta ma długość 10 . Długość wysokości
AS jest liczbą z przedziału:
Odpowiedzi:
A. \left\langle\frac{7}{2}, \frac{9}{2}\right\rangle
B. \left(\frac{15}{2}, \frac{17}{2}\right\rangle
C. \left(\frac{13}{2}, \frac{15}{2}\right\rangle
D. \left\langle\frac{11}{2}, \frac{13}{2}\right\rangle
Zadanie 6. 1 pkt ⋅ Numer: pp-10651 ⋅ Poprawnie: 341/491 [69%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
W trapezie prostokątnym kąt ostry ma miarę
45^{\circ} , a podstawy mają długości
8 i
10 .
Oblicz długość wysokości tego trapezu.
Odpowiedź:
Zadanie 7. 1 pkt ⋅ Numer: pp-10677 ⋅ Poprawnie: 75/120 [62%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
W trójkącie prostokątnym przyprostokątne mają długości
7 i
8 .
Oblicz sinus większego z kątów ostrych tego trójkąta.
Odpowiedź:
Zadanie 8. 1 pkt ⋅ Numer: pp-10674 ⋅ Poprawnie: 264/697 [37%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Przekątna równoległoboku o kącie ostrym
\alpha o mierze
60^{\circ} i wysokości o długości
24\sqrt{3} , tworzy kąt prosty z jego bokiem.
Oblicz obwód tego równoległoboku.
Odpowiedź:
L=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-10660 ⋅ Poprawnie: 145/192 [75%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
» W trapezie prostokątnym
ABCD długość
ramienia
BC jest dwa razy większa od różnicy
długości jego podstaw.
Wyznacz miarę stopniową kąta ABC .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 1 pkt ⋅ Numer: pp-10611 ⋅ Poprawnie: 234/474 [49%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Kąt
\alpha jest ostry oraz
\tan\alpha=\frac{5}{3} .
Oblicz wartość wyrażenia \frac{2-\cos\alpha}{2+\cos\alpha} .
Odpowiedź:
Zadanie 11. 1 pkt ⋅ Numer: pp-10615 ⋅ Poprawnie: 609/917 [66%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
a=7
b=8
« Kąt
\alpha jest ostry i
\sin\alpha=\frac{\sqrt{7}}{8} .
Oblicz wartość wyrażenia 2\cos^2{\alpha}-1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-10633 ⋅ Poprawnie: 65/88 [73%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
« Oblicz wartość wyrażenia
\log{\tan 35^{\circ}}+\log{\tan 45^{\circ}}+\log{\tan 55^{\circ}}
.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Rozwiąż