Podgląd testu : lo2@sp-09-trygonom-1-pp-2
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10627 ⋅ Poprawnie: 439/629 [69%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Kąt
\alpha spełnia warunki:
\alpha\in(0^{\circ},90^{\circ}) i
\tan\alpha=\frac{4}{3}.
Oblicz \sin\alpha.
Odpowiedź:
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10640 ⋅ Poprawnie: 614/830 [73%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Wiadomo, że kąt
\alpha jest ostry oraz
\tan\alpha=\frac{5}{3}.
Oblicz \sin\alpha.
Odpowiedź:
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10637 ⋅ Poprawnie: 840/1239 [67%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Drabinę o długości
5 metrów oparto o pionowy mur,
a jej podstawę umieszczono w odległości
2 metrów od
tego muru.
Kąt \alpha, pod jakim ustawiono drabinę,
spełnia warunek:
Odpowiedzi:
|
A. 45^{\circ}\lessdot \alpha&\lessdot60^{\circ}
|
B. 30^{\circ}\lessdot \alpha&\lessdot45^{\circ}
|
|
C. 60^{\circ}\lessdot \alpha&\lessdot90^{\circ}
|
D. 0^{\circ}\lessdot \alpha&\lessdot30^{\circ}
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10665 ⋅ Poprawnie: 114/171 [66%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
« Odcinek
BD jest dwusieczną kąta na rysunku:
Miara kąta \varphi spełnia warunek:
Odpowiedzi:
|
A. 25^{\circ} \lessdot \varphi < 30^{\circ}
|
B. 35^{\circ} \lessdot \varphi < 40^{\circ}
|
|
C. 30^{\circ} \lessdot \varphi < 35^{\circ}
|
D. 20^{\circ} \lessdot \varphi < 25^{\circ}
|
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10651 ⋅ Poprawnie: 341/491 [69%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
W trapezie prostokątnym kąt ostry ma miarę
30^{\circ}, a podstawy mają długości
5 i
11.
Oblicz długość wysokości tego trapezu.
Odpowiedź:
|
Zadanie 6. 1 pkt ⋅ Numer: pp-10650 ⋅ Poprawnie: 278/390 [71%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Oblicz tangens najmiejszego kąta w trójkącie prostokątnym o bokach długości
\frac{27}{2},
18,
\frac{45}{2}.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 7. 1 pkt ⋅ Numer: pp-10677 ⋅ Poprawnie: 75/120 [62%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
W trójkącie prostokątnym przyprostokątne mają długości
4 i
8.
Oblicz sinus większego z kątów ostrych tego trójkąta.
Odpowiedź:
|
Zadanie 8. 1 pkt ⋅ Numer: pp-10639 ⋅ Poprawnie: 298/484 [61%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
Oblicz wartość wyrażenia
\left(
\tan 60^{\circ}+\cot 45^{\circ}
\right)^2-\sin 30^{\circ}
.
Odpowiedź:
\left(\tan\alpha+\cot\beta\right)^2-\sin\gamma=
(liczba zapisana dziesiętnie)
|
Zadanie 9. 1 pkt ⋅ Numer: pp-10662 ⋅ Poprawnie: 341/475 [71%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
Zapisz obwód trójkąta
ABC w postaci
p\cdot a:
Podaj p.
Odpowiedź:
p=
+
\cdot
√
(wpisz trzy liczby całkowite)
|
Zadanie 10. 1 pkt ⋅ Numer: pp-10622 ⋅ Poprawnie: 333/543 [61%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Kąt
\alpha należy do przedziału
(90^{\circ},180^{\circ}) i zachodzi równość
\cos\alpha=-\frac{1}{13}.
Oblicz \tan\alpha.
Odpowiedź:
\tan\alpha=
\cdot√
(wpisz dwie liczby całkowite)
|
Zadanie 11. 1 pkt ⋅ Numer: pp-10635 ⋅ Poprawnie: 220/350 [62%] |
Rozwiąż |
Podpunkt 11.1 (1 pkt)
Dana jest równość
\sin^2\alpha(1+\cos^2\alpha)+\cos^4\alpha-3=m
gdzie
\alpha jest kątem ostrym.
Oblicz m.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 12. 1 pkt ⋅ Numer: pp-10644 ⋅ Poprawnie: 346/447 [77%] |
Rozwiąż |
Podpunkt 12.1 (1 pkt)
Wiadomo, że
0^{\circ}\lessdot \alpha <90^{\circ} oraz
\tan \alpha=13\sin\alpha.
Oblicz \cos\alpha.
Odpowiedź:
(wpisz dwie liczby całkowite)