Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10627 ⋅ Poprawnie: 439/629 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Kąt \alpha spełnia warunki: \alpha\in(0^{\circ},90^{\circ}) i \tan\alpha=\frac{5}{12}.

Oblicz \sin\alpha.

Odpowiedź:
\sin\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10613 ⋅ Poprawnie: 429/641 [66%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wiadomo, że kąt \alpha jest ostry oraz \tan\alpha=\frac{1}{5}.

Oblicz wartość wyrażenia \sin\alpha+\cos\alpha.

Odpowiedź:
\sin\alpha+\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10609 ⋅ Poprawnie: 606/824 [73%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Kąt \alpha jest ostry i \sin \alpha=\frac{1}{10}.

Wówczas:

Odpowiedzi:
A. \cos\alpha=\frac{\sqrt{98}}{10} B. \cos\alpha=\frac{\sqrt{101}}{10}
C. \cos\alpha > \frac{\sqrt{98}}{10} D. \cos\alpha \lessdot \frac{\sqrt{98}}{10}
Zadanie 4.  1 pkt ⋅ Numer: pp-10671 ⋅ Poprawnie: 254/401 [63%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « W trójkącie prostokątnym przyprostokątne mają długość 4\sqrt{2} i 7.

Oblicz cosinus tego kąta ostrego, którego cosinus jest mniejszy.

Odpowiedź:
\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10651 ⋅ Poprawnie: 341/491 [69%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 W trapezie prostokątnym kąt ostry ma miarę 60^{\circ}, a podstawy mają długości 2 i 7.

Oblicz długość wysokości tego trapezu.

Odpowiedź:
h= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10649 ⋅ Poprawnie: 291/488 [59%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « W trójkącie prostokątnym najdłuższy bok ma długość 41, a najkrótszy 9.

Oblicz tangens największego kąta ostrego tego trójkąta.

Odpowiedź:
\tan\alpha=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11539 ⋅ Poprawnie: 343/414 [82%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Punkt A zaznaczony na rysunku ma współrzędne A=(-4,2):
Oblicz tangens kąta \alpha zaznaczonego na rysunku.
Odpowiedź:
\tan\alpha=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-10616 ⋅ Poprawnie: 365/597 [61%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Oblicz wartośc wyrażenia w= \tan^{2}45^{\circ}-\sin 30^{\circ}\cdot \cos 60^{\circ}-\sin 45^{\circ}\cdot \tan 45^{\circ} .
Odpowiedź:
w= (liczba zapisana dziesiętnie)
Zadanie 9.  1 pkt ⋅ Numer: pp-10662 ⋅ Poprawnie: 341/475 [71%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
Zapisz obwód trójkąta ABC w postaci p\cdot a:

Podaj p.

Odpowiedź:
p= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10611 ⋅ Poprawnie: 234/474 [49%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Kąt \alpha jest ostry oraz \tan\alpha=\frac{2}{5}.

Oblicz wartość wyrażenia \frac{2-\cos\alpha}{2+\cos\alpha}.

Odpowiedź:
\frac{2-\cos\alpha}{2+\cos\alpha}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-10635 ⋅ Poprawnie: 220/350 [62%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Dana jest równość \sin^2\alpha(1+\cos^2\alpha)+\cos^4\alpha+5=m gdzie \alpha jest kątem ostrym.

Oblicz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-10630 ⋅ Poprawnie: 191/451 [42%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 » Kąty \alpha i \beta trójkata prostokątnego są ostre. Wówczas wyrażenie \frac{3\cos\alpha\cdot (1-\sin^2\beta)\cdot \tan\alpha} {6\sin^2\alpha\cdot \cos\beta} jest równe:
Odpowiedzi:
A. \frac{1}{2}\sin\alpha B. \frac{1}{2}\cos\alpha
C. \frac{1}{2}\tan\alpha D. \frac{1}{2}


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm