Podgląd testu : lo2@sp-09-trygonom-1-pp-2
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10631 ⋅ Poprawnie: 368/645 [57%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Wiadomo, że kąt
\alpha jest ostry oraz
\sin\alpha=\frac{2\sqrt{13}}{13}.
Oblicz wartość wyrażenia \sin \alpha-\cos\alpha.
Odpowiedź:
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10614 ⋅ Poprawnie: 684/1059 [64%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
« Kąt
\alpha jest kątem ostrym oraz
\tan\alpha=\frac{3}{5}.
Oblicz wartość wyrażenia
w=\frac{3\cos\alpha-2\sin\alpha}{\sin\alpha-5\cos\alpha}.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10609 ⋅ Poprawnie: 606/824 [73%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Kąt
\alpha jest ostry i
\sin \alpha=\frac{1}{7}.
Wówczas:
Odpowiedzi:
|
A. \cos\alpha > \frac{\sqrt{47}}{7}
|
B. \cos\alpha=\frac{\sqrt{47}}{7}
|
|
C. \cos\alpha=\frac{\sqrt{50}}{7}
|
D. \cos\alpha \lessdot \frac{\sqrt{47}}{7}
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10672 ⋅ Poprawnie: 461/655 [70%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
« Przeciwprostokątna trójkąta ma długość
6, zaś
\alpha jest jednym z dwóch kątów ostrych tego trójkąta i
\sin\alpha=\frac{2\sqrt{2}}{3}.
Oblicz długość a przyprostokątnej przyległej do kąta \alpha.
Odpowiedź:
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10653 ⋅ Poprawnie: 727/889 [81%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Dany jest trójkąt:
Oblicz długość odcinka BD.
Odpowiedź:
|BD|=
(wpisz liczbę całkowitą)
|
Zadanie 6. 1 pkt ⋅ Numer: pp-10646 ⋅ Poprawnie: 148/276 [53%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
« Na płaszczyźnie dane są punkty
A=\left(5\sqrt{6},15\sqrt{2}\right),
B=\left(0,0\right) i
C=\left(5\sqrt{6},0\right).
Kąt CBA ma miarę:
Odpowiedzi:
|
A. 30^{\circ}
|
B. 45^{\circ}
|
|
C. około 55^{\circ}
|
D. 60^{\circ}
|
|
Zadanie 7. 1 pkt ⋅ Numer: pp-10645 ⋅ Poprawnie: 463/594 [77%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
» Dane są długości boków
|BC|=5 i
|AC|=3 trójkąta prostokątnego
ABC o kącie ostrym
\beta.
Oblicz x=\cos\beta.
Odpowiedź:
|
Zadanie 8. 1 pkt ⋅ Numer: pp-10639 ⋅ Poprawnie: 298/484 [61%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
Oblicz wartość wyrażenia
\left(
\tan 30^{\circ}+\cot 45^{\circ}
\right)^2-\sin 60^{\circ}
.
Odpowiedź:
\left(\tan\alpha+\cot\beta\right)^2-\sin\gamma=
(liczba zapisana dziesiętnie)
|
Zadanie 9. 1 pkt ⋅ Numer: pp-10657 ⋅ Poprawnie: 566/663 [85%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
Przyprostokątne w trójkącie prostokątnym mają długości
1 oraz
\sqrt{3}.
Wyznacz miarę stopniową najmniejszego kąta w tym trójkącie.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 10. 1 pkt ⋅ Numer: pp-10634 ⋅ Poprawnie: 283/501 [56%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
« Kąt
\alpha należy do przedziału
(90^{\circ},180^{\circ}) i zachodzi równość
9\cos^2\alpha-1=\frac{1}{3}.
Oblicz
\sin\alpha.
Odpowiedź:
|
Zadanie 11. 1 pkt ⋅ Numer: pp-10623 ⋅ Poprawnie: 109/175 [62%] |
Rozwiąż |
Podpunkt 11.1 (1 pkt)
« Wiadomo, że
\alpha i
\beta
są miarami kątów ostrych trójkąta prostokątnego oraz
16\sin^2\alpha+\cos^2\beta=1.
Oblicz \tan\alpha.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 12. 1 pkt ⋅ Numer: pp-10644 ⋅ Poprawnie: 346/447 [77%] |
Rozwiąż |
Podpunkt 12.1 (1 pkt)
Wiadomo, że
0^{\circ}\lessdot \alpha <90^{\circ} oraz
\tan \alpha=5\sin\alpha.
Oblicz \cos\alpha.
Odpowiedź:
(wpisz dwie liczby całkowite)