Podgląd testu : lo2@sp-09-trygonom-1-pp-2
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10627 ⋅ Poprawnie: 439/629 [69%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Kąt
\alpha spełnia warunki:
\alpha\in(0^{\circ},90^{\circ}) i
\tan\alpha=\frac{3}{4}.
Oblicz \sin\alpha.
Odpowiedź:
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10640 ⋅ Poprawnie: 614/830 [73%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Wiadomo, że kąt
\alpha jest ostry oraz
\tan\alpha=4.
Oblicz \sin\alpha.
Odpowiedź:
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10637 ⋅ Poprawnie: 840/1239 [67%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Drabinę o długości
4 metrów oparto o pionowy mur,
a jej podstawę umieszczono w odległości
1 metrów od
tego muru.
Kąt \alpha, pod jakim ustawiono drabinę,
spełnia warunek:
Odpowiedzi:
|
A. 60^{\circ}\lessdot \alpha&\lessdot90^{\circ}
|
B. 30^{\circ}\lessdot \alpha&\lessdot45^{\circ}
|
|
C. 45^{\circ}\lessdot \alpha&\lessdot60^{\circ}
|
D. 0^{\circ}\lessdot \alpha&\lessdot30^{\circ}
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10665 ⋅ Poprawnie: 114/171 [66%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
« Odcinek
BD jest dwusieczną kąta na rysunku:
Miara kąta \varphi spełnia warunek:
Odpowiedzi:
|
A. 35^{\circ} \lessdot \varphi < 40^{\circ}
|
B. 30^{\circ} \lessdot \varphi < 35^{\circ}
|
|
C. 25^{\circ} \lessdot \varphi < 30^{\circ}
|
D. 20^{\circ} \lessdot \varphi < 25^{\circ}
|
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10651 ⋅ Poprawnie: 341/491 [69%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
W trapezie prostokątnym kąt ostry ma miarę
30^{\circ}, a podstawy mają długości
3 i
9.
Oblicz długość wysokości tego trapezu.
Odpowiedź:
|
Zadanie 6. 1 pkt ⋅ Numer: pp-10648 ⋅ Poprawnie: 354/567 [62%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
« Oblicz długość wysokości trapezu równoramiennego o kącie ostrym
30^{\circ} i ramieniu długości
9\sqrt{2}.
Odpowiedź:
|
Zadanie 7. 1 pkt ⋅ Numer: pp-10645 ⋅ Poprawnie: 463/594 [77%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
» Dane są długości boków
|BC|=7 i
|AC|=2 trójkąta prostokątnego
ABC o kącie ostrym
\beta.
Oblicz x=\sin\beta.
Odpowiedź:
|
Zadanie 8. 1 pkt ⋅ Numer: pp-10674 ⋅ Poprawnie: 264/697 [37%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
« Przekątna równoległoboku o kącie ostrym
\alpha o mierze
60^{\circ} i wysokości o długości
20\sqrt{3}, tworzy kąt prosty z jego bokiem.
Oblicz obwód tego równoległoboku.
Odpowiedź:
L=
(wpisz liczbę całkowitą)
|
Zadanie 9. 1 pkt ⋅ Numer: pp-10662 ⋅ Poprawnie: 341/475 [71%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
Zapisz obwód trójkąta
ABC w postaci
p\cdot a:
Podaj p.
Odpowiedź:
p=
+
\cdot
√
(wpisz trzy liczby całkowite)
|
Zadanie 10. 1 pkt ⋅ Numer: pp-10642 ⋅ Poprawnie: 319/546 [58%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Kąt
\alpha jest ostry oraz
11\sin\alpha-\sqrt{3}\cos\alpha=0.
Oblicz \tan\alpha.
Odpowiedź:
|
Zadanie 11. 1 pkt ⋅ Numer: pp-10615 ⋅ Poprawnie: 609/917 [66%] |
Rozwiąż |
Podpunkt 11.1 (1 pkt)
a=2
b=3
« Kąt
\alpha jest ostry i
\sin\alpha=\frac{\sqrt{2}}{3}.
Oblicz wartość wyrażenia 2\cos^2{\alpha}-1.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 12. 1 pkt ⋅ Numer: pp-10644 ⋅ Poprawnie: 346/447 [77%] |
Rozwiąż |
Podpunkt 12.1 (1 pkt)
Wiadomo, że
0^{\circ}\lessdot \alpha <90^{\circ} oraz
\tan \alpha=11\sin\alpha.
Oblicz \cos\alpha.
Odpowiedź:
(wpisz dwie liczby całkowite)