Podgląd testu : lo2@sp-09-trygonom-1-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10626 ⋅ Poprawnie: 175/279 [62%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Kąty ostre
\alpha i
\beta trójkąta prostokątnego spełniają warunek
\frac{\sin \alpha}{\sin\beta}=\frac{\sqrt{17}}{17} .
Oblicz
\cos\alpha i zapisz wynik w najprostszej nieskracalnej
postaci
\frac{a\sqrt{b}}{c} .
Podaj liczby a , b i
c .
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-10640 ⋅ Poprawnie: 614/830 [73%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wiadomo, że kąt
\alpha jest ostry oraz
\tan\alpha=\frac{5}{3} .
Oblicz \sin\alpha .
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-10637 ⋅ Poprawnie: 840/1239 [67%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Drabinę o długości
5 metrów oparto o pionowy mur,
a jej podstawę umieszczono w odległości
2 metrów od
tego muru.
Kąt \alpha , pod jakim ustawiono drabinę,
spełnia warunek:
Odpowiedzi:
A. 45^{\circ}\lessdot \alpha&\lessdot60^{\circ}
B. 0^{\circ}\lessdot \alpha&\lessdot30^{\circ}
C. 60^{\circ}\lessdot \alpha&\lessdot90^{\circ}
D. 30^{\circ}\lessdot \alpha&\lessdot45^{\circ}
Zadanie 4. 1 pkt ⋅ Numer: pp-10672 ⋅ Poprawnie: 462/656 [70%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Przeciwprostokątna trójkąta ma długość
10 , zaś
\alpha jest jednym z dwóch kątów ostrych tego trójkąta i
\sin\alpha=\frac{\sqrt{10}}{5} .
Oblicz długość a przyprostokątnej przyległej do kąta \alpha .
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-10661 ⋅ Poprawnie: 334/455 [73%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Przeciwprostokątna
AB trójkąta
ABC ma długość
\frac{29}{2} ,
a
\cos \sphericalangle B=\frac{20}{29} .
Oblicz długość przyprostokątnej BC tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 1 pkt ⋅ Numer: pp-10680 ⋅ Poprawnie: 165/243 [67%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Oblicz sinus kąta ostrego utworzonego w trójkącie prostokątnym przez boki o długościach
5 i
8 .
Odpowiedź:
Zadanie 7. 1 pkt ⋅ Numer: pp-10677 ⋅ Poprawnie: 75/120 [62%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
W trójkącie prostokątnym przyprostokątne mają długości
5 i
8 .
Oblicz cosinus większego z kątów ostrych tego trójkąta.
Odpowiedź:
Zadanie 8. 1 pkt ⋅ Numer: pp-10616 ⋅ Poprawnie: 365/597 [61%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Oblicz wartośc wyrażenia
w=
\tan^{2}60^{\circ}-\sin 45^{\circ}\cdot \cos 60^{\circ}-\sin 45^{\circ}\cdot \tan 45^{\circ}
.
Odpowiedź:
w=
(liczba zapisana dziesiętnie)
Zadanie 9. 1 pkt ⋅ Numer: pp-10662 ⋅ Poprawnie: 341/475 [71%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Zapisz obwód trójkąta
ABC w postaci
p\cdot a :
Podaj p .
Odpowiedź:
p=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-10642 ⋅ Poprawnie: 319/546 [58%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Kąt
\alpha jest ostry oraz
13\sin\alpha-\sqrt{6}\cos\alpha=0 .
Oblicz \tan\alpha .
Odpowiedź:
Zadanie 11. 1 pkt ⋅ Numer: pp-11388 ⋅ Poprawnie: 211/451 [46%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
« Kąt
\alpha jest kątem ostrym oraz
\sin\alpha+\cos\alpha=\frac{12}{11} .
Oblicz wartość wyrażenia (\sin\alpha-\cos\alpha)^2 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-10633 ⋅ Poprawnie: 65/88 [73%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
« Oblicz wartość wyrażenia
\log{\tan 35^{\circ}}+\log{\tan 45^{\circ}}+\log{\tan 55^{\circ}}
.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Rozwiąż