Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10638 ⋅ Poprawnie: 1020/1641 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Kąt \alpha jest kątem ostrym w trójkącie prostokątnym. Przeciwprostokątna tego trójkąta ma długość 22, a \cos\alpha=\frac{1}{11}.

Wynika z tego, że:

Odpowiedzi:
A. \sin\alpha=\frac{10}{11} B. przeciwprostokątna tego trójkąta jest dwa razy dłuższa od przyprostokątnej
C. jedna z przyprostokątnych jest 11 razy krótsza od przeciwprostokątnej D. przyprostokatna tego trójkąta ma długość 1
Zadanie 2.  1 pkt ⋅ Numer: pp-10640 ⋅ Poprawnie: 622/839 [74%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wiadomo, że kąt \alpha jest ostry oraz \tan\alpha=\frac{6}{5}.

Oblicz \sin\alpha.

Odpowiedź:
\sin\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10621 ⋅ Poprawnie: 316/544 [58%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wiadomo, że \alpha=78^{\circ} oraz \cos\alpha=x.

Zatem \cos 12^{\circ} jest równe:

Odpowiedzi:
A. 1-x^2 B. \sqrt{1-x^2}
C. \sqrt{1-x} D. 1+x^2
Zadanie 4.  1 pkt ⋅ Numer: pp-10672 ⋅ Poprawnie: 470/668 [70%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Przeciwprostokątna trójkąta ma długość 14, zaś \alpha jest jednym z dwóch kątów ostrych tego trójkąta i \sin\alpha=\frac{\sqrt{3}}{2}.

Oblicz długość a przyprostokątnej przyległej do kąta \alpha.

Odpowiedź:
a= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10653 ⋅ Poprawnie: 733/897 [81%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dany jest trójkąt:

Oblicz długość odcinka BD.

Odpowiedź:
|BD|= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10646 ⋅ Poprawnie: 149/281 [53%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Na płaszczyźnie dane są punkty A=\left(16\sqrt{2},16\sqrt{6}\right), B=\left(0,0\right) i C=\left(16\sqrt{2},0\right).

Kąt BAC ma miarę:

Odpowiedzi:
A. 75^{\circ} B. 30^{\circ}
C. około 55^{\circ} D. 45^{\circ}
Zadanie 7.  1 pkt ⋅ Numer: pp-10645 ⋅ Poprawnie: 468/600 [78%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Dane są długości boków |BC|=10 i |AC|=8 trójkąta prostokątnego ABC o kącie ostrym \beta.

Oblicz x=\cos\beta.

Odpowiedź:
x= \cdot
(wpisz trzy liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-10674 ⋅ Poprawnie: 265/706 [37%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Przekątna równoległoboku o kącie ostrym \alpha o mierze 60^{\circ} i wysokości o długości 31\sqrt{3}, tworzy kąt prosty z jego bokiem.

Oblicz obwód tego równoległoboku.

Odpowiedź:
L= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-10662 ⋅ Poprawnie: 350/486 [72%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
Zapisz obwód trójkąta ABC w postaci p\cdot a:

Podaj p.

Odpowiedź:
p= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10634 ⋅ Poprawnie: 290/509 [56%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Kąt \alpha należy do przedziału (90^{\circ},180^{\circ}) i zachodzi równość 12\cos^2\alpha-5=\frac{7}{12}. Oblicz \sin\alpha.
Odpowiedź:
\sin\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-10635 ⋅ Poprawnie: 225/360 [62%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Dana jest równość \sin^2\alpha(1+\cos^2\alpha)+\cos^4\alpha-5=m gdzie \alpha jest kątem ostrym.

Oblicz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-10633 ⋅ Poprawnie: 74/101 [73%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
« Oblicz wartość wyrażenia \log{\tan 35^{\circ}}+\log{\tan 45^{\circ}}+\log{\tan 55^{\circ}} .
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm