Podgląd testu : lo2@sp-09-trygonom-1-pp-2
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10638 ⋅ Poprawnie: 1013/1633 [62%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Kąt
\alpha jest kątem ostrym w trójkącie prostokątnym.
Przeciwprostokątna tego trójkąta ma długość
16, a
\cos\alpha=\frac{1}{8}.
Wynika z tego, że:
Odpowiedzi:
|
A. przeciwprostokątna tego trójkąta jest dwa razy dłuższa od przyprostokątnej
|
B. jedna z przyprostokątnych jest 8 razy krótsza od przeciwprostokątnej
|
|
C. przyprostokatna tego trójkąta ma długość 1
|
D. \sin\alpha=\frac{7}{8}
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10614 ⋅ Poprawnie: 684/1059 [64%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
« Kąt
\alpha jest kątem ostrym oraz
\tan\alpha=\frac{6}{7}.
Oblicz wartość wyrażenia
w=\frac{3\cos\alpha-2\sin\alpha}{\sin\alpha-5\cos\alpha}.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10620 ⋅ Poprawnie: 473/663 [71%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Kąt
\alpha jest kątem ostrym i
\tan \alpha=\frac{17}{19}.
Wówczas:
Odpowiedzi:
|
A. \alpha\in(40^{\circ},44^{\circ})
|
B. \alpha\in(36^{\circ},40^{\circ})
|
|
C. \alpha\in(44^{\circ},50^{\circ})
|
D. \alpha\in(50^{\circ},54^{\circ})
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10665 ⋅ Poprawnie: 114/171 [66%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
« Odcinek
BD jest dwusieczną kąta na rysunku:
Miara kąta \varphi spełnia warunek:
Odpowiedzi:
|
A. 25^{\circ} \lessdot \varphi < 30^{\circ}
|
B. 20^{\circ} \lessdot \varphi < 25^{\circ}
|
|
C. 30^{\circ} \lessdot \varphi < 35^{\circ}
|
D. 35^{\circ} \lessdot \varphi < 40^{\circ}
|
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10653 ⋅ Poprawnie: 727/889 [81%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Dany jest trójkąt:
Oblicz długość odcinka BD.
Odpowiedź:
|BD|=
(wpisz liczbę całkowitą)
|
Zadanie 6. 1 pkt ⋅ Numer: pp-10649 ⋅ Poprawnie: 291/488 [59%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
« W trójkącie prostokątnym najdłuższy bok ma długość
34, a najkrótszy
16.
Oblicz tangens największego kąta ostrego tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 7. 1 pkt ⋅ Numer: pp-10677 ⋅ Poprawnie: 75/120 [62%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
W trójkącie prostokątnym przyprostokątne mają długości
6 i
7.
Oblicz sinus większego z kątów ostrych tego trójkąta.
Odpowiedź:
|
Zadanie 8. 1 pkt ⋅ Numer: pp-10674 ⋅ Poprawnie: 264/697 [37%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
« Przekątna równoległoboku o kącie ostrym
\alpha o mierze
60^{\circ} i wysokości o długości
19\sqrt{3}, tworzy kąt prosty z jego bokiem.
Oblicz obwód tego równoległoboku.
Odpowiedź:
L=
(wpisz liczbę całkowitą)
|
Zadanie 9. 1 pkt ⋅ Numer: pp-10657 ⋅ Poprawnie: 567/664 [85%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
Przyprostokątne w trójkącie prostokątnym mają długości
1 oraz
\sqrt{3}.
Wyznacz miarę stopniową najmniejszego kąta w tym trójkącie.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 10. 1 pkt ⋅ Numer: pp-10634 ⋅ Poprawnie: 283/501 [56%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
« Kąt
\alpha należy do przedziału
(90^{\circ},180^{\circ}) i zachodzi równość
8\cos^2\alpha-3=\frac{3}{4}.
Oblicz
\sin\alpha.
Odpowiedź:
|
Zadanie 11. 1 pkt ⋅ Numer: pp-10623 ⋅ Poprawnie: 109/175 [62%] |
Rozwiąż |
Podpunkt 11.1 (1 pkt)
« Wiadomo, że
\alpha i
\beta
są miarami kątów ostrych trójkąta prostokątnego oraz
49\sin^2\alpha+\cos^2\beta=1.
Oblicz \tan\alpha.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 12. 1 pkt ⋅ Numer: pp-10633 ⋅ Poprawnie: 65/88 [73%] |
Rozwiąż |
Podpunkt 12.1 (1 pkt)
« Oblicz wartość wyrażenia
\log{\tan 35^{\circ}}+\log{\tan 45^{\circ}}+\log{\tan 55^{\circ}}
.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)