Podgląd testu : lo2@sp-09-trygonom-1-pp-2
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10638 ⋅ Poprawnie: 1013/1633 [62%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Kąt
\alpha jest kątem ostrym w trójkącie prostokątnym.
Przeciwprostokątna tego trójkąta ma długość
12, a
\cos\alpha=\frac{1}{6}.
Wynika z tego, że:
Odpowiedzi:
|
A. jedna z przyprostokątnych jest 6 razy krótsza od przeciwprostokątnej
|
B. \sin\alpha=\frac{5}{6}
|
|
C. przeciwprostokątna tego trójkąta jest dwa razy dłuższa od przyprostokątnej
|
D. przyprostokatna tego trójkąta ma długość 1
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10614 ⋅ Poprawnie: 684/1059 [64%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
« Kąt
\alpha jest kątem ostrym oraz
\tan\alpha=\frac{5}{9}.
Oblicz wartość wyrażenia
w=\frac{3\cos\alpha-2\sin\alpha}{\sin\alpha-5\cos\alpha}.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10621 ⋅ Poprawnie: 309/534 [57%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Wiadomo, że
\alpha=46^{\circ} oraz
\cos\alpha=x.
Zatem \cos 44^{\circ} jest równe:
Odpowiedzi:
|
A. 1+x^2
|
B. 1-x^2
|
|
C. \sqrt{1-x^2}
|
D. 1-x
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10670 ⋅ Poprawnie: 319/560 [56%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
« Trapez na rysunku jest prostokątny:
Miara kąta \alpha spełnia warunek:
Odpowiedzi:
|
A. 50^{\circ} \lessdot \alpha < 60^{\circ}
|
B. 30^{\circ} \lessdot \alpha < 35^{\circ}
|
|
C. \alpha=45^{\circ}
|
D. \alpha=30^{\circ}
|
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10658 ⋅ Poprawnie: 116/177 [65%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
» W trójkącie równoramiennym
ABC poprowadzono
wysokość
AS, która utworzyła z podstawą kąt o mierze
24^{\circ} (zobacz rysunek).
Ramię tego trójkąta ma długość 10. Długość wysokości
AS jest liczbą z przedziału:
Odpowiedzi:
|
A. \left(\frac{15}{2}, \frac{17}{2}\right\rangle
|
B. \left\langle\frac{7}{2}, \frac{9}{2}\right\rangle
|
|
C. \left(\frac{13}{2}, \frac{15}{2}\right\rangle
|
D. \left\langle\frac{11}{2}, \frac{13}{2}\right\rangle
|
|
Zadanie 6. 1 pkt ⋅ Numer: pp-10650 ⋅ Poprawnie: 278/390 [71%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Oblicz tangens najmiejszego kąta w trójkącie prostokątnym o bokach długości
6,
\frac{35}{2},
\frac{37}{2}.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 7. 1 pkt ⋅ Numer: pp-10645 ⋅ Poprawnie: 463/594 [77%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
» Dane są długości boków
|BC|=9 i
|AC|=5 trójkąta prostokątnego
ABC o kącie ostrym
\beta.
Oblicz x=\cos\beta.
Odpowiedź:
|
Zadanie 8. 1 pkt ⋅ Numer: pp-10616 ⋅ Poprawnie: 365/597 [61%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
Oblicz wartośc wyrażenia
w=
\tan^{2}45^{\circ}-\sin 60^{\circ}\cdot \cos 60^{\circ}-\sin 30^{\circ}\cdot \tan 30^{\circ}
.
Odpowiedź:
w=
(liczba zapisana dziesiętnie)
|
Zadanie 9. 1 pkt ⋅ Numer: pp-10662 ⋅ Poprawnie: 341/475 [71%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
Zapisz obwód trójkąta
ABC w postaci
p\cdot a:
Podaj p.
Odpowiedź:
p=
+
\cdot
√
(wpisz trzy liczby całkowite)
|
Zadanie 10. 1 pkt ⋅ Numer: pp-10611 ⋅ Poprawnie: 234/474 [49%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Kąt
\alpha jest ostry oraz
\tan\alpha=\frac{3}{5}.
Oblicz wartość wyrażenia \frac{2-\cos\alpha}{2+\cos\alpha}.
Odpowiedź:
|
Zadanie 11. 1 pkt ⋅ Numer: pp-11388 ⋅ Poprawnie: 211/451 [46%] |
Rozwiąż |
Podpunkt 11.1 (1 pkt)
« Kąt
\alpha jest kątem ostrym oraz
\sin\alpha+\cos\alpha=\frac{15}{13}.
Oblicz wartość wyrażenia (\sin\alpha-\cos\alpha)^2.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 12. 1 pkt ⋅ Numer: pp-10633 ⋅ Poprawnie: 65/88 [73%] |
Rozwiąż |
Podpunkt 12.1 (1 pkt)
« Oblicz wartość wyrażenia
\log{\tan 35^{\circ}}+\log{\tan 45^{\circ}}+\log{\tan 55^{\circ}}
.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)