Podgląd testu : lo2@sp-09-trygonom-1-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10627 ⋅ Poprawnie: 439/629 [69%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Kąt
\alpha spełnia warunki:
\alpha\in(0^{\circ},90^{\circ}) i
\tan\alpha=\frac{72}{65} .
Oblicz \sin\alpha .
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-10613 ⋅ Poprawnie: 429/641 [66%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Wiadomo, że kąt
\alpha jest ostry oraz
\tan\alpha=\frac{6}{7} .
Oblicz wartość wyrażenia \sin\alpha+\cos\alpha .
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-10624 ⋅ Poprawnie: 262/412 [63%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Pod jakim kątem
\alpha padają na powierzchnię Ziemi promienie słoneczne, jeśli długość
cienia stojącego człowieka jest
8 razy mniejsza
od jego wzrostu?
Oblicz miarę stopniową kąta \alpha . Podaj wynik zaokrąglony do całych stopni.
Odpowiedź:
\alpha\ [^{\circ}]=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-10670 ⋅ Poprawnie: 319/560 [56%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Trapez na rysunku jest prostokątny:
Miara kąta \alpha spełnia warunek:
Odpowiedzi:
A. 50^{\circ} \lessdot \alpha < 60^{\circ}
B. \alpha=45^{\circ}
C. \alpha=30^{\circ}
D. 30^{\circ} \lessdot \alpha < 35^{\circ}
Zadanie 5. 1 pkt ⋅ Numer: pp-10658 ⋅ Poprawnie: 116/177 [65%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
» W trójkącie równoramiennym
ABC poprowadzono
wysokość
AS , która utworzyła z podstawą kąt o mierze
24^{\circ} (zobacz rysunek).
Ramię tego trójkąta ma długość 10 . Długość wysokości
AS jest liczbą z przedziału:
Odpowiedzi:
A. \left\langle\frac{11}{2}, \frac{13}{2}\right\rangle
B. \left(\frac{15}{2}, \frac{17}{2}\right\rangle
C. \left\langle\frac{7}{2}, \frac{9}{2}\right\rangle
D. \left(\frac{13}{2}, \frac{15}{2}\right\rangle
Zadanie 6. 1 pkt ⋅ Numer: pp-10646 ⋅ Poprawnie: 148/276 [53%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Na płaszczyźnie dane są punkty
A=\left(14\sqrt{11},14\sqrt{33}\right) ,
B=\left(0,0\right) i
C=\left(14\sqrt{11},0\right) .
Kąt BAC ma miarę:
Odpowiedzi:
A. około 55^{\circ}
B. 30^{\circ}
C. 75^{\circ}
D. 60^{\circ}
Zadanie 7. 1 pkt ⋅ Numer: pp-10677 ⋅ Poprawnie: 75/120 [62%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
W trójkącie prostokątnym przyprostokątne mają długości
9 i
10 .
Oblicz sinus większego z kątów ostrych tego trójkąta.
Odpowiedź:
Zadanie 8. 1 pkt ⋅ Numer: pp-10674 ⋅ Poprawnie: 264/697 [37%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Przekątna równoległoboku o kącie ostrym
\alpha o mierze
60^{\circ} i wysokości o długości
26\sqrt{3} , tworzy kąt prosty z jego bokiem.
Oblicz obwód tego równoległoboku.
Odpowiedź:
L=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-10662 ⋅ Poprawnie: 341/475 [71%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Zapisz obwód trójkąta
ABC w postaci
p\cdot a :
Podaj p .
Odpowiedź:
p=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-10634 ⋅ Poprawnie: 283/501 [56%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Kąt
\alpha należy do przedziału
(90^{\circ},180^{\circ}) i zachodzi równość
11\cos^2\alpha-1=\frac{8}{11} .
Oblicz
\sin\alpha .
Odpowiedź:
Zadanie 11. 1 pkt ⋅ Numer: pp-10635 ⋅ Poprawnie: 220/350 [62%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Dana jest równość
\sin^2\alpha(1+\cos^2\alpha)+\cos^4\alpha-4=m
gdzie
\alpha jest kątem ostrym.
Oblicz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-10630 ⋅ Poprawnie: 191/451 [42%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
» Kąty
\alpha i
\beta
trójkata prostokątnego są ostre. Wówczas wyrażenie
\frac{5\cos\alpha\cdot (6-6\sin^2\beta)\cdot \tan\alpha}
{\sin^2\alpha\cdot \cos\beta}
jest równe:
Odpowiedzi:
A. 30
B. 30\cos\alpha
C. 5\sin\alpha
D. 30\tan\alpha
Rozwiąż