Podgląd testu : lo2@sp-09-trygonom-1-pp-2
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10631 ⋅ Poprawnie: 368/645 [57%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Wiadomo, że kąt
\alpha jest ostry oraz
\sin\alpha=\frac{4\sqrt{41}}{41}.
Oblicz wartość wyrażenia \sin \alpha-\cos\alpha.
Odpowiedź:
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10617 ⋅ Poprawnie: 398/560 [71%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Wiadomo, że kąt
\alpha jest ostry oraz
\sin\alpha=\frac{5\sqrt{61}}{61}.
Oblicz wartość wyrażenia
1+\tan\alpha\cdot\cos\alpha.
Odpowiedź:
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10620 ⋅ Poprawnie: 473/663 [71%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Kąt
\alpha jest kątem ostrym i
\tan \alpha=\frac{17}{19}.
Wówczas:
Odpowiedzi:
|
A. \alpha\in(50^{\circ},54^{\circ})
|
B. \alpha\in(36^{\circ},40^{\circ})
|
|
C. \alpha\in(44^{\circ},50^{\circ})
|
D. \alpha\in(40^{\circ},44^{\circ})
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10672 ⋅ Poprawnie: 461/655 [70%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
« Przeciwprostokątna trójkąta ma długość
20, zaś
\alpha jest jednym z dwóch kątów ostrych tego trójkąta i
\sin\alpha=\frac{\sqrt{3}}{5}.
Oblicz długość a przyprostokątnej przyległej do kąta \alpha.
Odpowiedź:
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10651 ⋅ Poprawnie: 341/491 [69%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
W trapezie prostokątnym kąt ostry ma miarę
60^{\circ}, a podstawy mają długości
5 i
13.
Oblicz długość wysokości tego trapezu.
Odpowiedź:
|
Zadanie 6. 1 pkt ⋅ Numer: pp-10680 ⋅ Poprawnie: 165/243 [67%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
« Oblicz sinus kąta ostrego utworzonego w trójkącie prostokątnym przez boki o długościach
7 i
8.
Odpowiedź:
|
Zadanie 7. 1 pkt ⋅ Numer: pp-10645 ⋅ Poprawnie: 463/594 [77%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
» Dane są długości boków
|BC|=8 i
|AC|=7 trójkąta prostokątnego
ABC o kącie ostrym
\beta.
Oblicz x=\cos\beta.
Odpowiedź:
|
Zadanie 8. 1 pkt ⋅ Numer: pp-10639 ⋅ Poprawnie: 298/484 [61%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
Oblicz wartość wyrażenia
\left(
\tan 45^{\circ}+\cot 60^{\circ}
\right)^2-\sin 60^{\circ}
.
Odpowiedź:
\left(\tan\alpha+\cot\beta\right)^2-\sin\gamma=
(liczba zapisana dziesiętnie)
|
Zadanie 9. 1 pkt ⋅ Numer: pp-10662 ⋅ Poprawnie: 341/475 [71%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
Zapisz obwód trójkąta
ABC w postaci
p\cdot a:
Podaj p.
Odpowiedź:
p=
+
\cdot
√
(wpisz trzy liczby całkowite)
|
Zadanie 10. 1 pkt ⋅ Numer: pp-11507 ⋅ Poprawnie: 415/985 [42%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Kąt
\alpha jest ostry oraz
\tan\alpha=\frac{2\sqrt{14}}{15}.
Oblicz wartość wyrażenia
\frac{2\sin\alpha-\cos\alpha}{\cos\alpha+2\sin\alpha}.
Odpowiedź:
|
Zadanie 11. 1 pkt ⋅ Numer: pp-10615 ⋅ Poprawnie: 609/917 [66%] |
Rozwiąż |
Podpunkt 11.1 (1 pkt)
a=7
b=11
« Kąt
\alpha jest ostry i
\sin\alpha=\frac{\sqrt{7}}{11}.
Oblicz wartość wyrażenia 2\cos^2{\alpha}-1.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 12. 1 pkt ⋅ Numer: pp-11538 ⋅ Poprawnie: 199/351 [56%] |
Rozwiąż |
Podpunkt 12.1 (1 pkt)
Kąt
\alpha jest ostry i spełnia warunek
\sin\alpha=\frac{2}{3}.
Oblicz wartość wyrażenia
\sin^2\alpha-\cos^2\alpha.
Odpowiedź:
(wpisz dwie liczby całkowite)