Podgląd testu : lo2@sp-09-trygonom-1-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10632 ⋅ Poprawnie: 833/995 [83%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Kąt
\alpha jest ostry i
\cos\alpha=\frac{13}{85} .
Oblicz \sin\alpha .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-10613 ⋅ Poprawnie: 429/641 [66%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Wiadomo, że kąt
\alpha jest ostry oraz
\tan\alpha=\frac{3}{7} .
Oblicz wartość wyrażenia \sin\alpha+\cos\alpha .
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-10609 ⋅ Poprawnie: 606/824 [73%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Kąt
\alpha jest ostry i
\sin \alpha=\frac{1}{10} .
Wówczas:
Odpowiedzi:
A. \cos\alpha=\frac{\sqrt{101}}{10}
B. \cos\alpha=\frac{\sqrt{98}}{10}
C. \cos\alpha \lessdot \frac{\sqrt{98}}{10}
D. \cos\alpha > \frac{\sqrt{98}}{10}
Zadanie 4. 1 pkt ⋅ Numer: pp-10663 ⋅ Poprawnie: 400/663 [60%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Trójkąt
ABC jest prostokątny, a kąt
BCA jest prosty. Wiadomo, że
\cos\sphericalangle CAB=\frac{11}{61} i
|AB|=\frac{61}{2} .
Oblicz długość boku BC .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10661 ⋅ Poprawnie: 334/455 [73%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Przeciwprostokątna
AB trójkąta
ABC ma długość
25 ,
a
\cos \sphericalangle B=\frac{7}{25} .
Oblicz długość przyprostokątnej BC tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 1 pkt ⋅ Numer: pp-10651 ⋅ Poprawnie: 341/491 [69%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
W trapezie prostokątnym kąt ostry ma miarę
60^{\circ} , a podstawy mają długości
3 i
12 .
Oblicz długość wysokości tego trapezu.
Odpowiedź:
Zadanie 7. 1 pkt ⋅ Numer: pp-10676 ⋅ Poprawnie: 258/353 [73%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Dany jest trójkąt prostokątny o kątach ostrych
\alpha
i
\beta , w którym
\sin\alpha=\frac{\sqrt{70}}{14} .
Oblicz \cot \beta .
Odpowiedź:
Zadanie 8. 1 pkt ⋅ Numer: pp-10616 ⋅ Poprawnie: 365/597 [61%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Oblicz wartośc wyrażenia
w=
\tan^{2}45^{\circ}-\sin 60^{\circ}\cdot \cos 30^{\circ}-\sin 60^{\circ}\cdot \tan 60^{\circ}
.
Odpowiedź:
w=
(liczba zapisana dziesiętnie)
Zadanie 9. 1 pkt ⋅ Numer: pp-10662 ⋅ Poprawnie: 341/475 [71%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Zapisz obwód trójkąta
ABC w postaci
p\cdot a :
Podaj p .
Odpowiedź:
p=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-10622 ⋅ Poprawnie: 333/543 [61%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Kąt
\alpha należy do przedziału
(90^{\circ},180^{\circ}) i zachodzi równość
\cos\alpha=-\frac{1}{8} .
Oblicz \tan\alpha .
Odpowiedź:
\tan\alpha=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-10615 ⋅ Poprawnie: 609/917 [66%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
a=3
b=10
« Kąt
\alpha jest ostry i
\sin\alpha=\frac{\sqrt{3}}{10} .
Oblicz wartość wyrażenia 2\cos^2{\alpha}-1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-10630 ⋅ Poprawnie: 191/451 [42%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
» Kąty
\alpha i
\beta
trójkata prostokątnego są ostre. Wówczas wyrażenie
\frac{3\cos\alpha\cdot (6-6\sin^2\beta)\cdot \tan\alpha}
{\sin^2\alpha\cdot \cos\beta}
jest równe:
Odpowiedzi:
A. 3\sin\alpha
B. 18
C. 18\cos\alpha
D. 18\tan\alpha
Rozwiąż