Podgląd testu : lo2@sp-09-trygonom-1-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10632 ⋅ Poprawnie: 833/995 [83%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Kąt
\alpha jest ostry i
\cos\alpha=\frac{45}{53} .
Oblicz \sin\alpha .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-10617 ⋅ Poprawnie: 398/560 [71%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wiadomo, że kąt
\alpha jest ostry oraz
\sin\alpha=\frac{\sqrt{37}}{37} .
Oblicz wartość wyrażenia
1+\tan\alpha\cdot\cos\alpha .
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-10624 ⋅ Poprawnie: 262/412 [63%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Pod jakim kątem
\alpha padają na powierzchnię Ziemi promienie słoneczne, jeśli długość
cienia stojącego człowieka jest
7 razy mniejsza
od jego wzrostu?
Oblicz miarę stopniową kąta \alpha . Podaj wynik zaokrąglony do całych stopni.
Odpowiedź:
\alpha\ [^{\circ}]=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-10663 ⋅ Poprawnie: 395/648 [60%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Trójkąt
ABC jest prostokątny, a kąt
BCA jest prosty. Wiadomo, że
\cos\sphericalangle CAB=\frac{4}{5} i
|AB|=20 .
Oblicz długość boku BC .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10652 ⋅ Poprawnie: 488/629 [77%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
W trójkącie prostokątnym długość jednej z przyprostokątnych jest równa
10 , zaś długość przeciwprostokątnej jest równa
14 .
Oblicz tangens mniejszego kąta ostrego w tym trójkącie.
Odpowiedź:
Zadanie 6. 1 pkt ⋅ Numer: pp-10648 ⋅ Poprawnie: 354/567 [62%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Oblicz długość wysokości trapezu równoramiennego o kącie ostrym
30^{\circ} i ramieniu długości
10\sqrt{3} .
Odpowiedź:
Zadanie 7. 1 pkt ⋅ Numer: pp-10645 ⋅ Poprawnie: 463/594 [77%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
» Dane są długości boków
|BC|=8 i
|AC|=2 trójkąta prostokątnego
ABC o kącie ostrym
\beta .
Oblicz x=\sin\beta .
Odpowiedź:
Zadanie 8. 1 pkt ⋅ Numer: pp-10639 ⋅ Poprawnie: 298/484 [61%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Oblicz wartość wyrażenia
\left(
\tan 60^{\circ}+\cot 30^{\circ}
\right)^2-\sin 30^{\circ}
.
Odpowiedź:
\left(\tan\alpha+\cot\beta\right)^2-\sin\gamma=
(liczba zapisana dziesiętnie)
Zadanie 9. 1 pkt ⋅ Numer: pp-10662 ⋅ Poprawnie: 341/475 [71%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Zapisz obwód trójkąta
ABC w postaci
p\cdot a :
Podaj p .
Odpowiedź:
p=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-10622 ⋅ Poprawnie: 333/543 [61%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Kąt
\alpha należy do przedziału
(90^{\circ},180^{\circ}) i zachodzi równość
\cos\alpha=-\frac{1}{12} .
Oblicz \tan\alpha .
Odpowiedź:
\tan\alpha=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-10615 ⋅ Poprawnie: 609/917 [66%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
a=7
b=3
« Kąt
\alpha jest ostry i
\sin\alpha=\frac{\sqrt{7}}{3} .
Oblicz wartość wyrażenia 2\cos^2{\alpha}-1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-10633 ⋅ Poprawnie: 65/88 [73%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
« Oblicz wartość wyrażenia
\log{\tan 35^{\circ}}+\log{\tan 45^{\circ}}+\log{\tan 55^{\circ}}
.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Rozwiąż