Podgląd testu : lo2@sp-09-trygonom-1-pp-2
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10631 ⋅ Poprawnie: 368/645 [57%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Wiadomo, że kąt
\alpha jest ostry oraz
\sin\alpha=\frac{6\sqrt{37}}{37}.
Oblicz wartość wyrażenia \sin \alpha-\cos\alpha.
Odpowiedź:
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10640 ⋅ Poprawnie: 614/830 [73%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Wiadomo, że kąt
\alpha jest ostry oraz
\tan\alpha=6.
Oblicz \sin\alpha.
Odpowiedź:
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10620 ⋅ Poprawnie: 473/663 [71%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Kąt
\alpha jest kątem ostrym i
\tan \alpha=\frac{25}{27}.
Wówczas:
Odpowiedzi:
|
A. \alpha\in(37^{\circ},41^{\circ})
|
B. \alpha\in(45^{\circ},51^{\circ})
|
|
C. \alpha\in(41^{\circ},45^{\circ})
|
D. \alpha\in(51^{\circ},55^{\circ})
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10665 ⋅ Poprawnie: 114/171 [66%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
« Odcinek
BD jest dwusieczną kąta na rysunku:
Miara kąta \varphi spełnia warunek:
Odpowiedzi:
|
A. 25^{\circ} \lessdot \varphi < 30^{\circ}
|
B. 30^{\circ} \lessdot \varphi < 35^{\circ}
|
|
C. 20^{\circ} \lessdot \varphi < 25^{\circ}
|
D. 35^{\circ} \lessdot \varphi < 40^{\circ}
|
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10658 ⋅ Poprawnie: 116/177 [65%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
» W trójkącie równoramiennym
ABC poprowadzono
wysokość
AS, która utworzyła z podstawą kąt o mierze
24^{\circ} (zobacz rysunek).
Ramię tego trójkąta ma długość 10. Długość wysokości
AS jest liczbą z przedziału:
Odpowiedzi:
|
A. \left\langle\frac{11}{2}, \frac{13}{2}\right\rangle
|
B. \left(\frac{13}{2}, \frac{15}{2}\right\rangle
|
|
C. \left(\frac{15}{2}, \frac{17}{2}\right\rangle
|
D. \left\langle\frac{7}{2}, \frac{9}{2}\right\rangle
|
|
Zadanie 6. 1 pkt ⋅ Numer: pp-10651 ⋅ Poprawnie: 341/491 [69%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
W trapezie prostokątnym kąt ostry ma miarę
45^{\circ}, a podstawy mają długości
2 i
13.
Oblicz długość wysokości tego trapezu.
Odpowiedź:
|
Zadanie 7. 1 pkt ⋅ Numer: pp-10677 ⋅ Poprawnie: 75/120 [62%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
W trójkącie prostokątnym przyprostokątne mają długości
1 i
10.
Oblicz sinus większego z kątów ostrych tego trójkąta.
Odpowiedź:
|
Zadanie 8. 1 pkt ⋅ Numer: pp-10616 ⋅ Poprawnie: 365/597 [61%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
Oblicz wartośc wyrażenia
w=
\tan^{2}60^{\circ}-\sin 30^{\circ}\cdot \cos 45^{\circ}-\sin 30^{\circ}\cdot \tan 30^{\circ}
.
Odpowiedź:
w=
(liczba zapisana dziesiętnie)
|
Zadanie 9. 1 pkt ⋅ Numer: pp-10662 ⋅ Poprawnie: 341/475 [71%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
Zapisz obwód trójkąta
ABC w postaci
p\cdot a:
Podaj p.
Odpowiedź:
p=
+
\cdot
√
(wpisz trzy liczby całkowite)
|
Zadanie 10. 1 pkt ⋅ Numer: pp-10622 ⋅ Poprawnie: 333/543 [61%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Kąt
\alpha należy do przedziału
(90^{\circ},180^{\circ}) i zachodzi równość
\cos\alpha=-\frac{1}{16}.
Oblicz \tan\alpha.
Odpowiedź:
\tan\alpha=
\cdot√
(wpisz dwie liczby całkowite)
|
Zadanie 11. 1 pkt ⋅ Numer: pp-10618 ⋅ Poprawnie: 415/624 [66%] |
Rozwiąż |
Podpunkt 11.1 (1 pkt)
Kąt
\alpha jest ostry i
\sin\alpha=\frac{\sqrt{3}}{12}.
Oblicz wartość wyrażenia \cos^2\alpha-2.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 12. 1 pkt ⋅ Numer: pp-10644 ⋅ Poprawnie: 346/447 [77%] |
Rozwiąż |
Podpunkt 12.1 (1 pkt)
Wiadomo, że
0^{\circ}\lessdot \alpha <90^{\circ} oraz
\tan \alpha=3\sin\alpha.
Oblicz \cos\alpha.
Odpowiedź:
(wpisz dwie liczby całkowite)