Podgląd testu : lo2@sp-09-trygonom-1-pp-2
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10638 ⋅ Poprawnie: 1020/1641 [62%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Kąt
\alpha jest kątem ostrym w trójkącie prostokątnym.
Przeciwprostokątna tego trójkąta ma długość
22, a
\cos\alpha=\frac{1}{11}.
Wynika z tego, że:
Odpowiedzi:
|
A. \sin\alpha=\frac{10}{11}
|
B. przeciwprostokątna tego trójkąta jest dwa razy dłuższa od przyprostokątnej
|
|
C. jedna z przyprostokątnych jest 11 razy krótsza od przeciwprostokątnej
|
D. przyprostokatna tego trójkąta ma długość 1
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10640 ⋅ Poprawnie: 622/839 [74%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Wiadomo, że kąt
\alpha jest ostry oraz
\tan\alpha=\frac{6}{5}.
Oblicz \sin\alpha.
Odpowiedź:
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10621 ⋅ Poprawnie: 316/544 [58%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Wiadomo, że
\alpha=78^{\circ} oraz
\cos\alpha=x.
Zatem \cos 12^{\circ} jest równe:
Odpowiedzi:
|
A. 1-x^2
|
B. \sqrt{1-x^2}
|
|
C. \sqrt{1-x}
|
D. 1+x^2
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10672 ⋅ Poprawnie: 470/668 [70%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
« Przeciwprostokątna trójkąta ma długość
14, zaś
\alpha jest jednym z dwóch kątów ostrych tego trójkąta i
\sin\alpha=\frac{\sqrt{3}}{2}.
Oblicz długość a przyprostokątnej przyległej do kąta \alpha.
Odpowiedź:
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10653 ⋅ Poprawnie: 733/897 [81%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Dany jest trójkąt:
Oblicz długość odcinka BD.
Odpowiedź:
|BD|=
(wpisz liczbę całkowitą)
|
Zadanie 6. 1 pkt ⋅ Numer: pp-10646 ⋅ Poprawnie: 149/281 [53%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
« Na płaszczyźnie dane są punkty
A=\left(16\sqrt{2},16\sqrt{6}\right),
B=\left(0,0\right) i
C=\left(16\sqrt{2},0\right).
Kąt BAC ma miarę:
Odpowiedzi:
|
A. 75^{\circ}
|
B. 30^{\circ}
|
|
C. około 55^{\circ}
|
D. 45^{\circ}
|
|
Zadanie 7. 1 pkt ⋅ Numer: pp-10645 ⋅ Poprawnie: 468/600 [78%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
» Dane są długości boków
|BC|=10 i
|AC|=8 trójkąta prostokątnego
ABC o kącie ostrym
\beta.
Oblicz x=\cos\beta.
Odpowiedź:
|
Zadanie 8. 1 pkt ⋅ Numer: pp-10674 ⋅ Poprawnie: 265/706 [37%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
« Przekątna równoległoboku o kącie ostrym
\alpha o mierze
60^{\circ} i wysokości o długości
31\sqrt{3}, tworzy kąt prosty z jego bokiem.
Oblicz obwód tego równoległoboku.
Odpowiedź:
L=
(wpisz liczbę całkowitą)
|
Zadanie 9. 1 pkt ⋅ Numer: pp-10662 ⋅ Poprawnie: 350/486 [72%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
Zapisz obwód trójkąta
ABC w postaci
p\cdot a:
Podaj p.
Odpowiedź:
p=
+
\cdot
√
(wpisz trzy liczby całkowite)
|
Zadanie 10. 1 pkt ⋅ Numer: pp-10634 ⋅ Poprawnie: 290/509 [56%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
« Kąt
\alpha należy do przedziału
(90^{\circ},180^{\circ}) i zachodzi równość
12\cos^2\alpha-5=\frac{7}{12}.
Oblicz
\sin\alpha.
Odpowiedź:
|
Zadanie 11. 1 pkt ⋅ Numer: pp-10635 ⋅ Poprawnie: 225/360 [62%] |
Rozwiąż |
Podpunkt 11.1 (1 pkt)
Dana jest równość
\sin^2\alpha(1+\cos^2\alpha)+\cos^4\alpha-5=m
gdzie
\alpha jest kątem ostrym.
Oblicz m.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 12. 1 pkt ⋅ Numer: pp-10633 ⋅ Poprawnie: 74/101 [73%] |
Rozwiąż |
Podpunkt 12.1 (1 pkt)
« Oblicz wartość wyrażenia
\log{\tan 35^{\circ}}+\log{\tan 45^{\circ}}+\log{\tan 55^{\circ}}
.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)