Podgląd testu : lo2@sp-09-trygonom-1-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10627 ⋅ Poprawnie: 439/629 [69%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Kąt
\alpha spełnia warunki:
\alpha\in(0^{\circ},90^{\circ}) i
\tan\alpha=\frac{112}{15} .
Oblicz \sin\alpha .
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-10641 ⋅ Poprawnie: 518/733 [70%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wiadomo, że kąt
\alpha jest ostry oraz.
\sin\alpha=\frac{7\sqrt{85}}{85} .
Oblicz \cos\alpha .
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-10624 ⋅ Poprawnie: 262/412 [63%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Pod jakim kątem
\alpha padają na powierzchnię Ziemi promienie słoneczne, jeśli długość
cienia stojącego człowieka jest
8 razy mniejsza
od jego wzrostu?
Oblicz miarę stopniową kąta \alpha . Podaj wynik zaokrąglony do całych stopni.
Odpowiedź:
\alpha\ [^{\circ}]=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-10663 ⋅ Poprawnie: 401/663 [60%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Trójkąt
ABC jest prostokątny, a kąt
BCA jest prosty. Wiadomo, że
\cos\sphericalangle CAB=\frac{11}{61} i
|AB|=\frac{61}{2} .
Oblicz długość boku BC .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10658 ⋅ Poprawnie: 116/177 [65%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
» W trójkącie równoramiennym
ABC poprowadzono
wysokość
AS , która utworzyła z podstawą kąt o mierze
24^{\circ} (zobacz rysunek).
Ramię tego trójkąta ma długość 10 . Długość wysokości
AS jest liczbą z przedziału:
Odpowiedzi:
A. \left\langle\frac{11}{2}, \frac{13}{2}\right\rangle
B. \left(\frac{15}{2}, \frac{17}{2}\right\rangle
C. \left(\frac{13}{2}, \frac{15}{2}\right\rangle
D. \left\langle\frac{7}{2}, \frac{9}{2}\right\rangle
Zadanie 6. 1 pkt ⋅ Numer: pp-10648 ⋅ Poprawnie: 354/567 [62%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Oblicz długość wysokości trapezu równoramiennego o kącie ostrym
30^{\circ} i ramieniu długości
12\sqrt{6} .
Odpowiedź:
Zadanie 7. 1 pkt ⋅ Numer: pp-10676 ⋅ Poprawnie: 258/353 [73%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Dany jest trójkąt prostokątny o kątach ostrych
\alpha
i
\beta , w którym
\sin\alpha=\frac{2\sqrt{34}}{17} .
Oblicz \cot \beta .
Odpowiedź:
Zadanie 8. 1 pkt ⋅ Numer: pp-10616 ⋅ Poprawnie: 365/597 [61%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Oblicz wartośc wyrażenia
w=
\tan^{2}60^{\circ}-\sin 60^{\circ}\cdot \cos 30^{\circ}-\sin 45^{\circ}\cdot \tan 45^{\circ}
.
Odpowiedź:
w=
(liczba zapisana dziesiętnie)
Zadanie 9. 1 pkt ⋅ Numer: pp-10657 ⋅ Poprawnie: 567/664 [85%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Przyprostokątne w trójkącie prostokątnym mają długości
1 oraz
\sqrt{3} .
Wyznacz miarę stopniową najmniejszego kąta w tym trójkącie.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 1 pkt ⋅ Numer: pp-11507 ⋅ Poprawnie: 415/985 [42%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Kąt
\alpha jest ostry oraz
\tan\alpha=\frac{3\sqrt{10}}{19} .
Oblicz wartość wyrażenia
\frac{2\sin\alpha-\cos\alpha}{\cos\alpha+2\sin\alpha} .
Odpowiedź:
Zadanie 11. 1 pkt ⋅ Numer: pp-10623 ⋅ Poprawnie: 109/175 [62%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
« Wiadomo, że
\alpha i
\beta
są miarami kątów ostrych trójkąta prostokątnego oraz
81\sin^2\alpha+\cos^2\beta=1 .
Oblicz \tan\alpha .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-10644 ⋅ Poprawnie: 346/447 [77%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Wiadomo, że
0^{\circ}\lessdot \alpha <90^{\circ} oraz
\tan \alpha=14\sin\alpha .
Oblicz \cos\alpha .
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż