Podgląd testu : lo2@sp-09-trygonom-1-pp-2
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10631 ⋅ Poprawnie: 368/645 [57%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Wiadomo, że kąt
\alpha jest ostry oraz
\sin\alpha=\frac{5\sqrt{41}}{41}.
Oblicz wartość wyrażenia \sin \alpha-\cos\alpha.
Odpowiedź:
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10617 ⋅ Poprawnie: 398/560 [71%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Wiadomo, że kąt
\alpha jest ostry oraz
\sin\alpha=\frac{6\sqrt{61}}{61}.
Oblicz wartość wyrażenia
1+\tan\alpha\cdot\cos\alpha.
Odpowiedź:
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10621 ⋅ Poprawnie: 309/534 [57%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Wiadomo, że
\alpha=67^{\circ} oraz
\cos\alpha=x.
Zatem \cos 23^{\circ} jest równe:
Odpowiedzi:
|
A. 1+x^2
|
B. 1-x
|
|
C. \sqrt{1-x}
|
D. \sqrt{1-x^2}
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10663 ⋅ Poprawnie: 401/663 [60%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
» Trójkąt
ABC jest prostokątny, a kąt
BCA jest prosty. Wiadomo, że
\cos\sphericalangle CAB=\frac{11}{61} i
|AB|=\frac{61}{2}.
Oblicz długość boku BC.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10653 ⋅ Poprawnie: 727/889 [81%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Dany jest trójkąt:
Oblicz długość odcinka BD.
Odpowiedź:
|BD|=
(wpisz liczbę całkowitą)
|
Zadanie 6. 1 pkt ⋅ Numer: pp-10646 ⋅ Poprawnie: 148/276 [53%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
« Na płaszczyźnie dane są punkty
A=\left(26\sqrt{2},26\sqrt{6}\right),
B=\left(0,0\right) i
C=\left(26\sqrt{2},0\right).
Kąt BAC ma miarę:
Odpowiedzi:
|
A. 30^{\circ}
|
B. 45^{\circ}
|
|
C. około 55^{\circ}
|
D. 60^{\circ}
|
|
Zadanie 7. 1 pkt ⋅ Numer: pp-10677 ⋅ Poprawnie: 75/120 [62%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
W trójkącie prostokątnym przyprostokątne mają długości
7 i
8.
Oblicz sinus większego z kątów ostrych tego trójkąta.
Odpowiedź:
|
Zadanie 8. 1 pkt ⋅ Numer: pp-10616 ⋅ Poprawnie: 365/597 [61%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
Oblicz wartośc wyrażenia
w=
\tan^{2}60^{\circ}-\sin 45^{\circ}\cdot \cos 30^{\circ}-\sin 45^{\circ}\cdot \tan 45^{\circ}
.
Odpowiedź:
w=
(liczba zapisana dziesiętnie)
|
Zadanie 9. 1 pkt ⋅ Numer: pp-10662 ⋅ Poprawnie: 341/475 [71%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
Zapisz obwód trójkąta
ABC w postaci
p\cdot a:
Podaj p.
Odpowiedź:
p=
+
\cdot
√
(wpisz trzy liczby całkowite)
|
Zadanie 10. 1 pkt ⋅ Numer: pp-10642 ⋅ Poprawnie: 319/546 [58%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Kąt
\alpha jest ostry oraz
13\sin\alpha-2\sqrt{2}\cos\alpha=0.
Oblicz \tan\alpha.
Odpowiedź:
|
Zadanie 11. 1 pkt ⋅ Numer: pp-10618 ⋅ Poprawnie: 415/624 [66%] |
Rozwiąż |
Podpunkt 11.1 (1 pkt)
Kąt
\alpha jest ostry i
\sin\alpha=\frac{\sqrt{3}}{10}.
Oblicz wartość wyrażenia \cos^2\alpha-2.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 12. 1 pkt ⋅ Numer: pp-10644 ⋅ Poprawnie: 346/447 [77%] |
Rozwiąż |
Podpunkt 12.1 (1 pkt)
Wiadomo, że
0^{\circ}\lessdot \alpha <90^{\circ} oraz
\tan \alpha=13\sin\alpha.
Oblicz \cos\alpha.
Odpowiedź:
(wpisz dwie liczby całkowite)