Podgląd testu : lo2@sp-09-trygonom-1-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10631 ⋅ Poprawnie: 368/645 [57%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wiadomo, że kąt
\alpha jest ostry oraz
\sin\alpha=\frac{5\sqrt{34}}{34} .
Oblicz wartość wyrażenia \sin \alpha-\cos\alpha .
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-10641 ⋅ Poprawnie: 518/733 [70%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wiadomo, że kąt
\alpha jest ostry oraz.
\sin\alpha=\frac{4}{5} .
Oblicz \cos\alpha .
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-10621 ⋅ Poprawnie: 309/534 [57%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wiadomo, że
\alpha=74^{\circ} oraz
\cos\alpha=x .
Zatem \cos 16^{\circ} jest równe:
Odpowiedzi:
A. \sqrt{1-x}
B. 1-x
C. 1+x^2
D. \sqrt{1-x^2}
Zadanie 4. 1 pkt ⋅ Numer: pp-10670 ⋅ Poprawnie: 319/560 [56%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Trapez na rysunku jest prostokątny:
Miara kąta \alpha spełnia warunek:
Odpowiedzi:
A. \alpha=45^{\circ}
B. 50^{\circ} \lessdot \alpha < 60^{\circ}
C. \alpha=30^{\circ}
D. 30^{\circ} \lessdot \alpha < 35^{\circ}
Zadanie 5. 1 pkt ⋅ Numer: pp-10653 ⋅ Poprawnie: 727/889 [81%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Dany jest trójkąt:
Oblicz długość odcinka BD .
Odpowiedź:
|BD|=
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-10680 ⋅ Poprawnie: 165/243 [67%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Oblicz sinus kąta ostrego utworzonego w trójkącie prostokątnym przez boki o długościach
7 i
10 .
Odpowiedź:
Zadanie 7. 1 pkt ⋅ Numer: pp-11539 ⋅ Poprawnie: 343/414 [82%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Punkt
A zaznaczony na rysunku ma współrzędne
A=(-8,9) :
Oblicz tangens kąta
\alpha zaznaczonego na rysunku.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-10639 ⋅ Poprawnie: 298/484 [61%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Oblicz wartość wyrażenia
\left(
\tan 60^{\circ}+\cot 45^{\circ}
\right)^2-\sin 30^{\circ}
.
Odpowiedź:
\left(\tan\alpha+\cot\beta\right)^2-\sin\gamma=
(liczba zapisana dziesiętnie)
Zadanie 9. 1 pkt ⋅ Numer: pp-10662 ⋅ Poprawnie: 341/475 [71%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Zapisz obwód trójkąta
ABC w postaci
p\cdot a :
Podaj p .
Odpowiedź:
p=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-10611 ⋅ Poprawnie: 234/474 [49%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Kąt
\alpha jest ostry oraz
\tan\alpha=\frac{6}{5} .
Oblicz wartość wyrażenia \frac{2-\cos\alpha}{2+\cos\alpha} .
Odpowiedź:
Zadanie 11. 1 pkt ⋅ Numer: pp-11388 ⋅ Poprawnie: 211/451 [46%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
« Kąt
\alpha jest kątem ostrym oraz
\sin\alpha+\cos\alpha=\frac{14}{11} .
Oblicz wartość wyrażenia (\sin\alpha-\cos\alpha)^2 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-10630 ⋅ Poprawnie: 191/451 [42%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
» Kąty
\alpha i
\beta
trójkata prostokątnego są ostre. Wówczas wyrażenie
\frac{6\cos\alpha\cdot (4-4\sin^2\beta)\cdot \tan\alpha}
{\sin^2\alpha\cdot \cos\beta}
jest równe:
Odpowiedzi:
A. 24\cos\alpha
B. 24
C. 6\sin\alpha
D. 24\tan\alpha
Rozwiąż