Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10627 ⋅ Poprawnie: 439/629 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Kąt \alpha spełnia warunki: \alpha\in(0^{\circ},90^{\circ}) i \tan\alpha=\frac{3}{4}.

Oblicz \sin\alpha.

Odpowiedź:
\sin\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10640 ⋅ Poprawnie: 614/830 [73%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wiadomo, że kąt \alpha jest ostry oraz \tan\alpha=4.

Oblicz \sin\alpha.

Odpowiedź:
\sin\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10637 ⋅ Poprawnie: 840/1239 [67%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Drabinę o długości 4 metrów oparto o pionowy mur, a jej podstawę umieszczono w odległości 1 metrów od tego muru.

Kąt \alpha, pod jakim ustawiono drabinę, spełnia warunek:

Odpowiedzi:
A. 60^{\circ}\lessdot \alpha&\lessdot90^{\circ} B. 30^{\circ}\lessdot \alpha&\lessdot45^{\circ}
C. 45^{\circ}\lessdot \alpha&\lessdot60^{\circ} D. 0^{\circ}\lessdot \alpha&\lessdot30^{\circ}
Zadanie 4.  1 pkt ⋅ Numer: pp-10665 ⋅ Poprawnie: 114/171 [66%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Odcinek BD jest dwusieczną kąta na rysunku:

Miara kąta \varphi spełnia warunek:

Odpowiedzi:
A. 35^{\circ} \lessdot \varphi < 40^{\circ} B. 30^{\circ} \lessdot \varphi < 35^{\circ}
C. 25^{\circ} \lessdot \varphi < 30^{\circ} D. 20^{\circ} \lessdot \varphi < 25^{\circ}
Zadanie 5.  1 pkt ⋅ Numer: pp-10651 ⋅ Poprawnie: 341/491 [69%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 W trapezie prostokątnym kąt ostry ma miarę 30^{\circ}, a podstawy mają długości 3 i 9.

Oblicz długość wysokości tego trapezu.

Odpowiedź:
h= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10648 ⋅ Poprawnie: 354/567 [62%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Oblicz długość wysokości trapezu równoramiennego o kącie ostrym 30^{\circ} i ramieniu długości 9\sqrt{2}.
Odpowiedź:
h= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-10645 ⋅ Poprawnie: 463/594 [77%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Dane są długości boków |BC|=7 i |AC|=2 trójkąta prostokątnego ABC o kącie ostrym \beta.

Oblicz x=\sin\beta.

Odpowiedź:
x= \cdot
(wpisz trzy liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-10674 ⋅ Poprawnie: 264/697 [37%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Przekątna równoległoboku o kącie ostrym \alpha o mierze 60^{\circ} i wysokości o długości 20\sqrt{3}, tworzy kąt prosty z jego bokiem.

Oblicz obwód tego równoległoboku.

Odpowiedź:
L= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-10662 ⋅ Poprawnie: 341/475 [71%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
Zapisz obwód trójkąta ABC w postaci p\cdot a:

Podaj p.

Odpowiedź:
p= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10642 ⋅ Poprawnie: 319/546 [58%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Kąt \alpha jest ostry oraz 11\sin\alpha-\sqrt{3}\cos\alpha=0.

Oblicz \tan\alpha.

Odpowiedź:
\tan\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-10615 ⋅ Poprawnie: 609/917 [66%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 a=2 b=3 « Kąt \alpha jest ostry i \sin\alpha=\frac{\sqrt{2}}{3}.

Oblicz wartość wyrażenia 2\cos^2{\alpha}-1.

Odpowiedź:
2\cos^2\alpha-1=
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-10644 ⋅ Poprawnie: 346/447 [77%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Wiadomo, że 0^{\circ}\lessdot \alpha <90^{\circ} oraz \tan \alpha=11\sin\alpha.

Oblicz \cos\alpha.

Odpowiedź:
\cos\alpha=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm