Podgląd testu : lo2@sp-09-trygonom-1-pp-2
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10632 ⋅ Poprawnie: 834/996 [83%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Kąt
\alpha jest ostry i
\cos\alpha=\frac{5}{13}.
Oblicz \sin\alpha.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10614 ⋅ Poprawnie: 684/1059 [64%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
« Kąt
\alpha jest kątem ostrym oraz
\tan\alpha=\frac{9}{7}.
Oblicz wartość wyrażenia
w=\frac{3\cos\alpha-2\sin\alpha}{\sin\alpha-5\cos\alpha}.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10621 ⋅ Poprawnie: 309/534 [57%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Wiadomo, że
\alpha=50^{\circ} oraz
\cos\alpha=x.
Zatem \cos 40^{\circ} jest równe:
Odpowiedzi:
|
A. 1+x^2
|
B. 1-x
|
|
C. 1-x^2
|
D. \sqrt{1-x^2}
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10665 ⋅ Poprawnie: 114/171 [66%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
« Odcinek
BD jest dwusieczną kąta na rysunku:
Miara kąta \varphi spełnia warunek:
Odpowiedzi:
|
A. 35^{\circ} \lessdot \varphi < 40^{\circ}
|
B. 30^{\circ} \lessdot \varphi < 35^{\circ}
|
|
C. 20^{\circ} \lessdot \varphi < 25^{\circ}
|
D. 25^{\circ} \lessdot \varphi < 30^{\circ}
|
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10651 ⋅ Poprawnie: 341/491 [69%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
W trapezie prostokątnym kąt ostry ma miarę
45^{\circ}, a podstawy mają długości
7 i
8.
Oblicz długość wysokości tego trapezu.
Odpowiedź:
|
Zadanie 6. 1 pkt ⋅ Numer: pp-10646 ⋅ Poprawnie: 148/276 [53%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
« Na płaszczyźnie dane są punkty
A=\left(9\sqrt{7},9\sqrt{21}\right),
B=\left(0,0\right) i
C=\left(9\sqrt{7},0\right).
Kąt CBA ma miarę:
Odpowiedzi:
|
A. 60^{\circ}
|
B. 30^{\circ}
|
|
C. 45^{\circ}
|
D. około 55^{\circ}
|
|
Zadanie 7. 1 pkt ⋅ Numer: pp-10676 ⋅ Poprawnie: 258/353 [73%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
« Dany jest trójkąt prostokątny o kątach ostrych
\alpha
i
\beta, w którym
\sin\alpha=\frac{\sqrt{119}}{17}.
Oblicz \cot \beta.
Odpowiedź:
|
Zadanie 8. 1 pkt ⋅ Numer: pp-10616 ⋅ Poprawnie: 365/597 [61%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
Oblicz wartośc wyrażenia
w=
\tan^{2}45^{\circ}-\sin 45^{\circ}\cdot \cos 45^{\circ}-\sin 60^{\circ}\cdot \tan 60^{\circ}
.
Odpowiedź:
w=
(liczba zapisana dziesiętnie)
|
Zadanie 9. 1 pkt ⋅ Numer: pp-10662 ⋅ Poprawnie: 341/475 [71%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
Zapisz obwód trójkąta
ABC w postaci
p\cdot a:
Podaj p.
Odpowiedź:
p=
+
\cdot
√
(wpisz trzy liczby całkowite)
|
Zadanie 10. 1 pkt ⋅ Numer: pp-10622 ⋅ Poprawnie: 333/543 [61%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Kąt
\alpha należy do przedziału
(90^{\circ},180^{\circ}) i zachodzi równość
\cos\alpha=-\frac{1}{9}.
Oblicz \tan\alpha.
Odpowiedź:
\tan\alpha=
\cdot√
(wpisz dwie liczby całkowite)
|
Zadanie 11. 1 pkt ⋅ Numer: pp-11388 ⋅ Poprawnie: 211/451 [46%] |
Rozwiąż |
Podpunkt 11.1 (1 pkt)
« Kąt
\alpha jest kątem ostrym oraz
\sin\alpha+\cos\alpha=\frac{7}{5}.
Oblicz wartość wyrażenia (\sin\alpha-\cos\alpha)^2.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 12. 1 pkt ⋅ Numer: pp-10644 ⋅ Poprawnie: 346/447 [77%] |
Rozwiąż |
Podpunkt 12.1 (1 pkt)
Wiadomo, że
0^{\circ}\lessdot \alpha <90^{\circ} oraz
\tan \alpha=10\sin\alpha.
Oblicz \cos\alpha.
Odpowiedź:
(wpisz dwie liczby całkowite)