Podgląd testu : lo2@sp-09-trygonom-1-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10627 ⋅ Poprawnie: 439/629 [69%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Kąt
\alpha spełnia warunki:
\alpha\in(0^{\circ},90^{\circ}) i
\tan\alpha=\frac{3}{4} .
Oblicz \sin\alpha .
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-10640 ⋅ Poprawnie: 614/830 [73%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wiadomo, że kąt
\alpha jest ostry oraz
\tan\alpha=2 .
Oblicz \sin\alpha .
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-10624 ⋅ Poprawnie: 262/412 [63%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Pod jakim kątem
\alpha padają na powierzchnię Ziemi promienie słoneczne, jeśli długość
cienia stojącego człowieka jest
4 razy mniejsza
od jego wzrostu?
Oblicz miarę stopniową kąta \alpha . Podaj wynik zaokrąglony do całych stopni.
Odpowiedź:
\alpha\ [^{\circ}]=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-10672 ⋅ Poprawnie: 461/655 [70%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Przeciwprostokątna trójkąta ma długość
21 , zaś
\alpha jest jednym z dwóch kątów ostrych tego trójkąta i
\sin\alpha=\frac{2\sqrt{2}}{7} .
Oblicz długość a przyprostokątnej przyległej do kąta \alpha .
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-10652 ⋅ Poprawnie: 488/629 [77%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
W trójkącie prostokątnym długość jednej z przyprostokątnych jest równa
14 , zaś długość przeciwprostokątnej jest równa
19 .
Oblicz tangens mniejszego kąta ostrego w tym trójkącie.
Odpowiedź:
Zadanie 6. 1 pkt ⋅ Numer: pp-10650 ⋅ Poprawnie: 268/375 [71%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Oblicz tangens najmiejszego kąta w trójkącie prostokątnym o bokach długości
\frac{3}{2} ,
2 ,
\frac{5}{2} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-10677 ⋅ Poprawnie: 74/119 [62%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
W trójkącie prostokątnym przyprostokątne mają długości
1 i
3 .
Oblicz sinus większego z kątów ostrych tego trójkąta.
Odpowiedź:
Zadanie 8. 1 pkt ⋅ Numer: pp-10639 ⋅ Poprawnie: 298/484 [61%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Oblicz wartość wyrażenia
\left(
\tan 30^{\circ}+\cot 30^{\circ}
\right)^2-\sin 45^{\circ}
.
Odpowiedź:
\left(\tan\alpha+\cot\beta\right)^2-\sin\gamma=
(liczba zapisana dziesiętnie)
Zadanie 9. 1 pkt ⋅ Numer: pp-10660 ⋅ Poprawnie: 145/192 [75%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
» W trapezie prostokątnym
ABCD długość
ramienia
BC jest dwa razy większa od różnicy
długości jego podstaw.
Wyznacz miarę stopniową kąta ABC .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 1 pkt ⋅ Numer: pp-10634 ⋅ Poprawnie: 283/501 [56%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Kąt
\alpha należy do przedziału
(90^{\circ},180^{\circ}) i zachodzi równość
5\cos^2\alpha-1=\frac{3}{5} .
Oblicz
\sin\alpha .
Odpowiedź:
Zadanie 11. 1 pkt ⋅ Numer: pp-11388 ⋅ Poprawnie: 210/450 [46%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
« Kąt
\alpha jest kątem ostrym oraz
\sin\alpha+\cos\alpha=\frac{4}{3} .
Oblicz wartość wyrażenia (\sin\alpha-\cos\alpha)^2 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-10630 ⋅ Poprawnie: 191/451 [42%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
» Kąty
\alpha i
\beta
trójkata prostokątnego są ostre. Wówczas wyrażenie
\frac{2\cos\alpha\cdot (1-\sin^2\beta)\cdot \tan\alpha}
{3\sin^2\alpha\cdot \cos\beta}
jest równe:
Odpowiedzi:
A. \frac{2}{3}\tan\alpha
B. \frac{2}{3}\cos\alpha
C. \frac{2}{3}\sin\alpha
D. \frac{2}{3}
Rozwiąż