Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10626 ⋅ Poprawnie: 178/286 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Kąty ostre \alpha i \beta trójkąta prostokątnego spełniają warunek \frac{\sin \alpha}{\sin\beta}=\frac{\sqrt{17}}{17}. Oblicz \cos\alpha i zapisz wynik w najprostszej nieskracalnej postaci \frac{a\sqrt{b}}{c}.

Podaj liczby a, b i c.

Odpowiedź:
\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10614 ⋅ Poprawnie: 689/1065 [64%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Kąt \alpha jest kątem ostrym oraz \tan\alpha=\frac{9}{8}.

Oblicz wartość wyrażenia w=\frac{3\cos\alpha-2\sin\alpha}{\sin\alpha-5\cos\alpha}.

Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10620 ⋅ Poprawnie: 478/671 [71%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Kąt \alpha jest kątem ostrym i \tan \alpha=\frac{19}{21}.

Wówczas:

Odpowiedzi:
A. \alpha\in(40^{\circ},44^{\circ}) B. \alpha\in(44^{\circ},50^{\circ})
C. \alpha\in(36^{\circ},40^{\circ}) D. \alpha\in(50^{\circ},54^{\circ})
Zadanie 4.  1 pkt ⋅ Numer: pp-10665 ⋅ Poprawnie: 120/181 [66%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Odcinek BD jest dwusieczną kąta na rysunku:

Miara kąta \varphi spełnia warunek:

Odpowiedzi:
A. 30^{\circ} \lessdot \varphi < 35^{\circ} B. 35^{\circ} \lessdot \varphi < 40^{\circ}
C. 25^{\circ} \lessdot \varphi < 30^{\circ} D. 20^{\circ} \lessdot \varphi < 25^{\circ}
Zadanie 5.  1 pkt ⋅ Numer: pp-10652 ⋅ Poprawnie: 493/638 [77%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 W trójkącie prostokątnym długość jednej z przyprostokątnych jest równa 12, zaś długość przeciwprostokątnej jest równa 16.

Oblicz tangens mniejszego kąta ostrego w tym trójkącie.

Odpowiedź:
\tan\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10650 ⋅ Poprawnie: 282/395 [71%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Oblicz tangens najmiejszego kąta w trójkącie prostokątnym o bokach długości \frac{5}{2}, 6, \frac{13}{2}.
Odpowiedź:
\tan\alpha=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11539 ⋅ Poprawnie: 345/416 [82%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Punkt A zaznaczony na rysunku ma współrzędne A=(-6,10):
Oblicz tangens kąta \alpha zaznaczonego na rysunku.
Odpowiedź:
\tan\alpha=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-10616 ⋅ Poprawnie: 367/612 [59%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Oblicz wartośc wyrażenia w= \tan^{2}60^{\circ}-\sin 60^{\circ}\cdot \cos 30^{\circ}-\sin 30^{\circ}\cdot \tan 30^{\circ} .
Odpowiedź:
w= (liczba zapisana dziesiętnie)
Zadanie 9.  1 pkt ⋅ Numer: pp-10660 ⋅ Poprawnie: 153/205 [74%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
» W trapezie prostokątnym ABCD długość ramienia BC jest dwa razy większa od różnicy długości jego podstaw.

Wyznacz miarę stopniową kąta ABC.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  1 pkt ⋅ Numer: pp-10634 ⋅ Poprawnie: 290/509 [56%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Kąt \alpha należy do przedziału (90^{\circ},180^{\circ}) i zachodzi równość 10\cos^2\alpha-1=\frac{3}{5}. Oblicz \sin\alpha.
Odpowiedź:
\sin\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-10623 ⋅ Poprawnie: 114/183 [62%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Wiadomo, że \alpha i \beta są miarami kątów ostrych trójkąta prostokątnego oraz 64\sin^2\alpha+\cos^2\beta=1.

Oblicz \tan\alpha.

Odpowiedź:
\tan\alpha=
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-11538 ⋅ Poprawnie: 200/356 [56%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Kąt \alpha jest ostry i spełnia warunek \sin\alpha=\frac{2}{3}. Oblicz wartość wyrażenia \sin^2\alpha-\cos^2\alpha.
Odpowiedź:
\sin^2\alpha-\cos^2\alpha=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm