Podgląd testu : lo2@sp-09-trygonom-1-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10638 ⋅ Poprawnie: 1013/1633 [62%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Kąt
\alpha jest kątem ostrym w trójkącie prostokątnym.
Przeciwprostokątna tego trójkąta ma długość
18 , a
\cos\alpha=\frac{1}{9} .
Wynika z tego, że:
Odpowiedzi:
A. \sin\alpha=\frac{8}{9}
B. przyprostokatna tego trójkąta ma długość 1
C. jedna z przyprostokątnych jest 9 razy krótsza od przeciwprostokątnej
D. przeciwprostokątna tego trójkąta jest dwa razy dłuższa od przyprostokątnej
Zadanie 2. 1 pkt ⋅ Numer: pp-10641 ⋅ Poprawnie: 518/733 [70%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wiadomo, że kąt
\alpha jest ostry oraz.
\sin\alpha=\frac{6\sqrt{37}}{37} .
Oblicz \cos\alpha .
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-10620 ⋅ Poprawnie: 473/663 [71%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Kąt
\alpha jest kątem ostrym i
\tan \alpha=\frac{19}{21} .
Wówczas:
Odpowiedzi:
A. \alpha\in(36^{\circ},40^{\circ})
B. \alpha\in(40^{\circ},44^{\circ})
C. \alpha\in(44^{\circ},50^{\circ})
D. \alpha\in(50^{\circ},54^{\circ})
Zadanie 4. 1 pkt ⋅ Numer: pp-10672 ⋅ Poprawnie: 462/656 [70%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Przeciwprostokątna trójkąta ma długość
8 , zaś
\alpha jest jednym z dwóch kątów ostrych tego trójkąta i
\sin\alpha=\frac{\sqrt{2}}{4} .
Oblicz długość a przyprostokątnej przyległej do kąta \alpha .
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-10652 ⋅ Poprawnie: 488/629 [77%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
W trójkącie prostokątnym długość jednej z przyprostokątnych jest równa
8 , zaś długość przeciwprostokątnej jest równa
11 .
Oblicz tangens mniejszego kąta ostrego w tym trójkącie.
Odpowiedź:
Zadanie 6. 1 pkt ⋅ Numer: pp-10680 ⋅ Poprawnie: 165/243 [67%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Oblicz sinus kąta ostrego utworzonego w trójkącie prostokątnym przez boki o długościach
1 i
8 .
Odpowiedź:
Zadanie 7. 1 pkt ⋅ Numer: pp-11539 ⋅ Poprawnie: 343/414 [82%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Punkt
A zaznaczony na rysunku ma współrzędne
A=(-6,3) :
Oblicz tangens kąta
\alpha zaznaczonego na rysunku.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-10616 ⋅ Poprawnie: 365/597 [61%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Oblicz wartośc wyrażenia
w=
\tan^{2}60^{\circ}-\sin 30^{\circ}\cdot \cos 30^{\circ}-\sin 45^{\circ}\cdot \tan 45^{\circ}
.
Odpowiedź:
w=
(liczba zapisana dziesiętnie)
Zadanie 9. 1 pkt ⋅ Numer: pp-10657 ⋅ Poprawnie: 567/664 [85%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Przyprostokątne w trójkącie prostokątnym mają długości
1 oraz
\sqrt{3} .
Wyznacz miarę stopniową najmniejszego kąta w tym trójkącie.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 1 pkt ⋅ Numer: pp-10642 ⋅ Poprawnie: 319/546 [58%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Kąt
\alpha jest ostry oraz
7\sin\alpha-\sqrt{5}\cos\alpha=0 .
Oblicz \tan\alpha .
Odpowiedź:
Zadanie 11. 1 pkt ⋅ Numer: pp-10623 ⋅ Poprawnie: 109/175 [62%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
« Wiadomo, że
\alpha i
\beta
są miarami kątów ostrych trójkąta prostokątnego oraz
64\sin^2\alpha+\cos^2\beta=1 .
Oblicz \tan\alpha .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-10630 ⋅ Poprawnie: 191/451 [42%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
» Kąty
\alpha i
\beta
trójkata prostokątnego są ostre. Wówczas wyrażenie
\frac{5\cos\alpha\cdot (2-2\sin^2\beta)\cdot \tan\alpha}
{4\sin^2\alpha\cdot \cos\beta}
jest równe:
Odpowiedzi:
A. \frac{5}{2}\tan\alpha
B. \frac{5}{2}\cos\alpha
C. \frac{5}{4}\sin\alpha
D. \frac{5}{2}
Rozwiąż