Podgląd testu : lo2@sp-09-trygonom-1-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10631 ⋅ Poprawnie: 368/645 [57%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wiadomo, że kąt
\alpha jest ostry oraz
\sin\alpha=\frac{2\sqrt{5}}{5} .
Oblicz wartość wyrażenia \sin \alpha-\cos\alpha .
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-10641 ⋅ Poprawnie: 518/733 [70%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wiadomo, że kąt
\alpha jest ostry oraz.
\sin\alpha=\frac{3\sqrt{10}}{10} .
Oblicz \cos\alpha .
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-10624 ⋅ Poprawnie: 262/412 [63%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Pod jakim kątem
\alpha padają na powierzchnię Ziemi promienie słoneczne, jeśli długość
cienia stojącego człowieka jest
4 razy mniejsza
od jego wzrostu?
Oblicz miarę stopniową kąta \alpha . Podaj wynik zaokrąglony do całych stopni.
Odpowiedź:
\alpha\ [^{\circ}]=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-10671 ⋅ Poprawnie: 254/401 [63%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« W trójkącie prostokątnym przyprostokątne mają długość
3\sqrt{2} i
7 .
Oblicz cosinus tego kąta ostrego, którego cosinus jest mniejszy.
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-10652 ⋅ Poprawnie: 488/629 [77%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
W trójkącie prostokątnym długość jednej z przyprostokątnych jest równa
5 , zaś długość przeciwprostokątnej jest równa
6 .
Oblicz tangens mniejszego kąta ostrego w tym trójkącie.
Odpowiedź:
Zadanie 6. 1 pkt ⋅ Numer: pp-10646 ⋅ Poprawnie: 148/276 [53%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Na płaszczyźnie dane są punkty
A=\left(6\sqrt{2},6\sqrt{6}\right) ,
B=\left(0,0\right) i
C=\left(6\sqrt{2},0\right) .
Kąt CBA ma miarę:
Odpowiedzi:
A. 75^{\circ}
B. 30^{\circ}
C. około 55^{\circ}
D. 60^{\circ}
Zadanie 7. 1 pkt ⋅ Numer: pp-11539 ⋅ Poprawnie: 343/414 [82%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Punkt
A zaznaczony na rysunku ma współrzędne
A=(-3,2) :
Oblicz tangens kąta
\alpha zaznaczonego na rysunku.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-10674 ⋅ Poprawnie: 264/697 [37%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Przekątna równoległoboku o kącie ostrym
\alpha o mierze
60^{\circ} i wysokości o długości
11\sqrt{3} , tworzy kąt prosty z jego bokiem.
Oblicz obwód tego równoległoboku.
Odpowiedź:
L=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-10662 ⋅ Poprawnie: 341/475 [71%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Zapisz obwód trójkąta
ABC w postaci
p\cdot a :
Podaj p .
Odpowiedź:
p=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-10622 ⋅ Poprawnie: 333/543 [61%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Kąt
\alpha należy do przedziału
(90^{\circ},180^{\circ}) i zachodzi równość
\cos\alpha=-\frac{1}{6} .
Oblicz \tan\alpha .
Odpowiedź:
\tan\alpha=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-10635 ⋅ Poprawnie: 220/350 [62%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Dana jest równość
\sin^2\alpha(1+\cos^2\alpha)+\cos^4\alpha+2=m
gdzie
\alpha jest kątem ostrym.
Oblicz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-11538 ⋅ Poprawnie: 199/351 [56%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Kąt
\alpha jest ostry i spełnia warunek
\sin\alpha=\frac{1}{2} .
Oblicz wartość wyrażenia
\sin^2\alpha-\cos^2\alpha .
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż