Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10638 ⋅ Poprawnie: 1013/1633 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Kąt \alpha jest kątem ostrym w trójkącie prostokątnym. Przeciwprostokątna tego trójkąta ma długość 6, a \cos\alpha=\frac{1}{3}.

Wynika z tego, że:

Odpowiedzi:
A. jedna z przyprostokątnych jest 3 razy krótsza od przeciwprostokątnej B. przeciwprostokątna tego trójkąta jest dwa razy dłuższa od przyprostokątnej
C. \sin\alpha=\frac{2}{3} D. przyprostokatna tego trójkąta ma długość 1
Zadanie 2.  1 pkt ⋅ Numer: pp-10640 ⋅ Poprawnie: 614/830 [73%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wiadomo, że kąt \alpha jest ostry oraz \tan\alpha=\frac{1}{6}.

Oblicz \sin\alpha.

Odpowiedź:
\sin\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10624 ⋅ Poprawnie: 262/412 [63%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Pod jakim kątem \alpha padają na powierzchnię Ziemi promienie słoneczne, jeśli długość cienia stojącego człowieka jest 2 razy mniejsza od jego wzrostu?

Oblicz miarę stopniową kąta \alpha. Podaj wynik zaokrąglony do całych stopni.

Odpowiedź:
\alpha\ [^{\circ}]= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10663 ⋅ Poprawnie: 401/663 [60%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Trójkąt ABC jest prostokątny, a kąt BCA jest prosty. Wiadomo, że \cos\sphericalangle CAB=\frac{12}{37} i |AB|=37.

Oblicz długość boku BC.

Odpowiedź:
|BC|=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10652 ⋅ Poprawnie: 488/629 [77%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 W trójkącie prostokątnym długość jednej z przyprostokątnych jest równa 15, zaś długość przeciwprostokątnej jest równa 17.

Oblicz tangens mniejszego kąta ostrego w tym trójkącie.

Odpowiedź:
\tan\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10651 ⋅ Poprawnie: 341/491 [69%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 W trapezie prostokątnym kąt ostry ma miarę 45^{\circ}, a podstawy mają długości 3 i 13.

Oblicz długość wysokości tego trapezu.

Odpowiedź:
h= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-10645 ⋅ Poprawnie: 463/594 [77%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Dane są długości boków |BC|=10 i |AC|=2 trójkąta prostokątnego ABC o kącie ostrym \beta.

Oblicz x=\cos\beta.

Odpowiedź:
x= \cdot
(wpisz trzy liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-10674 ⋅ Poprawnie: 264/697 [37%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Przekątna równoległoboku o kącie ostrym \alpha o mierze 60^{\circ} i wysokości o długości 5\sqrt{3}, tworzy kąt prosty z jego bokiem.

Oblicz obwód tego równoległoboku.

Odpowiedź:
L= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-10657 ⋅ Poprawnie: 567/664 [85%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
Przyprostokątne w trójkącie prostokątnym mają długości 1 oraz \sqrt{3}.

Wyznacz miarę stopniową najmniejszego kąta w tym trójkącie.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  1 pkt ⋅ Numer: pp-11507 ⋅ Poprawnie: 415/985 [42%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Kąt \alpha jest ostry oraz \tan\alpha=\frac{\sqrt{6}}{5}.

Oblicz wartość wyrażenia \frac{2\sin\alpha-\cos\alpha}{\cos\alpha+2\sin\alpha}.

Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz cztery liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-10635 ⋅ Poprawnie: 220/350 [62%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Dana jest równość \sin^2\alpha(1+\cos^2\alpha)+\cos^4\alpha+4=m gdzie \alpha jest kątem ostrym.

Oblicz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-10644 ⋅ Poprawnie: 346/447 [77%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Wiadomo, że 0^{\circ}\lessdot \alpha <90^{\circ} oraz \tan \alpha=3\sin\alpha.

Oblicz \cos\alpha.

Odpowiedź:
\cos\alpha=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm