Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10626 ⋅ Poprawnie: 178/286 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Kąty ostre \alpha i \beta trójkąta prostokątnego spełniają warunek \frac{\sin \alpha}{\sin\beta}=\frac{\sqrt{7}}{7}. Oblicz \cos\alpha i zapisz wynik w najprostszej nieskracalnej postaci \frac{a\sqrt{b}}{c}.

Podaj liczby a, b i c.

Odpowiedź:
\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10640 ⋅ Poprawnie: 622/839 [74%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wiadomo, że kąt \alpha jest ostry oraz \tan\alpha=\frac{1}{2}.

Oblicz \sin\alpha.

Odpowiedź:
\sin\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10624 ⋅ Poprawnie: 268/420 [63%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Pod jakim kątem \alpha padają na powierzchnię Ziemi promienie słoneczne, jeśli długość cienia stojącego człowieka jest 3 razy mniejsza od jego wzrostu?

Oblicz miarę stopniową kąta \alpha. Podaj wynik zaokrąglony do całych stopni.

Odpowiedź:
\alpha\ [^{\circ}]= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10663 ⋅ Poprawnie: 406/670 [60%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Trójkąt ABC jest prostokątny, a kąt BCA jest prosty. Wiadomo, że \cos\sphericalangle CAB=\frac{12}{37} i |AB|=37.

Oblicz długość boku BC.

Odpowiedź:
|BC|=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10658 ⋅ Poprawnie: 119/184 [64%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » W trójkącie równoramiennym ABC poprowadzono wysokość AS, która utworzyła z podstawą kąt o mierze 24^{\circ} (zobacz rysunek).

Ramię tego trójkąta ma długość 10. Długość wysokości AS jest liczbą z przedziału:

Odpowiedzi:
A. \left\langle\frac{11}{2}, \frac{13}{2}\right\rangle B. \left(\frac{15}{2}, \frac{17}{2}\right\rangle
C. \left\langle\frac{7}{2}, \frac{9}{2}\right\rangle D. \left(\frac{13}{2}, \frac{15}{2}\right\rangle
Zadanie 6.  1 pkt ⋅ Numer: pp-10649 ⋅ Poprawnie: 294/493 [59%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « W trójkącie prostokątnym najdłuższy bok ma długość 17, a najkrótszy 8.

Oblicz tangens największego kąta ostrego tego trójkąta.

Odpowiedź:
\tan\alpha=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-10677 ⋅ Poprawnie: 78/124 [62%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 W trójkącie prostokątnym przyprostokątne mają długości 2 i 3.

Oblicz cosinus większego z kątów ostrych tego trójkąta.

Odpowiedź:
\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-10674 ⋅ Poprawnie: 265/706 [37%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Przekątna równoległoboku o kącie ostrym \alpha o mierze 60^{\circ} i wysokości o długości 6\sqrt{3}, tworzy kąt prosty z jego bokiem.

Oblicz obwód tego równoległoboku.

Odpowiedź:
L= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-10660 ⋅ Poprawnie: 152/204 [74%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
» W trapezie prostokątnym ABCD długość ramienia BC jest dwa razy większa od różnicy długości jego podstaw.

Wyznacz miarę stopniową kąta ABC.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  1 pkt ⋅ Numer: pp-10634 ⋅ Poprawnie: 290/509 [56%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Kąt \alpha należy do przedziału (90^{\circ},180^{\circ}) i zachodzi równość 8\cos^2\alpha-3=\frac{3}{4}. Oblicz \sin\alpha.
Odpowiedź:
\sin\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-11388 ⋅ Poprawnie: 215/458 [46%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Kąt \alpha jest kątem ostrym oraz \sin\alpha+\cos\alpha=\frac{7}{5}.

Oblicz wartość wyrażenia (\sin\alpha-\cos\alpha)^2.

Odpowiedź:
(\sin\alpha-\cos\alpha)^2=
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-10644 ⋅ Poprawnie: 349/458 [76%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Wiadomo, że 0^{\circ}\lessdot \alpha <90^{\circ} oraz \tan \alpha=5\sin\alpha.

Oblicz \cos\alpha.

Odpowiedź:
\cos\alpha=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm