Podgląd testu : lo2@sp-09-trygonom-1-pp-2
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10638 ⋅ Poprawnie: 1013/1633 [62%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Kąt
\alpha jest kątem ostrym w trójkącie prostokątnym.
Przeciwprostokątna tego trójkąta ma długość
6, a
\cos\alpha=\frac{1}{3}.
Wynika z tego, że:
Odpowiedzi:
|
A. przyprostokatna tego trójkąta ma długość 1
|
B. jedna z przyprostokątnych jest 3 razy krótsza od przeciwprostokątnej
|
|
C. \sin\alpha=\frac{2}{3}
|
D. przeciwprostokątna tego trójkąta jest dwa razy dłuższa od przyprostokątnej
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10613 ⋅ Poprawnie: 429/641 [66%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
« Wiadomo, że kąt
\alpha jest ostry oraz
\tan\alpha=\frac{4}{5}.
Oblicz wartość wyrażenia \sin\alpha+\cos\alpha.
Odpowiedź:
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10609 ⋅ Poprawnie: 606/824 [73%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Kąt
\alpha jest ostry i
\sin \alpha=\frac{1}{4}.
Wówczas:
Odpowiedzi:
|
A. \cos\alpha=\frac{\sqrt{14}}{4}
|
B. \cos\alpha=\frac{\sqrt{17}}{4}
|
|
C. \cos\alpha > \frac{\sqrt{14}}{4}
|
D. \cos\alpha \lessdot \frac{\sqrt{14}}{4}
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10672 ⋅ Poprawnie: 462/656 [70%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
« Przeciwprostokątna trójkąta ma długość
6, zaś
\alpha jest jednym z dwóch kątów ostrych tego trójkąta i
\sin\alpha=\frac{\sqrt{3}}{3}.
Oblicz długość a przyprostokątnej przyległej do kąta \alpha.
Odpowiedź:
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10652 ⋅ Poprawnie: 488/629 [77%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
W trójkącie prostokątnym długość jednej z przyprostokątnych jest równa
11, zaś długość przeciwprostokątnej jest równa
13.
Oblicz tangens mniejszego kąta ostrego w tym trójkącie.
Odpowiedź:
|
Zadanie 6. 1 pkt ⋅ Numer: pp-10651 ⋅ Poprawnie: 341/491 [69%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
W trapezie prostokątnym kąt ostry ma miarę
45^{\circ}, a podstawy mają długości
4 i
12.
Oblicz długość wysokości tego trapezu.
Odpowiedź:
|
Zadanie 7. 1 pkt ⋅ Numer: pp-10676 ⋅ Poprawnie: 258/353 [73%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
« Dany jest trójkąt prostokątny o kątach ostrych
\alpha
i
\beta, w którym
\sin\alpha=\frac{\sqrt{6}}{4}.
Oblicz \cot \beta.
Odpowiedź:
|
Zadanie 8. 1 pkt ⋅ Numer: pp-10616 ⋅ Poprawnie: 365/597 [61%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
Oblicz wartośc wyrażenia
w=
\tan^{2}30^{\circ}-\sin 30^{\circ}\cdot \cos 45^{\circ}-\sin 30^{\circ}\cdot \tan 30^{\circ}
.
Odpowiedź:
w=
(liczba zapisana dziesiętnie)
|
Zadanie 9. 1 pkt ⋅ Numer: pp-10662 ⋅ Poprawnie: 341/475 [71%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
Zapisz obwód trójkąta
ABC w postaci
p\cdot a:
Podaj p.
Odpowiedź:
p=
+
\cdot
√
(wpisz trzy liczby całkowite)
|
Zadanie 10. 1 pkt ⋅ Numer: pp-10622 ⋅ Poprawnie: 333/543 [61%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Kąt
\alpha należy do przedziału
(90^{\circ},180^{\circ}) i zachodzi równość
\cos\alpha=-\frac{1}{2}.
Oblicz \tan\alpha.
Odpowiedź:
\tan\alpha=
\cdot√
(wpisz dwie liczby całkowite)
|
Zadanie 11. 1 pkt ⋅ Numer: pp-10618 ⋅ Poprawnie: 415/624 [66%] |
Rozwiąż |
Podpunkt 11.1 (1 pkt)
Kąt
\alpha jest ostry i
\sin\alpha=\frac{\sqrt{3}}{3}.
Oblicz wartość wyrażenia \cos^2\alpha-2.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 12. 1 pkt ⋅ Numer: pp-10644 ⋅ Poprawnie: 346/447 [77%] |
Rozwiąż |
Podpunkt 12.1 (1 pkt)
Wiadomo, że
0^{\circ}\lessdot \alpha <90^{\circ} oraz
\tan \alpha=2\sin\alpha.
Oblicz \cos\alpha.
Odpowiedź:
(wpisz dwie liczby całkowite)