Podgląd testu : lo2@sp-09-trygonom-1-pp-2
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10631 ⋅ Poprawnie: 368/645 [57%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Wiadomo, że kąt
\alpha jest ostry oraz
\sin\alpha=\frac{5\sqrt{34}}{34}.
Oblicz wartość wyrażenia \sin \alpha-\cos\alpha.
Odpowiedź:
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10613 ⋅ Poprawnie: 429/641 [66%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
« Wiadomo, że kąt
\alpha jest ostry oraz
\tan\alpha=\frac{2}{7}.
Oblicz wartość wyrażenia \sin\alpha+\cos\alpha.
Odpowiedź:
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10621 ⋅ Poprawnie: 309/534 [57%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Wiadomo, że
\alpha=69^{\circ} oraz
\cos\alpha=x.
Zatem \cos 21^{\circ} jest równe:
Odpowiedzi:
|
A. 1-x
|
B. \sqrt{1-x^2}
|
|
C. \sqrt{1-x}
|
D. 1+x^2
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10663 ⋅ Poprawnie: 401/663 [60%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
» Trójkąt
ABC jest prostokątny, a kąt
BCA jest prosty. Wiadomo, że
\cos\sphericalangle CAB=\frac{5}{13} i
|AB|=26.
Oblicz długość boku BC.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10651 ⋅ Poprawnie: 341/491 [69%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
W trapezie prostokątnym kąt ostry ma miarę
30^{\circ}, a podstawy mają długości
6 i
11.
Oblicz długość wysokości tego trapezu.
Odpowiedź:
|
Zadanie 6. 1 pkt ⋅ Numer: pp-10648 ⋅ Poprawnie: 354/567 [62%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
« Oblicz długość wysokości trapezu równoramiennego o kącie ostrym
45^{\circ} i ramieniu długości
12\sqrt{3}.
Odpowiedź:
|
Zadanie 7. 1 pkt ⋅ Numer: pp-10645 ⋅ Poprawnie: 463/594 [77%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
» Dane są długości boków
|BC|=9 i
|AC|=5 trójkąta prostokątnego
ABC o kącie ostrym
\beta.
Oblicz x=\sin\beta.
Odpowiedź:
|
Zadanie 8. 1 pkt ⋅ Numer: pp-10639 ⋅ Poprawnie: 298/484 [61%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
Oblicz wartość wyrażenia
\left(
\tan 60^{\circ}+\cot 45^{\circ}
\right)^2-\sin 30^{\circ}
.
Odpowiedź:
\left(\tan\alpha+\cot\beta\right)^2-\sin\gamma=
(liczba zapisana dziesiętnie)
|
Zadanie 9. 1 pkt ⋅ Numer: pp-10660 ⋅ Poprawnie: 145/192 [75%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
» W trapezie prostokątnym
ABCD długość
ramienia
BC jest dwa razy większa od różnicy
długości jego podstaw.
Wyznacz miarę stopniową kąta ABC.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 10. 1 pkt ⋅ Numer: pp-10634 ⋅ Poprawnie: 283/501 [56%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
« Kąt
\alpha należy do przedziału
(90^{\circ},180^{\circ}) i zachodzi równość
11\cos^2\alpha-2=\frac{4}{11}.
Oblicz
\sin\alpha.
Odpowiedź:
|
Zadanie 11. 1 pkt ⋅ Numer: pp-10635 ⋅ Poprawnie: 220/350 [62%] |
Rozwiąż |
Podpunkt 11.1 (1 pkt)
Dana jest równość
\sin^2\alpha(1+\cos^2\alpha)+\cos^4\alpha-4=m
gdzie
\alpha jest kątem ostrym.
Oblicz m.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 12. 1 pkt ⋅ Numer: pp-10633 ⋅ Poprawnie: 65/88 [73%] |
Rozwiąż |
Podpunkt 12.1 (1 pkt)
« Oblicz wartość wyrażenia
\log{\tan 35^{\circ}}+\log{\tan 45^{\circ}}+\log{\tan 55^{\circ}}
.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)