Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10638 ⋅ Poprawnie: 1013/1633 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Kąt \alpha jest kątem ostrym w trójkącie prostokątnym. Przeciwprostokątna tego trójkąta ma długość 10, a \cos\alpha=\frac{1}{5}.

Wynika z tego, że:

Odpowiedzi:
A. jedna z przyprostokątnych jest 5 razy krótsza od przeciwprostokątnej B. \sin\alpha=\frac{4}{5}
C. przyprostokatna tego trójkąta ma długość 1 D. przeciwprostokątna tego trójkąta jest dwa razy dłuższa od przyprostokątnej
Zadanie 2.  1 pkt ⋅ Numer: pp-10614 ⋅ Poprawnie: 684/1059 [64%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Kąt \alpha jest kątem ostrym oraz \tan\alpha=\frac{5}{9}.

Oblicz wartość wyrażenia w=\frac{3\cos\alpha-2\sin\alpha}{\sin\alpha-5\cos\alpha}.

Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10624 ⋅ Poprawnie: 262/412 [63%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Pod jakim kątem \alpha padają na powierzchnię Ziemi promienie słoneczne, jeśli długość cienia stojącego człowieka jest 4 razy mniejsza od jego wzrostu?

Oblicz miarę stopniową kąta \alpha. Podaj wynik zaokrąglony do całych stopni.

Odpowiedź:
\alpha\ [^{\circ}]= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10671 ⋅ Poprawnie: 254/401 [63%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « W trójkącie prostokątnym przyprostokątne mają długość 5\sqrt{2} i 2.

Oblicz cosinus tego kąta ostrego, którego cosinus jest mniejszy.

Odpowiedź:
\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10661 ⋅ Poprawnie: 334/455 [73%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Przeciwprostokątna AB trójkąta ABC ma długość \frac{29}{2}, a \cos \sphericalangle B=\frac{20}{29}.

Oblicz długość przyprostokątnej BC tego trójkąta.

Odpowiedź:
|BC|=
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10646 ⋅ Poprawnie: 148/276 [53%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Na płaszczyźnie dane są punkty A=\left(6\sqrt{5},6\sqrt{15}\right), B=\left(0,0\right) i C=\left(6\sqrt{5},0\right).

Kąt CBA ma miarę:

Odpowiedzi:
A. 30^{\circ} B. około 55^{\circ}
C. 45^{\circ} D. 60^{\circ}
Zadanie 7.  1 pkt ⋅ Numer: pp-11539 ⋅ Poprawnie: 343/414 [82%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Punkt A zaznaczony na rysunku ma współrzędne A=(-3,5):
Oblicz tangens kąta \alpha zaznaczonego na rysunku.
Odpowiedź:
\tan\alpha=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-10639 ⋅ Poprawnie: 298/484 [61%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Oblicz wartość wyrażenia \left( \tan 30^{\circ}+\cot 30^{\circ} \right)^2-\sin 60^{\circ} .
Odpowiedź:
\left(\tan\alpha+\cot\beta\right)^2-\sin\gamma= (liczba zapisana dziesiętnie)
Zadanie 9.  1 pkt ⋅ Numer: pp-10662 ⋅ Poprawnie: 341/475 [71%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
Zapisz obwód trójkąta ABC w postaci p\cdot a:

Podaj p.

Odpowiedź:
p= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10642 ⋅ Poprawnie: 319/546 [58%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Kąt \alpha jest ostry oraz 6\sin\alpha-\sqrt{5}\cos\alpha=0.

Oblicz \tan\alpha.

Odpowiedź:
\tan\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-11388 ⋅ Poprawnie: 211/451 [46%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Kąt \alpha jest kątem ostrym oraz \sin\alpha+\cos\alpha=\frac{13}{10}.

Oblicz wartość wyrażenia (\sin\alpha-\cos\alpha)^2.

Odpowiedź:
(\sin\alpha-\cos\alpha)^2=
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-10644 ⋅ Poprawnie: 346/447 [77%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Wiadomo, że 0^{\circ}\lessdot \alpha <90^{\circ} oraz \tan \alpha=6\sin\alpha.

Oblicz \cos\alpha.

Odpowiedź:
\cos\alpha=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm