Podgląd testu : lo2@sp-09-trygonom-1-pp-2
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10632 ⋅ Poprawnie: 834/996 [83%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Kąt
\alpha jest ostry i
\cos\alpha=\frac{3}{5}.
Oblicz \sin\alpha.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10614 ⋅ Poprawnie: 684/1059 [64%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
« Kąt
\alpha jest kątem ostrym oraz
\tan\alpha=\frac{4}{9}.
Oblicz wartość wyrażenia
w=\frac{3\cos\alpha-2\sin\alpha}{\sin\alpha-5\cos\alpha}.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10609 ⋅ Poprawnie: 606/824 [73%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Kąt
\alpha jest ostry i
\sin \alpha=\frac{1}{8}.
Wówczas:
Odpowiedzi:
|
A. \cos\alpha \lessdot \frac{\sqrt{62}}{8}
|
B. \cos\alpha=\frac{\sqrt{62}}{8}
|
|
C. \cos\alpha > \frac{\sqrt{62}}{8}
|
D. \cos\alpha=\frac{\sqrt{65}}{8}
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10663 ⋅ Poprawnie: 401/663 [60%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
» Trójkąt
ABC jest prostokątny, a kąt
BCA jest prosty. Wiadomo, że
\cos\sphericalangle CAB=\frac{20}{29} i
|AB|=29.
Oblicz długość boku BC.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10658 ⋅ Poprawnie: 116/177 [65%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
» W trójkącie równoramiennym
ABC poprowadzono
wysokość
AS, która utworzyła z podstawą kąt o mierze
24^{\circ} (zobacz rysunek).
Ramię tego trójkąta ma długość 10. Długość wysokości
AS jest liczbą z przedziału:
Odpowiedzi:
|
A. \left\langle\frac{11}{2}, \frac{13}{2}\right\rangle
|
B. \left(\frac{15}{2}, \frac{17}{2}\right\rangle
|
|
C. \left\langle\frac{7}{2}, \frac{9}{2}\right\rangle
|
D. \left(\frac{13}{2}, \frac{15}{2}\right\rangle
|
|
Zadanie 6. 1 pkt ⋅ Numer: pp-10651 ⋅ Poprawnie: 341/491 [69%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
W trapezie prostokątnym kąt ostry ma miarę
45^{\circ}, a podstawy mają długości
5 i
6.
Oblicz długość wysokości tego trapezu.
Odpowiedź:
|
Zadanie 7. 1 pkt ⋅ Numer: pp-10676 ⋅ Poprawnie: 258/353 [73%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
« Dany jest trójkąt prostokątny o kątach ostrych
\alpha
i
\beta, w którym
\sin\alpha=\frac{\sqrt{14}}{7}.
Oblicz \cot \beta.
Odpowiedź:
|
Zadanie 8. 1 pkt ⋅ Numer: pp-10639 ⋅ Poprawnie: 298/484 [61%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
Oblicz wartość wyrażenia
\left(
\tan 30^{\circ}+\cot 60^{\circ}
\right)^2-\sin 60^{\circ}
.
Odpowiedź:
\left(\tan\alpha+\cot\beta\right)^2-\sin\gamma=
(liczba zapisana dziesiętnie)
|
Zadanie 9. 1 pkt ⋅ Numer: pp-10662 ⋅ Poprawnie: 341/475 [71%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
Zapisz obwód trójkąta
ABC w postaci
p\cdot a:
Podaj p.
Odpowiedź:
p=
+
\cdot
√
(wpisz trzy liczby całkowite)
|
Zadanie 10. 1 pkt ⋅ Numer: pp-10634 ⋅ Poprawnie: 283/501 [56%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
« Kąt
\alpha należy do przedziału
(90^{\circ},180^{\circ}) i zachodzi równość
6\cos^2\alpha-3=\frac{2}{3}.
Oblicz
\sin\alpha.
Odpowiedź:
|
Zadanie 11. 1 pkt ⋅ Numer: pp-10635 ⋅ Poprawnie: 220/350 [62%] |
Rozwiąż |
Podpunkt 11.1 (1 pkt)
Dana jest równość
\sin^2\alpha(1+\cos^2\alpha)+\cos^4\alpha+2=m
gdzie
\alpha jest kątem ostrym.
Oblicz m.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 12. 1 pkt ⋅ Numer: pp-10644 ⋅ Poprawnie: 346/447 [77%] |
Rozwiąż |
Podpunkt 12.1 (1 pkt)
Wiadomo, że
0^{\circ}\lessdot \alpha <90^{\circ} oraz
\tan \alpha=6\sin\alpha.
Oblicz \cos\alpha.
Odpowiedź:
(wpisz dwie liczby całkowite)