Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10631 ⋅ Poprawnie: 368/645 [57%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wiadomo, że kąt \alpha jest ostry oraz \sin\alpha=\frac{\sqrt{37}}{37}.

Oblicz wartość wyrażenia \sin \alpha-\cos\alpha.

Odpowiedź:
\sin\alpha-\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10614 ⋅ Poprawnie: 663/1036 [63%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Kąt \alpha jest kątem ostrym oraz \tan\alpha=\frac{2}{9}.

Oblicz wartość wyrażenia w=\frac{3\cos\alpha-2\sin\alpha}{\sin\alpha-5\cos\alpha}.

Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10609 ⋅ Poprawnie: 606/824 [73%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Kąt \alpha jest ostry i \sin \alpha=\frac{1}{12}.

Wówczas:

Odpowiedzi:
A. \cos\alpha=\frac{\sqrt{142}}{12} B. \cos\alpha > \frac{\sqrt{142}}{12}
C. \cos\alpha=\frac{\sqrt{145}}{12} D. \cos\alpha \lessdot \frac{\sqrt{142}}{12}
Zadanie 4.  1 pkt ⋅ Numer: pp-10665 ⋅ Poprawnie: 114/171 [66%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Odcinek BD jest dwusieczną kąta na rysunku:

Miara kąta \varphi spełnia warunek:

Odpowiedzi:
A. 25^{\circ} \lessdot \varphi < 30^{\circ} B. 30^{\circ} \lessdot \varphi < 35^{\circ}
C. 20^{\circ} \lessdot \varphi < 25^{\circ} D. 35^{\circ} \lessdot \varphi < 40^{\circ}
Zadanie 5.  1 pkt ⋅ Numer: pp-10661 ⋅ Poprawnie: 334/455 [73%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Przeciwprostokątna AB trójkąta ABC ma długość 5, a \cos \sphericalangle B=\frac{3}{5}.

Oblicz długość przyprostokątnej BC tego trójkąta.

Odpowiedź:
|BC|=
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10648 ⋅ Poprawnie: 354/567 [62%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Oblicz długość wysokości trapezu równoramiennego o kącie ostrym 30^{\circ} i ramieniu długości 9\sqrt{3}.
Odpowiedź:
h= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-10645 ⋅ Poprawnie: 463/594 [77%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Dane są długości boków |BC|=10 i |AC|=8 trójkąta prostokątnego ABC o kącie ostrym \beta.

Oblicz x=\sin\beta.

Odpowiedź:
x= \cdot
(wpisz trzy liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-10639 ⋅ Poprawnie: 298/484 [61%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Oblicz wartość wyrażenia \left( \tan 45^{\circ}+\cot 30^{\circ} \right)^2-\sin 30^{\circ} .
Odpowiedź:
\left(\tan\alpha+\cot\beta\right)^2-\sin\gamma= (liczba zapisana dziesiętnie)
Zadanie 9.  1 pkt ⋅ Numer: pp-10660 ⋅ Poprawnie: 145/192 [75%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
» W trapezie prostokątnym ABCD długość ramienia BC jest dwa razy większa od różnicy długości jego podstaw.

Wyznacz miarę stopniową kąta ABC.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  1 pkt ⋅ Numer: pp-10642 ⋅ Poprawnie: 318/545 [58%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Kąt \alpha jest ostry oraz 2\sin\alpha-\sqrt{11}\cos\alpha=0.

Oblicz \tan\alpha.

Odpowiedź:
\tan\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-10623 ⋅ Poprawnie: 109/175 [62%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Wiadomo, że \alpha i \beta są miarami kątów ostrych trójkąta prostokątnego oraz 49\sin^2\alpha+\cos^2\beta=1.

Oblicz \tan\alpha.

Odpowiedź:
\tan\alpha=
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-10644 ⋅ Poprawnie: 346/447 [77%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Wiadomo, że 0^{\circ}\lessdot \alpha <90^{\circ} oraz \tan \alpha=10\sin\alpha.

Oblicz \cos\alpha.

Odpowiedź:
\cos\alpha=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm