Podgląd testu : lo2@sp-09-trygonom-1-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10626 ⋅ Poprawnie: 178/286 [62%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Kąty ostre
\alpha i
\beta trójkąta prostokątnego spełniają warunek
\frac{\sin \alpha}{\sin\beta}=\frac{\sqrt{7}}{7} .
Oblicz
\cos\alpha i zapisz wynik w najprostszej nieskracalnej
postaci
\frac{a\sqrt{b}}{c} .
Podaj liczby a , b i
c .
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-10640 ⋅ Poprawnie: 622/839 [74%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wiadomo, że kąt
\alpha jest ostry oraz
\tan\alpha=\frac{1}{2} .
Oblicz \sin\alpha .
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-10624 ⋅ Poprawnie: 268/420 [63%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Pod jakim kątem
\alpha padają na powierzchnię Ziemi promienie słoneczne, jeśli długość
cienia stojącego człowieka jest
3 razy mniejsza
od jego wzrostu?
Oblicz miarę stopniową kąta \alpha . Podaj wynik zaokrąglony do całych stopni.
Odpowiedź:
\alpha\ [^{\circ}]=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-10663 ⋅ Poprawnie: 406/670 [60%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Trójkąt
ABC jest prostokątny, a kąt
BCA jest prosty. Wiadomo, że
\cos\sphericalangle CAB=\frac{12}{37} i
|AB|=37 .
Oblicz długość boku BC .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10658 ⋅ Poprawnie: 119/184 [64%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
» W trójkącie równoramiennym
ABC poprowadzono
wysokość
AS , która utworzyła z podstawą kąt o mierze
24^{\circ} (zobacz rysunek).
Ramię tego trójkąta ma długość 10 . Długość wysokości
AS jest liczbą z przedziału:
Odpowiedzi:
A. \left\langle\frac{11}{2}, \frac{13}{2}\right\rangle
B. \left(\frac{15}{2}, \frac{17}{2}\right\rangle
C. \left\langle\frac{7}{2}, \frac{9}{2}\right\rangle
D. \left(\frac{13}{2}, \frac{15}{2}\right\rangle
Zadanie 6. 1 pkt ⋅ Numer: pp-10649 ⋅ Poprawnie: 294/493 [59%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« W trójkącie prostokątnym najdłuższy bok ma długość
17 , a najkrótszy
8 .
Oblicz tangens największego kąta ostrego tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-10677 ⋅ Poprawnie: 78/124 [62%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
W trójkącie prostokątnym przyprostokątne mają długości
2 i
3 .
Oblicz cosinus większego z kątów ostrych tego trójkąta.
Odpowiedź:
Zadanie 8. 1 pkt ⋅ Numer: pp-10674 ⋅ Poprawnie: 265/706 [37%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Przekątna równoległoboku o kącie ostrym
\alpha o mierze
60^{\circ} i wysokości o długości
6\sqrt{3} , tworzy kąt prosty z jego bokiem.
Oblicz obwód tego równoległoboku.
Odpowiedź:
L=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-10660 ⋅ Poprawnie: 152/204 [74%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
» W trapezie prostokątnym
ABCD długość
ramienia
BC jest dwa razy większa od różnicy
długości jego podstaw.
Wyznacz miarę stopniową kąta ABC .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 1 pkt ⋅ Numer: pp-10634 ⋅ Poprawnie: 290/509 [56%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Kąt
\alpha należy do przedziału
(90^{\circ},180^{\circ}) i zachodzi równość
8\cos^2\alpha-3=\frac{3}{4} .
Oblicz
\sin\alpha .
Odpowiedź:
Zadanie 11. 1 pkt ⋅ Numer: pp-11388 ⋅ Poprawnie: 215/458 [46%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
« Kąt
\alpha jest kątem ostrym oraz
\sin\alpha+\cos\alpha=\frac{7}{5} .
Oblicz wartość wyrażenia (\sin\alpha-\cos\alpha)^2 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-10644 ⋅ Poprawnie: 349/458 [76%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Wiadomo, że
0^{\circ}\lessdot \alpha <90^{\circ} oraz
\tan \alpha=5\sin\alpha .
Oblicz \cos\alpha .
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż