Podgląd testu : lo2@sp-09-trygonom-1-pp-2
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10627 ⋅ Poprawnie: 439/629 [69%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Kąt
\alpha spełnia warunki:
\alpha\in(0^{\circ},90^{\circ}) i
\tan\alpha=\frac{112}{15}.
Oblicz \sin\alpha.
Odpowiedź:
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10641 ⋅ Poprawnie: 517/732 [70%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Wiadomo, że kąt
\alpha jest ostry oraz.
\sin\alpha=\frac{4\sqrt{41}}{41}.
Oblicz \cos\alpha.
Odpowiedź:
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10621 ⋅ Poprawnie: 309/534 [57%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Wiadomo, że
\alpha=49^{\circ} oraz
\cos\alpha=x.
Zatem \cos 41^{\circ} jest równe:
Odpowiedzi:
|
A. \sqrt{1-x^2}
|
B. 1-x
|
|
C. \sqrt{1-x}
|
D. 1-x^2
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10663 ⋅ Poprawnie: 400/663 [60%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
» Trójkąt
ABC jest prostokątny, a kąt
BCA jest prosty. Wiadomo, że
\cos\sphericalangle CAB=\frac{5}{13} i
|AB|=\frac{13}{2}.
Oblicz długość boku BC.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10661 ⋅ Poprawnie: 334/455 [73%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Przeciwprostokątna
AB trójkąta
ABC ma długość
\frac{45}{2},
a
\cos \sphericalangle B=\frac{4}{5}.
Oblicz długość przyprostokątnej BC tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 6. 1 pkt ⋅ Numer: pp-10650 ⋅ Poprawnie: 277/390 [71%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Oblicz tangens najmiejszego kąta w trójkącie prostokątnym o bokach długości
\frac{5}{2},
6,
\frac{13}{2}.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 7. 1 pkt ⋅ Numer: pp-11539 ⋅ Poprawnie: 343/414 [82%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Punkt
A zaznaczony na rysunku ma współrzędne
A=(-4,8):
Oblicz tangens kąta
\alpha zaznaczonego na rysunku.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 1 pkt ⋅ Numer: pp-10616 ⋅ Poprawnie: 365/597 [61%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
Oblicz wartośc wyrażenia
w=
\tan^{2}45^{\circ}-\sin 45^{\circ}\cdot \cos 60^{\circ}-\sin 60^{\circ}\cdot \tan 60^{\circ}
.
Odpowiedź:
w=
(liczba zapisana dziesiętnie)
|
Zadanie 9. 1 pkt ⋅ Numer: pp-10657 ⋅ Poprawnie: 566/663 [85%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
Przyprostokątne w trójkącie prostokątnym mają długości
1 oraz
\sqrt{3}.
Wyznacz miarę stopniową najmniejszego kąta w tym trójkącie.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 10. 1 pkt ⋅ Numer: pp-10642 ⋅ Poprawnie: 318/545 [58%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Kąt
\alpha jest ostry oraz
9\sin\alpha-\sqrt{7}\cos\alpha=0.
Oblicz \tan\alpha.
Odpowiedź:
|
Zadanie 11. 1 pkt ⋅ Numer: pp-10615 ⋅ Poprawnie: 609/917 [66%] |
Rozwiąż |
Podpunkt 11.1 (1 pkt)
a=5
b=7
« Kąt
\alpha jest ostry i
\sin\alpha=\frac{\sqrt{5}}{7}.
Oblicz wartość wyrażenia 2\cos^2{\alpha}-1.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 12. 1 pkt ⋅ Numer: pp-10633 ⋅ Poprawnie: 65/88 [73%] |
Rozwiąż |
Podpunkt 12.1 (1 pkt)
« Oblicz wartość wyrażenia
\log{\tan 35^{\circ}}+\log{\tan 45^{\circ}}+\log{\tan 55^{\circ}}
.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)