Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10626 ⋅ Poprawnie: 175/279 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Kąty ostre \alpha i \beta trójkąta prostokątnego spełniają warunek \frac{\sin \alpha}{\sin\beta}=\frac{\sqrt{7}}{7}. Oblicz \cos\alpha i zapisz wynik w najprostszej nieskracalnej postaci \frac{a\sqrt{b}}{c}.

Podaj liczby a, b i c.

Odpowiedź:
\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10641 ⋅ Poprawnie: 517/732 [70%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wiadomo, że kąt \alpha jest ostry oraz. \sin\alpha=\frac{3\sqrt{10}}{10}.

Oblicz \cos\alpha.

Odpowiedź:
\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10613 ⋅ Poprawnie: 429/641 [66%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Wiadomo, że kąt \alpha jest ostry oraz \tan\alpha=\frac{1}{5}.

Oblicz wartość wyrażenia \sin\alpha+\cos\alpha.

Odpowiedź:
\sin\alpha+\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10637 ⋅ Poprawnie: 840/1239 [67%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Drabinę o długości 4 metrów oparto o pionowy mur, a jej podstawę umieszczono w odległości 1 metrów od tego muru.

Kąt \alpha, pod jakim ustawiono drabinę, spełnia warunek:

Odpowiedzi:
A. 60^{\circ}\lessdot \alpha&\lessdot90^{\circ} B. 45^{\circ}\lessdot \alpha&\lessdot60^{\circ}
C. 30^{\circ}\lessdot \alpha&\lessdot45^{\circ} D. 0^{\circ}\lessdot \alpha&\lessdot30^{\circ}
Zadanie 5.  1 pkt ⋅ Numer: pp-10670 ⋅ Poprawnie: 319/560 [56%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Trapez na rysunku jest prostokątny:

Miara kąta \alpha spełnia warunek:

Odpowiedzi:
A. \alpha=30^{\circ} B. 50^{\circ} \lessdot \alpha < 60^{\circ}
C. \alpha=45^{\circ} D. 30^{\circ} \lessdot \alpha < 35^{\circ}
Zadanie 6.  1 pkt ⋅ Numer: pp-10651 ⋅ Poprawnie: 341/491 [69%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 W trapezie prostokątnym kąt ostry ma miarę 30^{\circ}, a podstawy mają długości 4 i 9.

Oblicz długość wysokości tego trapezu.

Odpowiedź:
h= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-10651 ⋅ Poprawnie: 341/491 [69%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 W trapezie prostokątnym kąt ostry ma miarę 30^{\circ}, a podstawy mają długości 4 i 9.

Oblicz długość wysokości tego trapezu.

Odpowiedź:
h= \cdot
(wpisz trzy liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-10677 ⋅ Poprawnie: 74/119 [62%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 W trójkącie prostokątnym przyprostokątne mają długości 3 i 7.

Oblicz sinus większego z kątów ostrych tego trójkąta.

Odpowiedź:
\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10639 ⋅ Poprawnie: 298/484 [61%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Oblicz wartość wyrażenia \left( \tan 45^{\circ}+\cot 30^{\circ} \right)^2-\sin 30^{\circ} .
Odpowiedź:
\left(\tan\alpha+\cot\beta\right)^2-\sin\gamma= (liczba zapisana dziesiętnie)
Zadanie 10.  1 pkt ⋅ Numer: pp-10662 ⋅ Poprawnie: 341/475 [71%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
Zapisz obwód trójkąta ABC w postaci p\cdot a:

Podaj p.

Odpowiedź:
p= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-10660 ⋅ Poprawnie: 145/192 [75%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
» W trapezie prostokątnym ABCD długość ramienia BC jest dwa razy większa od różnicy długości jego podstaw.

Wyznacz miarę stopniową kąta ABC.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 12.  1 pkt ⋅ Numer: pp-11507 ⋅ Poprawnie: 415/985 [42%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Kąt \alpha jest ostry oraz \tan\alpha=\frac{2\sqrt{14}}{15}.

Oblicz wartość wyrażenia \frac{2\sin\alpha-\cos\alpha}{\cos\alpha+2\sin\alpha}.

Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz cztery liczby całkowite)
Zadanie 13.  1 pkt ⋅ Numer: pp-10622 ⋅ Poprawnie: 333/543 [61%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Kąt \alpha należy do przedziału (90^{\circ},180^{\circ}) i zachodzi równość \cos\alpha=-\frac{1}{11}.

Oblicz \tan\alpha.

Odpowiedź:
\tan\alpha= \cdot
(wpisz dwie liczby całkowite)
Zadanie 14.  1 pkt ⋅ Numer: pp-10630 ⋅ Poprawnie: 191/451 [42%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 » Kąty \alpha i \beta trójkata prostokątnego są ostre. Wówczas wyrażenie \frac{2\cos\alpha\cdot (1-\sin^2\beta)\cdot \tan\alpha} {4\sin^2\alpha\cdot \cos\beta} jest równe:
Odpowiedzi:
A. \frac{1}{2}\sin\alpha B. \frac{1}{2}\cos\alpha
C. \frac{1}{2}\tan\alpha D. \frac{1}{2}
Zadanie 15.  1 pkt ⋅ Numer: pp-11538 ⋅ Poprawnie: 199/336 [59%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Kąt \alpha jest ostry i spełnia warunek \sin\alpha=\frac{2}{3}. Oblicz wartość wyrażenia \sin^2\alpha-\cos^2\alpha.
Odpowiedź:
\sin^2\alpha-\cos^2\alpha=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm