Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-5

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10621  
Podpunkt 1.1 (1 pkt)
 Wiadomo, że kąt \alpha jest ostry oraz \cos\alpha=x.

Zatem \cos(90^{\circ}-\alpha) jest równe:

Dane
\alpha=73^{\circ}
Odpowiedzi:
A. \sqrt{1-x^2} B. 1-x^2
C. 1+x^2 D. 1-x
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10676  
Podpunkt 2.1 (1 pkt)
 « Dany jest trójkąt prostokątny o kątach ostrych \alpha i \beta, w którym \sin\alpha=\frac{\sqrt{70}}{14}.

Oblicz \cot \beta.

Odpowiedź:
\cot\beta= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10662  
Podpunkt 3.1 (1 pkt)
Zapisz obwód trójkąta ABC w postaci p\cdot a:

Podaj p.

Odpowiedź:
p= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10634  
Podpunkt 4.1 (1 pkt)
 « Kąt \alpha należy do przedziału (90^{\circ},180^{\circ}) i zachodzi równość 11\cos^2\alpha-2=\frac{4}{11}. Oblicz \sin\alpha.
Odpowiedź:
\sin\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11388  
Podpunkt 5.1 (1 pkt)
 « Kąt \alpha jest kątem ostrym oraz \sin\alpha+\cos\alpha=\frac{13}{12}.

Oblicz wartość wyrażenia (\sin\alpha-\cos\alpha)^2.

Odpowiedź:
(\sin\alpha-\cos\alpha)^2=
(wpisz dwie liczby całkowite)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20733  
Podpunkt 6.1 (1 pkt)
 « Wyznacz wysokości trójkata ABC:

Podaj długość najkrótszej z wysokości tego trójkąta.

Dane
a=44
Odpowiedź:
h_{min}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj długość najdłuższej z wysokości tego trójkąta.
Odpowiedź:
h_{max}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20727  
Podpunkt 7.1 (2 pkt)
 « Przekątne prostokąta maja długość d i przecinają się pod kątem o mierze \alpha.

Oblicz odległość wierzchołka prostokąta od przekątnej, do której wierzchołek ten nie należy (funkcję trygonometryczną kąta przyjmij z dokładnością do trzech miejsc po przecinku).

Dane
d=512
\alpha=44^{\circ}
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20283  
Podpunkt 8.1 (1 pkt)
 Trójkąt ABC jest równoramienny o podstawie AB, a punkt D jest środkiem jego podstawy AB.

Oblicz miarę stopniową najmniejszego kąta tego trójkąta.

Dane
|CD|=\frac{\sqrt{15}}{2}=1.93649167310371
|AC|=\sqrt{15}=3.87298334620742
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Oblicz miarę stopniową największego kąta tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20266  
Podpunkt 9.1 (2 pkt)
 » Wiedząc, że \tan\alpha=a, oblicz \frac{3\sin\alpha\cos\alpha-2\sin^2\alpha} {7\cos^2\alpha-3\sin\alpha\cos\alpha} .
Dane
a=\frac{2}{11}=0.181818181818
Odpowiedź:
m\sqrt{n}=
(wpisz dwie liczby całkowite)
Zadanie 10.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20735  
Podpunkt 10.1 (1 pkt)
 « Kąt \alpha spełnia warunek: \alpha\in(90^{\circ},180^{\circ}). Oblicz \sin\alpha.
Dane
\tan\alpha=-\frac{28}{45}=-0.62222222222222
Odpowiedź:
\sin\alpha=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Oblicz \cos\alpha.
Odpowiedź:
\cos\alpha=
(wpisz dwie liczby całkowite)
Zadanie 11.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20277  
Podpunkt 11.1 (2 pkt)
» Kąt ostry \alpha spełnia równanie \sin\alpha+\cos\alpha=\frac{\sqrt{7}}{2}.

Oblicz (\sin\alpha-\cos\alpha)^2

Odpowiedź:
(\sin\alpha-\cos\alpha)^2=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm