Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-5

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10632  
Podpunkt 1.1 (1 pkt)
 Kąt \alpha jest ostry i \cos\alpha=\frac{3}{5}.

Oblicz \sin\alpha.

Odpowiedź:
\sin\alpha=
(wpisz dwie liczby całkowite)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10658  
Podpunkt 2.1 (1 pkt)
» W trójkącie równoramiennym ABC poprowadzono wysokość AS, która utworzyła z podstawą kąt o mierze 24^{\circ} (zobacz rysunek).

Ramię tego trójkąta ma długość 10. Długość wysokości AS jest liczbą z przedziału:

Odpowiedzi:
A. \left(\frac{15}{2}, \frac{17}{2}\right\rangle B. \left(\frac{13}{2}, \frac{15}{2}\right\rangle
C. \left\langle\frac{11}{2}, \frac{13}{2}\right\rangle D. \left\langle\frac{7}{2}, \frac{9}{2}\right\rangle
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10660  
Podpunkt 3.1 (1 pkt)
» W trapezie prostokątnym ABCD długość ramienia BC jest dwa razy większa od różnicy długości jego podstaw.

Wyznacz miarę stopniową kąta ABC.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10634  
Podpunkt 4.1 (1 pkt)
 « Kąt \alpha należy do przedziału (90^{\circ},180^{\circ}) i zachodzi równość 12\cos^2\alpha-3=\frac{2}{3}. Oblicz \sin\alpha.
Odpowiedź:
\sin\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10630  
Podpunkt 5.1 (1 pkt)
 » Kąty \alpha i \beta trójkata prostokątnego są ostre. Wówczas wyrażenie \frac{2\cos\alpha\cdot (4-4\sin^2\beta)\cdot \tan\alpha} {6\sin^2\alpha\cdot \cos\beta} jest równe:
Odpowiedzi:
A. \frac{1}{3}\sin\alpha B. \frac{4}{3}
C. \frac{4}{3}\tan\alpha D. \frac{4}{3}\cos\alpha
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20259  
Podpunkt 6.1 (2 pkt)
 Oblicz x-y, gdy x=\sin^4\alpha-\cos^4\alpha, y=1-4\sin^2\alpha\cdot \cos^2\alpha.
Dane
\alpha=60^{\circ}
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20727  
Podpunkt 7.1 (2 pkt)
 « Przekątne prostokąta maja długość d i przecinają się pod kątem o mierze \alpha.

Oblicz odległość wierzchołka prostokąta od przekątnej, do której wierzchołek ten nie należy (funkcję trygonometryczną kąta przyjmij z dokładnością do trzech miejsc po przecinku).

Dane
d=512
\alpha=57^{\circ}
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20288  
Podpunkt 8.1 (2 pkt)
 W prostokątnym trójkącie ABC na przeciwprostokątnej AB wybrano punkt D, a na przyprostokątnej BC punkt E w taki sposób, że DE||AC oraz |BE|=|CE|=d.

Wyznacz tangens kąta EDC.

Dane
|AC|=40
d=20
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20267  
Podpunkt 9.1 (2 pkt)
 « Oblicz wartość wyrażenia (a-a\sin^2\alpha)(1+\tan^2\alpha) .
Dane
a=\frac{1}{9}=0.11111111111111
Odpowiedź:
m\sqrt{n}=
(wpisz dwie liczby całkowite)
Zadanie 10.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20735  
Podpunkt 10.1 (1 pkt)
 « Kąt \alpha spełnia warunek: \alpha\in(90^{\circ},180^{\circ}). Oblicz \sin\alpha.
Dane
\tan\alpha=-\frac{3}{4}=-0.75000000000000
Odpowiedź:
\sin\alpha=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Oblicz \cos\alpha.
Odpowiedź:
\cos\alpha=
(wpisz dwie liczby całkowite)
Zadanie 11.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20276  
Podpunkt 11.1 (2 pkt)
« O kącie \alpha wiadomo, że jest ostry i \sin\alpha=\frac{1}{4}.

Oblicz wartość wyrażenia 2\tan^2\alpha+1.

Odpowiedź:
2\tan^2\alpha+1=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm