Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-10631 ⋅ Poprawnie: 368/645 [57%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wiadomo, że kąt \alpha jest ostry oraz \sin\alpha=\frac{\sqrt{10}}{10}.

Oblicz wartość wyrażenia \sin \alpha-\cos\alpha.

Odpowiedź:
\sin\alpha-\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10677 ⋅ Poprawnie: 74/119 [62%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 W trójkącie prostokątnym przyprostokątne mają długości 2 i 6.

Oblicz sinus większego z kątów ostrych tego trójkąta.

Odpowiedź:
\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10616 ⋅ Poprawnie: 365/597 [61%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Oblicz wartośc wyrażenia w= \tan^{2}30^{\circ}-\sin 45^{\circ}\cdot \cos 30^{\circ}-\sin 45^{\circ}\cdot \tan 45^{\circ} .
Odpowiedź:
w= (liczba zapisana dziesiętnie)
Zadanie 4.  1 pkt ⋅ Numer: pp-10618 ⋅ Poprawnie: 415/624 [66%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Kąt \alpha jest ostry i \sin\alpha=\frac{\sqrt{3}}{4}.

Oblicz wartość wyrażenia \cos^2\alpha-2.

Odpowiedź:
\cos^2\alpha-2=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10633 ⋅ Poprawnie: 65/88 [73%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
« Oblicz wartość wyrażenia \log{\tan 35^{\circ}}+\log{\tan 45^{\circ}}+\log{\tan 55^{\circ}} .
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20259 ⋅ Poprawnie: 165/275 [60%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Oblicz x-y, gdy x=\sin^4{30^{\circ}}-\cos^4{30^{\circ}}, y=1-4\sin^2{30^{\circ}}\cdot \cos^2{30^{\circ}}.
Odpowiedź:
x-y= (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20256 ⋅ Poprawnie: 32/111 [28%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Kąt \alpha jest ostry oraz \tan\alpha+9\cot\alpha=6.

Oblicz wartość wyrażenia \sin\alpha\cdot \cos\alpha.

Odpowiedź:
\sin\alpha\cdot\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20283 ⋅ Poprawnie: 54/94 [57%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Trójkąt ABC jest równoramienny o podstawie AB, a punkt D jest środkiem jego podstawy AB.

Oblicz miarę stopniową najmniejszego kąta tego trójkąta.

Dane
|CD|=\frac{\sqrt{10}}{2}=1.58113883008419
|AC|=\sqrt{10}=3.16227766016838
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Oblicz miarę stopniową największego kąta tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pp-20265 ⋅ Poprawnie: 72/142 [50%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » Oblicz \tan\alpha wiedząc, że 12\sin^2\alpha+20\cos^2\alpha=19 i \alpha\in(0^{\circ},90^{\circ}).
Odpowiedź:
\tan\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20271 ⋅ Poprawnie: 40/104 [38%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Kąt \alpha jest ostry i spełnia równość \frac{2}{\sin^2\alpha}+\frac{2}{\cos^2\alpha}=32 .

Oblicz wartość wyrażenia \sin\alpha\cdot \cos\alpha.

Odpowiedź:
\sin\alpha\cdot \cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 11.  2 pkt ⋅ Numer: pp-20276 ⋅ Poprawnie: 120/218 [55%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
« O kącie \alpha wiadomo, że jest ostry i \sin\alpha=\frac{1}{4}.

Oblicz wartość wyrażenia 2\tan^2\alpha+1.

Odpowiedź:
2\tan^2\alpha+1=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm