Podgląd testu : lo2@sp-09-trygonom-1-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-10614 ⋅ Poprawnie: 684/1059 [64%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Kąt
\alpha jest kątem ostrym oraz
\tan\alpha=\frac{7}{9} .
Oblicz wartość wyrażenia
w=\frac{3\cos\alpha-2\sin\alpha}{\sin\alpha-5\cos\alpha} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-10661 ⋅ Poprawnie: 334/455 [73%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Przeciwprostokątna
AB trójkąta
ABC ma długość
\frac{41}{2} ,
a
\cos \sphericalangle B=\frac{40}{41} .
Oblicz długość przyprostokątnej BC tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-10639 ⋅ Poprawnie: 298/484 [61%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Oblicz wartość wyrażenia
\left(
\tan 30^{\circ}+\cot 45^{\circ}
\right)^2-\sin 45^{\circ}
.
Odpowiedź:
\left(\tan\alpha+\cot\beta\right)^2-\sin\gamma=
(liczba zapisana dziesiętnie)
Zadanie 4. 1 pkt ⋅ Numer: pp-10618 ⋅ Poprawnie: 415/624 [66%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Kąt
\alpha jest ostry i
\sin\alpha=\frac{\sqrt{3}}{3} .
Oblicz wartość wyrażenia \cos^2\alpha-2 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10633 ⋅ Poprawnie: 65/88 [73%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Oblicz wartość wyrażenia
\log{\tan 35^{\circ}}+\log{\tan 45^{\circ}}+\log{\tan 55^{\circ}}
.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20741 ⋅ Poprawnie: 91/247 [36%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Oblicz wartość wyrażenia
w=
(\tan{60^{\circ}}-\sin{45^{\circ}})(\cot{60^{\circ}}-\cos{30^{\circ}})
.
Odpowiedź:
Zadanie 7. 2 pkt ⋅ Numer: pp-20269 ⋅ Poprawnie: 156/399 [39%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Kąt
\alpha jest ostry oraz
\cos\alpha=\frac{1}{5} .
Oblicz średnią
arytmetyczną liczb a=\sin\alpha ,
b=\frac{1}{2} i
c=\frac{1}{3}\tan\alpha .
Odpowiedź:
Zadanie 8. 2 pkt ⋅ Numer: pp-20283 ⋅ Poprawnie: 54/94 [57%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Trójkąt
ABC jest równoramienny o podstawie
AB , a punkt
D jest
środkiem jego podstawy
AB .
Oblicz miarę stopniową najmniejszego kąta tego trójkąta.
Dane
|CD|=\frac{\sqrt{2}}{2}=0.70710678118655
|AC|=\sqrt{2}=1.41421356237310
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Oblicz miarę stopniową największego kąta tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 2 pkt ⋅ Numer: pp-20268 ⋅ Poprawnie: 35/87 [40%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Dla pewnego kąta
\alpha\in\langle 0,90^{\circ})
funkcje trygonometryczne sinus i cosinus mają wartości
\sin\alpha=x-\frac{1}{2} i
\cos\alpha=x+\frac{1}{2} .
Oblicz \tan\alpha .
Odpowiedź:
\tan\alpha=
(liczba zapisana dziesiętnie)
Zadanie 10. 2 pkt ⋅ Numer: pp-20736 ⋅ Poprawnie: 27/89 [30%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Kąt
\alpha spełnia warunek
\alpha\in(0^{\circ},90^{\circ})\cup(90^{\circ},180^{\circ})
oraz
\sin\alpha=\frac{\sqrt{5}}{3} .
Wyznacz najmniejszą wartość wyrażenia
\cos\alpha+\tan\alpha .
Odpowiedź:
Podpunkt 10.2 (1 pkt)
Wyznacz największą wartość wyrażenia
\cos\alpha+\tan\alpha .
Odpowiedź:
Zadanie 11. 2 pkt ⋅ Numer: pp-20276 ⋅ Poprawnie: 120/218 [55%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
« O kącie
\alpha wiadomo, że jest ostry i
\sin\alpha=\frac{1}{4} .
Oblicz wartość wyrażenia 2\tan^2\alpha+1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż