Podgląd testu : lo2@sp-09-trygonom-1-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-10641 ⋅ Poprawnie: 517/732 [70%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wiadomo, że kąt
\alpha jest ostry oraz.
\sin\alpha=\frac{\sqrt{10}}{10} .
Oblicz \cos\alpha .
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-10670 ⋅ Poprawnie: 319/560 [56%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Trapez na rysunku jest prostokątny:
Miara kąta \alpha spełnia warunek:
Odpowiedzi:
A. \alpha=45^{\circ}
B. \alpha=30^{\circ}
C. 50^{\circ} \lessdot \alpha < 60^{\circ}
D. 30^{\circ} \lessdot \alpha < 35^{\circ}
Zadanie 3. 1 pkt ⋅ Numer: pp-10660 ⋅ Poprawnie: 145/192 [75%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
» W trapezie prostokątnym
ABCD długość
ramienia
BC jest dwa razy większa od różnicy
długości jego podstaw.
Wyznacz miarę stopniową kąta ABC .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 4. 1 pkt ⋅ Numer: pp-11507 ⋅ Poprawnie: 415/985 [42%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Kąt
\alpha jest ostry oraz
\tan\alpha=\frac{\sqrt{110}}{21} .
Oblicz wartość wyrażenia
\frac{2\sin\alpha-\cos\alpha}{\cos\alpha+2\sin\alpha} .
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-11388 ⋅ Poprawnie: 210/450 [46%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Kąt
\alpha jest kątem ostrym oraz
\sin\alpha+\cos\alpha=\frac{4}{3} .
Oblicz wartość wyrażenia (\sin\alpha-\cos\alpha)^2 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20741 ⋅ Poprawnie: 91/247 [36%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Oblicz
(\tan\alpha-\sin\beta)(\cot\alpha-\cos\gamma)
.
Dane
\alpha=60^{\circ}
\beta=30^{\circ}
\gamma=45^{\circ}
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pp-20728 ⋅ Poprawnie: 51/126 [40%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
W równoległoboku dany jest sinus kąta ostrego
\alpha
oraz wysokość
h opuszczona na dłuższy bok tego
równoległoboku. Stosunek długości sąsiednich boków tego równoległoboku
wynosi
k .
Oblicz długość obwodu tego równoległoboku.
Dane
\sin\alpha=\frac{2}{9}=0.22222222222222
h=4
k=\frac{13}{2}=6.50000000000000
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20740 ⋅ Poprawnie: 46/387 [11%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Dany jest trójkąt:
Oblicz |AC| . Do obliczeń użyj przybliżeń wartości
funkcji trygonometrycznych z dokładnością do dwóch miejsc po przecinku.
Dane
\alpha=50^{\circ}
\beta=110^{\circ}
h=8
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Oblicz
|AB| . Do obliczeń użyj przybliżeń wartości
funkcji trygonometrycznych z dokładnością do dwóch miejsc po przecinku.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 2 pkt ⋅ Numer: pp-20266 ⋅ Poprawnie: 80/240 [33%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
» Wiedząc, że
\tan\alpha=a , oblicz
\frac{3\sin\alpha\cos\alpha-2\sin^2\alpha}
{7\cos^2\alpha-3\sin\alpha\cos\alpha}
.
Dane
a=\frac{2}{11}=0.181818181818
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20735 ⋅ Poprawnie: 86/280 [30%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Kąt
\alpha spełnia warunek:
\alpha\in(90^{\circ},180^{\circ}) .
Oblicz
\sin\alpha .
Dane
\tan\alpha=-\frac{9}{40}=-0.22500000000000
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 2 pkt ⋅ Numer: pp-20743 ⋅ Poprawnie: 73/122 [59%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
«« Kąt
\alpha jest kątem ostrym oraz zachodzi
równość
a\cos^2\alpha+b\sin^2\alpha=c .
Wyznacz wartość wyrażenia (\tan\alpha+\cot\alpha)^2 .
Dane
a=2
b=6
c=5
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż