Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-10624 ⋅ Poprawnie: 262/412 [63%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Pod jakim kątem \alpha padają na powierzchnię Ziemi promienie słoneczne, jeśli długość cienia stojącego człowieka jest 2 razy mniejsza od jego wzrostu?

Oblicz miarę stopniową kąta \alpha. Podaj wynik zaokrąglony do całych stopni.

Odpowiedź:
\alpha\ [^{\circ}]= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10663 ⋅ Poprawnie: 401/663 [60%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Trójkąt ABC jest prostokątny, a kąt BCA jest prosty. Wiadomo, że \cos\sphericalangle CAB=\frac{3}{5} i |AB|=\frac{5}{2}.

Oblicz długość boku BC.

Odpowiedź:
|BC|=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10657 ⋅ Poprawnie: 567/664 [85%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Przyprostokątne w trójkącie prostokątnym mają długości 1 oraz \sqrt{3}.

Wyznacz miarę stopniową najmniejszego kąta w tym trójkącie.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 4.  1 pkt ⋅ Numer: pp-10622 ⋅ Poprawnie: 333/543 [61%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Kąt \alpha należy do przedziału (90^{\circ},180^{\circ}) i zachodzi równość \cos\alpha=-\frac{1}{2}.

Oblicz \tan\alpha.

Odpowiedź:
\tan\alpha= \cdot
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10644 ⋅ Poprawnie: 346/447 [77%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wiadomo, że 0^{\circ}\lessdot \alpha <90^{\circ} oraz \tan \alpha=2\sin\alpha.

Oblicz \cos\alpha.

Odpowiedź:
\cos\alpha=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20731 ⋅ Poprawnie: 132/387 [34%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Czworokąt ABCD na rysunku jest trapezem, a czworokąt EFCD prostokątem. Wiadomo, że \alpha=120^{\circ}, \beta=150^{\circ} i h=5.

Oblicz obwód czworokąta ABCD.

Odpowiedź:
L_{ABCD}= (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20256 ⋅ Poprawnie: 32/111 [28%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Kąt \alpha jest ostry oraz \tan\alpha+4\cot\alpha=4.

Oblicz wartość wyrażenia \sin\alpha\cdot \cos\alpha.

Odpowiedź:
\sin\alpha\cdot\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20730 ⋅ Poprawnie: 107/253 [42%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Czworokąt na rysunku jest rombem o obwodzie długości L:

Oblicz \cos\alpha.

Dane
L=20
|DB|=6
Odpowiedź:
\cos\alpha=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Oblicz \tan\beta.
Odpowiedź:
\tan\beta= \cdot
(wpisz trzy liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20268 ⋅ Poprawnie: 35/87 [40%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Dla pewnego kąta \alpha\in\langle 0,90^{\circ}) funkcje trygonometryczne sinus i cosinus mają wartości \sin\alpha=x-\frac{1}{2} i \cos\alpha=x+\frac{1}{2}.

Oblicz \tan\alpha.

Odpowiedź:
\tan\alpha= (liczba zapisana dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pp-20736 ⋅ Poprawnie: 27/89 [30%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Kąt \alpha spełnia warunek \alpha\in(0^{\circ},90^{\circ})\cup(90^{\circ},180^{\circ}) oraz \sin\alpha=\frac{\sqrt{7}}{4}.

Wyznacz najmniejszą wartość wyrażenia \cos\alpha+\tan\alpha.

Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz cztery liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Wyznacz największą wartość wyrażenia \cos\alpha+\tan\alpha.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz cztery liczby całkowite)
Zadanie 11.  2 pkt ⋅ Numer: pp-20743 ⋅ Poprawnie: 73/122 [59%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 «« Kąt \alpha jest kątem ostrym oraz zachodzi równość 5\cos^2\alpha+9\sin^2\alpha=8.

Wyznacz wartość wyrażenia w=(\tan\alpha+\cot\alpha)^2.

Odpowiedź:
(\tan\alpha+\cot\alpha)^2=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30303 ⋅ Poprawnie: 47/221 [21%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Kąt \alpha jest rozwarty i spełnia warunek \sin\alpha+\cos\alpha=\frac{1}{5}.

Oblicz \sin\alpha-\cos\alpha.

Odpowiedź:
\sin\alpha-\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Oblicz \tan\alpha.
Odpowiedź:
\tan\alpha=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm