Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-6

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10621  
Podpunkt 1.1 (1 pkt)
 Wiadomo, że kąt \alpha jest ostry oraz \cos\alpha=x.

Zatem \cos(90^{\circ}-\alpha) jest równe:

Dane
\alpha=44^{\circ}
Odpowiedzi:
A. 1+x^2 B. \sqrt{1-x^2}
C. \sqrt{1-x} D. 1-x^2
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10665  
Podpunkt 2.1 (1 pkt)
« Odcinek BD jest dwusieczną kąta na rysunku:

Miara kąta \varphi spełnia warunek:

Odpowiedzi:
A. 25^{\circ} \lessdot \varphi < 30^{\circ} B. 20^{\circ} \lessdot \varphi < 25^{\circ}
C. 35^{\circ} \lessdot \varphi < 40^{\circ} D. 30^{\circ} \lessdot \varphi < 35^{\circ}
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10674  
Podpunkt 3.1 (1 pkt)
 « Przekątna równoległoboku o kącie ostrym \alpha o mierze 60^{\circ} i wysokości o długości 14\sqrt{3}, tworzy kąt prosty z jego bokiem.

Oblicz obwód tego równoległoboku.

Odpowiedź:
L= (wpisz liczbę całkowitą)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10634  
Podpunkt 4.1 (1 pkt)
 « Kąt \alpha należy do przedziału (90^{\circ},180^{\circ}) i zachodzi równość 7\cos^2\alpha-2=\frac{5}{7}. Oblicz \sin\alpha.
Odpowiedź:
\sin\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10630  
Podpunkt 5.1 (1 pkt)
 » Kąty \alpha i \beta trójkata prostokątnego są ostre. Wówczas wyrażenie \frac{3\cos\alpha\cdot (4-4\sin^2\beta)\cdot \tan\alpha} {2\sin^2\alpha\cdot \cos\beta} jest równe:
Odpowiedzi:
A. \frac{3}{2}\sin\alpha B. 6\cos\alpha
C. 6 D. 6\tan\alpha
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20731  
Podpunkt 6.1 (2 pkt)
 Czworokąt ABCD na rysunku jest trapezem, a czworokąt EFCD prostokątem:

Oblicz obwód czworokąta ABCD.

Dane
\alpha=120^{\circ}
\beta=135^{\circ}
a=10
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20728  
Podpunkt 7.1 (2 pkt)
 W równoległoboku dany jest sinus kąta ostrego \alpha oraz wysokość h opuszczona na dłuższy bok tego równoległoboku. Stosunek długości sąsiednich boków tego równoległoboku wynosi k.

Oblicz długość obwodu tego równoległoboku.

Dane
\sin\alpha=\frac{3}{4}=0.75000000000000
h=8
k=\frac{15}{2}=7.50000000000000
Odpowiedź:
L=
(wpisz dwie liczby całkowite)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20275  
Podpunkt 8.1 (2 pkt)
 Kąty \alpha i \beta są kątami ostrymi w trójkącie prostokątnym.

Oblicz \tan\alpha\cdot \sin\beta.

Dane
\cos\alpha=\frac{2}{9}=0.22222222222222
Odpowiedź:
\tan\alpha\cdot\sin\beta= \cdot
(wpisz trzy liczby całkowite)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20253  
Podpunkt 9.1 (2 pkt)
 « Wiadomo, że x=\sin\alpha. Wyraź za pomocą x wyrażenie 2\tan^{2}{\alpha}+2 i zapisz je w postaci nieskracalnego ułamka.

Podaj licznik tego ułamka.

Dane
\alpha=62^{\circ}
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20742  
Podpunkt 10.1 (2 pkt)
 «« Kąt \alpha jest kątem rozwartym. Wyznacz rozwiązanie równania (x-b)\cos^2\alpha=x+\tan\alpha+1-b .
Dane
b=-1
\sin\alpha=\frac{\sqrt{2}}{2}=0.70710678118655
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20864  
Podpunkt 11.1 (2 pkt)
 (2 pkt) Kąt \alpha jest ostry i spełnia warunek \tan\alpha=1.

Oblicz wartość wyrażenia \frac{9\sin\alpha+\cos\alpha}{2\cos\alpha-\sin\alpha}.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30303  
Podpunkt 12.1 (2 pkt)
 « Kąt \alpha jest rozwarty i spełnia warunek: \sin\alpha+\cos\alpha=m. Oblicz \sin\alpha-\cos\alpha.
Dane
m=\frac{1}{5}=0.20000000000000
Odpowiedź:
\sin\alpha-\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Oblicz \tan\alpha.
Odpowiedź:
\tan\alpha=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm