Podgląd testu : lo2@sp-09-trygonom-1-pp-6
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10641 ⋅ Poprawnie: 523/739 [70%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Wiadomo, że kąt
\alpha jest ostry oraz.
\sin\alpha=\frac{2\sqrt{5}}{5}.
Oblicz \cos\alpha.
Odpowiedź:
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10680 ⋅ Poprawnie: 167/250 [66%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
« Oblicz sinus kąta ostrego utworzonego w trójkącie prostokątnym przez boki o długościach
5 i
10.
Odpowiedź:
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10674 ⋅ Poprawnie: 266/707 [37%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
« Przekątna równoległoboku o kącie ostrym
\alpha o mierze
60^{\circ} i wysokości o długości
31\sqrt{3}, tworzy kąt prosty z jego bokiem.
Oblicz obwód tego równoległoboku.
Odpowiedź:
L=
(wpisz liczbę całkowitą)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10618 ⋅ Poprawnie: 415/627 [66%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Kąt
\alpha jest ostry i
\sin\alpha=\frac{\sqrt{3}}{12}.
Oblicz wartość wyrażenia \cos^2\alpha-2.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10644 ⋅ Poprawnie: 349/458 [76%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Wiadomo, że
0^{\circ}\lessdot \alpha <90^{\circ} oraz
\tan \alpha=8\sin\alpha.
Oblicz \cos\alpha.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20732 ⋅ Poprawnie: 176/455 [38%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
» Dany jest czworokąt, w którym
\alpha=45^{\circ},
\beta=60^{\circ} i
|DB|=7:
Oblicz długość obwodu czworokąta ABCD.
Odpowiedź:
L_{ABCD}=
(liczba zapisana dziesiętnie)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20262 ⋅ Poprawnie: 328/521 [62%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
W pewnym trójkącie prostokątnym przyprostokątne mają długość
9 i
5, a jeden z kątów
ostrych tego trójkąta ma miarę
\alpha.
Oblicz \sin\alpha\cdot \cos\alpha.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20289 ⋅ Poprawnie: 198/416 [47%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
« Przyprostokątne trójkąta mają długości
5 i
10, a jeden z kątów ostrych tego trójkąta ma miarę
\beta.
Oblicz \sin\beta\cdot \cos\beta.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20266 ⋅ Poprawnie: 81/242 [33%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
» Wiedząc, że
\tan\alpha=\frac{2}{11}, oblicz wartość wyrażenia
w=
\frac{3\sin\alpha\cos\alpha-2\sin^2\alpha}
{7\cos^2\alpha-3\sin\alpha\cos\alpha}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 10. 2 pkt ⋅ Numer: pp-20734 ⋅ Poprawnie: 189/288 [65%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Kąt
\alpha jest ostry oraz
\sin\alpha=\frac{65}{97}.
Oblicz \cos\alpha.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 11. 2 pkt ⋅ Numer: pp-20276 ⋅ Poprawnie: 124/224 [55%] |
Rozwiąż |
Podpunkt 11.1 (2 pkt)
« O kącie
\alpha wiadomo, że jest ostry i
\sin\alpha=\frac{1}{4}.
Oblicz wartość wyrażenia 2\tan^2\alpha+1.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 12. 4 pkt ⋅ Numer: pp-30303 ⋅ Poprawnie: 54/248 [21%] |
Rozwiąż |
Podpunkt 12.1 (2 pkt)
« Kąt
\alpha jest rozwarty i spełnia warunek
\sin\alpha+\cos\alpha=\frac{1}{5}.
Oblicz \sin\alpha-\cos\alpha.
Odpowiedź:
Podpunkt 12.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)