Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-10624 ⋅ Poprawnie: 262/412 [63%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Pod jakim kątem \alpha padają na powierzchnię Ziemi promienie słoneczne, jeśli długość cienia stojącego człowieka jest 9 razy mniejsza od jego wzrostu?

Oblicz miarę stopniową kąta \alpha. Podaj wynik zaokrąglony do całych stopni.

Odpowiedź:
\alpha\ [^{\circ}]= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10653 ⋅ Poprawnie: 727/889 [81%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dany jest trójkąt:

Oblicz długość odcinka BD.

Odpowiedź:
|BD|= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10662 ⋅ Poprawnie: 341/475 [71%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Zapisz obwód trójkąta ABC w postaci p\cdot a:

Podaj p.

Odpowiedź:
p= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10642 ⋅ Poprawnie: 319/546 [58%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Kąt \alpha jest ostry oraz 11\sin\alpha-\sqrt{3}\cos\alpha=0.

Oblicz \tan\alpha.

Odpowiedź:
\tan\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10635 ⋅ Poprawnie: 220/350 [62%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dana jest równość \sin^2\alpha(1+\cos^2\alpha)+\cos^4\alpha-5=m gdzie \alpha jest kątem ostrym.

Oblicz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20732 ⋅ Poprawnie: 176/451 [39%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Dany jest czworokąt, w którym \alpha=45^{\circ}, \beta=60^{\circ} i |DB|=7:

Oblicz długość obwodu czworokąta ABCD.

Odpowiedź:
L_{ABCD}= (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20256 ⋅ Poprawnie: 32/111 [28%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Kąt \alpha jest ostry oraz \tan\alpha+64\cot\alpha=16.

Oblicz wartość wyrażenia \sin\alpha\cdot \cos\alpha.

Odpowiedź:
\sin\alpha\cdot\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20275 ⋅ Poprawnie: 63/130 [48%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Kąty \alpha i \beta są kątami ostrymi w trójkącie prostokątnym.

Oblicz \tan\alpha\cdot \sin\beta.

Dane
\cos\alpha=\frac{3}{7}=0.42857142857143
Odpowiedź:
\tan\alpha\cdot\sin\beta= \cdot
(wpisz trzy liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20264 ⋅ Poprawnie: 131/239 [54%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Oblicz wartość wyrażenia w= \frac{-4\sin\alpha +2\cos\alpha} {2\cos\alpha +\sin\alpha} , jeśli wiadomo, że \alpha jest kątem ostrym oraz \tan\alpha=8.
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20737 ⋅ Poprawnie: 171/260 [65%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Kąt \alpha jest ostry oraz \tan\alpha=\frac{63}{16}.

Oblicz \sin\alpha.

Odpowiedź:
\sin\alpha=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Oblicz \cos\alpha.
Odpowiedź:
\cos\alpha=
(wpisz dwie liczby całkowite)
Zadanie 11.  2 pkt ⋅ Numer: pp-20744 ⋅ Poprawnie: 169/539 [31%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Kąty \alpha i \beta są kątami ostrymi w trójkącie prostokątnym i spełniają. warunek \sin\alpha+\sin\beta=\frac{12}{11}.

Oblicz \sin\alpha\cdot \sin\beta.

Odpowiedź:
\sin\alpha\cdot\sin\beta=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (1 pkt)
 Oblicz \cos\alpha\cdot \cos\beta.
Odpowiedź:
\cos\alpha\cdot\cos\beta=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30303 ⋅ Poprawnie: 47/221 [21%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Kąt \alpha jest rozwarty i spełnia warunek \sin\alpha+\cos\alpha=\frac{89}{149}.

Oblicz \sin\alpha-\cos\alpha.

Odpowiedź:
\sin\alpha-\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Oblicz \tan\alpha.
Odpowiedź:
\tan\alpha=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm