Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-10614 ⋅ Poprawnie: 684/1059 [64%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Kąt \alpha jest kątem ostrym oraz \tan\alpha=\frac{5}{2}.

Oblicz wartość wyrażenia w=\frac{3\cos\alpha-2\sin\alpha}{\sin\alpha-5\cos\alpha}.

Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10648 ⋅ Poprawnie: 354/567 [62%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Oblicz długość wysokości trapezu równoramiennego o kącie ostrym 30^{\circ} i ramieniu długości 7\sqrt{2}.
Odpowiedź:
h= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10639 ⋅ Poprawnie: 298/484 [61%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Oblicz wartość wyrażenia \left( \tan 45^{\circ}+\cot 30^{\circ} \right)^2-\sin 30^{\circ} .
Odpowiedź:
\left(\tan\alpha+\cot\beta\right)^2-\sin\gamma= (liczba zapisana dziesiętnie)
Zadanie 4.  1 pkt ⋅ Numer: pp-11507 ⋅ Poprawnie: 415/985 [42%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Kąt \alpha jest ostry oraz \tan\alpha=\frac{\sqrt{30}}{11}.

Oblicz wartość wyrażenia \frac{2\sin\alpha-\cos\alpha}{\cos\alpha+2\sin\alpha}.

Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz cztery liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10615 ⋅ Poprawnie: 609/917 [66%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 a=3 b=10 « Kąt \alpha jest ostry i \sin\alpha=\frac{\sqrt{3}}{10}.

Oblicz wartość wyrażenia 2\cos^2{\alpha}-1.

Odpowiedź:
2\cos^2\alpha-1=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20259 ⋅ Poprawnie: 165/275 [60%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Oblicz x-y, gdy x=\sin^4{45^{\circ}}-\cos^4{45^{\circ}}, y=1-4\sin^2{45^{\circ}}\cdot \cos^2{45^{\circ}}.
Odpowiedź:
x-y= (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20255 ⋅ Poprawnie: 132/288 [45%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Kąt \beta jest ostry. Oblicz wartość wyrażenia 3+2\tan^2\beta.
Dane
\sin\beta=\frac{3}{7}=0.42857142857143
Odpowiedź:
3+2\tan^2\beta=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20729 ⋅ Poprawnie: 72/303 [23%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Cięciwa AB jest średnicą okręgu na rysunku:

Oblicz \tan\sphericalangle ABM.

Dane
|AP|=12
|PB|=3
Odpowiedź:
\tan\sphericalangle ABM= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Oblicz \sin\sphericalangle MAB.
Odpowiedź:
\sin\sphericalangle MAB= \cdot
(wpisz trzy liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20267 ⋅ Poprawnie: 120/243 [49%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Oblicz wartość wyrażenia \left(\frac{1}{5}-\frac{1}{5}\sin^2\alpha\right)(1+\tan^2\alpha) .
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20271 ⋅ Poprawnie: 40/104 [38%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Kąt \alpha jest ostry i spełnia równość \frac{2}{\sin^2\alpha}+\frac{2}{\cos^2\alpha}=18 .

Oblicz wartość wyrażenia \sin\alpha\cdot \cos\alpha.

Odpowiedź:
\sin\alpha\cdot \cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 11.  2 pkt ⋅ Numer: pp-20276 ⋅ Poprawnie: 120/218 [55%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
« O kącie \alpha wiadomo, że jest ostry i \sin\alpha=\frac{1}{4}.

Oblicz wartość wyrażenia 2\tan^2\alpha+1.

Odpowiedź:
2\tan^2\alpha+1=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30303 ⋅ Poprawnie: 47/221 [21%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Kąt \alpha jest rozwarty i spełnia warunek \sin\alpha+\cos\alpha=\frac{7}{13}.

Oblicz \sin\alpha-\cos\alpha.

Odpowiedź:
\sin\alpha-\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Oblicz \tan\alpha.
Odpowiedź:
\tan\alpha=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm