Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-10613 ⋅ Poprawnie: 429/641 [66%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Wiadomo, że kąt \alpha jest ostry oraz \tan\alpha=\frac{5}{7}.

Oblicz wartość wyrażenia \sin\alpha+\cos\alpha.

Odpowiedź:
\sin\alpha+\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10650 ⋅ Poprawnie: 268/377 [71%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz tangens najmiejszego kąta w trójkącie prostokątnym o bokach długości 4, \frac{15}{2}, \frac{17}{2}.
Odpowiedź:
\tan\alpha=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10674 ⋅ Poprawnie: 264/697 [37%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Przekątna równoległoboku o kącie ostrym \alpha o mierze 60^{\circ} i wysokości o długości 16\sqrt{3}, tworzy kąt prosty z jego bokiem.

Oblicz obwód tego równoległoboku.

Odpowiedź:
L= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10634 ⋅ Poprawnie: 283/501 [56%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Kąt \alpha należy do przedziału (90^{\circ},180^{\circ}) i zachodzi równość 7\cos^2\alpha-1=\frac{6}{7}. Oblicz \sin\alpha.
Odpowiedź:
\sin\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10615 ⋅ Poprawnie: 609/917 [66%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 a=5 b=3 « Kąt \alpha jest ostry i \sin\alpha=\frac{\sqrt{5}}{3}.

Oblicz wartość wyrażenia 2\cos^2{\alpha}-1.

Odpowiedź:
2\cos^2\alpha-1=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20731 ⋅ Poprawnie: 132/387 [34%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Czworokąt ABCD na rysunku jest trapezem, a czworokąt EFCD prostokątem. Wiadomo, że \alpha=135^{\circ}, \beta=120^{\circ} i h=9.

Oblicz obwód czworokąta ABCD.

Odpowiedź:
L_{ABCD}= (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20254 ⋅ Poprawnie: 106/199 [53%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Kąt \beta jest ostry. Oblicz wartość wyrażenia \sin^2\beta-3\cos^2\beta.
Dane
\sin\beta=\frac{\sqrt{3}}{6}=0.28867513459481
Odpowiedź:
\sin^2\beta-3\cos^2\beta=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20283 ⋅ Poprawnie: 54/94 [57%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Trójkąt ABC jest równoramienny o podstawie AB, a punkt D jest środkiem jego podstawy AB.

Oblicz miarę stopniową najmniejszego kąta tego trójkąta.

Dane
|CD|=\frac{\sqrt{3}}{2}=0.86602540378444
|AC|=\sqrt{3}=1.73205080756888
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Oblicz miarę stopniową największego kąta tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pp-20267 ⋅ Poprawnie: 120/243 [49%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Oblicz wartość wyrażenia \left(\frac{1}{5}-\frac{1}{5}\sin^2\alpha\right)(1+\tan^2\alpha) .
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20742 ⋅ Poprawnie: 24/91 [26%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 «« Kąt \alpha jest kątem rozwartym oraz \sin\alpha=\frac{\sqrt{3}}{2}.

Wyznacz rozwiązanie równania (x+5)\cos^2\alpha=x+\tan\alpha+6 .

Odpowiedź:
x= (liczba zapisana dziesiętnie)
Zadanie 11.  2 pkt ⋅ Numer: pp-20744 ⋅ Poprawnie: 169/539 [31%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Kąty \alpha i \beta są kątami ostrymi w trójkącie prostokątnym i spełniają. warunek \sin\alpha+\sin\beta=\frac{7}{6}.

Oblicz \sin\alpha\cdot \sin\beta.

Odpowiedź:
\sin\alpha\cdot\sin\beta=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (1 pkt)
 Oblicz \cos\alpha\cdot \cos\beta.
Odpowiedź:
\cos\alpha\cdot\cos\beta=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30303 ⋅ Poprawnie: 47/221 [21%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Kąt \alpha jest rozwarty i spełnia warunek \sin\alpha+\cos\alpha=\frac{1}{29}.

Oblicz \sin\alpha-\cos\alpha.

Odpowiedź:
\sin\alpha-\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Oblicz \tan\alpha.
Odpowiedź:
\tan\alpha=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm