Podgląd testu : lo2@sp-09-trygonom-1-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-10626 ⋅ Poprawnie: 175/279 [62%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Kąty ostre
\alpha i
\beta trójkąta prostokątnego spełniają warunek
\frac{\sin \alpha}{\sin\beta}=\frac{\sqrt{17}}{17} .
Oblicz
\cos\alpha i zapisz wynik w najprostszej nieskracalnej
postaci
\frac{a\sqrt{b}}{c} .
Podaj liczby a , b i
c .
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-10652 ⋅ Poprawnie: 488/629 [77%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
W trójkącie prostokątnym długość jednej z przyprostokątnych jest równa
12 , zaś długość przeciwprostokątnej jest równa
16 .
Oblicz tangens mniejszego kąta ostrego w tym trójkącie.
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-10674 ⋅ Poprawnie: 264/697 [37%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Przekątna równoległoboku o kącie ostrym
\alpha o mierze
60^{\circ} i wysokości o długości
23\sqrt{3} , tworzy kąt prosty z jego bokiem.
Oblicz obwód tego równoległoboku.
Odpowiedź:
L=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-10642 ⋅ Poprawnie: 318/545 [58%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Kąt
\alpha jest ostry oraz
6\sin\alpha-\sqrt{5}\cos\alpha=0 .
Oblicz \tan\alpha .
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-10635 ⋅ Poprawnie: 220/350 [62%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Dana jest równość
\sin^2\alpha(1+\cos^2\alpha)+\cos^4\alpha-2=m
gdzie
\alpha jest kątem ostrym.
Oblicz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20732 ⋅ Poprawnie: 176/451 [39%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
» Dany jest czworokąt, w którym
\alpha=45^{\circ} ,
\beta=60^{\circ} i
|DB|=4 :
Oblicz długość obwodu czworokąta ABCD .
Odpowiedź:
L_{ABCD}=
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pp-20254 ⋅ Poprawnie: 106/199 [53%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Kąt
\beta jest ostry. Oblicz wartość wyrażenia
\sin^2\beta-3\cos^2\beta .
Dane
\sin\beta=\frac{\sqrt{3}}{8}=0.21650635094611
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20729 ⋅ Poprawnie: 72/303 [23%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
» Cięciwa
AB jest średnicą okręgu na rysunku:
Oblicz \tan\sphericalangle ABM .
Dane
|AP|=16
|PB|=4
Odpowiedź:
Podpunkt 8.2 (1 pkt)
Oblicz
\sin\sphericalangle MAB .
Odpowiedź:
Zadanie 9. 2 pkt ⋅ Numer: pp-20267 ⋅ Poprawnie: 120/243 [49%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Oblicz wartość wyrażenia
\left(\frac{1}{7}-\frac{1}{7}\sin^2\alpha\right)(1+\tan^2\alpha)
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20734 ⋅ Poprawnie: 187/284 [65%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Kąt
\alpha jest ostry oraz
\sin\alpha=\frac{3}{5} .
Oblicz \cos\alpha .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 2 pkt ⋅ Numer: pp-20744 ⋅ Poprawnie: 169/539 [31%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
« Kąty
\alpha i
\beta są kątami ostrymi w trójkącie prostokątnym i spełniają.
warunek
\sin\alpha+\sin\beta=\frac{10}{9} .
Oblicz \sin\alpha\cdot \sin\beta .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (1 pkt)
Oblicz
\cos\alpha\cdot \cos\beta .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 4 pkt ⋅ Numer: pp-30303 ⋅ Poprawnie: 47/221 [21%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
« Kąt
\alpha jest rozwarty i spełnia warunek
\sin\alpha+\cos\alpha=\frac{1}{5} .
Oblicz \sin\alpha-\cos\alpha .
Odpowiedź:
Podpunkt 12.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż