Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-10640 ⋅ Poprawnie: 614/830 [73%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wiadomo, że kąt \alpha jest ostry oraz \tan\alpha=1.

Oblicz \sin\alpha.

Odpowiedź:
\sin\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10650 ⋅ Poprawnie: 277/390 [71%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz tangens najmiejszego kąta w trójkącie prostokątnym o bokach długości \frac{5}{2}, 6, \frac{13}{2}.
Odpowiedź:
\tan\alpha=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10674 ⋅ Poprawnie: 264/697 [37%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Przekątna równoległoboku o kącie ostrym \alpha o mierze 60^{\circ} i wysokości o długości 2\sqrt{3}, tworzy kąt prosty z jego bokiem.

Oblicz obwód tego równoległoboku.

Odpowiedź:
L= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10611 ⋅ Poprawnie: 234/474 [49%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Kąt \alpha jest ostry oraz \tan\alpha=\frac{5}{6}.

Oblicz wartość wyrażenia \frac{2-\cos\alpha}{2+\cos\alpha}.

Odpowiedź:
\frac{2-\cos\alpha}{2+\cos\alpha}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11388 ⋅ Poprawnie: 210/450 [46%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Kąt \alpha jest kątem ostrym oraz \sin\alpha+\cos\alpha=\frac{6}{5}.

Oblicz wartość wyrażenia (\sin\alpha-\cos\alpha)^2.

Odpowiedź:
(\sin\alpha-\cos\alpha)^2=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20259 ⋅ Poprawnie: 165/275 [60%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Oblicz x-y, gdy x=\sin^4{30^{\circ}}-\cos^4{30^{\circ}}, y=1-4\sin^2{30^{\circ}}\cdot \cos^2{30^{\circ}}.
Odpowiedź:
x-y= (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20256 ⋅ Poprawnie: 32/111 [28%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Kąt \alpha jest ostry oraz \tan\alpha+4\cot\alpha=4.

Oblicz wartość wyrażenia \sin\alpha\cdot \cos\alpha.

Odpowiedź:
\sin\alpha\cdot\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20747 ⋅ Poprawnie: 35/99 [35%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « W prostokątnym trójkącie ABC na przeciwprostokątnej AB wybrano punkt D, a na przyprostokątnej BC punkt E w taki sposób, że DE||AC.

Wyznacz tangens kąta ECD.

Dane
|AC|=6
|BE|=2
|CE|=8
Odpowiedź:
\tan\sphericalangle ECD=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20267 ⋅ Poprawnie: 120/243 [49%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Oblicz wartość wyrażenia \left(\frac{1}{2}-\frac{1}{2}\sin^2\alpha\right)(1+\tan^2\alpha) .
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20736 ⋅ Poprawnie: 27/89 [30%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Kąt \alpha spełnia warunek \alpha\in(0^{\circ},90^{\circ})\cup(90^{\circ},180^{\circ}) oraz \sin\alpha=\frac{\sqrt{7}}{4}.

Wyznacz najmniejszą wartość wyrażenia \cos\alpha+\tan\alpha.

Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz cztery liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Wyznacz największą wartość wyrażenia \cos\alpha+\tan\alpha.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz cztery liczby całkowite)
Zadanie 11.  2 pkt ⋅ Numer: pp-20864 ⋅ Poprawnie: 93/199 [46%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 (2 pkt) Kąt \alpha jest ostry i spełnia warunek \tan\alpha=4.

Oblicz wartość wyrażenia \frac{12\sin\alpha+8\cos\alpha}{4\cos\alpha-8\sin\alpha}.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30303 ⋅ Poprawnie: 47/221 [21%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Kąt \alpha jest rozwarty i spełnia warunek \sin\alpha+\cos\alpha=\frac{17}{25}.

Oblicz \sin\alpha-\cos\alpha.

Odpowiedź:
\sin\alpha-\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Oblicz \tan\alpha.
Odpowiedź:
\tan\alpha=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm