Podgląd testu : lo2@sp-09-trygonom-1-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-10632 ⋅ Poprawnie: 834/996 [83%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Kąt
\alpha jest ostry i
\cos\alpha=\frac{39}{89} .
Oblicz \sin\alpha .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-10650 ⋅ Poprawnie: 278/390 [71%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Oblicz tangens najmiejszego kąta w trójkącie prostokątnym o bokach długości
10 ,
24 ,
26 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-10662 ⋅ Poprawnie: 341/475 [71%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Zapisz obwód trójkąta
ABC w postaci
p\cdot a :
Podaj p .
Odpowiedź:
p=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10618 ⋅ Poprawnie: 415/624 [66%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Kąt
\alpha jest ostry i
\sin\alpha=\frac{\sqrt{3}}{5} .
Oblicz wartość wyrażenia \cos^2\alpha-2 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11538 ⋅ Poprawnie: 199/351 [56%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Kąt
\alpha jest ostry i spełnia warunek
\sin\alpha=\frac{1}{3} .
Oblicz wartość wyrażenia
\sin^2\alpha-\cos^2\alpha .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20731 ⋅ Poprawnie: 132/387 [34%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Czworokąt
ABCD na rysunku jest trapezem,
a czworokąt
EFCD prostokątem. Wiadomo, że
\alpha=135^{\circ} ,
\beta=150^{\circ} i
h=7 .
Oblicz obwód czworokąta ABCD .
Odpowiedź:
L_{ABCD}=
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pp-20728 ⋅ Poprawnie: 51/126 [40%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
W równoległoboku dany jest sinus kąta ostrego
\alpha
oraz wysokość
h opuszczona na dłuższy bok tego
równoległoboku. Stosunek długości sąsiednich boków tego równoległoboku
wynosi
k .
Oblicz długość obwodu tego równoległoboku.
Dane
\sin\alpha=\frac{6}{13}=0.46153846153846
h=20
k=\frac{13}{2}=6.50000000000000
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20729 ⋅ Poprawnie: 72/303 [23%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
» Cięciwa
AB jest średnicą okręgu na rysunku:
Oblicz \tan\sphericalangle ABM .
Dane
|AP|=20
|PB|=5
Odpowiedź:
Podpunkt 8.2 (1 pkt)
Oblicz
\sin\sphericalangle MAB .
Odpowiedź:
Zadanie 9. 2 pkt ⋅ Numer: pp-20253 ⋅ Poprawnie: 38/89 [42%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Wiadomo, że
x=\sin{54^{\circ}} . Wyraź za pomocą
x wyrażenie
2\tan^{2}{54^{\circ}}+2 i
zapisz je w postaci nieskracalnego ułamka.
Podaj licznik tego ułamka.
Odpowiedź:
licznik=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-20735 ⋅ Poprawnie: 86/280 [30%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Kąt
\alpha spełnia warunek
\alpha\in(90^{\circ},180^{\circ}) oraz
\tan\alpha=-\frac{39}{80} .
Oblicz \sin\alpha .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 2 pkt ⋅ Numer: pp-20864 ⋅ Poprawnie: 93/199 [46%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
(2 pkt)
Kąt
\alpha jest ostry i spełnia warunek
\tan\alpha=4 .
Oblicz wartość wyrażenia
\frac{6\sin\alpha+6\cos\alpha}{9\cos\alpha-6\sin\alpha} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 4 pkt ⋅ Numer: pp-30303 ⋅ Poprawnie: 47/221 [21%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
« Kąt
\alpha jest rozwarty i spełnia warunek
\sin\alpha+\cos\alpha=\frac{7}{13} .
Oblicz \sin\alpha-\cos\alpha .
Odpowiedź:
Podpunkt 12.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż