Podgląd testu : lo2@sp-09-trygonom-1-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-10620 ⋅ Poprawnie: 473/663 [71%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Kąt
\alpha jest kątem ostrym i
\tan \alpha=\frac{21}{23} .
Wówczas:
Odpowiedzi:
A. \alpha\in(40^{\circ},44^{\circ})
B. \alpha\in(50^{\circ},54^{\circ})
C. \alpha\in(36^{\circ},40^{\circ})
D. \alpha\in(44^{\circ},50^{\circ})
Zadanie 2. 1 pkt ⋅ Numer: pp-10676 ⋅ Poprawnie: 258/353 [73%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Dany jest trójkąt prostokątny o kątach ostrych
\alpha
i
\beta , w którym
\sin\alpha=\frac{2}{3} .
Oblicz \cot \beta .
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-10674 ⋅ Poprawnie: 264/697 [37%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Przekątna równoległoboku o kącie ostrym
\alpha o mierze
60^{\circ} i wysokości o długości
25\sqrt{3} , tworzy kąt prosty z jego bokiem.
Oblicz obwód tego równoległoboku.
Odpowiedź:
L=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11507 ⋅ Poprawnie: 415/985 [42%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Kąt
\alpha jest ostry oraz
\tan\alpha=\frac{6\sqrt{2}}{17} .
Oblicz wartość wyrażenia
\frac{2\sin\alpha-\cos\alpha}{\cos\alpha+2\sin\alpha} .
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-10630 ⋅ Poprawnie: 191/451 [42%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
» Kąty
\alpha i
\beta
trójkata prostokątnego są ostre. Wówczas wyrażenie
\frac{6\cos\alpha\cdot (2-2\sin^2\beta)\cdot \tan\alpha}
{\sin^2\alpha\cdot \cos\beta}
jest równe:
Odpowiedzi:
A. 6\sin\alpha
B. 12\cos\alpha
C. 12
D. 12\tan\alpha
Zadanie 6. 2 pkt ⋅ Numer: pp-20733 ⋅ Poprawnie: 109/391 [27%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Wyznacz wysokości trójkata
ABC , w którym
a=40
Podaj długość najkrótszej z wysokości tego trójkąta.
Odpowiedź:
Podpunkt 6.2 (1 pkt)
Podaj długość najdłuższej z wysokości tego trójkąta.
Odpowiedź:
Zadanie 7. 2 pkt ⋅ Numer: pp-20254 ⋅ Poprawnie: 106/199 [53%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Kąt
\beta jest ostry. Oblicz wartość wyrażenia
\sin^2\beta-3\cos^2\beta .
Dane
\sin\beta=\frac{\sqrt{3}}{9}=0.19245008972988
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20747 ⋅ Poprawnie: 35/99 [35%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« W prostokątnym trójkącie
ABC na
przeciwprostokątnej
AB wybrano punkt
D , a na przyprostokątnej
BC punkt
E w taki sposób,
że
DE||AC .
Wyznacz tangens kąta ECD .
Dane
|AC|=34
|BE|=9
|CE|=5
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20268 ⋅ Poprawnie: 35/87 [40%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Dla pewnego kąta
\alpha\in\langle 0,90^{\circ})
funkcje trygonometryczne sinus i cosinus mają wartości
\sin\alpha=x-\frac{1}{5} i
\cos\alpha=x+\frac{1}{5} .
Oblicz \tan\alpha .
Odpowiedź:
\tan\alpha=
(liczba zapisana dziesiętnie)
Zadanie 10. 2 pkt ⋅ Numer: pp-20271 ⋅ Poprawnie: 40/104 [38%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Kąt
\alpha jest ostry i spełnia równość
\frac{2}{\sin^2\alpha}+\frac{2}{\cos^2\alpha}=32
.
Oblicz wartość wyrażenia \sin\alpha\cdot \cos\alpha .
Odpowiedź:
Zadanie 11. 2 pkt ⋅ Numer: pp-20744 ⋅ Poprawnie: 169/539 [31%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
« Kąty
\alpha i
\beta są kątami ostrymi w trójkącie prostokątnym i spełniają.
warunek
\sin\alpha+\sin\beta=\frac{10}{9} .
Oblicz \sin\alpha\cdot \sin\beta .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (1 pkt)
Oblicz
\cos\alpha\cdot \cos\beta .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 4 pkt ⋅ Numer: pp-30303 ⋅ Poprawnie: 47/221 [21%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
« Kąt
\alpha jest rozwarty i spełnia warunek
\sin\alpha+\cos\alpha=\frac{31}{41} .
Oblicz \sin\alpha-\cos\alpha .
Odpowiedź:
Podpunkt 12.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż