Podgląd testu : lo2@sp-09-trygonom-1-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-10624 ⋅ Poprawnie: 262/412 [63%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Pod jakim kątem
\alpha padają na powierzchnię Ziemi promienie słoneczne, jeśli długość
cienia stojącego człowieka jest
6 razy mniejsza
od jego wzrostu?
Oblicz miarę stopniową kąta \alpha . Podaj wynik zaokrąglony do całych stopni.
Odpowiedź:
\alpha\ [^{\circ}]=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-10677 ⋅ Poprawnie: 75/120 [62%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
W trójkącie prostokątnym przyprostokątne mają długości
1 i
6 .
Oblicz cosinus większego z kątów ostrych tego trójkąta.
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-10660 ⋅ Poprawnie: 145/192 [75%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
» W trapezie prostokątnym
ABCD długość
ramienia
BC jest dwa razy większa od różnicy
długości jego podstaw.
Wyznacz miarę stopniową kąta ABC .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 4. 1 pkt ⋅ Numer: pp-10642 ⋅ Poprawnie: 319/546 [58%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Kąt
\alpha jest ostry oraz
11\sin\alpha-\sqrt{6}\cos\alpha=0 .
Oblicz \tan\alpha .
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-10644 ⋅ Poprawnie: 346/447 [77%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Wiadomo, że
0^{\circ}\lessdot \alpha <90^{\circ} oraz
\tan \alpha=10\sin\alpha .
Oblicz \cos\alpha .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20731 ⋅ Poprawnie: 132/387 [34%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Czworokąt
ABCD na rysunku jest trapezem,
a czworokąt
EFCD prostokątem. Wiadomo, że
\alpha=135^{\circ} ,
\beta=120^{\circ} i
h=9 .
Oblicz obwód czworokąta ABCD .
Odpowiedź:
L_{ABCD}=
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pp-20274 ⋅ Poprawnie: 195/446 [43%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Kąt
\alpha jest ostry. Oblicz wartość wyrażenia
2+\sin^3\alpha+\sin\alpha\cdot \cos^2\alpha .
Dane
\cos\alpha=\frac{\sqrt{5}}{3}=0.74535599249993
Odpowiedź:
Zadanie 8. 2 pkt ⋅ Numer: pp-20278 ⋅ Poprawnie: 34/160 [21%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
W trójkącie prostokątnym
ABC o
przeciwprostokątnej
AB kąt
CAB ma miarę
\alpha .
Oblicz pole koła opisanego na tym trójkącie.
Dane
\sin\alpha=\frac{7}{13}=0.53846153846154
|AC|=7
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 2 pkt ⋅ Numer: pp-20264 ⋅ Poprawnie: 131/239 [54%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Oblicz wartość wyrażenia
w=
\frac{-\sin\alpha +6\cos\alpha}
{6\cos\alpha -2\sin\alpha}
,
jeśli wiadomo, że
\alpha jest kątem ostrym
oraz
\tan\alpha=2 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20734 ⋅ Poprawnie: 187/284 [65%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Kąt
\alpha jest ostry oraz
\sin\alpha=\frac{5}{13} .
Oblicz \cos\alpha .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 2 pkt ⋅ Numer: pp-20864 ⋅ Poprawnie: 93/199 [46%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
(2 pkt)
Kąt
\alpha jest ostry i spełnia warunek
\tan\alpha=6 .
Oblicz wartość wyrażenia
\frac{8\sin\alpha-8\cos\alpha}{10\cos\alpha-5\sin\alpha} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 4 pkt ⋅ Numer: pp-30303 ⋅ Poprawnie: 47/221 [21%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
« Kąt
\alpha jest rozwarty i spełnia warunek
\sin\alpha+\cos\alpha=\frac{23}{37} .
Oblicz \sin\alpha-\cos\alpha .
Odpowiedź:
Podpunkt 12.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż