Podgląd testu : lo2@sp-09-trygonom-1-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-10631 ⋅ Poprawnie: 368/645 [57%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wiadomo, że kąt
\alpha jest ostry oraz
\sin\alpha=\frac{3\sqrt{34}}{34} .
Oblicz wartość wyrażenia \sin \alpha-\cos\alpha .
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-10676 ⋅ Poprawnie: 258/353 [73%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Dany jest trójkąt prostokątny o kątach ostrych
\alpha
i
\beta , w którym
\sin\alpha=\frac{\sqrt{21}}{7} .
Oblicz \cot \beta .
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-10616 ⋅ Poprawnie: 365/597 [61%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Oblicz wartośc wyrażenia
w=
\tan^{2}30^{\circ}-\sin 30^{\circ}\cdot \cos 45^{\circ}-\sin 60^{\circ}\cdot \tan 60^{\circ}
.
Odpowiedź:
w=
(liczba zapisana dziesiętnie)
Zadanie 4. 1 pkt ⋅ Numer: pp-10611 ⋅ Poprawnie: 234/474 [49%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Kąt
\alpha jest ostry oraz
\tan\alpha=\frac{6}{5} .
Oblicz wartość wyrażenia \frac{2-\cos\alpha}{2+\cos\alpha} .
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-10615 ⋅ Poprawnie: 609/917 [66%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
a=7
b=8
« Kąt
\alpha jest ostry i
\sin\alpha=\frac{\sqrt{7}}{8} .
Oblicz wartość wyrażenia 2\cos^2{\alpha}-1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20732 ⋅ Poprawnie: 176/451 [39%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
» Dany jest czworokąt, w którym
\alpha=30^{\circ} ,
\beta=45^{\circ} i
|DB|=6 :
Oblicz długość obwodu czworokąta ABCD .
Odpowiedź:
L_{ABCD}=
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pp-20728 ⋅ Poprawnie: 51/126 [40%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
W równoległoboku dany jest sinus kąta ostrego
\alpha
oraz wysokość
h opuszczona na dłuższy bok tego
równoległoboku. Stosunek długości sąsiednich boków tego równoległoboku
wynosi
k .
Oblicz długość obwodu tego równoległoboku.
Dane
\sin\alpha=\frac{1}{3}=0.33333333333333
h=6
k=\frac{13}{2}=6.50000000000000
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20275 ⋅ Poprawnie: 63/130 [48%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Kąty
\alpha i
\beta
są kątami ostrymi w trójkącie prostokątnym.
Oblicz \tan\alpha\cdot \sin\beta .
Dane
\cos\alpha=\frac{3}{4}=0.75000000000000
Odpowiedź:
Zadanie 9. 2 pkt ⋅ Numer: pp-20265 ⋅ Poprawnie: 72/142 [50%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
» Oblicz
\tan\alpha wiedząc, że
3\sin^2\alpha+12\cos^2\alpha=9 i
\alpha\in(0^{\circ},90^{\circ}) .
Odpowiedź:
Zadanie 10. 2 pkt ⋅ Numer: pp-20271 ⋅ Poprawnie: 40/104 [38%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Kąt
\alpha jest ostry i spełnia równość
\frac{3}{\sin^2\alpha}+\frac{3}{\cos^2\alpha}=75
.
Oblicz wartość wyrażenia \sin\alpha\cdot \cos\alpha .
Odpowiedź:
Zadanie 11. 2 pkt ⋅ Numer: pp-20276 ⋅ Poprawnie: 120/218 [55%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
« O kącie
\alpha wiadomo, że jest ostry i
\sin\alpha=\frac{1}{4} .
Oblicz wartość wyrażenia 2\tan^2\alpha+1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 4 pkt ⋅ Numer: pp-30303 ⋅ Poprawnie: 47/221 [21%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
« Kąt
\alpha jest rozwarty i spełnia warunek
\sin\alpha+\cos\alpha=\frac{47}{65} .
Oblicz \sin\alpha-\cos\alpha .
Odpowiedź:
Podpunkt 12.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż