Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-10624 ⋅ Poprawnie: 262/412 [63%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Pod jakim kątem \alpha padają na powierzchnię Ziemi promienie słoneczne, jeśli długość cienia stojącego człowieka jest 6 razy mniejsza od jego wzrostu?

Oblicz miarę stopniową kąta \alpha. Podaj wynik zaokrąglony do całych stopni.

Odpowiedź:
\alpha\ [^{\circ}]= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10677 ⋅ Poprawnie: 75/120 [62%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 W trójkącie prostokątnym przyprostokątne mają długości 1 i 6.

Oblicz cosinus większego z kątów ostrych tego trójkąta.

Odpowiedź:
\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10660 ⋅ Poprawnie: 145/192 [75%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
» W trapezie prostokątnym ABCD długość ramienia BC jest dwa razy większa od różnicy długości jego podstaw.

Wyznacz miarę stopniową kąta ABC.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 4.  1 pkt ⋅ Numer: pp-10642 ⋅ Poprawnie: 319/546 [58%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Kąt \alpha jest ostry oraz 11\sin\alpha-\sqrt{6}\cos\alpha=0.

Oblicz \tan\alpha.

Odpowiedź:
\tan\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10644 ⋅ Poprawnie: 346/447 [77%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wiadomo, że 0^{\circ}\lessdot \alpha <90^{\circ} oraz \tan \alpha=10\sin\alpha.

Oblicz \cos\alpha.

Odpowiedź:
\cos\alpha=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20731 ⋅ Poprawnie: 132/387 [34%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Czworokąt ABCD na rysunku jest trapezem, a czworokąt EFCD prostokątem. Wiadomo, że \alpha=135^{\circ}, \beta=120^{\circ} i h=9.

Oblicz obwód czworokąta ABCD.

Odpowiedź:
L_{ABCD}= (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20274 ⋅ Poprawnie: 195/446 [43%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Kąt \alpha jest ostry. Oblicz wartość wyrażenia 2+\sin^3\alpha+\sin\alpha\cdot \cos^2\alpha.
Dane
\cos\alpha=\frac{\sqrt{5}}{3}=0.74535599249993
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz cztery liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20278 ⋅ Poprawnie: 34/160 [21%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 W trójkącie prostokątnym ABC o przeciwprostokątnej AB kąt CAB ma miarę \alpha.

Oblicz pole koła opisanego na tym trójkącie.

Dane
\sin\alpha=\frac{7}{13}=0.53846153846154
|AC|=7
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pp-20264 ⋅ Poprawnie: 131/239 [54%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Oblicz wartość wyrażenia w= \frac{-\sin\alpha +6\cos\alpha} {6\cos\alpha -2\sin\alpha} , jeśli wiadomo, że \alpha jest kątem ostrym oraz \tan\alpha=2.
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20734 ⋅ Poprawnie: 187/284 [65%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Kąt \alpha jest ostry oraz \sin\alpha=\frac{5}{13}.

Oblicz \cos\alpha.

Odpowiedź:
\cos\alpha=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Oblicz \tan\alpha.
Odpowiedź:
\tan\alpha=
(wpisz dwie liczby całkowite)
Zadanie 11.  2 pkt ⋅ Numer: pp-20864 ⋅ Poprawnie: 93/199 [46%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 (2 pkt) Kąt \alpha jest ostry i spełnia warunek \tan\alpha=6.

Oblicz wartość wyrażenia \frac{8\sin\alpha-8\cos\alpha}{10\cos\alpha-5\sin\alpha}.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30303 ⋅ Poprawnie: 47/221 [21%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Kąt \alpha jest rozwarty i spełnia warunek \sin\alpha+\cos\alpha=\frac{23}{37}.

Oblicz \sin\alpha-\cos\alpha.

Odpowiedź:
\sin\alpha-\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Oblicz \tan\alpha.
Odpowiedź:
\tan\alpha=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm