Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-10631 ⋅ Poprawnie: 368/645 [57%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wiadomo, że kąt \alpha jest ostry oraz \sin\alpha=\frac{\sqrt{17}}{17}.

Oblicz wartość wyrażenia \sin \alpha-\cos\alpha.

Odpowiedź:
\sin\alpha-\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10670 ⋅ Poprawnie: 319/560 [56%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Trapez na rysunku jest prostokątny:

Miara kąta \alpha spełnia warunek:

Odpowiedzi:
A. \alpha=45^{\circ} B. 30^{\circ} \lessdot \alpha < 35^{\circ}
C. \alpha=30^{\circ} D. 50^{\circ} \lessdot \alpha < 60^{\circ}
Zadanie 3.  1 pkt ⋅ Numer: pp-10616 ⋅ Poprawnie: 365/597 [61%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Oblicz wartośc wyrażenia w= \tan^{2}30^{\circ}-\sin 45^{\circ}\cdot \cos 60^{\circ}-\sin 60^{\circ}\cdot \tan 60^{\circ} .
Odpowiedź:
w= (liczba zapisana dziesiętnie)
Zadanie 4.  1 pkt ⋅ Numer: pp-10611 ⋅ Poprawnie: 234/474 [49%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Kąt \alpha jest ostry oraz \tan\alpha=\frac{2}{5}.

Oblicz wartość wyrażenia \frac{2-\cos\alpha}{2+\cos\alpha}.

Odpowiedź:
\frac{2-\cos\alpha}{2+\cos\alpha}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10630 ⋅ Poprawnie: 191/451 [42%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Kąty \alpha i \beta trójkata prostokątnego są ostre. Wówczas wyrażenie \frac{2\cos\alpha\cdot (4-4\sin^2\beta)\cdot \tan\alpha} {5\sin^2\alpha\cdot \cos\beta} jest równe:
Odpowiedzi:
A. \frac{8}{5} B. \frac{8}{5}\tan\alpha
C. \frac{2}{5}\sin\alpha D. \frac{8}{5}\cos\alpha
Zadanie 6.  2 pkt ⋅ Numer: pp-20733 ⋅ Poprawnie: 109/391 [27%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Wyznacz wysokości trójkata ABC, w którym a=12

Podaj długość najkrótszej z wysokości tego trójkąta.

Odpowiedź:
h_{min}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj długość najdłuższej z wysokości tego trójkąta.
Odpowiedź:
h_{max}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20727 ⋅ Poprawnie: 57/172 [33%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Przekątne prostokąta maja długość d i przecinają się pod kątem o mierze \alpha.

Oblicz odległość wierzchołka prostokąta od przekątnej, do której wierzchołek ten nie należy (funkcję trygonometryczną kąta przyjmij z dokładnością do trzech miejsc po przecinku).

Dane
d=4
\alpha=49^{\circ}
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20730 ⋅ Poprawnie: 107/253 [42%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Czworokąt na rysunku jest rombem o obwodzie długości L:

Oblicz \cos\alpha.

Dane
L=52
|DB|=10
Odpowiedź:
\cos\alpha=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Oblicz \tan\beta.
Odpowiedź:
\tan\beta= \cdot
(wpisz trzy liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20266 ⋅ Poprawnie: 80/240 [33%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » Wiedząc, że \tan\alpha=\frac{1}{2}, oblicz wartość wyrażenia w= \frac{3\sin\alpha\cos\alpha-2\sin^2\alpha} {7\cos^2\alpha-3\sin\alpha\cos\alpha} .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20271 ⋅ Poprawnie: 40/104 [38%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Kąt \alpha jest ostry i spełnia równość \frac{4}{\sin^2\alpha}+\frac{4}{\cos^2\alpha}=64 .

Oblicz wartość wyrażenia \sin\alpha\cdot \cos\alpha.

Odpowiedź:
\sin\alpha\cdot \cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 11.  2 pkt ⋅ Numer: pp-20277 ⋅ Poprawnie: 52/86 [60%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
» Kąt ostry \alpha spełnia równanie \sin\alpha+\cos\alpha=\frac{\sqrt{7}}{2}.

Oblicz (\sin\alpha-\cos\alpha)^2

Odpowiedź:
(\sin\alpha-\cos\alpha)^2=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30303 ⋅ Poprawnie: 47/221 [21%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Kąt \alpha jest rozwarty i spełnia warunek \sin\alpha+\cos\alpha=\frac{7}{13}.

Oblicz \sin\alpha-\cos\alpha.

Odpowiedź:
\sin\alpha-\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Oblicz \tan\alpha.
Odpowiedź:
\tan\alpha=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm