Podgląd testu : lo2@sp-09-trygonom-1-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-10631 ⋅ Poprawnie: 368/645 [57%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wiadomo, że kąt
\alpha jest ostry oraz
\sin\alpha=\frac{\sqrt{17}}{17} .
Oblicz wartość wyrażenia \sin \alpha-\cos\alpha .
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-10670 ⋅ Poprawnie: 319/560 [56%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Trapez na rysunku jest prostokątny:
Miara kąta \alpha spełnia warunek:
Odpowiedzi:
A. \alpha=45^{\circ}
B. 30^{\circ} \lessdot \alpha < 35^{\circ}
C. \alpha=30^{\circ}
D. 50^{\circ} \lessdot \alpha < 60^{\circ}
Zadanie 3. 1 pkt ⋅ Numer: pp-10616 ⋅ Poprawnie: 365/597 [61%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Oblicz wartośc wyrażenia
w=
\tan^{2}30^{\circ}-\sin 45^{\circ}\cdot \cos 60^{\circ}-\sin 60^{\circ}\cdot \tan 60^{\circ}
.
Odpowiedź:
w=
(liczba zapisana dziesiętnie)
Zadanie 4. 1 pkt ⋅ Numer: pp-10611 ⋅ Poprawnie: 234/474 [49%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Kąt
\alpha jest ostry oraz
\tan\alpha=\frac{2}{5} .
Oblicz wartość wyrażenia \frac{2-\cos\alpha}{2+\cos\alpha} .
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-10630 ⋅ Poprawnie: 191/451 [42%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
» Kąty
\alpha i
\beta
trójkata prostokątnego są ostre. Wówczas wyrażenie
\frac{2\cos\alpha\cdot (4-4\sin^2\beta)\cdot \tan\alpha}
{5\sin^2\alpha\cdot \cos\beta}
jest równe:
Odpowiedzi:
A. \frac{8}{5}
B. \frac{8}{5}\tan\alpha
C. \frac{2}{5}\sin\alpha
D. \frac{8}{5}\cos\alpha
Zadanie 6. 2 pkt ⋅ Numer: pp-20733 ⋅ Poprawnie: 109/391 [27%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Wyznacz wysokości trójkata
ABC , w którym
a=12
Podaj długość najkrótszej z wysokości tego trójkąta.
Odpowiedź:
Podpunkt 6.2 (1 pkt)
Podaj długość najdłuższej z wysokości tego trójkąta.
Odpowiedź:
Zadanie 7. 2 pkt ⋅ Numer: pp-20727 ⋅ Poprawnie: 57/172 [33%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Przekątne prostokąta maja długość
d i
przecinają się pod kątem o mierze
\alpha .
Oblicz odległość wierzchołka prostokąta od przekątnej, do której wierzchołek
ten nie należy (funkcję trygonometryczną kąta przyjmij z dokładnością do
trzech miejsc po przecinku).
Dane
d=4
\alpha=49^{\circ}
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 2 pkt ⋅ Numer: pp-20730 ⋅ Poprawnie: 107/253 [42%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Czworokąt na rysunku jest rombem o obwodzie długości
L :
Oblicz \cos\alpha .
Dane
L=52
|DB|=10
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
Zadanie 9. 2 pkt ⋅ Numer: pp-20266 ⋅ Poprawnie: 80/240 [33%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
» Wiedząc, że
\tan\alpha=\frac{1}{2} , oblicz wartość wyrażenia
w=
\frac{3\sin\alpha\cos\alpha-2\sin^2\alpha}
{7\cos^2\alpha-3\sin\alpha\cos\alpha}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20271 ⋅ Poprawnie: 40/104 [38%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Kąt
\alpha jest ostry i spełnia równość
\frac{4}{\sin^2\alpha}+\frac{4}{\cos^2\alpha}=64
.
Oblicz wartość wyrażenia \sin\alpha\cdot \cos\alpha .
Odpowiedź:
Zadanie 11. 2 pkt ⋅ Numer: pp-20277 ⋅ Poprawnie: 52/86 [60%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
» Kąt ostry
\alpha spełnia równanie
\sin\alpha+\cos\alpha=\frac{\sqrt{7}}{2} .
Oblicz (\sin\alpha-\cos\alpha)^2
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 4 pkt ⋅ Numer: pp-30303 ⋅ Poprawnie: 47/221 [21%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
« Kąt
\alpha jest rozwarty i spełnia warunek
\sin\alpha+\cos\alpha=\frac{7}{13} .
Oblicz \sin\alpha-\cos\alpha .
Odpowiedź:
Podpunkt 12.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż