Podgląd testu : lo2@sp-09-trygonom-1-pp-6
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10627 ⋅ Poprawnie: 439/629 [69%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Kąt
\alpha spełnia warunki:
\alpha\in(0^{\circ},90^{\circ}) i
\tan\alpha=\frac{3}{4}.
Oblicz \sin\alpha.
Odpowiedź:
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10676 ⋅ Poprawnie: 258/353 [73%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
« Dany jest trójkąt prostokątny o kątach ostrych
\alpha
i
\beta, w którym
\sin\alpha=\frac{1}{2}.
Oblicz \cot \beta.
Odpowiedź:
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10662 ⋅ Poprawnie: 341/475 [71%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Zapisz obwód trójkąta
ABC w postaci
p\cdot a:
Podaj p.
Odpowiedź:
p=
+
\cdot
√
(wpisz trzy liczby całkowite)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10622 ⋅ Poprawnie: 333/543 [61%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Kąt
\alpha należy do przedziału
(90^{\circ},180^{\circ}) i zachodzi równość
\cos\alpha=-\frac{1}{5}.
Oblicz \tan\alpha.
Odpowiedź:
\tan\alpha=
\cdot√
(wpisz dwie liczby całkowite)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11538 ⋅ Poprawnie: 199/336 [59%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Kąt
\alpha jest ostry i spełnia warunek
\sin\alpha=\frac{1}{7}.
Oblicz wartość wyrażenia
\sin^2\alpha-\cos^2\alpha.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20741 ⋅ Poprawnie: 91/247 [36%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
Oblicz wartość wyrażenia
w=
(\tan{60^{\circ}}-\sin{30^{\circ}})(\cot{60^{\circ}}-\cos{45^{\circ}})
.
Odpowiedź:
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20262 ⋅ Poprawnie: 327/519 [63%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
W pewnym trójkącie prostokątnym przyprostokątne mają długość
3 i
2, a jeden z kątów
ostrych tego trójkąta ma miarę
\alpha.
Oblicz \sin\alpha\cdot \cos\alpha.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20289 ⋅ Poprawnie: 197/415 [47%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
« Przyprostokątne trójkąta mają długości
1 i
3, a jeden z kątów ostrych tego trójkąta ma miarę
\beta.
Oblicz \sin\beta\cdot \cos\beta.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20253 ⋅ Poprawnie: 38/89 [42%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
« Wiadomo, że
x=\sin{55^{\circ}}. Wyraź za pomocą
x wyrażenie
2\tan^{2}{55^{\circ}}+2 i
zapisz je w postaci nieskracalnego ułamka.
Podaj licznik tego ułamka.
Odpowiedź:
licznik=
(wpisz liczbę całkowitą)
|
Zadanie 10. 2 pkt ⋅ Numer: pp-20261 ⋅ Poprawnie: 43/96 [44%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
« Kąty
\alpha i
\beta są
kątami ostrymi w pewnym trójkącie prostokątnym oraz
\sin\alpha+\sin\beta=\frac{7\sqrt{37}}{37}.
Oblicz \sin\alpha\cdot \sin\beta.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 11. 2 pkt ⋅ Numer: pp-20864 ⋅ Poprawnie: 93/199 [46%] |
Rozwiąż |
Podpunkt 11.1 (2 pkt)
(2 pkt)
Kąt
\alpha jest ostry i spełnia warunek
\tan\alpha=5.
Oblicz wartość wyrażenia
\frac{8\sin\alpha-4\cos\alpha}{7\cos\alpha-\sin\alpha}.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 12. 4 pkt ⋅ Numer: pp-30303 ⋅ Poprawnie: 47/221 [21%] |
Rozwiąż |
Podpunkt 12.1 (2 pkt)
« Kąt
\alpha jest rozwarty i spełnia warunek
\sin\alpha+\cos\alpha=\frac{1}{5}.
Oblicz \sin\alpha-\cos\alpha.
Odpowiedź:
Podpunkt 12.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)