Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-10631 ⋅ Poprawnie: 368/645 [57%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wiadomo, że kąt \alpha jest ostry oraz \sin\alpha=\frac{\sqrt{26}}{26}.

Oblicz wartość wyrażenia \sin \alpha-\cos\alpha.

Odpowiedź:
\sin\alpha-\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10677 ⋅ Poprawnie: 74/119 [62%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 W trójkącie prostokątnym przyprostokątne mają długości 1 i 7.

Oblicz cosinus większego z kątów ostrych tego trójkąta.

Odpowiedź:
\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10660 ⋅ Poprawnie: 145/192 [75%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
» W trapezie prostokątnym ABCD długość ramienia BC jest dwa razy większa od różnicy długości jego podstaw.

Wyznacz miarę stopniową kąta ABC.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 4.  1 pkt ⋅ Numer: pp-10611 ⋅ Poprawnie: 234/474 [49%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Kąt \alpha jest ostry oraz \tan\alpha=\frac{2}{5}.

Oblicz wartość wyrażenia \frac{2-\cos\alpha}{2+\cos\alpha}.

Odpowiedź:
\frac{2-\cos\alpha}{2+\cos\alpha}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10630 ⋅ Poprawnie: 191/451 [42%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Kąty \alpha i \beta trójkata prostokątnego są ostre. Wówczas wyrażenie \frac{\cos\alpha\cdot (5-5\sin^2\beta)\cdot \tan\alpha} {6\sin^2\alpha\cdot \cos\beta} jest równe:
Odpowiedzi:
A. \frac{5}{6}\cos\alpha B. \frac{5}{6}\tan\alpha
C. \frac{1}{6}\sin\alpha D. \frac{5}{6}
Zadanie 6.  2 pkt ⋅ Numer: pp-20731 ⋅ Poprawnie: 132/387 [34%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Czworokąt ABCD na rysunku jest trapezem, a czworokąt EFCD prostokątem. Wiadomo, że \alpha=120^{\circ}, \beta=150^{\circ} i h=11.

Oblicz obwód czworokąta ABCD.

Odpowiedź:
L_{ABCD}= (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20728 ⋅ Poprawnie: 51/126 [40%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 W równoległoboku dany jest sinus kąta ostrego \alpha oraz wysokość h opuszczona na dłuższy bok tego równoległoboku. Stosunek długości sąsiednich boków tego równoległoboku wynosi k.

Oblicz długość obwodu tego równoległoboku.

Dane
\sin\alpha=\frac{1}{5}=0.20000000000000
h=22
k=\frac{9}{2}=4.50000000000000
Odpowiedź:
L=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20283 ⋅ Poprawnie: 54/94 [57%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Trójkąt ABC jest równoramienny o podstawie AB, a punkt D jest środkiem jego podstawy AB.

Oblicz miarę stopniową najmniejszego kąta tego trójkąta.

Dane
|CD|=\frac{\sqrt{2}}{2}=0.70710678118655
|AC|=\sqrt{2}=1.41421356237310
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Oblicz miarę stopniową największego kąta tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pp-20265 ⋅ Poprawnie: 72/142 [50%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » Oblicz \tan\alpha wiedząc, że 6\sin^2\alpha+18\cos^2\alpha=17 i \alpha\in(0^{\circ},90^{\circ}).
Odpowiedź:
\tan\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20742 ⋅ Poprawnie: 24/91 [26%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 «« Kąt \alpha jest kątem rozwartym oraz \sin\alpha=\frac{\sqrt{3}}{2}.

Wyznacz rozwiązanie równania (x+6)\cos^2\alpha=x+\tan\alpha+7 .

Odpowiedź:
x= (liczba zapisana dziesiętnie)
Zadanie 11.  2 pkt ⋅ Numer: pp-20864 ⋅ Poprawnie: 93/199 [46%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 (2 pkt) Kąt \alpha jest ostry i spełnia warunek \tan\alpha=3.

Oblicz wartość wyrażenia \frac{4\sin\alpha+5\cos\alpha}{11\cos\alpha+2\sin\alpha}.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30303 ⋅ Poprawnie: 47/221 [21%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Kąt \alpha jest rozwarty i spełnia warunek \sin\alpha+\cos\alpha=\frac{31}{109}.

Oblicz \sin\alpha-\cos\alpha.

Odpowiedź:
\sin\alpha-\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Oblicz \tan\alpha.
Odpowiedź:
\tan\alpha=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm