Podgląd testu : lo2@sp-09-trygonom-1-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-10621 ⋅ Poprawnie: 309/534 [57%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wiadomo, że
\alpha=48^{\circ} oraz
\cos\alpha=x .
Zatem \cos 42^{\circ} jest równe:
Odpowiedzi:
A. \sqrt{1-x^2}
B. \sqrt{1-x}
C. 1-x^2
D. 1+x^2
Zadanie 2. 1 pkt ⋅ Numer: pp-10677 ⋅ Poprawnie: 75/120 [62%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
W trójkącie prostokątnym przyprostokątne mają długości
5 i
6 .
Oblicz cosinus większego z kątów ostrych tego trójkąta.
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-10657 ⋅ Poprawnie: 567/664 [85%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Przyprostokątne w trójkącie prostokątnym mają długości
1 oraz
\sqrt{3} .
Wyznacz miarę stopniową najmniejszego kąta w tym trójkącie.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 4. 1 pkt ⋅ Numer: pp-10634 ⋅ Poprawnie: 283/501 [56%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Kąt
\alpha należy do przedziału
(90^{\circ},180^{\circ}) i zachodzi równość
9\cos^2\alpha-4=\frac{7}{9} .
Oblicz
\sin\alpha .
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-10635 ⋅ Poprawnie: 220/350 [62%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Dana jest równość
\sin^2\alpha(1+\cos^2\alpha)+\cos^4\alpha-5=m
gdzie
\alpha jest kątem ostrym.
Oblicz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20731 ⋅ Poprawnie: 132/387 [34%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Czworokąt
ABCD na rysunku jest trapezem,
a czworokąt
EFCD prostokątem. Wiadomo, że
\alpha=150^{\circ} ,
\beta=135^{\circ} i
h=7 .
Oblicz obwód czworokąta ABCD .
Odpowiedź:
L_{ABCD}=
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pp-20727 ⋅ Poprawnie: 57/172 [33%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Przekątne prostokąta maja długość
d i
przecinają się pod kątem o mierze
\alpha .
Oblicz odległość wierzchołka prostokąta od przekątnej, do której wierzchołek
ten nie należy (funkcję trygonometryczną kąta przyjmij z dokładnością do
trzech miejsc po przecinku).
Dane
d=32
\alpha=46^{\circ}
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 2 pkt ⋅ Numer: pp-20275 ⋅ Poprawnie: 63/130 [48%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Kąty
\alpha i
\beta
są kątami ostrymi w trójkącie prostokątnym.
Oblicz \tan\alpha\cdot \sin\beta .
Dane
\cos\alpha=\frac{3}{5}=0.60000000000000
Odpowiedź:
Zadanie 9. 2 pkt ⋅ Numer: pp-20267 ⋅ Poprawnie: 120/243 [49%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Oblicz wartość wyrażenia
\left(\frac{1}{5}-\frac{1}{5}\sin^2\alpha\right)(1+\tan^2\alpha)
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20271 ⋅ Poprawnie: 40/104 [38%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Kąt
\alpha jest ostry i spełnia równość
\frac{4}{\sin^2\alpha}+\frac{4}{\cos^2\alpha}=36
.
Oblicz wartość wyrażenia \sin\alpha\cdot \cos\alpha .
Odpowiedź:
Zadanie 11. 2 pkt ⋅ Numer: pp-20276 ⋅ Poprawnie: 120/218 [55%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
« O kącie
\alpha wiadomo, że jest ostry i
\sin\alpha=\frac{1}{4} .
Oblicz wartość wyrażenia 2\tan^2\alpha+1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 4 pkt ⋅ Numer: pp-30303 ⋅ Poprawnie: 47/221 [21%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
« Kąt
\alpha jest rozwarty i spełnia warunek
\sin\alpha+\cos\alpha=\frac{7}{17} .
Oblicz \sin\alpha-\cos\alpha .
Odpowiedź:
Podpunkt 12.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż