Podgląd testu : lo2@sp-09-trygonom-1-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-10624 ⋅ Poprawnie: 268/420 [63%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Pod jakim kątem
\alpha padają na powierzchnię Ziemi promienie słoneczne, jeśli długość
cienia stojącego człowieka jest
4 razy mniejsza
od jego wzrostu?
Oblicz miarę stopniową kąta \alpha . Podaj wynik zaokrąglony do całych stopni.
Odpowiedź:
\alpha\ [^{\circ}]=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-10676 ⋅ Poprawnie: 261/358 [72%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Dany jest trójkąt prostokątny o kątach ostrych
\alpha
i
\beta , w którym
\sin\alpha=\frac{2\sqrt{13}}{13} .
Oblicz \cot \beta .
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-10662 ⋅ Poprawnie: 350/486 [72%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Zapisz obwód trójkąta
ABC w postaci
p\cdot a :
Podaj p .
Odpowiedź:
p=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10618 ⋅ Poprawnie: 415/627 [66%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Kąt
\alpha jest ostry i
\sin\alpha=\frac{\sqrt{3}}{6} .
Oblicz wartość wyrażenia \cos^2\alpha-2 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10615 ⋅ Poprawnie: 613/923 [66%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
a=3
b=10
« Kąt
\alpha jest ostry i
\sin\alpha=\frac{\sqrt{3}}{10} .
Oblicz wartość wyrażenia 2\cos^2{\alpha}-1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20259 ⋅ Poprawnie: 168/279 [60%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Oblicz
x-y , gdy
x=\sin^4{45^{\circ}}-\cos^4{45^{\circ}} ,
y=1-4\sin^2{45^{\circ}}\cdot \cos^2{45^{\circ}} .
Odpowiedź:
x-y=
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pp-20254 ⋅ Poprawnie: 107/202 [52%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Kąt
\beta jest ostry. Oblicz wartość wyrażenia
\sin^2\beta-3\cos^2\beta .
Dane
\sin\beta=\frac{\sqrt{3}}{5}=0.34641016151378
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20289 ⋅ Poprawnie: 198/416 [47%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Przyprostokątne trójkąta mają długości
4 i
9 , a jeden z kątów ostrych tego trójkąta ma miarę
\beta .
Oblicz \sin\beta\cdot \cos\beta .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20268 ⋅ Poprawnie: 35/90 [38%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Dla pewnego kąta
\alpha\in\langle 0,90^{\circ})
funkcje trygonometryczne sinus i cosinus mają wartości
\sin\alpha=x-\frac{1}{3} i
\cos\alpha=x+\frac{1}{3} .
Oblicz \tan\alpha .
Odpowiedź:
\tan\alpha=
(liczba zapisana dziesiętnie)
Zadanie 10. 2 pkt ⋅ Numer: pp-20261 ⋅ Poprawnie: 46/99 [46%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Kąty
\alpha i
\beta są
kątami ostrymi w pewnym trójkącie prostokątnym oraz
\sin\alpha+\sin\beta=\frac{2\sqrt{10}}{5} .
Oblicz \sin\alpha\cdot \sin\beta .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 2 pkt ⋅ Numer: pp-20743 ⋅ Poprawnie: 73/124 [58%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
«« Kąt
\alpha jest kątem ostrym oraz zachodzi
równość
5\cos^2\alpha+9\sin^2\alpha=8 .
Wyznacz wartość wyrażenia w=(\tan\alpha+\cot\alpha)^2 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 4 pkt ⋅ Numer: pp-30303 ⋅ Poprawnie: 54/248 [21%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
« Kąt
\alpha jest rozwarty i spełnia warunek
\sin\alpha+\cos\alpha=\frac{7}{17} .
Oblicz \sin\alpha-\cos\alpha .
Odpowiedź:
Podpunkt 12.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż