Podgląd testu : lo2@sp-09-trygonom-1-pp-6
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10631 ⋅ Poprawnie: 368/645 [57%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Wiadomo, że kąt
\alpha jest ostry oraz
\sin\alpha=\frac{5\sqrt{26}}{26}.
Oblicz wartość wyrażenia \sin \alpha-\cos\alpha.
Odpowiedź:
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10645 ⋅ Poprawnie: 463/594 [77%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
» Dane są długości boków
|BC|=8 i
|AC|=1 trójkąta prostokątnego
ABC o kącie ostrym
\beta.
Oblicz x=\cos\beta.
Odpowiedź:
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10660 ⋅ Poprawnie: 145/192 [75%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
» W trapezie prostokątnym
ABCD długość
ramienia
BC jest dwa razy większa od różnicy
długości jego podstaw.
Wyznacz miarę stopniową kąta ABC.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10642 ⋅ Poprawnie: 318/545 [58%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Kąt
\alpha jest ostry oraz
13\sin\alpha-\sqrt{2}\cos\alpha=0.
Oblicz \tan\alpha.
Odpowiedź:
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10615 ⋅ Poprawnie: 609/917 [66%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
a=7
b=3
« Kąt
\alpha jest ostry i
\sin\alpha=\frac{\sqrt{7}}{3}.
Oblicz wartość wyrażenia 2\cos^2{\alpha}-1.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20733 ⋅ Poprawnie: 109/391 [27%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
« Wyznacz wysokości trójkata
ABC, w którym
a=40
Podaj długość najkrótszej z wysokości tego trójkąta.
Odpowiedź:
Podpunkt 6.2 (1 pkt)
Podaj długość najdłuższej z wysokości tego trójkąta.
Odpowiedź:
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20257 ⋅ Poprawnie: 69/146 [47%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
» Kąt
\beta jest ostry oraz
\tan\beta=\frac{16}{63}. Oblicz
\sin\beta+\cos\beta.
Odpowiedź:
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20729 ⋅ Poprawnie: 72/303 [23%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
» Cięciwa
AB jest średnicą okręgu na rysunku:
Oblicz \tan\sphericalangle ABM.
Dane
|AP|=9
|PB|=4
Odpowiedź:
Podpunkt 8.2 (1 pkt)
Oblicz
\sin\sphericalangle MAB.
Odpowiedź:
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20263 ⋅ Poprawnie: 71/142 [50%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
« Podaj wartość
\tan\alpha wiedząc, że
\frac{3\sin\alpha -4\cos\alpha+1}{3\sin\alpha-7\cos\alpha-4}=-\frac{1}{4}
:
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 10. 2 pkt ⋅ Numer: pp-20734 ⋅ Poprawnie: 187/284 [65%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Kąt
\alpha jest ostry oraz
\sin\alpha=\frac{16}{65}.
Oblicz \cos\alpha.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 11. 2 pkt ⋅ Numer: pp-20744 ⋅ Poprawnie: 169/539 [31%] |
Rozwiąż |
Podpunkt 11.1 (1 pkt)
« Kąty
\alpha i
\beta są kątami ostrymi w trójkącie prostokątnym i spełniają.
warunek
\sin\alpha+\sin\beta=\frac{10}{9}.
Oblicz \sin\alpha\cdot \sin\beta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (1 pkt)
Oblicz
\cos\alpha\cdot \cos\beta.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 12. 4 pkt ⋅ Numer: pp-30303 ⋅ Poprawnie: 47/221 [21%] |
Rozwiąż |
Podpunkt 12.1 (2 pkt)
« Kąt
\alpha jest rozwarty i spełnia warunek
\sin\alpha+\cos\alpha=\frac{47}{65}.
Oblicz \sin\alpha-\cos\alpha.
Odpowiedź:
Podpunkt 12.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)