Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-10626 ⋅ Poprawnie: 175/279 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Kąty ostre \alpha i \beta trójkąta prostokątnego spełniają warunek \frac{\sin \alpha}{\sin\beta}=\frac{\sqrt{13}}{13}. Oblicz \cos\alpha i zapisz wynik w najprostszej nieskracalnej postaci \frac{a\sqrt{b}}{c}.

Podaj liczby a, b i c.

Odpowiedź:
\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10658 ⋅ Poprawnie: 116/177 [65%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » W trójkącie równoramiennym ABC poprowadzono wysokość AS, która utworzyła z podstawą kąt o mierze 24^{\circ} (zobacz rysunek).

Ramię tego trójkąta ma długość 10. Długość wysokości AS jest liczbą z przedziału:

Odpowiedzi:
A. \left\langle\frac{11}{2}, \frac{13}{2}\right\rangle B. \left(\frac{15}{2}, \frac{17}{2}\right\rangle
C. \left(\frac{13}{2}, \frac{15}{2}\right\rangle D. \left\langle\frac{7}{2}, \frac{9}{2}\right\rangle
Zadanie 3.  1 pkt ⋅ Numer: pp-10616 ⋅ Poprawnie: 365/597 [61%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Oblicz wartośc wyrażenia w= \tan^{2}45^{\circ}-\sin 30^{\circ}\cdot \cos 60^{\circ}-\sin 60^{\circ}\cdot \tan 60^{\circ} .
Odpowiedź:
w= (liczba zapisana dziesiętnie)
Zadanie 4.  1 pkt ⋅ Numer: pp-10622 ⋅ Poprawnie: 333/543 [61%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Kąt \alpha należy do przedziału (90^{\circ},180^{\circ}) i zachodzi równość \cos\alpha=-\frac{1}{9}.

Oblicz \tan\alpha.

Odpowiedź:
\tan\alpha= \cdot
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10633 ⋅ Poprawnie: 65/88 [73%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
« Oblicz wartość wyrażenia \log{\tan 35^{\circ}}+\log{\tan 45^{\circ}}+\log{\tan 55^{\circ}} .
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20732 ⋅ Poprawnie: 176/451 [39%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Dany jest czworokąt, w którym \alpha=45^{\circ}, \beta=60^{\circ} i |DB|=6:

Oblicz długość obwodu czworokąta ABCD.

Odpowiedź:
L_{ABCD}= (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20269 ⋅ Poprawnie: 156/399 [39%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Kąt \alpha jest ostry oraz \cos\alpha=\frac{5}{7}.

Oblicz średnią arytmetyczną liczb a=\sin\alpha, b=\frac{1}{2} i c=\frac{1}{3}\tan\alpha.

Odpowiedź:
\overline{x}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20740 ⋅ Poprawnie: 46/387 [11%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Dany jest trójkąt:

Oblicz |AC|. Do obliczeń użyj przybliżeń wartości funkcji trygonometrycznych z dokładnością do dwóch miejsc po przecinku.

Dane
\alpha=46^{\circ}
\beta=94^{\circ}
h=18
Odpowiedź:
|AC|=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Oblicz |AB|. Do obliczeń użyj przybliżeń wartości funkcji trygonometrycznych z dokładnością do dwóch miejsc po przecinku.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pp-20267 ⋅ Poprawnie: 120/243 [49%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Oblicz wartość wyrażenia \left(\frac{1}{6}-\frac{1}{6}\sin^2\alpha\right)(1+\tan^2\alpha) .
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20271 ⋅ Poprawnie: 40/104 [38%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Kąt \alpha jest ostry i spełnia równość \frac{2}{\sin^2\alpha}+\frac{2}{\cos^2\alpha}=32 .

Oblicz wartość wyrażenia \sin\alpha\cdot \cos\alpha.

Odpowiedź:
\sin\alpha\cdot \cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 11.  2 pkt ⋅ Numer: pp-20864 ⋅ Poprawnie: 93/199 [46%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 (2 pkt) Kąt \alpha jest ostry i spełnia warunek \tan\alpha=3.

Oblicz wartość wyrażenia \frac{13\sin\alpha-7\cos\alpha}{11\cos\alpha-\sin\alpha}.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30303 ⋅ Poprawnie: 47/221 [21%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Kąt \alpha jest rozwarty i spełnia warunek \sin\alpha+\cos\alpha=\frac{1}{5}.

Oblicz \sin\alpha-\cos\alpha.

Odpowiedź:
\sin\alpha-\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Oblicz \tan\alpha.
Odpowiedź:
\tan\alpha=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm