Podgląd testu : lo2@sp-09-trygonom-1-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-10640 ⋅ Poprawnie: 614/830 [73%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wiadomo, że kąt
\alpha jest ostry oraz
\tan\alpha=\frac{5}{4} .
Oblicz \sin\alpha .
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-10649 ⋅ Poprawnie: 291/488 [59%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« W trójkącie prostokątnym najdłuższy bok ma długość
26 , a najkrótszy
10 .
Oblicz tangens największego kąta ostrego tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-10639 ⋅ Poprawnie: 298/484 [61%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Oblicz wartość wyrażenia
\left(
\tan 60^{\circ}+\cot 45^{\circ}
\right)^2-\sin 30^{\circ}
.
Odpowiedź:
\left(\tan\alpha+\cot\beta\right)^2-\sin\gamma=
(liczba zapisana dziesiętnie)
Zadanie 4. 1 pkt ⋅ Numer: pp-10642 ⋅ Poprawnie: 318/545 [58%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Kąt
\alpha jest ostry oraz
2\sin\alpha-\sqrt{11}\cos\alpha=0 .
Oblicz \tan\alpha .
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-10615 ⋅ Poprawnie: 609/917 [66%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
a=7
b=8
« Kąt
\alpha jest ostry i
\sin\alpha=\frac{\sqrt{7}}{8} .
Oblicz wartość wyrażenia 2\cos^2{\alpha}-1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20733 ⋅ Poprawnie: 109/391 [27%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Wyznacz wysokości trójkata
ABC , w którym
a=40
Podaj długość najkrótszej z wysokości tego trójkąta.
Odpowiedź:
Podpunkt 6.2 (1 pkt)
Podaj długość najdłuższej z wysokości tego trójkąta.
Odpowiedź:
Zadanie 7. 2 pkt ⋅ Numer: pp-20727 ⋅ Poprawnie: 57/172 [33%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Przekątne prostokąta maja długość
d i
przecinają się pod kątem o mierze
\alpha .
Oblicz odległość wierzchołka prostokąta od przekątnej, do której wierzchołek
ten nie należy (funkcję trygonometryczną kąta przyjmij z dokładnością do
trzech miejsc po przecinku).
Dane
d=256
\alpha=49^{\circ}
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 2 pkt ⋅ Numer: pp-20282 ⋅ Poprawnie: 83/171 [48%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
W trójkącie prostokątnym
ABC kąt przy wierzchołku
A jest prosty, a kąt przy wierzchołku
B ma miarę
\beta .
Oblicz \tan \beta .
Dane
\sin\beta=\frac{1}{10}=0.10000000000000
Odpowiedź:
Zadanie 9. 2 pkt ⋅ Numer: pp-20264 ⋅ Poprawnie: 131/239 [54%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Oblicz wartość wyrażenia
w=
\frac{2\sin\alpha +4\cos\alpha}
{4\cos\alpha -\sin\alpha}
,
jeśli wiadomo, że
\alpha jest kątem ostrym
oraz
\tan\alpha=3 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20737 ⋅ Poprawnie: 171/260 [65%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Kąt
\alpha jest ostry oraz
\tan\alpha=\frac{24}{7} .
Oblicz \sin\alpha .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 2 pkt ⋅ Numer: pp-20277 ⋅ Poprawnie: 52/86 [60%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
» Kąt ostry
\alpha spełnia równanie
\sin\alpha+\cos\alpha=\frac{\sqrt{7}}{2} .
Oblicz (\sin\alpha-\cos\alpha)^2
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 4 pkt ⋅ Numer: pp-30303 ⋅ Poprawnie: 47/221 [21%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
« Kąt
\alpha jest rozwarty i spełnia warunek
\sin\alpha+\cos\alpha=\frac{47}{65} .
Oblicz \sin\alpha-\cos\alpha .
Odpowiedź:
Podpunkt 12.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż