Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-10638 ⋅ Poprawnie: 1013/1633 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Kąt \alpha jest kątem ostrym w trójkącie prostokątnym. Przeciwprostokątna tego trójkąta ma długość 20, a \cos\alpha=\frac{1}{10}.

Wynika z tego, że:

Odpowiedzi:
A. przeciwprostokątna tego trójkąta jest dwa razy dłuższa od przyprostokątnej B. przyprostokatna tego trójkąta ma długość 1
C. jedna z przyprostokątnych jest 10 razy krótsza od przeciwprostokątnej D. \sin\alpha=\frac{9}{10}
Zadanie 2.  1 pkt ⋅ Numer: pp-10651 ⋅ Poprawnie: 341/491 [69%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 W trapezie prostokątnym kąt ostry ma miarę 30^{\circ}, a podstawy mają długości 6 i 11.

Oblicz długość wysokości tego trapezu.

Odpowiedź:
h= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10660 ⋅ Poprawnie: 145/192 [75%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
» W trapezie prostokątnym ABCD długość ramienia BC jest dwa razy większa od różnicy długości jego podstaw.

Wyznacz miarę stopniową kąta ABC.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 4.  1 pkt ⋅ Numer: pp-11507 ⋅ Poprawnie: 415/985 [42%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Kąt \alpha jest ostry oraz \tan\alpha=\frac{6\sqrt{2}}{17}.

Oblicz wartość wyrażenia \frac{2\sin\alpha-\cos\alpha}{\cos\alpha+2\sin\alpha}.

Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz cztery liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10630 ⋅ Poprawnie: 191/451 [42%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Kąty \alpha i \beta trójkata prostokątnego są ostre. Wówczas wyrażenie \frac{5\cos\alpha\cdot (3-3\sin^2\beta)\cdot \tan\alpha} {\sin^2\alpha\cdot \cos\beta} jest równe:
Odpowiedzi:
A. 15\cos\alpha B. 15
C. 5\sin\alpha D. 15\tan\alpha
Zadanie 6.  2 pkt ⋅ Numer: pp-20733 ⋅ Poprawnie: 109/391 [27%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Wyznacz wysokości trójkata ABC, w którym a=40

Podaj długość najkrótszej z wysokości tego trójkąta.

Odpowiedź:
h_{min}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj długość najdłuższej z wysokości tego trójkąta.
Odpowiedź:
h_{max}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20262 ⋅ Poprawnie: 327/519 [63%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 W pewnym trójkącie prostokątnym przyprostokątne mają długość 8 i 5, a jeden z kątów ostrych tego trójkąta ma miarę \alpha.

Oblicz \sin\alpha\cdot \cos\alpha.

Odpowiedź:
\sin\alpha\cdot\cos\alpha=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20289 ⋅ Poprawnie: 197/415 [47%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Przyprostokątne trójkąta mają długości 5 i 8, a jeden z kątów ostrych tego trójkąta ma miarę \beta.

Oblicz \sin\beta\cdot \cos\beta.

Odpowiedź:
\sin\beta\cdot\cos\beta=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20267 ⋅ Poprawnie: 120/243 [49%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Oblicz wartość wyrażenia \left(\frac{1}{8}-\frac{1}{8}\sin^2\alpha\right)(1+\tan^2\alpha) .
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20737 ⋅ Poprawnie: 171/260 [65%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Kąt \alpha jest ostry oraz \tan\alpha=\frac{4}{3}.

Oblicz \sin\alpha.

Odpowiedź:
\sin\alpha=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Oblicz \cos\alpha.
Odpowiedź:
\cos\alpha=
(wpisz dwie liczby całkowite)
Zadanie 11.  2 pkt ⋅ Numer: pp-20743 ⋅ Poprawnie: 73/122 [59%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 «« Kąt \alpha jest kątem ostrym oraz zachodzi równość 2\cos^2\alpha+6\sin^2\alpha=5.

Wyznacz wartość wyrażenia w=(\tan\alpha+\cot\alpha)^2.

Odpowiedź:
(\tan\alpha+\cot\alpha)^2=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30303 ⋅ Poprawnie: 47/221 [21%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Kąt \alpha jest rozwarty i spełnia warunek \sin\alpha+\cos\alpha=\frac{41}{89}.

Oblicz \sin\alpha-\cos\alpha.

Odpowiedź:
\sin\alpha-\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Oblicz \tan\alpha.
Odpowiedź:
\tan\alpha=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm