Podgląd testu : lo2@sp-09-trygonom-1-pp-6
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10637 ⋅ Poprawnie: 840/1239 [67%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Drabinę o długości
4 metrów oparto o pionowy mur,
a jej podstawę umieszczono w odległości
3 metrów od
tego muru.
Kąt \alpha, pod jakim ustawiono drabinę,
spełnia warunek:
Odpowiedzi:
|
A. 30^{\circ}\lessdot \alpha&\lessdot45^{\circ}
|
B. 60^{\circ}\lessdot \alpha&\lessdot90^{\circ}
|
|
C. 45^{\circ}\lessdot \alpha&\lessdot60^{\circ}
|
D. 0^{\circ}\lessdot \alpha&\lessdot30^{\circ}
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10653 ⋅ Poprawnie: 727/889 [81%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Dany jest trójkąt:
Oblicz długość odcinka BD.
Odpowiedź:
|BD|=
(wpisz liczbę całkowitą)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10674 ⋅ Poprawnie: 264/697 [37%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
« Przekątna równoległoboku o kącie ostrym
\alpha o mierze
60^{\circ} i wysokości o długości
11\sqrt{3}, tworzy kąt prosty z jego bokiem.
Oblicz obwód tego równoległoboku.
Odpowiedź:
L=
(wpisz liczbę całkowitą)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11507 ⋅ Poprawnie: 415/985 [42%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Kąt
\alpha jest ostry oraz
\tan\alpha=\frac{2\sqrt{5}}{9}.
Oblicz wartość wyrażenia
\frac{2\sin\alpha-\cos\alpha}{\cos\alpha+2\sin\alpha}.
Odpowiedź:
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10615 ⋅ Poprawnie: 609/917 [66%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
a=3
b=11
« Kąt
\alpha jest ostry i
\sin\alpha=\frac{\sqrt{3}}{11}.
Oblicz wartość wyrażenia 2\cos^2{\alpha}-1.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20733 ⋅ Poprawnie: 109/391 [27%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
« Wyznacz wysokości trójkata
ABC, w którym
a=16
Podaj długość najkrótszej z wysokości tego trójkąta.
Odpowiedź:
Podpunkt 6.2 (1 pkt)
Podaj długość najdłuższej z wysokości tego trójkąta.
Odpowiedź:
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20256 ⋅ Poprawnie: 32/111 [28%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
« Kąt
\alpha jest ostry oraz
\tan\alpha+16\cot\alpha=8.
Oblicz wartość wyrażenia \sin\alpha\cdot \cos\alpha.
Odpowiedź:
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20282 ⋅ Poprawnie: 83/171 [48%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
W trójkącie prostokątnym
ABC kąt przy wierzchołku
A jest prosty, a kąt przy wierzchołku
B ma miarę
\beta.
Oblicz \tan \beta.
Dane
\sin\beta=\frac{1}{5}=0.20000000000000
Odpowiedź:
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20266 ⋅ Poprawnie: 80/240 [33%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
» Wiedząc, że
\tan\alpha=\frac{2}{5}, oblicz wartość wyrażenia
w=
\frac{3\sin\alpha\cos\alpha-2\sin^2\alpha}
{7\cos^2\alpha-3\sin\alpha\cos\alpha}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 10. 2 pkt ⋅ Numer: pp-20742 ⋅ Poprawnie: 24/91 [26%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
«« Kąt
\alpha jest kątem rozwartym oraz
\sin\alpha=\frac{\sqrt{3}}{2}.
Wyznacz rozwiązanie
równania
(x+2)\cos^2\alpha=x+\tan\alpha+3
.
Odpowiedź:
x=
(liczba zapisana dziesiętnie)
|
Zadanie 11. 2 pkt ⋅ Numer: pp-20864 ⋅ Poprawnie: 93/199 [46%] |
Rozwiąż |
Podpunkt 11.1 (2 pkt)
(2 pkt)
Kąt
\alpha jest ostry i spełnia warunek
\tan\alpha=3.
Oblicz wartość wyrażenia
\frac{9\sin\alpha+3\cos\alpha}{7\cos\alpha-4\sin\alpha}.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 12. 4 pkt ⋅ Numer: pp-30303 ⋅ Poprawnie: 47/221 [21%] |
Rozwiąż |
Podpunkt 12.1 (2 pkt)
« Kąt
\alpha jest rozwarty i spełnia warunek
\sin\alpha+\cos\alpha=\frac{7}{97}.
Oblicz \sin\alpha-\cos\alpha.
Odpowiedź:
Podpunkt 12.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)