Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-10641 ⋅ Poprawnie: 517/732 [70%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wiadomo, że kąt \alpha jest ostry oraz. \sin\alpha=\frac{5\sqrt{26}}{26}.

Oblicz \cos\alpha.

Odpowiedź:
\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10677 ⋅ Poprawnie: 74/119 [62%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 W trójkącie prostokątnym przyprostokątne mają długości 2 i 3.

Oblicz cosinus większego z kątów ostrych tego trójkąta.

Odpowiedź:
\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10639 ⋅ Poprawnie: 298/484 [61%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Oblicz wartość wyrażenia \left( \tan 30^{\circ}+\cot 30^{\circ} \right)^2-\sin 45^{\circ} .
Odpowiedź:
\left(\tan\alpha+\cot\beta\right)^2-\sin\gamma= (liczba zapisana dziesiętnie)
Zadanie 4.  1 pkt ⋅ Numer: pp-10623 ⋅ Poprawnie: 109/175 [62%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Wiadomo, że \alpha i \beta są miarami kątów ostrych trójkąta prostokątnego oraz 16\sin^2\alpha+\cos^2\beta=1.

Oblicz \tan\alpha.

Odpowiedź:
\tan\alpha=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11538 ⋅ Poprawnie: 199/338 [58%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Kąt \alpha jest ostry i spełnia warunek \sin\alpha=\frac{1}{3}. Oblicz wartość wyrażenia \sin^2\alpha-\cos^2\alpha.
Odpowiedź:
\sin^2\alpha-\cos^2\alpha=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20741 ⋅ Poprawnie: 91/247 [36%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Oblicz wartość wyrażenia w= (\tan{45^{\circ}}-\sin{30^{\circ}})(\cot{45^{\circ}}-\cos{60^{\circ}}) .
Odpowiedź:
w= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20727 ⋅ Poprawnie: 57/172 [33%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Przekątne prostokąta maja długość d i przecinają się pod kątem o mierze \alpha.

Oblicz odległość wierzchołka prostokąta od przekątnej, do której wierzchołek ten nie należy (funkcję trygonometryczną kąta przyjmij z dokładnością do trzech miejsc po przecinku).

Dane
d=4
\alpha=38^{\circ}
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20282 ⋅ Poprawnie: 83/171 [48%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 W trójkącie prostokątnym ABC kąt przy wierzchołku A jest prosty, a kąt przy wierzchołku B ma miarę \beta.

Oblicz \tan \beta.

Dane
\sin\beta=\frac{1}{3}=0.33333333333333
Odpowiedź:
\tan\beta= \cdot
(wpisz trzy liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20268 ⋅ Poprawnie: 35/87 [40%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Dla pewnego kąta \alpha\in\langle 0,90^{\circ}) funkcje trygonometryczne sinus i cosinus mają wartości \sin\alpha=x-\frac{1}{2} i \cos\alpha=x+\frac{1}{2}.

Oblicz \tan\alpha.

Odpowiedź:
\tan\alpha= (liczba zapisana dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pp-20735 ⋅ Poprawnie: 86/280 [30%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Kąt \alpha spełnia warunek \alpha\in(90^{\circ},180^{\circ}) oraz \tan\alpha=-\frac{5}{12}.

Oblicz \sin\alpha.

Odpowiedź:
\sin\alpha=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Oblicz \cos\alpha.
Odpowiedź:
\cos\alpha=
(wpisz dwie liczby całkowite)
Zadanie 11.  2 pkt ⋅ Numer: pp-20743 ⋅ Poprawnie: 73/122 [59%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 «« Kąt \alpha jest kątem ostrym oraz zachodzi równość 6\cos^2\alpha+10\sin^2\alpha=9.

Wyznacz wartość wyrażenia w=(\tan\alpha+\cot\alpha)^2.

Odpowiedź:
(\tan\alpha+\cot\alpha)^2=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30303 ⋅ Poprawnie: 47/221 [21%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Kąt \alpha jest rozwarty i spełnia warunek \sin\alpha+\cos\alpha=\frac{1}{5}.

Oblicz \sin\alpha-\cos\alpha.

Odpowiedź:
\sin\alpha-\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Oblicz \tan\alpha.
Odpowiedź:
\tan\alpha=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm