Podgląd testu : lo2@sp-09-trygonom-1-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-10614 ⋅ Poprawnie: 663/1036 [63%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Kąt
\alpha jest kątem ostrym oraz
\tan\alpha=\frac{5}{9} .
Oblicz wartość wyrażenia
w=\frac{3\cos\alpha-2\sin\alpha}{\sin\alpha-5\cos\alpha} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-10648 ⋅ Poprawnie: 354/567 [62%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Oblicz długość wysokości trapezu równoramiennego o kącie ostrym
60^{\circ} i ramieniu długości
7\sqrt{7} .
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-10639 ⋅ Poprawnie: 298/484 [61%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Oblicz wartość wyrażenia
\left(
\tan 45^{\circ}+\cot 60^{\circ}
\right)^2-\sin 60^{\circ}
.
Odpowiedź:
\left(\tan\alpha+\cot\beta\right)^2-\sin\gamma=
(liczba zapisana dziesiętnie)
Zadanie 4. 1 pkt ⋅ Numer: pp-10611 ⋅ Poprawnie: 234/474 [49%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Kąt
\alpha jest ostry oraz
\tan\alpha=\frac{5}{4} .
Oblicz wartość wyrażenia \frac{2-\cos\alpha}{2+\cos\alpha} .
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-10633 ⋅ Poprawnie: 65/88 [73%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Oblicz wartość wyrażenia
\log{\tan 35^{\circ}}+\log{\tan 45^{\circ}}+\log{\tan 55^{\circ}}
.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20741 ⋅ Poprawnie: 91/247 [36%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Oblicz wartość wyrażenia
w=
(\tan{60^{\circ}}-\sin{30^{\circ}})(\cot{60^{\circ}}-\cos{45^{\circ}})
.
Odpowiedź:
Zadanie 7. 2 pkt ⋅ Numer: pp-20728 ⋅ Poprawnie: 51/126 [40%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
W równoległoboku dany jest sinus kąta ostrego
\alpha
oraz wysokość
h opuszczona na dłuższy bok tego
równoległoboku. Stosunek długości sąsiednich boków tego równoległoboku
wynosi
k .
Oblicz długość obwodu tego równoległoboku.
Dane
\sin\alpha=\frac{7}{13}=0.53846153846154
h=16
k=\frac{15}{2}=7.50000000000000
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20289 ⋅ Poprawnie: 197/415 [47%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Przyprostokątne trójkąta mają długości
5 i
10 , a jeden z kątów ostrych tego trójkąta ma miarę
\beta .
Oblicz \sin\beta\cdot \cos\beta .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20266 ⋅ Poprawnie: 80/240 [33%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
» Wiedząc, że
\tan\alpha=\frac{2}{7} , oblicz wartość wyrażenia
w=
\frac{3\sin\alpha\cos\alpha-2\sin^2\alpha}
{7\cos^2\alpha-3\sin\alpha\cos\alpha}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20734 ⋅ Poprawnie: 187/284 [65%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Kąt
\alpha jest ostry oraz
\sin\alpha=\frac{12}{37} .
Oblicz \cos\alpha .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 2 pkt ⋅ Numer: pp-20744 ⋅ Poprawnie: 169/539 [31%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
« Kąty
\alpha i
\beta są kątami ostrymi w trójkącie prostokątnym i spełniają.
warunek
\sin\alpha+\sin\beta=\frac{7}{6} .
Oblicz \sin\alpha\cdot \sin\beta .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (1 pkt)
Oblicz
\cos\alpha\cdot \cos\beta .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 4 pkt ⋅ Numer: pp-30303 ⋅ Poprawnie: 47/221 [21%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
« Kąt
\alpha jest rozwarty i spełnia warunek
\sin\alpha+\cos\alpha=\frac{71}{85} .
Oblicz \sin\alpha-\cos\alpha .
Odpowiedź:
Podpunkt 12.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż