Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-10617 ⋅ Poprawnie: 398/560 [71%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wiadomo, że kąt \alpha jest ostry oraz \sin\alpha=\frac{7\sqrt{85}}{85}.

Oblicz wartość wyrażenia 1+\tan\alpha\cdot\cos\alpha.

Odpowiedź:
1+\tan\alpha\cdot\cos\alpha= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10661 ⋅ Poprawnie: 334/455 [73%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Przeciwprostokątna AB trójkąta ABC ma długość 17, a \cos \sphericalangle B=\frac{15}{17}.

Oblicz długość przyprostokątnej BC tego trójkąta.

Odpowiedź:
|BC|=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10639 ⋅ Poprawnie: 298/484 [61%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Oblicz wartość wyrażenia \left( \tan 60^{\circ}+\cot 45^{\circ} \right)^2-\sin 60^{\circ} .
Odpowiedź:
\left(\tan\alpha+\cot\beta\right)^2-\sin\gamma= (liczba zapisana dziesiętnie)
Zadanie 4.  1 pkt ⋅ Numer: pp-10642 ⋅ Poprawnie: 318/545 [58%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Kąt \alpha jest ostry oraz 13\sin\alpha-\sqrt{6}\cos\alpha=0.

Oblicz \tan\alpha.

Odpowiedź:
\tan\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11388 ⋅ Poprawnie: 210/450 [46%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Kąt \alpha jest kątem ostrym oraz \sin\alpha+\cos\alpha=\frac{15}{13}.

Oblicz wartość wyrażenia (\sin\alpha-\cos\alpha)^2.

Odpowiedź:
(\sin\alpha-\cos\alpha)^2=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20259 ⋅ Poprawnie: 165/275 [60%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Oblicz x-y, gdy x=\sin^4{60^{\circ}}-\cos^4{60^{\circ}}, y=1-4\sin^2{60^{\circ}}\cdot \cos^2{60^{\circ}}.
Odpowiedź:
x-y= (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20255 ⋅ Poprawnie: 132/288 [45%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Kąt \beta jest ostry. Oblicz wartość wyrażenia 3+2\tan^2\beta.
Dane
\sin\beta=\frac{2}{3}=0.66666666666667
Odpowiedź:
3+2\tan^2\beta=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20283 ⋅ Poprawnie: 54/94 [57%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Trójkąt ABC jest równoramienny o podstawie AB, a punkt D jest środkiem jego podstawy AB.

Oblicz miarę stopniową najmniejszego kąta tego trójkąta.

Dane
|CD|=\frac{\sqrt{13}}{2}=1.80277563773199
|AC|=\sqrt{13}=3.60555127546399
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Oblicz miarę stopniową największego kąta tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pp-20265 ⋅ Poprawnie: 72/142 [50%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » Oblicz \tan\alpha wiedząc, że 3\sin^2\alpha+9\cos^2\alpha=8 i \alpha\in(0^{\circ},90^{\circ}).
Odpowiedź:
\tan\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20734 ⋅ Poprawnie: 187/284 [65%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Kąt \alpha jest ostry oraz \sin\alpha=\frac{33}{65}.

Oblicz \cos\alpha.

Odpowiedź:
\cos\alpha=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Oblicz \tan\alpha.
Odpowiedź:
\tan\alpha=
(wpisz dwie liczby całkowite)
Zadanie 11.  2 pkt ⋅ Numer: pp-20743 ⋅ Poprawnie: 73/122 [59%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 «« Kąt \alpha jest kątem ostrym oraz zachodzi równość 6\cos^2\alpha+10\sin^2\alpha=9.

Wyznacz wartość wyrażenia w=(\tan\alpha+\cot\alpha)^2.

Odpowiedź:
(\tan\alpha+\cot\alpha)^2=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30303 ⋅ Poprawnie: 47/221 [21%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Kąt \alpha jest rozwarty i spełnia warunek \sin\alpha+\cos\alpha=\frac{41}{89}.

Oblicz \sin\alpha-\cos\alpha.

Odpowiedź:
\sin\alpha-\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Oblicz \tan\alpha.
Odpowiedź:
\tan\alpha=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm