Podgląd testu : lo2@sp-09-trygonom-1-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-10640 ⋅ Poprawnie: 614/830 [73%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wiadomo, że kąt
\alpha jest ostry oraz
\tan\alpha=\frac{4}{5} .
Oblicz \sin\alpha .
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-10648 ⋅ Poprawnie: 354/567 [62%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Oblicz długość wysokości trapezu równoramiennego o kącie ostrym
45^{\circ} i ramieniu długości
6\sqrt{7} .
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-10662 ⋅ Poprawnie: 341/475 [71%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Zapisz obwód trójkąta
ABC w postaci
p\cdot a :
Podaj p .
Odpowiedź:
p=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10618 ⋅ Poprawnie: 415/624 [66%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Kąt
\alpha jest ostry i
\sin\alpha=\frac{\sqrt{3}}{7} .
Oblicz wartość wyrażenia \cos^2\alpha-2 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10633 ⋅ Poprawnie: 65/88 [73%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Oblicz wartość wyrażenia
\log{\tan 35^{\circ}}+\log{\tan 45^{\circ}}+\log{\tan 55^{\circ}}
.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20732 ⋅ Poprawnie: 176/451 [39%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
» Dany jest czworokąt, w którym
\alpha=30^{\circ} ,
\beta=60^{\circ} i
|DB|=7 :
Oblicz długość obwodu czworokąta ABCD .
Odpowiedź:
L_{ABCD}=
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pp-20262 ⋅ Poprawnie: 327/519 [63%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
W pewnym trójkącie prostokątnym przyprostokątne mają długość
5 i
8 , a jeden z kątów
ostrych tego trójkąta ma miarę
\alpha .
Oblicz \sin\alpha\cdot \cos\alpha .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20275 ⋅ Poprawnie: 63/130 [48%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Kąty
\alpha i
\beta
są kątami ostrymi w trójkącie prostokątnym.
Oblicz \tan\alpha\cdot \sin\beta .
Dane
\cos\alpha=\frac{3}{8}=0.37500000000000
Odpowiedź:
Zadanie 9. 2 pkt ⋅ Numer: pp-20264 ⋅ Poprawnie: 131/239 [54%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Oblicz wartość wyrażenia
w=
\frac{-3\sin\alpha -6\cos\alpha}
{-6\cos\alpha +\sin\alpha}
,
jeśli wiadomo, że
\alpha jest kątem ostrym
oraz
\tan\alpha=5 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20739 ⋅ Poprawnie: 78/415 [18%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Kąt
\alpha spełnia warunek
\alpha\in(90^{\circ},180^{\circ}) oraz
\sin\alpha=\frac{\sqrt{7}}{4} .
Oblicz \cos\alpha .
Odpowiedź:
Podpunkt 10.2 (1 pkt)
Odpowiedź:
Zadanie 11. 2 pkt ⋅ Numer: pp-20864 ⋅ Poprawnie: 93/199 [46%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
(2 pkt)
Kąt
\alpha jest ostry i spełnia warunek
\tan\alpha=7 .
Oblicz wartość wyrażenia
\frac{4\sin\alpha+6\cos\alpha}{8\cos\alpha-6\sin\alpha} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 4 pkt ⋅ Numer: pp-30303 ⋅ Poprawnie: 47/221 [21%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
« Kąt
\alpha jest rozwarty i spełnia warunek
\sin\alpha+\cos\alpha=\frac{1}{29} .
Oblicz \sin\alpha-\cos\alpha .
Odpowiedź:
Podpunkt 12.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż