Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-6

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10613  
Podpunkt 1.1 (1 pkt)
 « Wiadomo, że kąt \alpha jest ostry. Oblicz wartość wyrażenia \sin\alpha+\cos\alpha i zapisz wynik w najprostszej nieskracalnej postaci \frac{a\sqrt{b}}{c}, gdzie a,b,c\in\mathbb{Z}.

Podaj liczby a, b i c.

Dane
\tan\alpha=\frac{4}{5}=0.80000000000000
Odpowiedź:
\sin\alpha+\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10653  
Podpunkt 2.1 (1 pkt)
Dany jest trójkąt:

Oblicz długość odcinka BD.

Odpowiedź:
|BD|= (wpisz liczbę całkowitą)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10674  
Podpunkt 3.1 (1 pkt)
 « Przekątna równoległoboku o kącie ostrym \alpha o mierze 60^{\circ} i wysokości o długości 22\sqrt{3}, tworzy kąt prosty z jego bokiem.

Oblicz obwód tego równoległoboku.

Odpowiedź:
L= (wpisz liczbę całkowitą)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11507  
Podpunkt 4.1 (1 pkt)
 Kąt \alpha jest ostry oraz \tan\alpha=\frac{2\sqrt{14}}{15}.

Oblicz wartość wyrażenia \frac{2\sin\alpha-\cos\alpha}{\cos\alpha+2\sin\alpha}.

Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz cztery liczby całkowite)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10635  
Podpunkt 5.1 (1 pkt)
 Dana jest równość \sin^2\alpha(1+\cos^2\alpha)+\cos^4\alpha-2=m gdzie \alpha jest kątem ostrym.

Oblicz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20731  
Podpunkt 6.1 (2 pkt)
 Czworokąt ABCD na rysunku jest trapezem, a czworokąt EFCD prostokątem:

Oblicz obwód czworokąta ABCD.

Dane
\alpha=150^{\circ}
\beta=120^{\circ}
a=8
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20255  
Podpunkt 7.1 (2 pkt)
 « Kąt \beta jest ostry. Oblicz wartość wyrażenia 3+2\tan^2\beta.
Dane
\sin\beta=\frac{5}{6}=0.83333333333333
Odpowiedź:
3+2\tan^2\beta=
(wpisz dwie liczby całkowite)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20747  
Podpunkt 8.1 (2 pkt)
 « W prostokątnym trójkącie ABC na przeciwprostokątnej AB wybrano punkt D, a na przyprostokątnej BC punkt E w taki sposób, że DE||AC.

Wyznacz tangens kąta ECD.

Dane
|AC|=30
|BE|=3
|CE|=5
Odpowiedź:
\tan\sphericalangle ECD=
(wpisz dwie liczby całkowite)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20264  
Podpunkt 9.1 (2 pkt)
 Oblicz wartość wyrażenia \frac{a\sin\alpha+b\cos\alpha} {b\cos\alpha+c\sin\alpha} , jeśli wiadomo, że \alpha jest kątem ostrym oraz \tan\alpha=m.
Dane
a=-3
b=4
c=-1
m=6
Odpowiedź:
\frac{p}{q}=
(wpisz dwie liczby całkowite)
Zadanie 10.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20742  
Podpunkt 10.1 (2 pkt)
 «« Kąt \alpha jest kątem rozwartym. Wyznacz rozwiązanie równania (x-b)\cos^2\alpha=x+\tan\alpha+1-b .
Dane
b=3
\sin\alpha=\frac{1}{2}=0.50000000000000
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20743  
Podpunkt 11.1 (2 pkt)
 «« Kąt \alpha jest kątem ostrym oraz zachodzi równość a\cos^2\alpha+b\sin^2\alpha=c.

Wyznacz wartość wyrażenia (\tan\alpha+\cot\alpha)^2.

Dane
a=6
b=10
c=9
Odpowiedź:
(\tan\alpha+\cot\alpha)^2=
(wpisz dwie liczby całkowite)
Zadanie 12.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30303  
Podpunkt 12.1 (2 pkt)
 « Kąt \alpha jest rozwarty i spełnia warunek: \sin\alpha+\cos\alpha=m. Oblicz \sin\alpha-\cos\alpha.
Dane
m=\frac{1}{29}=0.03448275862069
Odpowiedź:
\sin\alpha-\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Oblicz \tan\alpha.
Odpowiedź:
\tan\alpha=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm