Podgląd testu : lo2@sp-09-trygonom-1-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-10613 ⋅ Poprawnie: 435/649 [67%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Wiadomo, że kąt
\alpha jest ostry oraz
\tan\alpha=\frac{4}{5} .
Oblicz wartość wyrażenia \sin\alpha+\cos\alpha .
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-10646 ⋅ Poprawnie: 149/281 [53%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Na płaszczyźnie dane są punkty
A=\left(18\sqrt{2},18\sqrt{6}\right) ,
B=\left(0,0\right) i
C=\left(18\sqrt{2},0\right) .
Kąt BAC ma miarę:
Odpowiedzi:
A. 60^{\circ}
B. 30^{\circ}
C. 75^{\circ}
D. około 55^{\circ}
Zadanie 3. 1 pkt ⋅ Numer: pp-10662 ⋅ Poprawnie: 350/486 [72%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Zapisz obwód trójkąta
ABC w postaci
p\cdot a :
Podaj p .
Odpowiedź:
p=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10642 ⋅ Poprawnie: 325/555 [58%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Kąt
\alpha jest ostry oraz
9\sin\alpha-2\sqrt{2}\cos\alpha=0 .
Oblicz \tan\alpha .
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-11538 ⋅ Poprawnie: 200/356 [56%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Kąt
\alpha jest ostry i spełnia warunek
\sin\alpha=\frac{1}{2} .
Oblicz wartość wyrażenia
\sin^2\alpha-\cos^2\alpha .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20733 ⋅ Poprawnie: 111/396 [28%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Wyznacz wysokości trójkata
ABC , w którym
a=24
Podaj długość najkrótszej z wysokości tego trójkąta.
Odpowiedź:
Podpunkt 6.2 (1 pkt)
Podaj długość najdłuższej z wysokości tego trójkąta.
Odpowiedź:
Zadanie 7. 2 pkt ⋅ Numer: pp-20269 ⋅ Poprawnie: 157/403 [38%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Kąt
\alpha jest ostry oraz
\cos\alpha=\frac{1}{2} .
Oblicz średnią
arytmetyczną liczb a=\sin\alpha ,
b=\frac{1}{2} i
c=\frac{1}{3}\tan\alpha .
Odpowiedź:
Zadanie 8. 2 pkt ⋅ Numer: pp-20747 ⋅ Poprawnie: 35/100 [35%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« W prostokątnym trójkącie
ABC na
przeciwprostokątnej
AB wybrano punkt
D , a na przyprostokątnej
BC punkt
E w taki sposób,
że
DE||AC .
Wyznacz tangens kąta ECD .
Dane
|AC|=22
|BE|=8
|CE|=4
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20268 ⋅ Poprawnie: 35/90 [38%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Dla pewnego kąta
\alpha\in\langle 0,90^{\circ})
funkcje trygonometryczne sinus i cosinus mają wartości
\sin\alpha=x-\frac{1}{3} i
\cos\alpha=x+\frac{1}{3} .
Oblicz \tan\alpha .
Odpowiedź:
\tan\alpha=
(liczba zapisana dziesiętnie)
Zadanie 10. 2 pkt ⋅ Numer: pp-20261 ⋅ Poprawnie: 46/99 [46%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Kąty
\alpha i
\beta są
kątami ostrymi w pewnym trójkącie prostokątnym oraz
\sin\alpha+\sin\beta=\frac{4\sqrt{34}}{17} .
Oblicz \sin\alpha\cdot \sin\beta .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 2 pkt ⋅ Numer: pp-20276 ⋅ Poprawnie: 124/224 [55%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
« O kącie
\alpha wiadomo, że jest ostry i
\sin\alpha=\frac{1}{4} .
Oblicz wartość wyrażenia 2\tan^2\alpha+1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 4 pkt ⋅ Numer: pp-30303 ⋅ Poprawnie: 54/247 [21%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
« Kąt
\alpha jest rozwarty i spełnia warunek
\sin\alpha+\cos\alpha=\frac{7}{13} .
Oblicz \sin\alpha-\cos\alpha .
Odpowiedź:
Podpunkt 12.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż