Podgląd testu : lo2@sp-09-trygonom-1-pp-6
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10637 ⋅ Poprawnie: 840/1239 [67%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Drabinę o długości
3 metrów oparto o pionowy mur,
a jej podstawę umieszczono w odległości
1 metrów od
tego muru.
Kąt \alpha, pod jakim ustawiono drabinę,
spełnia warunek:
Odpowiedzi:
|
A. 30^{\circ}\lessdot \alpha&\lessdot45^{\circ}
|
B. 0^{\circ}\lessdot \alpha&\lessdot30^{\circ}
|
|
C. 60^{\circ}\lessdot \alpha&\lessdot90^{\circ}
|
D. 45^{\circ}\lessdot \alpha&\lessdot60^{\circ}
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10645 ⋅ Poprawnie: 463/594 [77%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
» Dane są długości boków
|BC|=9 i
|AC|=4 trójkąta prostokątnego
ABC o kącie ostrym
\beta.
Oblicz x=\cos\beta.
Odpowiedź:
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10660 ⋅ Poprawnie: 145/192 [75%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
» W trapezie prostokątnym
ABCD długość
ramienia
BC jest dwa razy większa od różnicy
długości jego podstaw.
Wyznacz miarę stopniową kąta ABC.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10634 ⋅ Poprawnie: 283/501 [56%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
« Kąt
\alpha należy do przedziału
(90^{\circ},180^{\circ}) i zachodzi równość
6\cos^2\alpha-2=\frac{5}{6}.
Oblicz
\sin\alpha.
Odpowiedź:
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11388 ⋅ Poprawnie: 210/450 [46%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
« Kąt
\alpha jest kątem ostrym oraz
\sin\alpha+\cos\alpha=\frac{15}{13}.
Oblicz wartość wyrażenia (\sin\alpha-\cos\alpha)^2.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20733 ⋅ Poprawnie: 109/391 [27%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
« Wyznacz wysokości trójkata
ABC, w którym
a=16
Podaj długość najkrótszej z wysokości tego trójkąta.
Odpowiedź:
Podpunkt 6.2 (1 pkt)
Podaj długość najdłuższej z wysokości tego trójkąta.
Odpowiedź:
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20269 ⋅ Poprawnie: 156/399 [39%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
» Kąt
\alpha jest ostry oraz
\cos\alpha=\frac{2}{3}.
Oblicz średnią
arytmetyczną liczb a=\sin\alpha,
b=\frac{1}{2} i
c=\frac{1}{3}\tan\alpha.
Odpowiedź:
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20275 ⋅ Poprawnie: 63/130 [48%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
Kąty
\alpha i
\beta
są kątami ostrymi w trójkącie prostokątnym.
Oblicz \tan\alpha\cdot \sin\beta.
Dane
\cos\alpha=\frac{3}{8}=0.37500000000000
Odpowiedź:
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20265 ⋅ Poprawnie: 72/142 [50%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
» Oblicz
\tan\alpha wiedząc, że
2\sin^2\alpha+16\cos^2\alpha=15 i
\alpha\in(0^{\circ},90^{\circ}).
Odpowiedź:
|
Zadanie 10. 2 pkt ⋅ Numer: pp-20734 ⋅ Poprawnie: 187/284 [65%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Kąt
\alpha jest ostry oraz
\sin\alpha=\frac{5}{13}.
Oblicz \cos\alpha.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 11. 2 pkt ⋅ Numer: pp-20277 ⋅ Poprawnie: 52/86 [60%] |
Rozwiąż |
Podpunkt 11.1 (2 pkt)
» Kąt ostry
\alpha spełnia równanie
\sin\alpha+\cos\alpha=\frac{\sqrt{7}}{2}.
Oblicz (\sin\alpha-\cos\alpha)^2
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 12. 4 pkt ⋅ Numer: pp-30303 ⋅ Poprawnie: 47/221 [21%] |
Rozwiąż |
Podpunkt 12.1 (2 pkt)
« Kąt
\alpha jest rozwarty i spełnia warunek
\sin\alpha+\cos\alpha=\frac{1}{5}.
Oblicz \sin\alpha-\cos\alpha.
Odpowiedź:
Podpunkt 12.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)