Podgląd testu : lo2@sp-09-trygonom-1-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-10641 ⋅ Poprawnie: 517/732 [70%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wiadomo, że kąt
\alpha jest ostry oraz.
\sin\alpha=\frac{2\sqrt{13}}{13} .
Oblicz \cos\alpha .
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-10648 ⋅ Poprawnie: 354/567 [62%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Oblicz długość wysokości trapezu równoramiennego o kącie ostrym
30^{\circ} i ramieniu długości
6\sqrt{6} .
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-10616 ⋅ Poprawnie: 365/597 [61%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Oblicz wartośc wyrażenia
w=
\tan^{2}45^{\circ}-\sin 60^{\circ}\cdot \cos 30^{\circ}-\sin 30^{\circ}\cdot \tan 30^{\circ}
.
Odpowiedź:
w=
(liczba zapisana dziesiętnie)
Zadanie 4. 1 pkt ⋅ Numer: pp-11507 ⋅ Poprawnie: 415/985 [42%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Kąt
\alpha jest ostry oraz
\tan\alpha=\frac{\sqrt{30}}{11} .
Oblicz wartość wyrażenia
\frac{2\sin\alpha-\cos\alpha}{\cos\alpha+2\sin\alpha} .
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-10630 ⋅ Poprawnie: 191/451 [42%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
» Kąty
\alpha i
\beta
trójkata prostokątnego są ostre. Wówczas wyrażenie
\frac{3\cos\alpha\cdot (5-5\sin^2\beta)\cdot \tan\alpha}
{2\sin^2\alpha\cdot \cos\beta}
jest równe:
Odpowiedzi:
A. \frac{15}{2}
B. \frac{15}{2}\cos\alpha
C. \frac{15}{2}\tan\alpha
D. \frac{3}{2}\sin\alpha
Zadanie 6. 2 pkt ⋅ Numer: pp-20732 ⋅ Poprawnie: 176/451 [39%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
» Dany jest czworokąt, w którym
\alpha=30^{\circ} ,
\beta=60^{\circ} i
|DB|=4 :
Oblicz długość obwodu czworokąta ABCD .
Odpowiedź:
L_{ABCD}=
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pp-20256 ⋅ Poprawnie: 32/111 [28%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Kąt
\alpha jest ostry oraz
\tan\alpha+16\cot\alpha=8 .
Oblicz wartość wyrażenia \sin\alpha\cdot \cos\alpha .
Odpowiedź:
Zadanie 8. 2 pkt ⋅ Numer: pp-20730 ⋅ Poprawnie: 107/253 [42%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Czworokąt na rysunku jest rombem o obwodzie długości
L :
Oblicz \cos\alpha .
Dane
L=100
|DB|=14
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
Zadanie 9. 2 pkt ⋅ Numer: pp-20267 ⋅ Poprawnie: 120/243 [49%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Oblicz wartość wyrażenia
\left(\frac{1}{5}-\frac{1}{5}\sin^2\alpha\right)(1+\tan^2\alpha)
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20261 ⋅ Poprawnie: 43/96 [44%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Kąty
\alpha i
\beta są
kątami ostrymi w pewnym trójkącie prostokątnym oraz
\sin\alpha+\sin\beta=\frac{4\sqrt{34}}{17} .
Oblicz \sin\alpha\cdot \sin\beta .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 2 pkt ⋅ Numer: pp-20743 ⋅ Poprawnie: 73/122 [59%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
«« Kąt
\alpha jest kątem ostrym oraz zachodzi
równość
2\cos^2\alpha+6\sin^2\alpha=5 .
Wyznacz wartość wyrażenia w=(\tan\alpha+\cot\alpha)^2 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 4 pkt ⋅ Numer: pp-30303 ⋅ Poprawnie: 47/221 [21%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
« Kąt
\alpha jest rozwarty i spełnia warunek
\sin\alpha+\cos\alpha=\frac{17}{25} .
Oblicz \sin\alpha-\cos\alpha .
Odpowiedź:
Podpunkt 12.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż