Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-10641 ⋅ Poprawnie: 518/733 [70%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wiadomo, że kąt \alpha jest ostry oraz. \sin\alpha=\frac{5\sqrt{41}}{41}.

Oblicz \cos\alpha.

Odpowiedź:
\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10658 ⋅ Poprawnie: 116/177 [65%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » W trójkącie równoramiennym ABC poprowadzono wysokość AS, która utworzyła z podstawą kąt o mierze 24^{\circ} (zobacz rysunek).

Ramię tego trójkąta ma długość 10. Długość wysokości AS jest liczbą z przedziału:

Odpowiedzi:
A. \left\langle\frac{11}{2}, \frac{13}{2}\right\rangle B. \left(\frac{15}{2}, \frac{17}{2}\right\rangle
C. \left(\frac{13}{2}, \frac{15}{2}\right\rangle D. \left\langle\frac{7}{2}, \frac{9}{2}\right\rangle
Zadanie 3.  1 pkt ⋅ Numer: pp-10639 ⋅ Poprawnie: 298/484 [61%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Oblicz wartość wyrażenia \left( \tan 45^{\circ}+\cot 45^{\circ} \right)^2-\sin 60^{\circ} .
Odpowiedź:
\left(\tan\alpha+\cot\beta\right)^2-\sin\gamma= (liczba zapisana dziesiętnie)
Zadanie 4.  1 pkt ⋅ Numer: pp-10618 ⋅ Poprawnie: 415/624 [66%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Kąt \alpha jest ostry i \sin\alpha=\frac{\sqrt{3}}{8}.

Oblicz wartość wyrażenia \cos^2\alpha-2.

Odpowiedź:
\cos^2\alpha-2=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10644 ⋅ Poprawnie: 346/447 [77%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wiadomo, że 0^{\circ}\lessdot \alpha <90^{\circ} oraz \tan \alpha=10\sin\alpha.

Oblicz \cos\alpha.

Odpowiedź:
\cos\alpha=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20732 ⋅ Poprawnie: 176/451 [39%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Dany jest czworokąt, w którym \alpha=45^{\circ}, \beta=60^{\circ} i |DB|=7:

Oblicz długość obwodu czworokąta ABCD.

Odpowiedź:
L_{ABCD}= (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20269 ⋅ Poprawnie: 156/399 [39%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Kąt \alpha jest ostry oraz \cos\alpha=\frac{3}{4}.

Oblicz średnią arytmetyczną liczb a=\sin\alpha, b=\frac{1}{2} i c=\frac{1}{3}\tan\alpha.

Odpowiedź:
\overline{x}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20288 ⋅ Poprawnie: 128/193 [66%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 W prostokątnym trójkącie ABC na przeciwprostokątnej AB wybrano punkt D, a na przyprostokątnej BC punkt E w taki sposób, że DE||AC oraz |BE|=|CE|=d.

Wyznacz tangens kąta EDC.

Dane
|AC|=24
d=12
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pp-20268 ⋅ Poprawnie: 35/87 [40%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Dla pewnego kąta \alpha\in\langle 0,90^{\circ}) funkcje trygonometryczne sinus i cosinus mają wartości \sin\alpha=x-\frac{1}{4} i \cos\alpha=x+\frac{1}{4}.

Oblicz \tan\alpha.

Odpowiedź:
\tan\alpha= (liczba zapisana dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pp-20735 ⋅ Poprawnie: 86/280 [30%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Kąt \alpha spełnia warunek \alpha\in(90^{\circ},180^{\circ}) oraz \tan\alpha=-\frac{28}{45}.

Oblicz \sin\alpha.

Odpowiedź:
\sin\alpha=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Oblicz \cos\alpha.
Odpowiedź:
\cos\alpha=
(wpisz dwie liczby całkowite)
Zadanie 11.  2 pkt ⋅ Numer: pp-20276 ⋅ Poprawnie: 120/218 [55%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
« O kącie \alpha wiadomo, że jest ostry i \sin\alpha=\frac{1}{4}.

Oblicz wartość wyrażenia 2\tan^2\alpha+1.

Odpowiedź:
2\tan^2\alpha+1=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30303 ⋅ Poprawnie: 47/221 [21%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Kąt \alpha jest rozwarty i spełnia warunek \sin\alpha+\cos\alpha=\frac{49}{61}.

Oblicz \sin\alpha-\cos\alpha.

Odpowiedź:
\sin\alpha-\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Oblicz \tan\alpha.
Odpowiedź:
\tan\alpha=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm