Podgląd testu : lo2@sp-09-trygonom-1-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-10641 ⋅ Poprawnie: 517/732 [70%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wiadomo, że kąt
\alpha jest ostry oraz.
\sin\alpha=\frac{5\sqrt{26}}{26} .
Oblicz \cos\alpha .
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-10677 ⋅ Poprawnie: 74/119 [62%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
W trójkącie prostokątnym przyprostokątne mają długości
2 i
3 .
Oblicz cosinus większego z kątów ostrych tego trójkąta.
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-10639 ⋅ Poprawnie: 298/484 [61%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Oblicz wartość wyrażenia
\left(
\tan 30^{\circ}+\cot 30^{\circ}
\right)^2-\sin 45^{\circ}
.
Odpowiedź:
\left(\tan\alpha+\cot\beta\right)^2-\sin\gamma=
(liczba zapisana dziesiętnie)
Zadanie 4. 1 pkt ⋅ Numer: pp-10623 ⋅ Poprawnie: 109/175 [62%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Wiadomo, że
\alpha i
\beta
są miarami kątów ostrych trójkąta prostokątnego oraz
16\sin^2\alpha+\cos^2\beta=1 .
Oblicz \tan\alpha .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11538 ⋅ Poprawnie: 199/338 [58%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Kąt
\alpha jest ostry i spełnia warunek
\sin\alpha=\frac{1}{3} .
Oblicz wartość wyrażenia
\sin^2\alpha-\cos^2\alpha .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20741 ⋅ Poprawnie: 91/247 [36%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Oblicz wartość wyrażenia
w=
(\tan{45^{\circ}}-\sin{30^{\circ}})(\cot{45^{\circ}}-\cos{60^{\circ}})
.
Odpowiedź:
Zadanie 7. 2 pkt ⋅ Numer: pp-20727 ⋅ Poprawnie: 57/172 [33%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Przekątne prostokąta maja długość
d i
przecinają się pod kątem o mierze
\alpha .
Oblicz odległość wierzchołka prostokąta od przekątnej, do której wierzchołek
ten nie należy (funkcję trygonometryczną kąta przyjmij z dokładnością do
trzech miejsc po przecinku).
Dane
d=4
\alpha=38^{\circ}
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 2 pkt ⋅ Numer: pp-20282 ⋅ Poprawnie: 83/171 [48%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
W trójkącie prostokątnym
ABC kąt przy wierzchołku
A jest prosty, a kąt przy wierzchołku
B ma miarę
\beta .
Oblicz \tan \beta .
Dane
\sin\beta=\frac{1}{3}=0.33333333333333
Odpowiedź:
Zadanie 9. 2 pkt ⋅ Numer: pp-20268 ⋅ Poprawnie: 35/87 [40%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Dla pewnego kąta
\alpha\in\langle 0,90^{\circ})
funkcje trygonometryczne sinus i cosinus mają wartości
\sin\alpha=x-\frac{1}{2} i
\cos\alpha=x+\frac{1}{2} .
Oblicz \tan\alpha .
Odpowiedź:
\tan\alpha=
(liczba zapisana dziesiętnie)
Zadanie 10. 2 pkt ⋅ Numer: pp-20735 ⋅ Poprawnie: 86/280 [30%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Kąt
\alpha spełnia warunek
\alpha\in(90^{\circ},180^{\circ}) oraz
\tan\alpha=-\frac{5}{12} .
Oblicz \sin\alpha .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 2 pkt ⋅ Numer: pp-20743 ⋅ Poprawnie: 73/122 [59%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
«« Kąt
\alpha jest kątem ostrym oraz zachodzi
równość
6\cos^2\alpha+10\sin^2\alpha=9 .
Wyznacz wartość wyrażenia w=(\tan\alpha+\cot\alpha)^2 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 4 pkt ⋅ Numer: pp-30303 ⋅ Poprawnie: 47/221 [21%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
« Kąt
\alpha jest rozwarty i spełnia warunek
\sin\alpha+\cos\alpha=\frac{1}{5} .
Oblicz \sin\alpha-\cos\alpha .
Odpowiedź:
Podpunkt 12.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż