Podgląd testu : lo2@sp-09-trygonom-1-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-10626 ⋅ Poprawnie: 178/286 [62%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Kąty ostre
\alpha i
\beta trójkąta prostokątnego spełniają warunek
\frac{\sin \alpha}{\sin\beta}=\frac{\sqrt{19}}{19} .
Oblicz
\cos\alpha i zapisz wynik w najprostszej nieskracalnej
postaci
\frac{a\sqrt{b}}{c} .
Podaj liczby a , b i
c .
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-10651 ⋅ Poprawnie: 346/498 [69%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
W trapezie prostokątnym kąt ostry ma miarę
30^{\circ} , a podstawy mają długości
10 i
13 .
Oblicz długość wysokości tego trapezu.
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-10657 ⋅ Poprawnie: 572/669 [85%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Przyprostokątne w trójkącie prostokątnym mają długości
1 oraz
\sqrt{3} .
Wyznacz miarę stopniową najmniejszego kąta w tym trójkącie.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 4. 1 pkt ⋅ Numer: pp-10623 ⋅ Poprawnie: 114/183 [62%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Wiadomo, że
\alpha i
\beta
są miarami kątów ostrych trójkąta prostokątnego oraz
100\sin^2\alpha+\cos^2\beta=1 .
Oblicz \tan\alpha .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11538 ⋅ Poprawnie: 200/356 [56%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Kąt
\alpha jest ostry i spełnia warunek
\sin\alpha=\frac{5}{6} .
Oblicz wartość wyrażenia
\sin^2\alpha-\cos^2\alpha .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20733 ⋅ Poprawnie: 111/396 [28%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Wyznacz wysokości trójkata
ABC , w którym
a=48
Podaj długość najkrótszej z wysokości tego trójkąta.
Odpowiedź:
Podpunkt 6.2 (1 pkt)
Podaj długość najdłuższej z wysokości tego trójkąta.
Odpowiedź:
Zadanie 7. 2 pkt ⋅ Numer: pp-20269 ⋅ Poprawnie: 157/403 [38%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Kąt
\alpha jest ostry oraz
\cos\alpha=\frac{5}{6} .
Oblicz średnią
arytmetyczną liczb a=\sin\alpha ,
b=\frac{1}{2} i
c=\frac{1}{3}\tan\alpha .
Odpowiedź:
Zadanie 8. 2 pkt ⋅ Numer: pp-20729 ⋅ Poprawnie: 73/305 [23%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
» Cięciwa
AB jest średnicą okręgu na rysunku:
Oblicz \tan\sphericalangle ABM .
Dane
|AP|=9
|PB|=4
Odpowiedź:
Podpunkt 8.2 (1 pkt)
Oblicz
\sin\sphericalangle MAB .
Odpowiedź:
Zadanie 9. 2 pkt ⋅ Numer: pp-20266 ⋅ Poprawnie: 81/242 [33%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
» Wiedząc, że
\tan\alpha=\frac{2}{11} , oblicz wartość wyrażenia
w=
\frac{3\sin\alpha\cos\alpha-2\sin^2\alpha}
{7\cos^2\alpha-3\sin\alpha\cos\alpha}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20734 ⋅ Poprawnie: 189/288 [65%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Kąt
\alpha jest ostry oraz
\sin\alpha=\frac{17}{145} .
Oblicz \cos\alpha .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 2 pkt ⋅ Numer: pp-20277 ⋅ Poprawnie: 57/94 [60%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
» Kąt ostry
\alpha spełnia równanie
\sin\alpha+\cos\alpha=\frac{\sqrt{7}}{2} .
Oblicz (\sin\alpha-\cos\alpha)^2
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 4 pkt ⋅ Numer: pp-30303 ⋅ Poprawnie: 54/248 [21%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
« Kąt
\alpha jest rozwarty i spełnia warunek
\sin\alpha+\cos\alpha=\frac{161}{181} .
Oblicz \sin\alpha-\cos\alpha .
Odpowiedź:
Podpunkt 12.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż