Podgląd testu : lo2@sp-09-trygonom-1-pp-6
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10620 ⋅ Poprawnie: 473/663 [71%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Kąt
\alpha jest kątem ostrym i
\tan \alpha=\frac{15}{17}.
Wówczas:
Odpowiedzi:
|
A. \alpha\in(49^{\circ},53^{\circ})
|
B. \alpha\in(39^{\circ},43^{\circ})
|
|
C. \alpha\in(35^{\circ},39^{\circ})
|
D. \alpha\in(43^{\circ},49^{\circ})
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10676 ⋅ Poprawnie: 258/353 [73%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
« Dany jest trójkąt prostokątny o kątach ostrych
\alpha
i
\beta, w którym
\sin\alpha=\frac{\sqrt{55}}{11}.
Oblicz \cot \beta.
Odpowiedź:
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10660 ⋅ Poprawnie: 145/192 [75%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
» W trapezie prostokątnym
ABCD długość
ramienia
BC jest dwa razy większa od różnicy
długości jego podstaw.
Wyznacz miarę stopniową kąta ABC.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10622 ⋅ Poprawnie: 333/543 [61%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Kąt
\alpha należy do przedziału
(90^{\circ},180^{\circ}) i zachodzi równość
\cos\alpha=-\frac{1}{9}.
Oblicz \tan\alpha.
Odpowiedź:
\tan\alpha=
\cdot√
(wpisz dwie liczby całkowite)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10615 ⋅ Poprawnie: 609/917 [66%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
a=5
b=6
« Kąt
\alpha jest ostry i
\sin\alpha=\frac{\sqrt{5}}{6}.
Oblicz wartość wyrażenia 2\cos^2{\alpha}-1.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20731 ⋅ Poprawnie: 132/387 [34%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
Czworokąt
ABCD na rysunku jest trapezem,
a czworokąt
EFCD prostokątem. Wiadomo, że
\alpha=150^{\circ},
\beta=135^{\circ} i
h=9.
Oblicz obwód czworokąta ABCD.
Odpowiedź:
L_{ABCD}=
(liczba zapisana dziesiętnie)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20254 ⋅ Poprawnie: 106/199 [53%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
Kąt
\beta jest ostry. Oblicz wartość wyrażenia
\sin^2\beta-3\cos^2\beta.
Dane
\sin\beta=\frac{\sqrt{3}}{7}=0.24743582965270
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20740 ⋅ Poprawnie: 46/387 [11%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
« Dany jest trójkąt:
Oblicz |AC|. Do obliczeń użyj przybliżeń wartości
funkcji trygonometrycznych z dokładnością do dwóch miejsc po przecinku.
Dane
\alpha=40^{\circ}
\beta=108^{\circ}
h=14
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Oblicz
|AB|. Do obliczeń użyj przybliżeń wartości
funkcji trygonometrycznych z dokładnością do dwóch miejsc po przecinku.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20263 ⋅ Poprawnie: 71/142 [50%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
« Podaj wartość
\tan\alpha wiedząc, że
\frac{-3\sin\alpha -3\cos\alpha+1}{3\sin\alpha-7\cos\alpha-4}=-\frac{1}{4}
:
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 10. 2 pkt ⋅ Numer: pp-20739 ⋅ Poprawnie: 78/415 [18%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Kąt
\alpha spełnia warunek
\alpha\in(90^{\circ},180^{\circ}) oraz
\sin\alpha=\frac{\sqrt{161}}{23}.
Oblicz \cos\alpha.
Odpowiedź:
Podpunkt 10.2 (1 pkt)
Odpowiedź:
|
Zadanie 11. 2 pkt ⋅ Numer: pp-20743 ⋅ Poprawnie: 73/122 [59%] |
Rozwiąż |
Podpunkt 11.1 (2 pkt)
«« Kąt
\alpha jest kątem ostrym oraz zachodzi
równość
6\cos^2\alpha+10\sin^2\alpha=9.
Wyznacz wartość wyrażenia w=(\tan\alpha+\cot\alpha)^2.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 12. 4 pkt ⋅ Numer: pp-30303 ⋅ Poprawnie: 47/221 [21%] |
Rozwiąż |
Podpunkt 12.1 (2 pkt)
« Kąt
\alpha jest rozwarty i spełnia warunek
\sin\alpha+\cos\alpha=\frac{49}{61}.
Oblicz \sin\alpha-\cos\alpha.
Odpowiedź:
Podpunkt 12.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)