Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-10624 ⋅ Poprawnie: 268/420 [63%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Pod jakim kątem \alpha padają na powierzchnię Ziemi promienie słoneczne, jeśli długość cienia stojącego człowieka jest 4 razy mniejsza od jego wzrostu?

Oblicz miarę stopniową kąta \alpha. Podaj wynik zaokrąglony do całych stopni.

Odpowiedź:
\alpha\ [^{\circ}]= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10676 ⋅ Poprawnie: 261/358 [72%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Dany jest trójkąt prostokątny o kątach ostrych \alpha i \beta, w którym \sin\alpha=\frac{2\sqrt{13}}{13}.

Oblicz \cot \beta.

Odpowiedź:
\cot\beta= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10662 ⋅ Poprawnie: 350/486 [72%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Zapisz obwód trójkąta ABC w postaci p\cdot a:

Podaj p.

Odpowiedź:
p= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10618 ⋅ Poprawnie: 415/627 [66%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Kąt \alpha jest ostry i \sin\alpha=\frac{\sqrt{3}}{6}.

Oblicz wartość wyrażenia \cos^2\alpha-2.

Odpowiedź:
\cos^2\alpha-2=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10615 ⋅ Poprawnie: 613/923 [66%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 a=3 b=10 « Kąt \alpha jest ostry i \sin\alpha=\frac{\sqrt{3}}{10}.

Oblicz wartość wyrażenia 2\cos^2{\alpha}-1.

Odpowiedź:
2\cos^2\alpha-1=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20259 ⋅ Poprawnie: 168/279 [60%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Oblicz x-y, gdy x=\sin^4{45^{\circ}}-\cos^4{45^{\circ}}, y=1-4\sin^2{45^{\circ}}\cdot \cos^2{45^{\circ}}.
Odpowiedź:
x-y= (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20254 ⋅ Poprawnie: 107/202 [52%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Kąt \beta jest ostry. Oblicz wartość wyrażenia \sin^2\beta-3\cos^2\beta.
Dane
\sin\beta=\frac{\sqrt{3}}{5}=0.34641016151378
Odpowiedź:
\sin^2\beta-3\cos^2\beta=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20289 ⋅ Poprawnie: 198/416 [47%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Przyprostokątne trójkąta mają długości 4 i 9, a jeden z kątów ostrych tego trójkąta ma miarę \beta.

Oblicz \sin\beta\cdot \cos\beta.

Odpowiedź:
\sin\beta\cdot\cos\beta=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20268 ⋅ Poprawnie: 35/90 [38%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Dla pewnego kąta \alpha\in\langle 0,90^{\circ}) funkcje trygonometryczne sinus i cosinus mają wartości \sin\alpha=x-\frac{1}{3} i \cos\alpha=x+\frac{1}{3}.

Oblicz \tan\alpha.

Odpowiedź:
\tan\alpha= (liczba zapisana dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pp-20261 ⋅ Poprawnie: 46/99 [46%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Kąty \alpha i \beta są kątami ostrymi w pewnym trójkącie prostokątnym oraz \sin\alpha+\sin\beta=\frac{2\sqrt{10}}{5}.

Oblicz \sin\alpha\cdot \sin\beta.

Odpowiedź:
\sin\alpha\cdot\sin\beta=
(wpisz dwie liczby całkowite)
Zadanie 11.  2 pkt ⋅ Numer: pp-20743 ⋅ Poprawnie: 73/124 [58%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 «« Kąt \alpha jest kątem ostrym oraz zachodzi równość 5\cos^2\alpha+9\sin^2\alpha=8.

Wyznacz wartość wyrażenia w=(\tan\alpha+\cot\alpha)^2.

Odpowiedź:
(\tan\alpha+\cot\alpha)^2=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30303 ⋅ Poprawnie: 54/248 [21%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Kąt \alpha jest rozwarty i spełnia warunek \sin\alpha+\cos\alpha=\frac{7}{17}.

Oblicz \sin\alpha-\cos\alpha.

Odpowiedź:
\sin\alpha-\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Oblicz \tan\alpha.
Odpowiedź:
\tan\alpha=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm