Podgląd testu : lo2@sp-09-trygonom-1-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-10631 ⋅ Poprawnie: 368/645 [57%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wiadomo, że kąt
\alpha jest ostry oraz
\sin\alpha=\frac{\sqrt{10}}{10} .
Oblicz wartość wyrażenia \sin \alpha-\cos\alpha .
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-10646 ⋅ Poprawnie: 148/276 [53%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Na płaszczyźnie dane są punkty
A=\left(8\sqrt{6},24\sqrt{2}\right) ,
B=\left(0,0\right) i
C=\left(8\sqrt{6},0\right) .
Kąt BAC ma miarę:
Odpowiedzi:
A. 30^{\circ}
B. około 55^{\circ}
C. 60^{\circ}
D. 75^{\circ}
Zadanie 3. 1 pkt ⋅ Numer: pp-10674 ⋅ Poprawnie: 264/697 [37%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Przekątna równoległoboku o kącie ostrym
\alpha o mierze
60^{\circ} i wysokości o długości
14\sqrt{3} , tworzy kąt prosty z jego bokiem.
Oblicz obwód tego równoległoboku.
Odpowiedź:
L=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-10642 ⋅ Poprawnie: 318/545 [58%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Kąt
\alpha jest ostry oraz
3\sin\alpha-\sqrt{5}\cos\alpha=0 .
Oblicz \tan\alpha .
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-10633 ⋅ Poprawnie: 65/88 [73%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Oblicz wartość wyrażenia
\log{\tan 35^{\circ}}+\log{\tan 45^{\circ}}+\log{\tan 55^{\circ}}
.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20259 ⋅ Poprawnie: 165/275 [60%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Oblicz
x-y , gdy
x=\sin^4{45^{\circ}}-\cos^4{45^{\circ}} ,
y=1-4\sin^2{45^{\circ}}\cdot \cos^2{45^{\circ}} .
Odpowiedź:
x-y=
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pp-20727 ⋅ Poprawnie: 57/172 [33%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Przekątne prostokąta maja długość
d i
przecinają się pod kątem o mierze
\alpha .
Oblicz odległość wierzchołka prostokąta od przekątnej, do której wierzchołek
ten nie należy (funkcję trygonometryczną kąta przyjmij z dokładnością do
trzech miejsc po przecinku).
Dane
d=16
\alpha=43^{\circ}
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 2 pkt ⋅ Numer: pp-20275 ⋅ Poprawnie: 63/130 [48%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Kąty
\alpha i
\beta
są kątami ostrymi w trójkącie prostokątnym.
Oblicz \tan\alpha\cdot \sin\beta .
Dane
\cos\alpha=\frac{4}{5}=0.80000000000000
Odpowiedź:
Zadanie 9. 2 pkt ⋅ Numer: pp-20265 ⋅ Poprawnie: 72/142 [50%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
» Oblicz
\tan\alpha wiedząc, że
13\sin^2\alpha+19\cos^2\alpha=18 i
\alpha\in(0^{\circ},90^{\circ}) .
Odpowiedź:
Zadanie 10. 2 pkt ⋅ Numer: pp-20736 ⋅ Poprawnie: 27/89 [30%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Kąt
\alpha spełnia warunek
\alpha\in(0^{\circ},90^{\circ})\cup(90^{\circ},180^{\circ})
oraz
\sin\alpha=\frac{\sqrt{7}}{4} .
Wyznacz najmniejszą wartość wyrażenia
\cos\alpha+\tan\alpha .
Odpowiedź:
Podpunkt 10.2 (1 pkt)
Wyznacz największą wartość wyrażenia
\cos\alpha+\tan\alpha .
Odpowiedź:
Zadanie 11. 2 pkt ⋅ Numer: pp-20276 ⋅ Poprawnie: 120/218 [55%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
« O kącie
\alpha wiadomo, że jest ostry i
\sin\alpha=\frac{1}{4} .
Oblicz wartość wyrażenia 2\tan^2\alpha+1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 4 pkt ⋅ Numer: pp-30303 ⋅ Poprawnie: 47/221 [21%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
« Kąt
\alpha jest rozwarty i spełnia warunek
\sin\alpha+\cos\alpha=\frac{49}{61} .
Oblicz \sin\alpha-\cos\alpha .
Odpowiedź:
Podpunkt 12.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż