Podgląd testu : lo2@sp-09-trygonom-1-pp-6
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10637 ⋅ Poprawnie: 840/1239 [67%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Drabinę o długości
5 metrów oparto o pionowy mur,
a jej podstawę umieszczono w odległości
2 metrów od
tego muru.
Kąt \alpha, pod jakim ustawiono drabinę,
spełnia warunek:
Odpowiedzi:
|
A. 60^{\circ}\lessdot \alpha&\lessdot90^{\circ}
|
B. 30^{\circ}\lessdot \alpha&\lessdot45^{\circ}
|
|
C. 45^{\circ}\lessdot \alpha&\lessdot60^{\circ}
|
D. 0^{\circ}\lessdot \alpha&\lessdot30^{\circ}
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11539 ⋅ Poprawnie: 343/414 [82%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Punkt
A zaznaczony na rysunku ma współrzędne
A=(-7,6):
Oblicz tangens kąta
\alpha zaznaczonego na rysunku.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10662 ⋅ Poprawnie: 341/475 [71%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Zapisz obwód trójkąta
ABC w postaci
p\cdot a:
Podaj p.
Odpowiedź:
p=
+
\cdot
√
(wpisz trzy liczby całkowite)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10611 ⋅ Poprawnie: 234/474 [49%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Kąt
\alpha jest ostry oraz
\tan\alpha=\frac{5}{2}.
Oblicz wartość wyrażenia \frac{2-\cos\alpha}{2+\cos\alpha}.
Odpowiedź:
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11538 ⋅ Poprawnie: 199/351 [56%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Kąt
\alpha jest ostry i spełnia warunek
\sin\alpha=\frac{2}{7}.
Oblicz wartość wyrażenia
\sin^2\alpha-\cos^2\alpha.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20259 ⋅ Poprawnie: 165/275 [60%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
Oblicz
x-y, gdy
x=\sin^4{60^{\circ}}-\cos^4{60^{\circ}},
y=1-4\sin^2{60^{\circ}}\cdot \cos^2{60^{\circ}}.
Odpowiedź:
x-y=
(liczba zapisana dziesiętnie)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20256 ⋅ Poprawnie: 32/111 [28%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
« Kąt
\alpha jest ostry oraz
\tan\alpha+64\cot\alpha=16.
Oblicz wartość wyrażenia \sin\alpha\cdot \cos\alpha.
Odpowiedź:
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20289 ⋅ Poprawnie: 197/415 [47%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
« Przyprostokątne trójkąta mają długości
4 i
9, a jeden z kątów ostrych tego trójkąta ma miarę
\beta.
Oblicz \sin\beta\cdot \cos\beta.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20253 ⋅ Poprawnie: 38/89 [42%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
« Wiadomo, że
x=\sin{80^{\circ}}. Wyraź za pomocą
x wyrażenie
2\tan^{2}{80^{\circ}}+2 i
zapisz je w postaci nieskracalnego ułamka.
Podaj licznik tego ułamka.
Odpowiedź:
licznik=
(wpisz liczbę całkowitą)
|
Zadanie 10. 2 pkt ⋅ Numer: pp-20271 ⋅ Poprawnie: 40/104 [38%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
« Kąt
\alpha jest ostry i spełnia równość
\frac{3}{\sin^2\alpha}+\frac{3}{\cos^2\alpha}=27
.
Oblicz wartość wyrażenia \sin\alpha\cdot \cos\alpha.
Odpowiedź:
|
Zadanie 11. 2 pkt ⋅ Numer: pp-20277 ⋅ Poprawnie: 52/86 [60%] |
Rozwiąż |
Podpunkt 11.1 (2 pkt)
» Kąt ostry
\alpha spełnia równanie
\sin\alpha+\cos\alpha=\frac{\sqrt{7}}{2}.
Oblicz (\sin\alpha-\cos\alpha)^2
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 12. 4 pkt ⋅ Numer: pp-30303 ⋅ Poprawnie: 47/221 [21%] |
Rozwiąż |
Podpunkt 12.1 (2 pkt)
« Kąt
\alpha jest rozwarty i spełnia warunek
\sin\alpha+\cos\alpha=\frac{7}{97}.
Oblicz \sin\alpha-\cos\alpha.
Odpowiedź:
Podpunkt 12.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)