Podgląd testu : lo2@sp-09-trygonom-1-pp-6
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10614 ⋅ Poprawnie: 684/1059 [64%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
« Kąt
\alpha jest kątem ostrym oraz
\tan\alpha=\frac{3}{8}.
Oblicz wartość wyrażenia
w=\frac{3\cos\alpha-2\sin\alpha}{\sin\alpha-5\cos\alpha}.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10652 ⋅ Poprawnie: 488/629 [77%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
W trójkącie prostokątnym długość jednej z przyprostokątnych jest równa
7, zaś długość przeciwprostokątnej jest równa
8.
Oblicz tangens mniejszego kąta ostrego w tym trójkącie.
Odpowiedź:
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10616 ⋅ Poprawnie: 365/597 [61%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Oblicz wartośc wyrażenia
w=
\tan^{2}30^{\circ}-\sin 60^{\circ}\cdot \cos 45^{\circ}-\sin 30^{\circ}\cdot \tan 30^{\circ}
.
Odpowiedź:
w=
(liczba zapisana dziesiętnie)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10618 ⋅ Poprawnie: 415/624 [66%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Kąt
\alpha jest ostry i
\sin\alpha=\frac{\sqrt{3}}{4}.
Oblicz wartość wyrażenia \cos^2\alpha-2.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10615 ⋅ Poprawnie: 609/917 [66%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
a=3
b=10
« Kąt
\alpha jest ostry i
\sin\alpha=\frac{\sqrt{3}}{10}.
Oblicz wartość wyrażenia 2\cos^2{\alpha}-1.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20259 ⋅ Poprawnie: 165/275 [60%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
Oblicz
x-y, gdy
x=\sin^4{30^{\circ}}-\cos^4{30^{\circ}},
y=1-4\sin^2{30^{\circ}}\cdot \cos^2{30^{\circ}}.
Odpowiedź:
x-y=
(liczba zapisana dziesiętnie)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20274 ⋅ Poprawnie: 195/446 [43%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
Kąt
\alpha jest ostry. Oblicz wartość wyrażenia
2+\sin^3\alpha+\sin\alpha\cdot \cos^2\alpha.
Dane
\cos\alpha=\frac{\sqrt{3}}{7}=0.24743582965270
Odpowiedź:
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20747 ⋅ Poprawnie: 35/99 [35%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
« W prostokątnym trójkącie
ABC na
przeciwprostokątnej
AB wybrano punkt
D, a na przyprostokątnej
BC punkt
E w taki sposób,
że
DE||AC.
Wyznacz tangens kąta ECD.
Dane
|AC|=12
|BE|=9
|CE|=6
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20265 ⋅ Poprawnie: 72/142 [50%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
» Oblicz
\tan\alpha wiedząc, że
6\sin^2\alpha+21\cos^2\alpha=16 i
\alpha\in(0^{\circ},90^{\circ}).
Odpowiedź:
|
Zadanie 10. 2 pkt ⋅ Numer: pp-20735 ⋅ Poprawnie: 86/280 [30%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
« Kąt
\alpha spełnia warunek
\alpha\in(90^{\circ},180^{\circ}) oraz
\tan\alpha=-\frac{3}{4}.
Oblicz \sin\alpha.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 11. 2 pkt ⋅ Numer: pp-20743 ⋅ Poprawnie: 73/122 [59%] |
Rozwiąż |
Podpunkt 11.1 (2 pkt)
«« Kąt
\alpha jest kątem ostrym oraz zachodzi
równość
5\cos^2\alpha+9\sin^2\alpha=8.
Wyznacz wartość wyrażenia w=(\tan\alpha+\cot\alpha)^2.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 12. 4 pkt ⋅ Numer: pp-30303 ⋅ Poprawnie: 47/221 [21%] |
Rozwiąż |
Podpunkt 12.1 (2 pkt)
« Kąt
\alpha jest rozwarty i spełnia warunek
\sin\alpha+\cos\alpha=\frac{1}{5}.
Oblicz \sin\alpha-\cos\alpha.
Odpowiedź:
Podpunkt 12.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)