Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-10613 ⋅ Poprawnie: 435/649 [67%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Wiadomo, że kąt \alpha jest ostry oraz \tan\alpha=\frac{3}{5}.

Oblicz wartość wyrażenia \sin\alpha+\cos\alpha.

Odpowiedź:
\sin\alpha+\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10661 ⋅ Poprawnie: 340/461 [73%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Przeciwprostokątna AB trójkąta ABC ma długość \frac{53}{2}, a \cos \sphericalangle B=\frac{28}{53}.

Oblicz długość przyprostokątnej BC tego trójkąta.

Odpowiedź:
|BC|=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10660 ⋅ Poprawnie: 153/205 [74%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
» W trapezie prostokątnym ABCD długość ramienia BC jest dwa razy większa od różnicy długości jego podstaw.

Wyznacz miarę stopniową kąta ABC.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 4.  1 pkt ⋅ Numer: pp-11507 ⋅ Poprawnie: 419/996 [42%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Kąt \alpha jest ostry oraz \tan\alpha=\frac{\sqrt{110}}{21}.

Oblicz wartość wyrażenia \frac{2\sin\alpha-\cos\alpha}{\cos\alpha+2\sin\alpha}.

Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz cztery liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11538 ⋅ Poprawnie: 200/356 [56%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Kąt \alpha jest ostry i spełnia warunek \sin\alpha=\frac{5}{7}. Oblicz wartość wyrażenia \sin^2\alpha-\cos^2\alpha.
Odpowiedź:
\sin^2\alpha-\cos^2\alpha=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20259 ⋅ Poprawnie: 168/279 [60%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Oblicz x-y, gdy x=\sin^4{60^{\circ}}-\cos^4{60^{\circ}}, y=1-4\sin^2{60^{\circ}}\cdot \cos^2{60^{\circ}}.
Odpowiedź:
x-y= (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20728 ⋅ Poprawnie: 52/129 [40%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 W równoległoboku dany jest sinus kąta ostrego \alpha oraz wysokość h opuszczona na dłuższy bok tego równoległoboku. Stosunek długości sąsiednich boków tego równoległoboku wynosi k.

Oblicz długość obwodu tego równoległoboku.

Dane
\sin\alpha=\frac{1}{2}=0.50000000000000
h=16
k=\frac{5}{2}=2.50000000000000
Odpowiedź:
L=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20278 ⋅ Poprawnie: 34/164 [20%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 W trójkącie prostokątnym ABC o przeciwprostokątnej AB kąt CAB ma miarę \alpha.

Oblicz pole koła opisanego na tym trójkącie.

Dane
\sin\alpha=\frac{13}{15}=0.86666666666667
|AC|=5
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pp-20266 ⋅ Poprawnie: 81/242 [33%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » Wiedząc, że \tan\alpha=\frac{2}{11}, oblicz wartość wyrażenia w= \frac{3\sin\alpha\cos\alpha-2\sin^2\alpha} {7\cos^2\alpha-3\sin\alpha\cos\alpha} .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20742 ⋅ Poprawnie: 24/97 [24%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 «« Kąt \alpha jest kątem rozwartym oraz \sin\alpha=\frac{\sqrt{3}}{2}.

Wyznacz rozwiązanie równania (x-6)\cos^2\alpha=x+\tan\alpha-5 .

Odpowiedź:
x= (liczba zapisana dziesiętnie)
Zadanie 11.  2 pkt ⋅ Numer: pp-20864 ⋅ Poprawnie: 94/201 [46%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 (2 pkt) Kąt \alpha jest ostry i spełnia warunek \tan\alpha=9.

Oblicz wartość wyrażenia \frac{8\sin\alpha-2\cos\alpha}{4\cos\alpha-2\sin\alpha}.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30303 ⋅ Poprawnie: 54/248 [21%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Kąt \alpha jest rozwarty i spełnia warunek \sin\alpha+\cos\alpha=\frac{161}{181}.

Oblicz \sin\alpha-\cos\alpha.

Odpowiedź:
\sin\alpha-\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Oblicz \tan\alpha.
Odpowiedź:
\tan\alpha=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm