Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-10621 ⋅ Poprawnie: 316/544 [58%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wiadomo, że \alpha=53^{\circ} oraz \cos\alpha=x.

Zatem \cos 37^{\circ} jest równe:

Odpowiedzi:
A. \sqrt{1-x} B. \sqrt{1-x^2}
C. 1+x^2 D. 1-x^2
Zadanie 2.  1 pkt ⋅ Numer: pp-10661 ⋅ Poprawnie: 340/461 [73%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Przeciwprostokątna AB trójkąta ABC ma długość 26, a \cos \sphericalangle B=\frac{12}{13}.

Oblicz długość przyprostokątnej BC tego trójkąta.

Odpowiedź:
|BC|=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10674 ⋅ Poprawnie: 266/707 [37%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Przekątna równoległoboku o kącie ostrym \alpha o mierze 60^{\circ} i wysokości o długości 18\sqrt{3}, tworzy kąt prosty z jego bokiem.

Oblicz obwód tego równoległoboku.

Odpowiedź:
L= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10623 ⋅ Poprawnie: 114/183 [62%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Wiadomo, że \alpha i \beta są miarami kątów ostrych trójkąta prostokątnego oraz 49\sin^2\alpha+\cos^2\beta=1.

Oblicz \tan\alpha.

Odpowiedź:
\tan\alpha=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10630 ⋅ Poprawnie: 198/462 [42%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Kąty \alpha i \beta trójkata prostokątnego są ostre. Wówczas wyrażenie \frac{4\cos\alpha\cdot (5-5\sin^2\beta)\cdot \tan\alpha} {6\sin^2\alpha\cdot \cos\beta} jest równe:
Odpowiedzi:
A. \frac{10}{3} B. \frac{10}{3}\tan\alpha
C. \frac{10}{3}\cos\alpha D. \frac{2}{3}\sin\alpha
Zadanie 6.  2 pkt ⋅ Numer: pp-20741 ⋅ Poprawnie: 92/251 [36%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Oblicz wartość wyrażenia w= (\tan{45^{\circ}}-\sin{30^{\circ}})(\cot{45^{\circ}}-\cos{60^{\circ}}) .
Odpowiedź:
w= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20256 ⋅ Poprawnie: 32/112 [28%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Kąt \alpha jest ostry oraz \tan\alpha+25\cot\alpha=10.

Oblicz wartość wyrażenia \sin\alpha\cdot \cos\alpha.

Odpowiedź:
\sin\alpha\cdot\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20730 ⋅ Poprawnie: 107/257 [41%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Czworokąt na rysunku jest rombem o obwodzie długości L:

Oblicz \cos\alpha.

Dane
L=180
|DB|=54
Odpowiedź:
\cos\alpha=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Oblicz \tan\beta.
Odpowiedź:
\tan\beta= \cdot
(wpisz trzy liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20265 ⋅ Poprawnie: 73/144 [50%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » Oblicz \tan\alpha wiedząc, że 4\sin^2\alpha+13\cos^2\alpha=10 i \alpha\in(0^{\circ},90^{\circ}).
Odpowiedź:
\tan\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20742 ⋅ Poprawnie: 24/97 [24%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 «« Kąt \alpha jest kątem rozwartym oraz \sin\alpha=\frac{1}{2}.

Wyznacz rozwiązanie równania (x-1)\cos^2\alpha=x+\tan\alpha .

Odpowiedź:
x= (liczba zapisana dziesiętnie)
Zadanie 11.  2 pkt ⋅ Numer: pp-20864 ⋅ Poprawnie: 94/201 [46%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 (2 pkt) Kąt \alpha jest ostry i spełnia warunek \tan\alpha=5.

Oblicz wartość wyrażenia \frac{10\sin\alpha+5\cos\alpha}{11\cos\alpha-2\sin\alpha}.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30303 ⋅ Poprawnie: 54/248 [21%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Kąt \alpha jest rozwarty i spełnia warunek \sin\alpha+\cos\alpha=\frac{1}{5}.

Oblicz \sin\alpha-\cos\alpha.

Odpowiedź:
\sin\alpha-\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Oblicz \tan\alpha.
Odpowiedź:
\tan\alpha=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm