Podgląd testu : lo2@sp-09-trygonom-1-pp-6
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10671 ⋅ Poprawnie: 254/401 [63%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
« W trójkącie prostokątnym przyprostokątne mają długość
4\sqrt{5} i
5.
Oblicz cosinus tego kąta ostrego, którego cosinus jest mniejszy.
Odpowiedź:
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10650 ⋅ Poprawnie: 268/375 [71%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Oblicz tangens najmiejszego kąta w trójkącie prostokątnym o bokach długości
\frac{13}{2},
42,
\frac{85}{2}.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10660 ⋅ Poprawnie: 145/192 [75%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
» W trapezie prostokątnym
ABCD długość
ramienia
BC jest dwa razy większa od różnicy
długości jego podstaw.
Wyznacz miarę stopniową kąta ABC.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10634 ⋅ Poprawnie: 283/501 [56%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
« Kąt
\alpha należy do przedziału
(90^{\circ},180^{\circ}) i zachodzi równość
11\cos^2\alpha-7=\frac{8}{11}.
Oblicz
\sin\alpha.
Odpowiedź:
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10633 ⋅ Poprawnie: 65/88 [73%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
« Oblicz wartość wyrażenia
\log{\tan 35^{\circ}}+\log{\tan 45^{\circ}}+\log{\tan 55^{\circ}}
.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20732 ⋅ Poprawnie: 176/451 [39%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
» Dany jest czworokąt, w którym
\alpha=30^{\circ},
\beta=60^{\circ} i
|DB|=8:
Oblicz długość obwodu czworokąta ABCD.
Odpowiedź:
L_{ABCD}=
(liczba zapisana dziesiętnie)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20257 ⋅ Poprawnie: 69/146 [47%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
» Kąt
\beta jest ostry oraz
\tan\beta=\frac{15}{112}. Oblicz
\sin\beta+\cos\beta.
Odpowiedź:
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20747 ⋅ Poprawnie: 35/99 [35%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
« W prostokątnym trójkącie
ABC na
przeciwprostokątnej
AB wybrano punkt
D, a na przyprostokątnej
BC punkt
E w taki sposób,
że
DE||AC.
Wyznacz tangens kąta ECD.
Dane
|AC|=22
|BE|=9
|CE|=6
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20266 ⋅ Poprawnie: 80/240 [33%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
» Wiedząc, że
\tan\alpha=\frac{2}{7}, oblicz wartość wyrażenia
w=
\frac{3\sin\alpha\cos\alpha-2\sin^2\alpha}
{7\cos^2\alpha-3\sin\alpha\cos\alpha}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 10. 2 pkt ⋅ Numer: pp-20737 ⋅ Poprawnie: 171/260 [65%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Kąt
\alpha jest ostry oraz
\tan\alpha=\frac{112}{15}.
Oblicz \sin\alpha.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 11. 2 pkt ⋅ Numer: pp-20277 ⋅ Poprawnie: 52/86 [60%] |
Rozwiąż |
Podpunkt 11.1 (2 pkt)
» Kąt ostry
\alpha spełnia równanie
\sin\alpha+\cos\alpha=\frac{\sqrt{7}}{2}.
Oblicz (\sin\alpha-\cos\alpha)^2
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 12. 4 pkt ⋅ Numer: pp-30303 ⋅ Poprawnie: 47/221 [21%] |
Rozwiąż |
Podpunkt 12.1 (2 pkt)
« Kąt
\alpha jest rozwarty i spełnia warunek
\sin\alpha+\cos\alpha=\frac{127}{145}.
Oblicz \sin\alpha-\cos\alpha.
Odpowiedź:
Podpunkt 12.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)