Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-10-funkcje-przeksz-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10778 ⋅ Poprawnie: 649/848 [76%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Dany jest wykres funkcji y=f(x).

Aby otrzymać wykres funkcji g(x)=f(x-5)+4 wykres funkcji f należy przesunąć o wektor o współrzędnych \vec{u}=[p, q].

Podaj współrzędne p i q.

Odpowiedzi:
p= (wpisz liczbę zapisaną dziesiętnie)
q= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pp-11753 ⋅ Poprawnie: 45/49 [91%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wykres funkcji g(x)=5\sqrt{x-4}+5 można otrzymać przesuwając wykres funkcji f(x)=5\sqrt{x} o wektor \vec{u}=[p,q].

Podaj współrzędne wektora p i q.

Odpowiedzi:
p= (wpisz liczbę zapisaną dziesiętnie)
q= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10789 ⋅ Poprawnie: 737/1126 [65%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Na rysunku przedstawiono wykresy dwóch funkcji y=f(x) oraz y=g(x):
Funkcja g określona jest wzorem:
Odpowiedzi:
A. g(x)=f(x-2)+3 B. g(x)=f(x+3)-2
C. g(x)=f(x-2)-3 D. g(x)=f(x+2)+3
Zadanie 4.  1 pkt ⋅ Numer: pp-10769 ⋅ Poprawnie: 327/539 [60%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Na rysunku przedstawiony jest wykres funkcji y=f(x).

Które z równań ma dokładnie trzy rozwiązania:

Odpowiedzi:
A. f(x+5)+4=0 B. f(x+3)=-3
C. f(x-4)=-1 D. f(x-4)=4
Zadanie 5.  1 pkt ⋅ Numer: pp-10773 ⋅ Poprawnie: 363/520 [69%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Na rysunku przedstawiono wykresy dwóch funkcji y=f(x) oraz y=g(x):
Funkcja f określona jest wzorem:
Odpowiedzi:
A. f(x)=g(x)+2 B. f(x)=g(x+2)
C. f(x)=g(x)-2 D. f(x)=g(x-2)
Zadanie 6.  1 pkt ⋅ Numer: pp-10765 ⋅ Poprawnie: 450/659 [68%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Na rysunkach przedstawiono wykresy dwóch funkcji y=f(x) oraz y=g(x):
Funkcja f określona jest wzorem:
Odpowiedzi:
A. f(x)=g(x+1) B. f(x)=g(x-1)-1
C. f(x)=g(x-1) D. f(x)=g(x)+1
E. f(x)=g(x-1)+1 F. f(x)=g(x)-1
Zadanie 7.  1 pkt ⋅ Numer: pp-11746 ⋅ Poprawnie: 26/37 [70%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wykres funkcji f(x)=3x+3 przesunięto o wektor \vec{u}=[4,5] i otrzymano wykres funkcji określonej wzorem g(x)=bx+c.

Podaj liczby b i c.

Odpowiedzi:
b= (wpisz liczbę zapisaną dziesiętnie)
c= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 8.  1 pkt ⋅ Numer: pp-11398 ⋅ Poprawnie: 266/499 [53%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « O funkcji f wiadomo, że D_f=\langle 5,7\rangle oraz ZW_f=\langle 4,+\infty). O funkcji g wiadomo, że g(x)=-f(x).

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : ZW_g=(-\infty,-4) T/N : ZW_g=(-\infty,4)
T/N : D_g=\langle-7,-5\rangle  
Zadanie 9.  1 pkt ⋅ Numer: pp-10776 ⋅ Poprawnie: 205/612 [33%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
Na rysunku 1 jest przedstawiony wykres funkcji y=f(x).

Funkcja przedstawiona na rysunku 2 jest określona wzorem:

Odpowiedzi:
A. y=f(-x) B. y=f(x-1)
C. y=-f(x) D. żadnym z pozostałych wzorów
Zadanie 10.  1 pkt ⋅ Numer: pp-10785 ⋅ Poprawnie: 309/415 [74%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Na rysunkach przedstawiono wykresy dwóch funkcji y=f(x) oraz y=g(x):
Funkcja f określona jest wzorem:
Odpowiedzi:
A. f(x)=g(x)-1 B. f(x)=-g(-x)
C. f(x)=-g(x) D. f(x)=g(-x)
Zadanie 11.  1 pkt ⋅ Numer: pp-10767 ⋅ Poprawnie: 206/284 [72%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Na rysunkach przedstawiono wykresy dwóch funkcji y=f(x) oraz y=g(x):
Funkcja f określona jest wzorem:
Odpowiedzi:
A. f(x)=g(-x) B. f(x)=g(x-1)
C. f(x)=-g(-x) D. f(x)=-g(x)
Zadanie 12.  1 pkt ⋅ Numer: pp-10779 ⋅ Poprawnie: 510/662 [77%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji y=f(x):
Dziedziną funkcji y=f(-x) jest zbiór:
Odpowiedzi:
A. (-3,5) B. \langle -3,5\rangle
C. (-3,5\rangle D. \langle -5,3\rangle
Zadanie 13.  1 pkt ⋅ Numer: pp-10782 ⋅ Poprawnie: 175/318 [55%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji y=f(x), której miejscem zerowym jest liczba 1 oraz f(0)=-2:
Wskaż funkcję, której wykres jest symetryczny do tego wykresu względem osi Oy:
Odpowiedzi:
A. y=-2x-2 B. y=2x-2
C. y=-2x+2 D. y=2x+2
Zadanie 14.  1 pkt ⋅ Numer: pp-11396 ⋅ Poprawnie: 167/457 [36%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 « W wyniku przekształcenia wykresu funkcji f(x)=7x^2+4x przez symetrię względem osi Oy otrzymamo wykres funkcji określonej wzorem y=ax^2+bx.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 15.  1 pkt ⋅ Numer: pp-11399 ⋅ Poprawnie: 342/471 [72%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 « O funkcji f wiadomo, że D_f=(5,7\rangle oraz ZW_f=\langle -2,6). O funkcji g wiadomo, że g(x)=-f(-x). Wskaż, zdanie prawdziwe:
Odpowiedzi:
A. ZW_g=\langle -6,2) B. D_g=(-7,-5\rangle
C. ZW_g=\langle -2,6) D. ZW_g=(-6,2\rangle


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm