Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-10-funkcje-przeksz-pr-3

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10778  
Podpunkt 1.1 (1 pkt)
 « Dany jest wykres funkcji y=f(x).

Aby otrzymać wykres funkcji g(x)=f(x+1)-4 wykres funkcji f należy przesunąć o wektor o współrzędnych \vec{u}=[p, q].

Podaj współrzędne p i q.

Odpowiedzi:
p= (wpisz liczbę zapisaną dziesiętnie)
q= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10377  
Podpunkt 2.1 (1 pkt)
 Wykres funkcji określonej wzorem f(x)=-2(x+2)(x-1) przesunięto o wektor \vec{u}=[9,-5], w wyniku czego otrzymano wykres funkcji określonej wzorem g(x)=ax^2+bx+c.

Podaj liczby a, b i c.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
c= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10781  
Podpunkt 3.1 (1 pkt)
 « Funkcja f ma n=3 miejsc zerowych.

Ile miejsc zerowych ma funkcja określona wzorem g(x)=-f(x-2)?

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11399  
Podpunkt 4.1 (1 pkt)
 « O funkcji f wiadomo, że D_f=(-3,3\rangle oraz ZW_f=\langle -5,-1). O funkcji g wiadomo, że g(x)=-f(-x). Wskaż, zdanie prawdziwe:
Odpowiedzi:
A. ZW_g=(1,5\rangle B. D_g=(-3,3\rangle
C. ZW_g=\langle 1,5) D. ZW_g=\langle -5,-1)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10382  
Podpunkt 5.1 (1 pkt)
 Zbiorem wartości funkcji określonej wzorem y=f(x) jest przedział liczbowy \langle -6, 2\rangle, a zbiorem wartości funkcji określonej wzorem y=|f(x)| przedział \langle p,q\rangle.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20883  
Podpunkt 6.1 (1 pkt)
 Dziedziną funkcji f jest przedział D_f=\langle -6,9\rangle, a zbiorem wartości przedział ZW_f=\langle -3,10\rangle. Funkcja g określona jest wzorem g(x)=f(x+4)+1. Dziedziną funkcji g jest przedział \langle x_1, x_2\rangle.

Podaj liczby x_1 i x_2.

Odpowiedzi:
x_1= (wpisz liczbę zapisaną dziesiętnie)
x_2= (wpisz liczbę zapisaną dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Zbiorem wartości funkcji g jest przedział \langle y_1, y_2\rangle.

Podaj liczby y_1 i y_2.

Odpowiedzi:
y_1= (wpisz liczbę zapisaną dziesiętnie)
y_2= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20296  
Podpunkt 7.1 (1 pkt)
 » Dana jest funkcja f(x)=\frac{1495}{x}, gdzie x\neq 0. Jej wykres przesunięto wzdłuż osi Oy i otrzymano wykres funkcji y=g(x), do którego należy punkt B=(23,80). Wyznacz wektor tego przesunięcia \vec{u}=[u_x,u_y].

Podaj u_y.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Ile liczb naturalnych k ze zbioru \{0,1,2,3,...,156\} ma tę własność, że liczba g(k) jest całkowita?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20575  
Podpunkt 8.1 (1 pkt)
 «« Dziedziną funkcji f jest przedział (a, b), a funkcja g określona jest wzorem y=g(x)=f\left(-\frac{m}{n}x\right). Wyznacz dziedzinę funkcji g.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z tych wszystkich końców tych przedziałów, który jest liczbą.

Dane
a=-4
b=1
m=7
n=3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj największy z tych wszystkich końców tych przedziałów, który jest liczbą.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20577  
Podpunkt 9.1 (1 pkt)
 « Dziedziną funkcji f(x)=(x+1)^2-1 jest przedział \langle a, b\rangle, a funkcja g określona jest wzorem y=g(x)=-\frac{m}{n}f(x).

Wyznacz najmniejszą liczbę w zbiorze ZW_g.

Dane
a=-3
b=3
m=5
n=2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Wyznacz największą liczbę w zbiorze ZW_g.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20894  
Podpunkt 10.1 (1 pkt)
 Dziedziną funkcji f jest przedział liczbowy (-6,5), a zbiorem jej wartości przedział (-6,2). Funkcja g określona jest wzorem g(x)=-\frac{3}{4}f(x).
Dziedziną funkcji g jest zbiór D_g=(x_1,x_2).

Podaj liczby x_1 i x_2.

Odpowiedzi:
x_1= (wpisz liczbę zapisaną dziesiętnie)
x_2= (wpisz liczbę zapisaną dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Zbiorem wartości funkcji g jest zbiór ZW_g=(y_1,y_2).

Podaj liczby y_1 i y_2.

Odpowiedzi:
y_1= (wpisz liczbę zapisaną dziesiętnie)
y_2= (wpisz liczbę zapisaną dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm