Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11643 ⋅ Poprawnie: 95/193 [49%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=x^2+bx+c należą punkty o współrzędnych (0,15) i (-7,-6).

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10979 ⋅ Poprawnie: 173/317 [54%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dana jest funkcja f określona wzorem f(x)=-3(x-4)^2+2.

Wyznacz największą wartość funkcji określonej wzorem h(x)=f(x+4)-1.

Odpowiedź:
h_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11006 ⋅ Poprawnie: 345/643 [53%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Wskaż funkcję, która w przedziale (-\infty,-6) jest malejąca:
Odpowiedzi:
A. y=-(x+6)^2-8 B. y=(x+6)^2+8
C. y=(x-6)^2+8 D. y=(x-8)^2-6
E. y=(x+8)^2-6 F. y=-(x-6)^2-6
Zadanie 4.  1 pkt ⋅ Numer: pp-11056 ⋅ Poprawnie: 610/801 [76%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Parabola o wierzchołku P=(-8,12) i ramionach skierowanych w dół może być wykresem funkcji określonej wzorem:
Odpowiedzi:
A. y=(x+8)^2-12 B. y=-2(x-8)^2+12
C. y=-2(x+8)^2+12 D. y=3(x-12)^2+12
Zadanie 5.  1 pkt ⋅ Numer: pp-11082 ⋅ Poprawnie: 135/246 [54%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » W przedziale \langle -1,2\rangle funkcja y=2x^2-x-4 osiąga wartość najmniejszą równą ......... .

Podaj brakującą liczbę.

Odpowiedź:
y_{min}=
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-11001 ⋅ Poprawnie: 534/743 [71%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Jeżeli miejscami zerowymi funkcji kwadratowej są liczby -6 oraz 4, a wierzchołek paraboli będącej jej wykresem ma współrzędne (-1,-100), to wzór tej funkcji można zapisać w postaci:
Odpowiedzi:
A. f(x)=4(x+6)(x+4) B. f(x)=3(x-6)(x-4)
C. f(x)=4(x+6)(x-4) D. f(x)=4(x-6)(x-4)
Zadanie 7.  1 pkt ⋅ Numer: pp-11010 ⋅ Poprawnie: 117/231 [50%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=-(x-6)(x+4). Wyznacz maksymalny przedział, w którym funkcja ta jest rosnąca.

Podaj najmniejszy koniec liczbowy tego przedziału.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11011 ⋅ Poprawnie: 68/92 [73%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Dane są funkcje: f(x)=x^2+\frac{\sqrt{12}}{2} i g(x)=\frac{\sqrt{12}}{3}.

Wówczas, zachodzi warunek:

Odpowiedzi:
A. f(x)=g(x) B. f(x) > g(x)
C. f(x)-g(x)=x^2 D. f(x) \lessdot g(x)
Zadanie 9.  1 pkt ⋅ Numer: pp-11021 ⋅ Poprawnie: 481/648 [74%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
Wykres funkcji f(x)=-(x+3)^2-2 pokazany jest na rysunku:
Odpowiedzi:
A. A B. D
C. B D. C
Zadanie 10.  1 pkt ⋅ Numer: pp-11051 ⋅ Poprawnie: 40/78 [51%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Wykres funkcji y=x^2-4 ma dokładnie jeden punkt wspólny z prostą:
Odpowiedzi:
A. y=4x B. y=4
C. y=-4x+1 D. x=8
Zadanie 11.  1 pkt ⋅ Numer: pp-11465 ⋅ Poprawnie: 481/946 [50%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 » Najmniejszą wartość w przedziale \langle 7, 11\rangle funkcja kwadratowa f(x)=-\left(x-8\right)^{2}-5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-11080 ⋅ Poprawnie: 266/400 [66%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « Suma dwóch liczb jest równa 6\sqrt{2}, a ich iloczyn ma największą możliwą wartość.

Oblicz mniejszą z tych liczb.

Odpowiedź:
min= \cdot
(wpisz dwie liczby całkowite)
Zadanie 13.  1 pkt ⋅ Numer: pp-11058 ⋅ Poprawnie: 93/186 [50%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 « Wierzchołek paraboli będącej wykresem funkcji kwadratowej określonej wzorem y=(2x-7)^2+\frac{31}{2} należy do prostej o równaniu y=......\cdot x.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 14.  1 pkt ⋅ Numer: pp-10973 ⋅ Poprawnie: 62/115 [53%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 » Dana jest funkcja f(x)= \begin{cases} -\frac{1}{3}x-1,\qquad x\in(-\infty,-15) \\ x^2-220,\qquad x\in\langle -15,+\infty) \end{cases} . Liczba rozwiązań równania f(x)=3 jest równa:
Odpowiedzi:
A. 2 B. 3
C. 1 D. 0
Zadanie 15.  1 pkt ⋅ Numer: pp-10964 ⋅ Poprawnie: 70/115 [60%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Ile liczb całkowitych spełnia nierówność 7\pi\cdot x > 3x^2:
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm