Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11644 ⋅ Poprawnie: 33/93 [35%] Rozwiąż 
Podpunkt 1.1 (0.5 pkt)
 » Do wykresu funkcji kwadratowej określonej wzorem y=ax^2+bx+c należą punkty o współrzędnych (-2,6), (2,8) i (4,21).

Wyznacz współczynnik b.

Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
 Wyznacz współczynnik c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11430 ⋅ Poprawnie: 983/1242 [79%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wykresem funkcji kwadratowej f(x)=x^2-8x-6 jest parabola, której wierzchołkiem jest punkt o współrzędnych \left(x_w, y_w\right).

Podaj współrzędne wierzchołka paraboli x_w i y_w.

Odpowiedzi:
x_w= (wpisz liczbę całkowitą)
y_w= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10983 ⋅ Poprawnie: 303/535 [56%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wierzchołek paraboli y=x^2-12x leży na prostej o równaniu:
Odpowiedzi:
A. y=3x B. y=-6x
C. y=12x D. y=-3x
E. y=6x F. y=-12x
Zadanie 4.  1 pkt ⋅ Numer: pp-11060 ⋅ Poprawnie: 133/184 [72%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wierzchołek paraboli o równaniu y=(x-5)^2+2m-8 należy do prostej o równaniu y=5.

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11061 ⋅ Poprawnie: 96/143 [67%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Oblicz odległość wierzchołka paraboli o równaniu y=x^2+5x+\frac{9}{4} od osi Ox.
Odpowiedź:
d= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10996 ⋅ Poprawnie: 344/563 [61%] Rozwiąż 
Podpunkt 6.1 (0.2 pkt)
 Zbiór tych wszystkich wartości m, dla których funkcja kwadratowa określona wzorem f(x)=x^2+2x+m nie ma ani jednego miejsca zerowego jest przedziałem liczbowym.

Przedział ten ma postać:

Odpowiedzi:
A. \langle p, q\rangle B. (p, +\infty)
C. (p, q) D. (-\infty, p)
E. (-\infty, p\rangle F. \langle p, +\infty)
Podpunkt 6.2 (0.8 pkt)
 Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-10987 ⋅ Poprawnie: 50/92 [54%] Rozwiąż 
Podpunkt 7.1 (0.2 pkt)
 Wykres funkcji g(x)=5(m-5)+2x+x^2 nie przecina osi Ox, wtedy i tylko wtedy, gdy m należy do pewnego przedziału.

Przedział ten ma postać:

Odpowiedzi:
A. \langle p,q\rangle B. \langle p,+\infty)
C. (p,+\infty) D. (-\infty,p)
E. (-\infty,p\rangle F. (p,q)
Podpunkt 7.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11451 ⋅ Poprawnie: 160/257 [62%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wykres funkcji określonej wzorem f(x)=x^2-4 przesunięto o k=3 jednostek w prawo. W wyniku tego przesunięcia otrzymano wykres funkcji określonej wzorem y=x^2+bx+c.

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11043 ⋅ Poprawnie: 148/269 [55%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Liczba punktów wspólnych wykresu funkcji h(x)=2x^2+\frac{5}{3}x+\frac{1}{3} z osiami układu współrzędnych jest równa:
Odpowiedzi:
A. 0 B. 3
C. 2 D. 1
Zadanie 10.  1 pkt ⋅ Numer: pp-10998 ⋅ Poprawnie: 80/169 [47%] Rozwiąż 
Podpunkt 10.1 (0.2 pkt)
 «« Funkcja określona wzorem f(x)=(-6m-8)x^2+3x-14 osiąga wartość największą wtedy i tylko wtedy, gdy parametr m należy do pewnego przedziału liczbowego.

Przedział ten ma postać:

Odpowiedzi:
A. \langle p,q\rangle B. (-\infty,p\rangle
C. (p,q) D. (-\infty,p)
E. (p,+\infty) F. \langle p,+\infty)
Podpunkt 10.2 (0.8 pkt)
 Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-10985 ⋅ Poprawnie: 217/329 [65%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Dana jest funkcja g(x)=-\frac{1}{3}(x+6)x, gdzie x\in\langle -6,-3\rangle.

Wyznacz f_{min}.

Odpowiedź:
f_{min}=
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-11645 ⋅ Poprawnie: 37/67 [55%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « Rzucono pionowo do góry kamień z prędkością początkową 10\ m/s. Wysokość s\ [m], jaką osiągnie ten kamień po t sekundach czasu opisuje wzór s(t)=16t-t^2.

Podaj maksymalną wysokość jaką osiągnie ten kamień.

Odpowiedź:
s_{max}(t)= (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-11065 ⋅ Poprawnie: 60/107 [56%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Funkcja f określona jest wzorem f(x)=\frac{x^2+21x+108}{x-22}.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : f przyjmuje tylko wartości ujemne T/N : f nie ma miejsc zerowych
T/N : f ma dwa miejsca zerowe  
Zadanie 14.  1 pkt ⋅ Numer: pp-10967 ⋅ Poprawnie: 118/168 [70%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 » Pole powierzchni trójkąta prostokątnego jest równe 84, a jedna z jego przyprostokątnych jest o 17 dłuższa od drugiej.

Oblicz kwadrat długości przeciwprostokątnej tego trójkąta.

Odpowiedź:
c^2= (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-10958 ⋅ Poprawnie: 250/427 [58%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 «« Najmniejszą liczbą całkowitą należącą do dziedziny funkcji f(x)=\sqrt{-x^2-\frac{3}{2}x+\frac{5}{2}} jest ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm