Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11595 ⋅ Poprawnie: 119/162 [73%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=ax^2
należy punkt o współrzędnych
(3\sqrt{2},162\sqrt{3}) .
Wyznacz współczynnik a .
Odpowiedź:
a=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-10989 ⋅ Poprawnie: 705/1015 [69%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Największą wartością funkcji kwadratowej
f(x)=-4(x-2)^2-5 jest
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11029 ⋅ Poprawnie: 232/353 [65%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
» Prosta o równaniu
5x+4=0 jest osią symetrii
paraboli:
Odpowiedzi:
A. y=-3x^2+\frac{8}{5}x-4
B. y=-5x^2-\frac{32}{5}x-4
C. y=-3x^2-\frac{12}{5}x-4
D. y=-3x^2-\frac{24}{5}x-4
E. y=-5x^2+\frac{32}{5}x-4
F. y=-3x^2-\frac{8}{5}x-4
Zadanie 4. 1 pkt ⋅ Numer: pp-11060 ⋅ Poprawnie: 133/184 [72%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wierzchołek paraboli o równaniu
y=(x+1)^2+2m+11
należy do prostej o równaniu
y=15 .
Wyznacz wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10997 ⋅ Poprawnie: 196/269 [72%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Wskaż funkcję, która nie przyjmuje wartości ujemnych:
Odpowiedzi:
A. y=6(x-7)^2-2
B. y=(7-x)^2+16
C. y=-8(x+2)^2+6
D. y=(x+7)^2-7
Zadanie 6. 1 pkt ⋅ Numer: pp-10999 ⋅ Poprawnie: 101/166 [60%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Zbiorem wartości funkcji kwadratowej
f
określonej wzorem
f(x)=m(x-5)(x-7)
jest przedział liczbowy
\langle -3,+\infty) , a rozwiązaniem
nierówności
f(x) \lessdot 0 przedział
(5,7) .
Wyznacz współczynnik m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-11019 ⋅ Poprawnie: 560/777 [72%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Zbiorem wartości funkcji kwadratowej określonej wzorem
f(x)=(x-4)(x+8) jest przedział liczbowy
\langle ......,+\infty) .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-11017 ⋅ Poprawnie: 336/557 [60%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Dana jest funkcja określona wzorem
g(x)=ax^2+bx+c . Postać iloczynowa
funkcji
g opisana jest wzorem
g(x)=a(x+3)(x-1) .
Wyznacz współczynnik c .
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-11467 ⋅ Poprawnie: 90/179 [50%]
Rozwiąż
Podpunkt 9.1 (0.2 pkt)
Zbiorem wartości funkcji
y=-(x-5)(x+5)
określonej dla
x\in(3,8\rangle jest pewien przedział liczbowy.
Przedział ten ma postać:
Odpowiedzi:
A. (-\infty,p\rangle
B. (p,+\infty)
C. \langle p,q\rangle
D. \langle p,q)
E. (p,q)
F. (p,q\rangle
Podpunkt 9.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-11062 ⋅ Poprawnie: 141/183 [77%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Na rysunku pokazano cześć wykresu funkcji
g(x)=ax^2+bc+c .
Które z poniższych zdań jest prawdziwe?
Odpowiedzi:
A. f(x) > 0 \iff x \lessdot 1
B. miejsca zerowe tej funkcji to -2 i 4
C. funkcja rośnie w przedziale (-2,4)
D. miejscami zerowymi funkcji to -2 i 6
Zadanie 11. 1 pkt ⋅ Numer: pp-11465 ⋅ Poprawnie: 479/942 [50%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
» Najmniejszą wartość w przedziale
\langle 2, 6\rangle funkcja kwadratowa
f(x)=-\left(x-3\right)^{2}-5
przyjmuje dla argumentu
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 12. 1 pkt ⋅ Numer: pp-11080 ⋅ Poprawnie: 264/397 [66%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
« Suma dwóch liczb jest równa
12\sqrt{2} , a ich
iloczyn ma największą możliwą wartość.
Oblicz mniejszą z tych liczb.
Odpowiedź:
min=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 13. 1 pkt ⋅ Numer: pp-10970 ⋅ Poprawnie: 187/259 [72%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
« W turnieju szachowym, w którym uczestniczy
......... szachistów, każdy uczestnik rozgrywa jedną partię z każdym
innym uczestnikiem. Łącznie rozegrano w tym turnieju
465
partii szachów.
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 14. 1 pkt ⋅ Numer: pp-10974 ⋅ Poprawnie: 173/270 [64%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Ile rozwiązań ma równanie
(x^2-2x-8)\sqrt{16-x^2}=0 ?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 15. 1 pkt ⋅ Numer: pp-10964 ⋅ Poprawnie: 68/113 [60%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
Ile liczb całkowitych spełnia nierówność
8\pi\cdot x > 7x^2 :
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Rozwiąż