Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11726 ⋅ Poprawnie: 19/33 [57%]
Rozwiąż
Podpunkt 1.1 (0.5 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=ax^2+bx+c
należą punkty o współrzędnych
(-3,13) ,
(-1,8) i
(3,10) .
Wyznacz współczynnik b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-10990 ⋅ Poprawnie: 262/408 [64%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Funkcja
f(x)=x^2-12x+36
dla argumentu
\sqrt{6} przyjmuje wartość
\left(......\cdot\sqrt{6}-6\right)^2 .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11030 ⋅ Poprawnie: 898/1172 [76%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wskaż funkcję kwadratową, której zbiorem wartości jest przedział
\langle 4,+\infty) :
Odpowiedzi:
A. y=(x-1)^2-4
B. y=-(x+6)^2+4
C. y=-(x-4)^2+4
D. y=(x+6)^2-4
E. y=(x+4)^2+4
F. y=-2(x+3)^2-4
Zadanie 4. 1 pkt ⋅ Numer: pp-11044 ⋅ Poprawnie: 141/222 [63%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wykres funkcji kwadratowej
g przecina oś
Ox w dwóch punktach.
Funkcja g opisana jest wzorem:
Odpowiedzi:
A. g(x)=6(x-6)^2+9
B. g(x)=2(x+7)^2-\sqrt{10}
C. g(x)=10(x-6)^2+8
D. g(x)=-10(x-4)^2-11
Zadanie 5. 1 pkt ⋅ Numer: pp-11082 ⋅ Poprawnie: 134/245 [54%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
» W przedziale
\langle -1,2\rangle funkcja
y=2x^2+3x+1 osiąga wartość najmniejszą
równą
......... .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 1 pkt ⋅ Numer: pp-10982 ⋅ Poprawnie: 56/126 [44%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Wyznacz sumę miejsc zerowych funkcji określonej wzorem
f(x)=\frac{-x^2+9x-14}{\sqrt{2-x}}
.
Odpowiedź:
x_1+x_2=
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-11506 ⋅ Poprawnie: 459/800 [57%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Osią symetrii paraboli będącej wykresem funkcji kwadratowej określonej równaniem
f(x)=-\frac{1}{2}(x+108)(x-540) , jest prosta określona:
równaniem
x-......=0 .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-11018 ⋅ Poprawnie: 89/155 [57%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
» Dana są funkcje
h(x)=2-x
oraz
g(x)=x+4 .
Wykres funkcji g(x)\cdot h(x) przedstawia rysunek:
Odpowiedzi:
Zadanie 9. 1 pkt ⋅ Numer: pp-11055 ⋅ Poprawnie: 46/98 [46%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Wykresy funkcji określonych wzorami
f(x)=3x^2-12x+12 i
g(x)=3x^2-30x+75 są symetryczne względem prostej
o równaniu
x=m .
Podaj m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-11050 ⋅ Poprawnie: 82/195 [42%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Wykres funkcji kwadratowej
y=-5(x-2)^2+6 nie ma
punktów wspólnych z prostą o równaniu:
Odpowiedzi:
A. y=8
B. x=2
C. x=0
D. y=4
Zadanie 11. 1 pkt ⋅ Numer: pp-10988 ⋅ Poprawnie: 67/90 [74%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
» Wyznacz najmniejszą wartość funkcji kwadratowej określonej wzorem
f(x)=x^2+12x .
Odpowiedź:
f_{min}(x)=
(wpisz liczbę całkowitą)
Zadanie 12. 1 pkt ⋅ Numer: pp-11646 ⋅ Poprawnie: 57/103 [55%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Mniejsza część zawodników klubu sportowego liczącego
55 osób,
zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z
pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.
Ilu zawodników było chorych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 13. 1 pkt ⋅ Numer: pp-10975 ⋅ Poprawnie: 325/496 [65%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Liczba ujemna spełnia równanie
x^2-2x-32=0 .
Oblicz kwadrat tej liczby.
Odpowiedź:
x^2=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 14. 1 pkt ⋅ Numer: pp-11077 ⋅ Poprawnie: 140/228 [61%]
Rozwiąż
Podpunkt 14.1 (0.2 pkt)
» Funkcja kwadratowa opisana wzorem
g(x)=mx^2-2x-\frac{2}{5} ma dokładnie dwa miejsca zerowe wtedy
i tylko wtedy, gdy parametr
m należy do pewnego przedziału liczbowego.
Przedział ten ma postać:
Odpowiedzi:
A. (-\infty,p\rangle
B. (p,+\infty)
C. \langle p,+\infty)
D. (p,q)
E. \langle p, q\rangle
F. (-\infty,p)
Podpunkt 14.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 15. 1 pkt ⋅ Numer: pp-10957 ⋅ Poprawnie: 641/967 [66%]
Rozwiąż
Podpunkt 15.1 (0.2 pkt)
» Wyznacz dziedzinę funkcji określonej wzorem
f(x)=\frac{x-1}{\sqrt{x^2-3x-10}}
.
Zbiór ten ma postać:
Odpowiedzi:
A. (p,q)
B. (-\infty,p)\cup(q,+\infty)
C. \langle p,q\rangle
D. \mathbb{R}-\{p\}
E. \mathbb{R}-(p,q)
F. \mathbb{R}-\{p, q\}
Podpunkt 15.2 (0.8 pkt)
Zbiór
A jest zbiorem wszystkich liczb nie należących do dziedziny
tej funkcji.
Wyznacz najmniejszą i największą liczbę w zbiorze A .
Odpowiedzi:
Rozwiąż