Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11643 ⋅ Poprawnie: 93/191 [48%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=x^2+bx+c
należą punkty o współrzędnych
(10,6) i
(3,-15) .
Wyznacz współczynniki b i c .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11072 ⋅ Poprawnie: 311/524 [59%]
Rozwiąż
Podpunkt 2.1 (0.5 pkt)
« O funkcji kwadratowej opisanej wzorem
f(x)=a(x-p)^2+q wiadomo, że ma dwa
miejsca zerowe
-1 i
7 oraz
że najmniejszą jej wartością jest liczba
-8 .
Wyznacz wartość parametru a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (0.5 pkt)
Wyznacz wartość parametru
p .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-10991 ⋅ Poprawnie: 197/342 [57%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Zbiorem wartości funkcji kwadratowej
f(x)=-x^2+ax-\frac{a^2}{4}-a jest przedział
(-\infty,-8\rangle .
Wyznacz wartość parametru a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11063 ⋅ Poprawnie: 178/290 [61%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Funkcja
f(x)=3x^2+12x+20 nie przyjmuje wartości:
Odpowiedzi:
A. 4\sqrt{7}
B. \frac{16+\sqrt{2}}{2}
C. \frac{\sqrt{2}}{5}
D. \frac{8\cdot\pi}{3}
Zadanie 5. 1 pkt ⋅ Numer: pp-11082 ⋅ Poprawnie: 134/245 [54%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
» W przedziale
\langle -1,2\rangle funkcja
y=3x^2-2x-3 osiąga wartość najmniejszą
równą
......... .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 1 pkt ⋅ Numer: pp-11013 ⋅ Poprawnie: 1052/1528 [68%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Trójmian kwadratowy
y=4x^2+36x+80 można zapisać w postaci
y=a(x+4)(x-m) .
Wyznacz wartości parametrów a i m .
Odpowiedzi:
Zadanie 7. 1 pkt ⋅ Numer: pp-10987 ⋅ Poprawnie: 50/92 [54%]
Rozwiąż
Podpunkt 7.1 (0.2 pkt)
Wykres funkcji
g(x)=5(m-3)+2x+x^2 nie przecina osi
Ox , wtedy i tylko wtedy, gdy
m
należy do pewnego przedziału.
Przedział ten ma postać:
Odpowiedzi:
A. \langle p,+\infty)
B. (p,+\infty)
C. (-\infty,p)
D. \langle p,q\rangle
E. (p,q)
F. (-\infty,p\rangle
Podpunkt 7.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-11018 ⋅ Poprawnie: 89/155 [57%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
» Dana są funkcje
h(x)=2-x
oraz
g(x)=x+4 .
Wykres funkcji g(x)\cdot h(x) przedstawia rysunek:
Odpowiedzi:
Zadanie 9. 1 pkt ⋅ Numer: pp-11055 ⋅ Poprawnie: 46/98 [46%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Wykresy funkcji określonych wzorami
f(x)=3x^2+24x+48 i
g(x)=3x^2+6x+3 są symetryczne względem prostej
o równaniu
x=m .
Podaj m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-11051 ⋅ Poprawnie: 40/77 [51%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Wykres funkcji
y=x^2-16 ma dokładnie jeden punkt
wspólny z prostą:
Odpowiedzi:
A. x=-4
B. y=16x
C. y=16
D. y=-16x+1
Zadanie 11. 1 pkt ⋅ Numer: pp-10985 ⋅ Poprawnie: 217/329 [65%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Dana jest funkcja
g(x)=-\frac{1}{4}(x+6)x , gdzie
x\in\langle -8,-5\rangle .
Wyznacz f_{min} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-11730 ⋅ Poprawnie: 21/39 [53%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Większa część zawodników klubu sportowego liczącego
41 osób,
zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z
pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.
Ilu zawodników było chorych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 13. 1 pkt ⋅ Numer: pp-11058 ⋅ Poprawnie: 92/184 [50%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
« Wierzchołek paraboli będącej wykresem funkcji kwadratowej określonej wzorem
y=(2x-7)^2+\frac{9}{2} należy do prostej o równaniu
y=......\cdot x .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 14. 1 pkt ⋅ Numer: pp-10967 ⋅ Poprawnie: 118/168 [70%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
» Pole powierzchni trójkąta prostokątnego jest równe
486 , a jedna z jego przyprostokątnych jest o
9 dłuższa od drugiej.
Oblicz kwadrat długości przeciwprostokątnej tego trójkąta.
Odpowiedź:
c^2=
(wpisz liczbę całkowitą)
Zadanie 15. 1 pkt ⋅ Numer: pp-10964 ⋅ Poprawnie: 68/113 [60%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
Ile liczb całkowitych spełnia nierówność
9\pi\cdot x > 3x^2 :
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Rozwiąż