Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11640 ⋅ Poprawnie: 84/117 [71%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wykres funkcji kwadratowej określonej wzorem
y=\frac{1}{2}(x+3)^2-1 otrzymano przesuwając wykres funkcji
y=\frac{1}{2}x^2 o
p jednostek
wzdłuż osi
Ox i o
q jednostek
wzdłuż osi
Oy , przy czym liczby
p i
q mogą być ujemne.
Podaj liczby p i q .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11430 ⋅ Poprawnie: 983/1242 [79%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wykresem funkcji kwadratowej
f(x)=x^2+8x+5
jest parabola, której wierzchołkiem jest punkt o współrzędnych
\left(x_w, y_w\right) .
Podaj współrzędne wierzchołka paraboli x_w i
y_w .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-11003 ⋅ Poprawnie: 533/896 [59%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
» Wskaż funkcję kwadratową rosnąca w przedziale
(-\infty,8\rangle :
Odpowiedzi:
A. y=(x+8)^2-3
B. y=-(x-3)^2-8
C. y=-(x-3)^2+8
D. y=-(x+3)^2+\frac{3}{2}
E. y=-(x-8)^2-3
F. y=(x-8)^2-3
Zadanie 4. 1 pkt ⋅ Numer: pp-11032 ⋅ Poprawnie: 203/352 [57%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Funkcja kwadratowa
g spełnia warunek
g(-5)=g(12) . Osią symetrii wykresu tej funkcji
jest prosta określona równaniem
x+m=0 .
Wyznacz wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10997 ⋅ Poprawnie: 196/269 [72%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Wskaż funkcję, która nie przyjmuje wartości ujemnych:
Odpowiedzi:
A. y=(x+6)^2-6
B. y=-3(x+4)^2-1
C. y=7+(-8-x)^2
D. y=6(x-3)^2-5
Zadanie 6. 1 pkt ⋅ Numer: pp-11001 ⋅ Poprawnie: 532/741 [71%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Jeżeli miejscami zerowymi funkcji kwadratowej są liczby
6 oraz
8 , a
wierzchołek paraboli będącej jej wykresem ma współrzędne
(7,-4) , to wzór tej funkcji można zapisać
w postaci:
Odpowiedzi:
A. f(x)=4(x+6)(x-8)
B. f(x)=4(x-6)(x-8)
C. f(x)=3(x+6)(x-8)
D. f(x)=4(x-6)(x+8)
Zadanie 7. 1 pkt ⋅ Numer: pp-11068 ⋅ Poprawnie: 164/293 [55%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Prosta o równaniu
x=m jest osią symetrii wykresu funkcji
kwadratowej określonej wzorem
f(x)=(-1+2x)(x-4) .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-11018 ⋅ Poprawnie: 89/155 [57%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
» Dana są funkcje
h(x)=2-x
oraz
g(x)=x+4 .
Wykres funkcji g(x)\cdot h(x) przedstawia rysunek:
Odpowiedzi:
Zadanie 9. 1 pkt ⋅ Numer: pp-11534 ⋅ Poprawnie: 214/313 [68%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
(1 pkt)
Jeden z poniższych wzorów opisuje funkcję postaci
y=ax^2+bx+c , której wykres pokazano na rysunku:
Wskaż ten wzór:
Odpowiedzi:
A. y=a(x+1)^2-2
B. y=a(x-1)^2-2
C. y=a(x-2)^2+1
D. y=a(x-2)^2-1
E. y=a(x+1)^2+2
F. y=a(x-1)^2+2
Zadanie 10. 1 pkt ⋅ Numer: pp-11062 ⋅ Poprawnie: 141/183 [77%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Na rysunku pokazano cześć wykresu funkcji
g(x)=ax^2+bc+c .
Które z poniższych zdań jest prawdziwe?
Odpowiedzi:
A. miejscami zerowymi funkcji to -2 i 6
B. funkcja rośnie w przedziale (-2,4)
C. miejsca zerowe tej funkcji to -2 i 4
D. f(x) > 0 \iff x \lessdot 1
Zadanie 11. 1 pkt ⋅ Numer: pp-11466 ⋅ Poprawnie: 202/334 [60%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
« Dana jest funkcja kwadratowa
f(x)=-0,5(x+5m)^2+25m , gdzie
m > 0 .
Wówczas:
Odpowiedzi:
A. dla m=-\frac{1}{2} funkcja jest rosnąca
B. największą wartością funkcji jest -25m
C. wierzchołek paraboli, która jest wykresem tej funkcji należy do prostej y=-5x
D. dla pewnego m funkcja ma jedno miejsce zerowe
Zadanie 12. 1 pkt ⋅ Numer: pp-11646 ⋅ Poprawnie: 57/103 [55%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Mniejsza część zawodników klubu sportowego liczącego
81 osób,
zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z
pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.
Ilu zawodników było chorych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 13. 1 pkt ⋅ Numer: pp-11058 ⋅ Poprawnie: 92/184 [50%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
« Wierzchołek paraboli będącej wykresem funkcji kwadratowej określonej wzorem
y=(2x+7)^2+\frac{27}{2} należy do prostej o równaniu
y=......\cdot x .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 14. 1 pkt ⋅ Numer: pp-11550 ⋅ Poprawnie: 110/166 [66%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Oblicz iloczyn wszystkich rozwiązań równania
(x^2-8)(x-4)^2(x^2-x-6)=0 .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 15. 1 pkt ⋅ Numer: pp-10959 ⋅ Poprawnie: 224/427 [52%]
Rozwiąż
Podpunkt 15.1 (0.2 pkt)
» Wyznacz zbiór wszystkich rozwiązań nierówności
-1 \lessdot x^2+\frac{6}{5}x \lessdot 0
.
Zbiór ten ma postać:
Odpowiedzi:
A. (-\infty,p\rangle
B. \langle p,q\rangle
C. (-\infty,p)\cup\langle q,+\infty)
D. (p,q)
E. (-\infty,p)
F. (p,+\infty)
Podpunkt 15.2 (0.8 pkt)
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż