Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11596 ⋅ Poprawnie: 97/141 [68%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=ax^2
należy punkt o współrzędnych
\left(4,\frac{16\sqrt{5}}{5}\right) .
Wyznacz współczynnik a .
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-10993 ⋅ Poprawnie: 570/824 [69%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Funkcja kwadratowa określona jest wzorem
f(x)=x^2-8x+c .
Jeżeli
f(-5)=57 , to
f(1)=......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-10991 ⋅ Poprawnie: 192/337 [56%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Zbiorem wartości funkcji kwadratowej
f(x)=-x^2+ax-\frac{a^2}{4}-a jest przedział
(-\infty,-15\rangle .
Wyznacz wartość parametru a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11040 ⋅ Poprawnie: 241/404 [59%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Punkt
P=(-6,-12) należy do wykresu funkcji
g(x)=x^2-mx+1 .
Wyznacz wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11061 ⋅ Poprawnie: 96/143 [67%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
» Oblicz odległość wierzchołka paraboli o równaniu
y=x^2+3x-\frac{7}{4} od osi
Ox .
Odpowiedź:
d=
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-10980 ⋅ Poprawnie: 201/342 [58%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Liczby
-5 i
-\frac{5}{2} są miejscami
zerowymi funkcji określonej wzorem
g(x)=ax^2-15x-25 .
Wyznacz wartość współczynnika a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-11042 ⋅ Poprawnie: 369/560 [65%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Miejscami zerowymi funkcji kwadratowej są liczby
8
oraz
-7 . Do wykresu tej funkcji należy punkt
A=(2,-108) . Zapisz wzór tej funkcji w postaci iloczynowej
y=a(x-x_1)(x-x_2) .
Podaj współczynnik a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-11011 ⋅ Poprawnie: 67/91 [73%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
» Dane są funkcje:
f(x)=x^2+\frac{\sqrt{6}}{2} i
g(x)=\frac{\sqrt{6}}{3} .
Wówczas, zachodzi warunek:
Odpowiedzi:
A. f(x) \lessdot g(x)
B. f(x)-g(x)=x^2
C. f(x) > g(x)
D. f(x)=g(x)
Zadanie 9. 1 pkt ⋅ Numer: pp-11467 ⋅ Poprawnie: 90/179 [50%]
Rozwiąż
Podpunkt 9.1 (0.2 pkt)
Zbiorem wartości funkcji
y=-(x-6)(x+6)
określonej dla
x\in(2,7\rangle jest pewien przedział liczbowy.
Przedział ten ma postać:
Odpowiedzi:
A. (-\infty,p\rangle
B. (p,q)
C. \langle p,q\rangle
D. \langle p,q)
E. (p,+\infty)
F. (p,q\rangle
Podpunkt 9.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-11050 ⋅ Poprawnie: 82/195 [42%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Wykres funkcji kwadratowej
y=-5(x-5)^2-10 nie ma
punktów wspólnych z prostą o równaniu:
Odpowiedzi:
A. x=-3
B. y=-9
C. x=5
D. y=-11
Zadanie 11. 1 pkt ⋅ Numer: pp-10978 ⋅ Poprawnie: 471/738 [63%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
« Najmniejszą wartość w przedziale
\langle -9, -5\rangle funkcja kwadratowa
określona wzorem
f(x)=-\left(x+6\right)^{2}+5
przyjmuje dla argumentu
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 12. 1 pkt ⋅ Numer: pp-11645 ⋅ Poprawnie: 29/59 [49%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
« Rzucono pionowo do góry kamień z prędkością początkową
10\ m/s .
Wysokość
s\ [m] , jaką osiągnie ten kamień po
t
sekundach czasu opisuje wzór
s(t)=10t-t^2 .
Podaj maksymalną wysokość jaką osiągnie ten kamień.
Odpowiedź:
s_{max}(t)=
(wpisz liczbę całkowitą)
Zadanie 13. 1 pkt ⋅ Numer: pp-10972 ⋅ Poprawnie: 695/866 [80%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Wiadomo, że
16x^2+8x+1=0 .
Oblicz x .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 14. 1 pkt ⋅ Numer: pp-11066 ⋅ Poprawnie: 218/289 [75%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
« Wierzchołkiem paraboli będącej wykresem funkcji
f(x)=-x^2+bx+c jest punkt o współrzędnych
(-5,-10) .
Wyznacz współczynniki b i c .
Odpowiedzi:
Zadanie 15. 1 pkt ⋅ Numer: pp-10964 ⋅ Poprawnie: 68/113 [60%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
Ile liczb całkowitych spełnia nierówność
4\pi\cdot x > 2x^2 :
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Rozwiąż