Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11595 ⋅ Poprawnie: 119/162 [73%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=ax^2
należy punkt o współrzędnych
(3\sqrt{2},162\sqrt{7}) .
Wyznacz współczynnik a .
Odpowiedź:
a=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11031 ⋅ Poprawnie: 419/591 [70%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Wierzchołkiem paraboli, która jest wykresem funkcji
f
jest punkt
W=(11,9) .
Wówczas:
Odpowiedzi:
T/N : f(4)=f(17)
T/N : f(0)=f(22)
T/N : f(2)=f(19)
Zadanie 3. 1 pkt ⋅ Numer: pp-11030 ⋅ Poprawnie: 898/1172 [76%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wskaż funkcję kwadratową, której zbiorem wartości jest przedział
\langle 5,+\infty) :
Odpowiedzi:
A. y=(x+6)^2+5
B. y=(x-2)^2-5
C. y=-(x-2)^2+5
D. y=(x+3)^2-5
E. y=-(x+4)^2+5
F. y=-2(x+4)^2-5
Zadanie 4. 1 pkt ⋅ Numer: pp-11037 ⋅ Poprawnie: 209/334 [62%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Gdy przesuniemy wykres funkcji
f(x)=x^2+\frac{7}{2} o
p=5 jednostek w lewo i
q=10 jednostek w dół,
to otrzymamy wykres funkcji:
Odpowiedzi:
A. y=(x+5)^2-\frac{13}{2}
B. y=(x-5)^2-\frac{13}{2}
C. y=(x-5)^2+\frac{27}{2}
D. y=(x+10)^2+\frac{17}{2}
Zadanie 5. 1 pkt ⋅ Numer: pp-11408 ⋅ Poprawnie: 170/221 [76%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej
f :
Zbiór wartości funkcji określonej wzorem y=-f(x)+1 jest równy:
Odpowiedzi:
A. \langle 5,+\infty)
B. (-\infty, 5\rangle
C. (-\infty,3\rangle
D. (-\infty,-3\rangle
Zadanie 6. 1 pkt ⋅ Numer: pp-10982 ⋅ Poprawnie: 56/126 [44%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Wyznacz sumę miejsc zerowych funkcji określonej wzorem
f(x)=\frac{-x^2+11x-30}{\sqrt{6-x}}
.
Odpowiedź:
x_1+x_2=
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-11010 ⋅ Poprawnie: 114/226 [50%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Funkcja kwadratowa określona jest wzorem
f(x)=-(x-1)(x+7) . Wyznacz maksymalny przedział, w którym funkcja
ta jest rosnąca.
Podaj najmniejszy koniec liczbowy tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-11024 ⋅ Poprawnie: 121/338 [35%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Na rysunku pokazano tylko część wykresu funkcji
f(x)=ax^2+bx+c , dla której
D_f=\mathbb{R} .
Wówczas:
Odpowiedzi:
T/N : zbiorem wartości tej funkcji jest przedział (-\infty,9)
T/N : miejscami zerowymi tej funkcji są liczby -2 i 4
T/N : f(-5)=h(8)
Zadanie 9. 1 pkt ⋅ Numer: pp-11023 ⋅ Poprawnie: 294/453 [64%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Na podstawie wykresu funkcji określonej wzorem
y=ax^2+bx+c wskaż jej wzór:
Odpowiedzi:
A. y=x^2-2x+4
B. y=-x^2-2x+2
C. y=-x^2+2x+2
D. y=x^2+2x+4
Zadanie 10. 1 pkt ⋅ Numer: pp-11050 ⋅ Poprawnie: 82/195 [42%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Wykres funkcji kwadratowej
y=-5(x+9)^2+7 nie ma
punktów wspólnych z prostą o równaniu:
Odpowiedzi:
A. x=-9
B. x=11
C. y=10
D. y=6
Zadanie 11. 1 pkt ⋅ Numer: pp-10985 ⋅ Poprawnie: 230/342 [67%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Dana jest funkcja
g(x)=-\frac{1}{3}(x+6)x , gdzie
x\in\langle -12,-9\rangle .
Wyznacz f_{min} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-11730 ⋅ Poprawnie: 21/39 [53%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Większa część zawodników klubu sportowego liczącego
81 osób,
zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z
pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.
Ilu zawodników było chorych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 13. 1 pkt ⋅ Numer: pp-11065 ⋅ Poprawnie: 60/107 [56%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Funkcja
f określona jest wzorem
f(x)=\frac{x^2-20x+99}{x+19} .
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : f ma dwa miejsca zerowe
T/N : f nie ma miejsc zerowych
T/N : f przyjmuje wartości dodatnie
Zadanie 14. 1 pkt ⋅ Numer: pp-11550 ⋅ Poprawnie: 110/168 [65%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Oblicz iloczyn wszystkich rozwiązań równania
(x^2-8)(x-4)^2(x^2-x-6)=0 .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 15. 1 pkt ⋅ Numer: pp-10961 ⋅ Poprawnie: 398/724 [54%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
« Suma wszystkich rozwiązań całkowitych nierówności
(-1-2x)(x+6)\geqslant 0
jest równa
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Rozwiąż