Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11726 ⋅ Poprawnie: 19/33 [57%] Rozwiąż 
Podpunkt 1.1 (0.5 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=ax^2+bx+c należą punkty o współrzędnych (1,11), (3,6) i (7,8).

Wyznacz współczynnik b.

Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
 Wyznacz współczynnik c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10990 ⋅ Poprawnie: 262/408 [64%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Funkcja f(x)=x^2-20x+100 dla argumentu \sqrt{10} przyjmuje wartość \left(......\cdot\sqrt{10}-10\right)^2.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11030 ⋅ Poprawnie: 898/1172 [76%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wskaż funkcję kwadratową, której zbiorem wartości jest przedział \langle 2,+\infty):
Odpowiedzi:
A. y=(x-6)^2-2 B. y=-(x-3)^2+2
C. y=(x+4)^2-2 D. y=-2(x+6)^2-2
E. y=(x+1)^2+2 F. y=-(x+5)^2+2
Zadanie 4.  1 pkt ⋅ Numer: pp-11063 ⋅ Poprawnie: 178/290 [61%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Funkcja f(x)=3x^2-12x+19 nie przyjmuje wartości:
Odpowiedzi:
A. \frac{7\sqrt{3}}{5} B. \frac{14+\sqrt{2}}{2}
C. \frac{7\sqrt{7}}{2} D. \frac{7\cdot\pi}{3}
Zadanie 5.  1 pkt ⋅ Numer: pp-11408 ⋅ Poprawnie: 170/221 [76%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji kwadratowej f:

Zbiór wartości funkcji określonej wzorem y=-f(-x) jest równy:

Odpowiedzi:
A. \langle 4,+\infty) B. \langle -4,0\rangle
C. (-\infty, 4\rangle D. (-\infty,+\infty)
Zadanie 6.  1 pkt ⋅ Numer: pp-10999 ⋅ Poprawnie: 101/166 [60%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Zbiorem wartości funkcji kwadratowej f określonej wzorem f(x)=m(x+7)(x-3) jest przedział liczbowy \langle -100,+\infty), a rozwiązaniem nierówności f(x) \lessdot 0 przedział (-7,3).

Wyznacz współczynnik m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-11019 ⋅ Poprawnie: 560/777 [72%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Zbiorem wartości funkcji kwadratowej określonej wzorem f(x)=(x-2)(x+6) jest przedział liczbowy \langle ......,+\infty).

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11015 ⋅ Poprawnie: 79/132 [59%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Na rysunku przedstawiony jest fragment paraboli będącej wykresem funkcji kwadratowej y=f(x).

Funkcja g określona jest wzorem g(x)=7\cdot f(x)+3. Wówczas zbiór ZW_g jest pewnym przedziałem liczbowym.

Podaj mniejszy z końców liczbowych tego przedziału.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11043 ⋅ Poprawnie: 148/269 [55%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Liczba punktów wspólnych wykresu funkcji h(x)=2x^2+\frac{2}{3}x+\frac{5}{9} z osiami układu współrzędnych jest równa:
Odpowiedzi:
A. 3 B. 2
C. 1 D. 0
Zadanie 10.  1 pkt ⋅ Numer: pp-10998 ⋅ Poprawnie: 80/169 [47%] Rozwiąż 
Podpunkt 10.1 (0.2 pkt)
 «« Funkcja określona wzorem f(x)=(4m+3)x^2+3x-14 osiąga wartość największą wtedy i tylko wtedy, gdy parametr m należy do pewnego przedziału liczbowego.

Przedział ten ma postać:

Odpowiedzi:
A. (p,q) B. \langle p,+\infty)
C. (p,+\infty) D. (-\infty,p)
E. \langle p,q\rangle F. (-\infty,p\rangle
Podpunkt 10.2 (0.8 pkt)
 Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-11466 ⋅ Poprawnie: 202/334 [60%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Dana jest funkcja kwadratowa f(x)=-0,5(x+4m)^2+16m, gdzie m > 0.

Wówczas:

Odpowiedzi:
A. dla pewnego m funkcja ma jedno miejsce zerowe B. dla m=-\frac{1}{2} funkcja jest rosnąca
C. wierzchołek paraboli, która jest wykresem tej funkcji należy do prostej y=-4x D. największą wartością funkcji jest -16m
Zadanie 12.  1 pkt ⋅ Numer: pp-11730 ⋅ Poprawnie: 21/39 [53%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Większa część zawodników klubu sportowego liczącego 37 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-10975 ⋅ Poprawnie: 325/496 [65%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Liczba ujemna spełnia równanie x^2-2x-72=0.

Oblicz kwadrat tej liczby.

Odpowiedź:
x^2= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 14.  1 pkt ⋅ Numer: pp-11550 ⋅ Poprawnie: 110/168 [65%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Oblicz iloczyn wszystkich rozwiązań równania (x^2-7)(x-4)^2(x^2+x-6)=0.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-10963 ⋅ Poprawnie: 110/233 [47%] Rozwiąż 
Podpunkt 15.1 (0.2 pkt)
 Funkcja opisana jest wzorem f(x)=-3x^2+6x+3. Zbiorem rozwiązań nierówności f(x) > f(-x) jest pewien przedział liczbowy.

Przedział ten ma postać:

Odpowiedzi:
A. (p,q\rangle B. (-\infty,p\rangle
C. (-\infty,p) D. \langle p,+\infty)
E. (p, q) F. (p,+\infty)
Podpunkt 15.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm