Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11643 ⋅ Poprawnie: 93/191 [48%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=x^2+bx+c
należą punkty o współrzędnych
(2,3) i
(-5,-18) .
Wyznacz współczynniki b i c .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-10993 ⋅ Poprawnie: 570/824 [69%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Funkcja kwadratowa określona jest wzorem
f(x)=x^2-8x+c .
Jeżeli
f(-5)=59 , to
f(1)=......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11003 ⋅ Poprawnie: 528/889 [59%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
» Wskaż funkcję kwadratową rosnąca w przedziale
(-\infty,-3\rangle :
Odpowiedzi:
A. y=-(x-8)^2-3
B. y=(x+3)^2-8
C. y=(x-3)^2-8
D. y=-(x-8)^2+3
E. y=-(x+3)^2-8
F. y=-(x+8)^2+4
Zadanie 4. 1 pkt ⋅ Numer: pp-11040 ⋅ Poprawnie: 241/404 [59%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Punkt
P=(-5,-11) należy do wykresu funkcji
g(x)=x^2-mx+1 .
Wyznacz wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11084 ⋅ Poprawnie: 115/172 [66%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Dana jest funkcja
y=x^2-6 .
Do zbioru ZW_f nie należy liczba:
Odpowiedzi:
A. 10-8\sqrt{5}
B. 5-6\sqrt{2}
C. 5-4\sqrt{5}
D. 4-6\sqrt{2}
Zadanie 6. 1 pkt ⋅ Numer: pp-11001 ⋅ Poprawnie: 522/724 [72%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Jeżeli miejscami zerowymi funkcji kwadratowej są liczby
-5 oraz
-1 , a
wierzchołek paraboli będącej jej wykresem ma współrzędne
(-3,-8) , to wzór tej funkcji można zapisać
w postaci:
Odpowiedzi:
A. f(x)=2(x+5)(x+1)
B. f(x)=2(x-5)(x+1)
C. f(x)=\frac{3}{2}(x-5)(x+1)
D. f(x)=2(x+5)(x-1)
Zadanie 7. 1 pkt ⋅ Numer: pp-11075 ⋅ Poprawnie: 96/167 [57%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Dana jest funkcja kwadratowa określona wzorem
f(x)=(2-x)(3x+6) .
Wierzchołek wykresu tej funkcji należy do prostej określonej równaniem
x=m .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-11004 ⋅ Poprawnie: 127/373 [34%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Funkcja kwadratowa określona jest wzorem
f(x)=-3(x+2018)(x-666) .
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : f(600) < f(670)
T/N : f(-701) \lessdot f(-801)
Zadanie 9. 1 pkt ⋅ Numer: pp-11534 ⋅ Poprawnie: 200/298 [67%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
(1 pkt)
Jeden z poniższych wzorów opisuje funkcję postaci
y=ax^2+bx+c , której wykres pokazano na rysunku:
Wskaż ten wzór:
Odpowiedzi:
A. y=a(x-1)^2-2
B. y=a(x+1)^2-2
C. y=a(x-2)^2+1
D. y=a(x-1)^2+2
E. y=a(x-2)^2-1
F. y=a(x+1)^2+2
Zadanie 10. 1 pkt ⋅ Numer: pp-11035 ⋅ Poprawnie: 23/28 [82%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Daja jest funkcja kwadratowa g określona jest wzorem
g(x)=x^2+3 . Jej wykres ma dokładnie jeden punkt
wspólny z prostą y=-9 , gdy przesuniemy go o:
Odpowiedzi:
A. 12 jednostek w górę wzdłuż osi Oy
B. 12 jednostek w dół wzdłuż osi Oy
C. 3 jednostki w lewo wzdłuż osi Ox
D. 12 jednostek w prawo wzdłuż osi Ox
Zadanie 11. 1 pkt ⋅ Numer: pp-11409 ⋅ Poprawnie: 216/325 [66%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej
f :
Podaj największą wartość funkcji f w przedziale
\langle 1,4\rangle .
Odpowiedź:
f_{max}(x)=
(wpisz liczbę całkowitą)
Zadanie 12. 1 pkt ⋅ Numer: pp-11646 ⋅ Poprawnie: 57/103 [55%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Mniejsza część zawodników klubu sportowego liczącego
49 osób,
zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z
pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.
Ilu zawodników było chorych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 13. 1 pkt ⋅ Numer: pp-11065 ⋅ Poprawnie: 60/107 [56%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Funkcja
f określona jest wzorem
f(x)=\frac{x^2+16x+55}{x-16} .
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : f ma dwa miejsca zerowe
T/N : f ma jedno miejsce zerowe
T/N : f nie ma miejsc zerowych
Zadanie 14. 1 pkt ⋅ Numer: pp-10974 ⋅ Poprawnie: 173/270 [64%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Ile rozwiązań ma równanie
(x^2+8x+12)\sqrt{9-x^2}=0 ?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 15. 1 pkt ⋅ Numer: pp-10959 ⋅ Poprawnie: 224/427 [52%]
Rozwiąż
Podpunkt 15.1 (0.2 pkt)
» Wyznacz zbiór wszystkich rozwiązań nierówności
-1 \lessdot x^2-\frac{4}{5}x \lessdot 0
.
Zbiór ten ma postać:
Odpowiedzi:
A. (-\infty,p)
B. \langle p,q\rangle
C. (-\infty,p\rangle
D. (p,+\infty)
E. (p,q)
F. (-\infty,p)\cup\langle q,+\infty)
Podpunkt 15.2 (0.8 pkt)
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż