Wykres funkcji kwadratowej określonej wzorem
y=-\frac{2}{5}(x-2)^2+3 otrzymano przesuwając wykres funkcji
y=-\frac{2}{5}x^2 o p jednostek
wzdłuż osi Ox i o q jednostek
wzdłuż osi Oy, przy czym liczby p i
q mogą być ujemne.
Podaj liczby p i q.
Odpowiedzi:
p
=
(wpisz liczbę całkowitą)
q
=
(wpisz liczbę całkowitą)
Zadanie 2.1 pkt ⋅ Numer: pp-10989 ⋅ Poprawnie: 705/1015 [69%]
Do wykresu funkcji kwadratowej określonej wzorem y=f(x)
należy punkt P=(8, 9). Osią symetrii wykresu
tej funkcji jest prosta określona równaniem x=4, a liczba 6
jest miejscem zerowym tej funkcji. Zapisz wzór tej funkcji w postaci iloczynowej y=a(x-x_1)(x-x_2).
Wyznacz wartość współczynnika a.
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 8.1 pkt ⋅ Numer: pp-11451 ⋅ Poprawnie: 160/257 [62%]
Wykres funkcji określonej wzorem f(x)=x^2-4
przesunięto o k=3 jednostek w prawo. W wyniku
tego przesunięcia otrzymano wykres funkcji określonej wzorem
y=x^2+bx+c.
Wyznacz współczynniki b i c.
Odpowiedzi:
b
=
(wpisz liczbę całkowitą)
c
=
(wpisz liczbę całkowitą)
Zadanie 9.1 pkt ⋅ Numer: pp-11021 ⋅ Poprawnie: 479/645 [74%]
Mniejsza część zawodników klubu sportowego liczącego 67 osób,
zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z
pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.
Ilu zawodników było chorych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 13.1 pkt ⋅ Numer: pp-11058 ⋅ Poprawnie: 92/184 [50%]