Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11640 ⋅ Poprawnie: 84/117 [71%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wykres funkcji kwadratowej określonej wzorem y=\frac{2}{3}(x-3)^2+1 otrzymano przesuwając wykres funkcji y=\frac{2}{3}x^2 o p jednostek wzdłuż osi Ox i o q jednostek wzdłuż osi Oy, przy czym liczby p i q mogą być ujemne.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11012 ⋅ Poprawnie: 637/962 [66%] Rozwiąż 
Podpunkt 2.1 (0.5 pkt)
 Postać kanoniczna trójmianu kwadratowego y=-2x^2-16x-\frac{101}{3} opisana jest wzorem y=a(x-p)^2+q.

Podaj wartość parametru p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 2.2 (0.5 pkt)
 Podaj wartość parametru q.
Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11003 ⋅ Poprawnie: 533/896 [59%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Wskaż funkcję kwadratową rosnąca w przedziale (-\infty,-1\rangle:
Odpowiedzi:
A. y=-(x-7)^2-\frac{7}{2} B. y=-(x+7)^2-1
C. y=-(x+1)^2+7 D. y=-(x+7)^2+1
E. y=(x+1)^2+7 F. y=(x-1)^2+7
Zadanie 4.  1 pkt ⋅ Numer: pp-11063 ⋅ Poprawnie: 178/290 [61%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Funkcja f(x)=2x^2-16x+49 nie przyjmuje wartości:
Odpowiedzi:
A. \frac{\sqrt{3}}{5} B. \frac{17\cdot\pi}{3}
C. \frac{17\sqrt{7}}{2} D. \frac{34+\sqrt{2}}{2}
Zadanie 5.  1 pkt ⋅ Numer: pp-11061 ⋅ Poprawnie: 96/143 [67%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Oblicz odległość wierzchołka paraboli o równaniu y=x^2+x+\frac{17}{4} od osi Ox.
Odpowiedź:
d= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10982 ⋅ Poprawnie: 56/126 [44%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Wyznacz sumę miejsc zerowych funkcji określonej wzorem f(x)=\frac{-x^2+9x-18}{\sqrt{6-x}} .
Odpowiedź:
x_1+x_2= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-11010 ⋅ Poprawnie: 114/226 [50%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=-(x+4)(x+8). Wyznacz maksymalny przedział, w którym funkcja ta jest rosnąca.

Podaj najmniejszy koniec liczbowy tego przedziału.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11011 ⋅ Poprawnie: 67/91 [73%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Dane są funkcje: f(x)=x^2+\frac{\sqrt{8}}{2} i g(x)=\frac{\sqrt{8}}{3}.

Wówczas, zachodzi warunek:

Odpowiedzi:
A. f(x) > g(x) B. f(x) \lessdot g(x)
C. f(x)=g(x) D. f(x)-g(x)=x^2
Zadanie 9.  1 pkt ⋅ Numer: pp-11047 ⋅ Poprawnie: 118/159 [74%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Ile punktów wspólnych z osią Ox ma wykres funkcji kwadratowej f(x)=-1+9(x-3)^2:
Odpowiedzi:
A. 1 B. 2
C. 3 D. 0
Zadanie 10.  1 pkt ⋅ Numer: pp-11045 ⋅ Poprawnie: 40/78 [51%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
Liczby a i b spełniają warunek a\cdot b \lessdot 0.

Liczba rozwiązań układu równań \begin{cases} y=ax^2+b \\ y=0 \end{cases} jest równa:

Odpowiedzi:
A. 0 B. 2
C. 1 D. 3
Zadanie 11.  1 pkt ⋅ Numer: pp-11409 ⋅ Poprawnie: 216/332 [65%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej f:

Podaj największą wartość funkcji f w przedziale \langle 1,4\rangle.

Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-11080 ⋅ Poprawnie: 264/397 [66%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « Suma dwóch liczb jest równa 16\sqrt{2}, a ich iloczyn ma największą możliwą wartość.

Oblicz mniejszą z tych liczb.

Odpowiedź:
min= \cdot
(wpisz dwie liczby całkowite)
Zadanie 13.  1 pkt ⋅ Numer: pp-10976 ⋅ Poprawnie: 665/871 [76%] Rozwiąż 
Podpunkt 13.1 (0.5 pkt)
 » Równanie (2x-5)(x+2)=(2x-5)(2x-9) ma dwa rozwiązania.

Wyznacz najmniejsze rozwiązanie tego równania.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (0.5 pkt)
 Wyznacz największe rozwiązanie tego równania.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 14.  1 pkt ⋅ Numer: pp-10973 ⋅ Poprawnie: 61/114 [53%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 » Dana jest funkcja f(x)= \begin{cases} -\frac{1}{3}x-1,\qquad x\in(-\infty,-15) \\ x^2-220,\qquad x\in\langle -15,+\infty) \end{cases} . Liczba rozwiązań równania f(x)=5 jest równa:
Odpowiedzi:
A. 0 B. 1
C. 3 D. 2
Zadanie 15.  1 pkt ⋅ Numer: pp-10962 ⋅ Poprawnie: 383/585 [65%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Iloczyn (x+1)(8-x) jest nieujemny, wtedy i tylko wtedy, gdy liczba x należy do zbioru A. Zapisz zbiór A w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm