Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11643 ⋅ Poprawnie: 93/191 [48%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=x^2+bx+c należą punkty o współrzędnych (2,3) i (-5,-18).

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10993 ⋅ Poprawnie: 570/824 [69%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=x^2-8x+c. Jeżeli f(-5)=59, to f(1)=..........

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11003 ⋅ Poprawnie: 528/889 [59%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Wskaż funkcję kwadratową rosnąca w przedziale (-\infty,-3\rangle:
Odpowiedzi:
A. y=-(x-8)^2-3 B. y=(x+3)^2-8
C. y=(x-3)^2-8 D. y=-(x-8)^2+3
E. y=-(x+3)^2-8 F. y=-(x+8)^2+4
Zadanie 4.  1 pkt ⋅ Numer: pp-11040 ⋅ Poprawnie: 241/404 [59%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Punkt P=(-5,-11) należy do wykresu funkcji g(x)=x^2-mx+1.

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11084 ⋅ Poprawnie: 115/172 [66%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dana jest funkcja y=x^2-6.

Do zbioru ZW_f nie należy liczba:

Odpowiedzi:
A. 10-8\sqrt{5} B. 5-6\sqrt{2}
C. 5-4\sqrt{5} D. 4-6\sqrt{2}
Zadanie 6.  1 pkt ⋅ Numer: pp-11001 ⋅ Poprawnie: 522/724 [72%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Jeżeli miejscami zerowymi funkcji kwadratowej są liczby -5 oraz -1, a wierzchołek paraboli będącej jej wykresem ma współrzędne (-3,-8), to wzór tej funkcji można zapisać w postaci:
Odpowiedzi:
A. f(x)=2(x+5)(x+1) B. f(x)=2(x-5)(x+1)
C. f(x)=\frac{3}{2}(x-5)(x+1) D. f(x)=2(x+5)(x-1)
Zadanie 7.  1 pkt ⋅ Numer: pp-11075 ⋅ Poprawnie: 96/167 [57%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Dana jest funkcja kwadratowa określona wzorem f(x)=(2-x)(3x+6). Wierzchołek wykresu tej funkcji należy do prostej określonej równaniem x=m.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11004 ⋅ Poprawnie: 127/373 [34%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
Funkcja kwadratowa określona jest wzorem f(x)=-3(x+2018)(x-666).

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : f(600) < f(670) T/N : f(-701) \lessdot f(-801)
Zadanie 9.  1 pkt ⋅ Numer: pp-11534 ⋅ Poprawnie: 200/298 [67%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 (1 pkt) Jeden z poniższych wzorów opisuje funkcję postaci y=ax^2+bx+c, której wykres pokazano na rysunku:

Wskaż ten wzór:

Odpowiedzi:
A. y=a(x-1)^2-2 B. y=a(x+1)^2-2
C. y=a(x-2)^2+1 D. y=a(x-1)^2+2
E. y=a(x-2)^2-1 F. y=a(x+1)^2+2
Zadanie 10.  1 pkt ⋅ Numer: pp-11035 ⋅ Poprawnie: 23/28 [82%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
Daja jest funkcja kwadratowa g określona jest wzorem g(x)=x^2+3. Jej wykres ma dokładnie jeden punkt wspólny z prostą y=-9, gdy przesuniemy go o:
Odpowiedzi:
A. 12 jednostek w górę wzdłuż osi Oy B. 12 jednostek w dół wzdłuż osi Oy
C. 3 jednostki w lewo wzdłuż osi Ox D. 12 jednostek w prawo wzdłuż osi Ox
Zadanie 11.  1 pkt ⋅ Numer: pp-11409 ⋅ Poprawnie: 216/325 [66%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej f:

Podaj największą wartość funkcji f w przedziale \langle 1,4\rangle.

Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-11646 ⋅ Poprawnie: 57/103 [55%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Mniejsza część zawodników klubu sportowego liczącego 49 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-11065 ⋅ Poprawnie: 60/107 [56%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Funkcja f określona jest wzorem f(x)=\frac{x^2+16x+55}{x-16}.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : f ma dwa miejsca zerowe T/N : f ma jedno miejsce zerowe
T/N : f nie ma miejsc zerowych  
Zadanie 14.  1 pkt ⋅ Numer: pp-10974 ⋅ Poprawnie: 173/270 [64%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Ile rozwiązań ma równanie (x^2+8x+12)\sqrt{9-x^2}=0?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-10959 ⋅ Poprawnie: 224/427 [52%] Rozwiąż 
Podpunkt 15.1 (0.2 pkt)
 » Wyznacz zbiór wszystkich rozwiązań nierówności -1 \lessdot x^2-\frac{4}{5}x \lessdot 0 .

Zbiór ten ma postać:

Odpowiedzi:
A. (-\infty,p) B. \langle p,q\rangle
C. (-\infty,p\rangle D. (p,+\infty)
E. (p,q) F. (-\infty,p)\cup\langle q,+\infty)
Podpunkt 15.2 (0.8 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm