Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11596 ⋅ Poprawnie: 97/141 [68%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=ax^2
należy punkt o współrzędnych
\left(-3,\frac{9\sqrt{2}}{2}\right) .
Wyznacz współczynnik a .
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-11002 ⋅ Poprawnie: 730/998 [73%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Funkcja kwadratowa
f(x)=x^2+bx+c jest malejąca dla
x\in(-\infty,-6\rangle , a zbiorem jej wartości
jest przedział
\langle -8,+\infty) .
Postać kanoniczna tej funkcji opisana jest wzorem
y=(x-p)^2+q .
Podaj wartości parametrów p i q .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-11052 ⋅ Poprawnie: 812/1143 [71%]
Rozwiąż
Podpunkt 3.1 (0.8 pkt)
Zbiorem wartości funkcji kwadratowej
y=-x^2-12 x-44 jest pewien przedział liczbowy.
Podaj ten koniec tego przedziału, który jest liczbą całkowitą.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 3.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A. +\infty
B. -\infty
C. \frac{3}{4}
D. \frac{1}{2}
E. -\frac{1}{2}
F. -\frac{3}{4}
Zadanie 4. 1 pkt ⋅ Numer: pp-11038 ⋅ Poprawnie: 134/227 [59%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Gdy przesuniemy wykres funkcji
f(x)=-6(x-1)^2+\frac{1}{2} o
p=3 jednostek w lewo i
q=9 jednostek w górę,
to otrzymamy wykres funkcji:
Odpowiedzi:
A. y=-6(x-4)^2+\frac{19}{2}
B. y=-6(x+2)^2-\frac{17}{2}
C. y=-6(x+8)^2+\frac{7}{2}
D. y=-6(x+2)^2+\frac{19}{2}
Zadanie 5. 1 pkt ⋅ Numer: pp-11073 ⋅ Poprawnie: 183/338 [54%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Dana jest funkcja kwadratowa
f(x)=x^2+bx+c , przy czym
f(-9)=f(-8)=1 .
Wyznacz współczynnik b .
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-11013 ⋅ Poprawnie: 1052/1528 [68%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Trójmian kwadratowy
y=-4x^2-48x-140 można zapisać w postaci
y=a(x+7)(x-m) .
Wyznacz wartości parametrów a i m .
Odpowiedzi:
Zadanie 7. 1 pkt ⋅ Numer: pp-11010 ⋅ Poprawnie: 114/226 [50%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Funkcja kwadratowa określona jest wzorem
f(x)=-(x-9)(x-7) . Wyznacz maksymalny przedział, w którym funkcja
ta jest rosnąca.
Podaj najmniejszy koniec liczbowy tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-11011 ⋅ Poprawnie: 67/91 [73%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
» Dane są funkcje:
f(x)=x^2+\frac{\sqrt{2}}{2} i
g(x)=\frac{\sqrt{2}}{3} .
Wówczas, zachodzi warunek:
Odpowiedzi:
A. f(x) > g(x)
B. f(x)=g(x)
C. f(x)-g(x)=x^2
D. f(x) \lessdot g(x)
Zadanie 9. 1 pkt ⋅ Numer: pp-11468 ⋅ Poprawnie: 197/293 [67%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Funkcja określona wzorem
f(x)=2x^2+......\cdot x+18 jest
malejąca w przedziale
(-\infty,3) i rosnąca w przedziale
(3,+\infty) .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-11054 ⋅ Poprawnie: 29/55 [52%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Pole powierzchni figury ograniczonej parabolą o równaniu
y=x^2-1
i osią
Ox jest:
Odpowiedzi:
A. większe od 1
B. większe od 2
C. mniejsze od 1
D. równe 1
Zadanie 11. 1 pkt ⋅ Numer: pp-11409 ⋅ Poprawnie: 216/332 [65%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej
f :
Podaj największą wartość funkcji f w przedziale
\langle 1,4\rangle .
Odpowiedź:
f_{max}(x)=
(wpisz liczbę całkowitą)
Zadanie 12. 1 pkt ⋅ Numer: pp-11067 ⋅ Poprawnie: 143/276 [51%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
« Rozpatrujemy prostokąty o obwodzie
12 . Na takim
prostokącie o największym polu powierzchni opisano okrąg.
Oblicz długość promienia tego okręgu.
Odpowiedź:
Zadanie 13. 1 pkt ⋅ Numer: pp-11058 ⋅ Poprawnie: 92/184 [50%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
« Wierzchołek paraboli będącej wykresem funkcji kwadratowej określonej wzorem
y=(2x-10)^2-\frac{7}{2} należy do prostej o równaniu
y=......\cdot x .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 14. 1 pkt ⋅ Numer: pp-11066 ⋅ Poprawnie: 218/289 [75%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
« Wierzchołkiem paraboli będącej wykresem funkcji
f(x)=-x^2+bx+c jest punkt o współrzędnych
(-10,-9) .
Wyznacz współczynniki b i c .
Odpowiedzi:
Zadanie 15. 1 pkt ⋅ Numer: pp-10958 ⋅ Poprawnie: 250/427 [58%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
«« Najmniejszą liczbą całkowitą należącą do dziedziny funkcji
f(x)=\sqrt{-x^2-\frac{11}{2}x+\frac{13}{2}}
jest
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Rozwiąż