Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11644 ⋅ Poprawnie: 33/93 [35%]
Rozwiąż
Podpunkt 1.1 (0.5 pkt)
» Do wykresu funkcji kwadratowej określonej wzorem
y=ax^2+bx+c
należą punkty o współrzędnych
(-2,6) ,
(2,8) i
(4,33) .
Wyznacz współczynnik b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-10990 ⋅ Poprawnie: 262/408 [64%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Funkcja
f(x)=x^2-16x+64
dla argumentu
2\sqrt{2} przyjmuje wartość
\left(......\cdot\sqrt{8}-8\right)^2 .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-10983 ⋅ Poprawnie: 303/535 [56%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wierzchołek paraboli
y=x^2-8x leży na prostej
o równaniu:
Odpowiedzi:
A. y=-2x
B. y=-4x
C. y=-8x
D. y=4x
E. y=8x
F. y=2x
Zadanie 4. 1 pkt ⋅ Numer: pp-11040 ⋅ Poprawnie: 241/404 [59%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Punkt
P=(-4,-6) należy do wykresu funkcji
g(x)=x^2-mx+1 .
Wyznacz wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11083 ⋅ Poprawnie: 83/187 [44%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
» Dla
x=-2 funkcja
f(x)=x^2+bx+c przyjmuje wartość najmniejszą równą
-3 .
Wyznacz wartość współczynnika c .
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-10980 ⋅ Poprawnie: 201/342 [58%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Liczby
3 i
-\frac{5}{2} są miejscami
zerowymi funkcji określonej wzorem
g(x)=ax^2+x+15 .
Wyznacz wartość współczynnika a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-10987 ⋅ Poprawnie: 50/92 [54%]
Rozwiąż
Podpunkt 7.1 (0.2 pkt)
Wykres funkcji
g(x)=5(m+2)+2x+x^2 nie przecina osi
Ox , wtedy i tylko wtedy, gdy
m
należy do pewnego przedziału.
Przedział ten ma postać:
Odpowiedzi:
A. (-\infty,p\rangle
B. (p,q)
C. \langle p,q\rangle
D. (p,+\infty)
E. \langle p,+\infty)
F. (-\infty,p)
Podpunkt 7.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-11017 ⋅ Poprawnie: 336/557 [60%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Dana jest funkcja określona wzorem
g(x)=ax^2+bx+c . Postać iloczynowa
funkcji
g opisana jest wzorem
g(x)=a(x+3)(x-1) .
Wyznacz współczynnik c .
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-11046 ⋅ Poprawnie: 282/415 [67%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Wskaż wykres mający
3 punkty wspólne z osiami
układu współrzędnych:
Odpowiedzi:
A. y=-3x^2+3x-4
B. y=-4x^2-4x-4
C. y=-3(x+2)^2+7
D. y=-5x^2+6x-5
Zadanie 10. 1 pkt ⋅ Numer: pp-11049 ⋅ Poprawnie: 69/111 [62%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Wykres funkcji kwadratowej
f(x)=-4(x+3)^2-5 ma dwa
punkty wspólne z prostą:
Odpowiedzi:
A. y=-4
B. y=-8
C. x=3
D. x=-3
Zadanie 11. 1 pkt ⋅ Numer: pp-11466 ⋅ Poprawnie: 202/334 [60%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
« Dana jest funkcja kwadratowa
f(x)=-0,5(x+4m)^2+16m , gdzie
m > 0 .
Wówczas:
Odpowiedzi:
A. największą wartością funkcji jest -16m
B. dla pewnego m funkcja ma jedno miejsce zerowe
C. wierzchołek paraboli, która jest wykresem tej funkcji należy do prostej y=-4x
D. dla m=-\frac{1}{2} funkcja jest rosnąca
Zadanie 12. 1 pkt ⋅ Numer: pp-11646 ⋅ Poprawnie: 57/103 [55%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Mniejsza część zawodników klubu sportowego liczącego
61 osób,
zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z
pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.
Ilu zawodników było chorych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 13. 1 pkt ⋅ Numer: pp-10975 ⋅ Poprawnie: 325/496 [65%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Liczba ujemna spełnia równanie
x^2-2x-50=0 .
Oblicz kwadrat tej liczby.
Odpowiedź:
x^2=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 14. 1 pkt ⋅ Numer: pp-10967 ⋅ Poprawnie: 118/168 [70%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
» Pole powierzchni trójkąta prostokątnego jest równe
240 , a jedna z jego przyprostokątnych jest o
14 dłuższa od drugiej.
Oblicz kwadrat długości przeciwprostokątnej tego trójkąta.
Odpowiedź:
c^2=
(wpisz liczbę całkowitą)
Zadanie 15. 1 pkt ⋅ Numer: pp-10964 ⋅ Poprawnie: 68/113 [60%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
Ile liczb całkowitych spełnia nierówność
8\pi\cdot x > 3x^2 :
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Rozwiąż