Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11595 ⋅ Poprawnie: 119/162 [73%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=ax^2 należy punkt o współrzędnych (-3\sqrt{2},36\sqrt{5}).

Wyznacz współczynnik a.

Odpowiedź:
a= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10990 ⋅ Poprawnie: 263/409 [64%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Funkcja f(x)=x^2-4x+4 dla argumentu \sqrt{2} przyjmuje wartość \left(......\cdot\sqrt{2}-2\right)^2.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11009 ⋅ Poprawnie: 212/393 [53%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 « Maksymalny zbiór, w którym funkcja kwadratowa f(x)=-2(x+7)^2+2 jest rosnąca jest pewnym przedziałem liczbowym.

Przedział ten ma postać:

Odpowiedzi:
A. (p,+\infty) B. (-\infty,p\rangle
C. \langle p,q\rangle D. (p,q)
E. \langle p,+\infty) F. (-\infty,p)
Podpunkt 3.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11037 ⋅ Poprawnie: 210/336 [62%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Gdy przesuniemy wykres funkcji f(x)=x^2-\frac{3}{2} o p=1 jednostek w lewo i q=8 jednostek w dół, to otrzymamy wykres funkcji:
Odpowiedzi:
A. y=(x-1)^2-\frac{19}{2} B. y=(x+1)^2-\frac{19}{2}
C. y=(x+8)^2-\frac{1}{2} D. y=(x-1)^2+\frac{13}{2}
Zadanie 5.  1 pkt ⋅ Numer: pp-11082 ⋅ Poprawnie: 135/246 [54%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » W przedziale \langle -1,2\rangle funkcja y=2x^2+x-3 osiąga wartość najmniejszą równą ......... .

Podaj brakującą liczbę.

Odpowiedź:
y_{min}=
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-11041 ⋅ Poprawnie: 367/696 [52%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wyznacz największa wartość funkcji określonej wzorem y=-3(x-2)(x+5).
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11506 ⋅ Poprawnie: 461/803 [57%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Osią symetrii paraboli będącej wykresem funkcji kwadratowej określonej równaniem f(x)=-\frac{1}{2}(x-54)(x+270), jest prosta określona: równaniem x-......=0.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11034 ⋅ Poprawnie: 114/249 [45%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Przesuwając wykres funkcji określonej wzorem h(x)=x^2-2 o k=3 jednostek w lewo otrzymamy wykres funkcji opisanej wzorem y=x^2+bx+c.

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11022 ⋅ Poprawnie: 76/227 [33%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
« Rysunek przedstawia wykres funkcji kwadratowej h(x)=a(x+b)^2+c.

Zatem:

Odpowiedzi:
A. c=5 B. c=-5
C. b=-5 D. b=5
Zadanie 10.  1 pkt ⋅ Numer: pp-11053 ⋅ Poprawnie: 57/109 [52%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Prosta o równaniu y+2m=0 ma dokładnie jeden punkt wspólny z wykresem funkcji kwadratowej określonej wzorem f(x)=-\frac{1}{2}x^2-10x+3.

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-11465 ⋅ Poprawnie: 481/946 [50%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 » Najmniejszą wartość w przedziale \langle 10, 14\rangle funkcja kwadratowa f(x)=-\left(x-11\right)^{2}-5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-11646 ⋅ Poprawnie: 61/107 [57%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Mniejsza część zawodników klubu sportowego liczącego 35 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-11058 ⋅ Poprawnie: 93/186 [50%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 « Wierzchołek paraboli będącej wykresem funkcji kwadratowej określonej wzorem y=(2x-9)^2+\frac{17}{2} należy do prostej o równaniu y=......\cdot x.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 14.  1 pkt ⋅ Numer: pp-11077 ⋅ Poprawnie: 143/231 [61%] Rozwiąż 
Podpunkt 14.1 (0.2 pkt)
 » Funkcja kwadratowa opisana wzorem g(x)=mx^2-2x-\frac{7}{4} ma dokładnie dwa miejsca zerowe wtedy i tylko wtedy, gdy parametr m należy do pewnego przedziału liczbowego.

Przedział ten ma postać:

Odpowiedzi:
A. (-\infty,p\rangle B. \langle p, q\rangle
C. (p,+\infty) D. (p,q)
E. \langle p,+\infty) F. (-\infty,p)
Podpunkt 14.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 15.  1 pkt ⋅ Numer: pp-10959 ⋅ Poprawnie: 225/429 [52%] Rozwiąż 
Podpunkt 15.1 (0.2 pkt)
 » Wyznacz zbiór wszystkich rozwiązań nierówności -1 \lessdot x^2-\frac{8}{5}x \lessdot 0 .

Zbiór ten ma postać:

Odpowiedzi:
A. (-\infty,p)\cup\langle q,+\infty) B. (-\infty,p\rangle
C. \langle p,q\rangle D. (-\infty,p)
E. (p,q) F. (p,+\infty)
Podpunkt 15.2 (0.8 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm