Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11640 ⋅ Poprawnie: 84/117 [71%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wykres funkcji kwadratowej określonej wzorem
y=\frac{1}{3}(x+1)^2-5 otrzymano przesuwając wykres funkcji
y=\frac{1}{3}x^2 o
p jednostek
wzdłuż osi
Ox i o
q jednostek
wzdłuż osi
Oy , przy czym liczby
p i
q mogą być ujemne.
Podaj liczby p i q .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11002 ⋅ Poprawnie: 730/998 [73%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Funkcja kwadratowa
f(x)=x^2+bx+c jest malejąca dla
x\in(-\infty,8\rangle , a zbiorem jej wartości
jest przedział
\langle -1,+\infty) .
Postać kanoniczna tej funkcji opisana jest wzorem
y=(x-p)^2+q .
Podaj wartości parametrów p i q .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-10983 ⋅ Poprawnie: 303/535 [56%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wierzchołek paraboli
y=x^2+16x leży na prostej
o równaniu:
Odpowiedzi:
A. y=-16x
B. y=16x
C. y=4x
D. y=-4x
E. y=-8x
F. y=8x
Zadanie 4. 1 pkt ⋅ Numer: pp-11056 ⋅ Poprawnie: 610/800 [76%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Parabola o wierzchołku
P=(2,5) i ramionach
skierowanych w dół może być wykresem funkcji określonej wzorem:
Odpowiedzi:
A. y=-2(x+2)^2+5
B. y=-2(x-2)^2+5
C. y=3(x-5)^2+5
D. y=(x-2)^2-5
Zadanie 5. 1 pkt ⋅ Numer: pp-11071 ⋅ Poprawnie: 117/135 [86%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
W zbiorze wartości funkcji
f(x)=-3(x+2)^2+4 zawarty
jest przedział:
Odpowiedzi:
A. (4,+\infty)
B. (-2,5)
C. (-\infty,4)
D. (-4,5)
Zadanie 6. 1 pkt ⋅ Numer: pp-11041 ⋅ Poprawnie: 365/693 [52%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Wyznacz największa wartość funkcji określonej wzorem
y=-2(x-3)(x-8) .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-11075 ⋅ Poprawnie: 96/167 [57%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Dana jest funkcja kwadratowa określona wzorem
f(x)=(-1-x)(2x+6) .
Wierzchołek wykresu tej funkcji należy do prostej określonej równaniem
x=m .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-11024 ⋅ Poprawnie: 121/338 [35%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Na rysunku pokazano tylko część wykresu funkcji
f(x)=ax^2+bx+c , dla której
D_f=\mathbb{R} .
Wówczas:
Odpowiedzi:
T/N : funkcja f nie jest różnowartościowa
T/N : zbiorem wartości tej funkcji jest przedział (-\infty,9)
T/N : miejscami zerowymi tej funkcji są liczby -2 i 4
Zadanie 9. 1 pkt ⋅ Numer: pp-11048 ⋅ Poprawnie: 71/143 [49%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
» Prosta o równaniu
y+......=0 ma dokładnie jeden
punkt wspólny z parabolą określoną równaniem
y=2(x-2)^2+4 .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-11053 ⋅ Poprawnie: 57/109 [52%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Prosta o równaniu
y+2m=0 ma dokładnie jeden punkt
wspólny z wykresem funkcji kwadratowej określonej wzorem
f(x)=-\frac{1}{2}x^2+2x+4 .
Wyznacz wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-10985 ⋅ Poprawnie: 229/342 [66%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Dana jest funkcja
g(x)=-\frac{1}{3}(x+6)x , gdzie
x\in\langle -6,-3\rangle .
Wyznacz f_{min} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-11645 ⋅ Poprawnie: 37/67 [55%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
« Rzucono pionowo do góry kamień z prędkością początkową
10\ m/s .
Wysokość
s\ [m] , jaką osiągnie ten kamień po
t
sekundach czasu opisuje wzór
s(t)=12t-3t^2 .
Podaj maksymalną wysokość jaką osiągnie ten kamień.
Odpowiedź:
s_{max}(t)=
(wpisz liczbę całkowitą)
Zadanie 13. 1 pkt ⋅ Numer: pp-10976 ⋅ Poprawnie: 665/871 [76%]
Rozwiąż
Podpunkt 13.1 (0.5 pkt)
» Równanie
(2x-5)(x+2)=(2x-5)(2x-7) ma dwa
rozwiązania.
Wyznacz najmniejsze rozwiązanie tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (0.5 pkt)
Wyznacz największe rozwiązanie tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 14. 1 pkt ⋅ Numer: pp-11550 ⋅ Poprawnie: 110/168 [65%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Oblicz iloczyn wszystkich rozwiązań równania
(x^2-7)(x-4)^2(x^2-x-6)=0 .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 15. 1 pkt ⋅ Numer: pp-10962 ⋅ Poprawnie: 383/585 [65%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
Iloczyn
(x-2)(4-x) jest nieujemny, wtedy i tylko wtedy, gdy liczba
x
należy do zbioru
A . Zapisz zbiór
A
w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Rozwiąż