Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11596 ⋅ Poprawnie: 97/141 [68%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=ax^2 należy punkt o współrzędnych \left(2,\frac{2\sqrt{7}}{3}\right).

Wyznacz współczynnik a.

Odpowiedź:
a= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11059 ⋅ Poprawnie: 233/411 [56%] Rozwiąż 
Podpunkt 2.1 (0.5 pkt)
 Parabola y=(11-3x)^2-4 ma wierzchołek w punkcie o współrzędnych \left(x_w,y_w\right).

Wyznacz współrzędną x_w.

Odpowiedź:
x_w=
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (0.5 pkt)
 Wyznacz współrzędną y_w.
Odpowiedź:
y_w=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11009 ⋅ Poprawnie: 212/393 [53%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 « Maksymalny zbiór, w którym funkcja kwadratowa f(x)=-3(x-2)^2+8 jest rosnąca jest pewnym przedziałem liczbowym.

Przedział ten ma postać:

Odpowiedzi:
A. (p,+\infty) B. \langle p,+\infty)
C. (-\infty,p\rangle D. (p,q)
E. \langle p,q\rangle F. (-\infty,p)
Podpunkt 3.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11037 ⋅ Poprawnie: 209/334 [62%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Gdy przesuniemy wykres funkcji f(x)=x^2+\frac{3}{2} o p=4 jednostek w lewo i q=9 jednostek w dół, to otrzymamy wykres funkcji:
Odpowiedzi:
A. y=(x-4)^2-\frac{15}{2} B. y=(x+9)^2+\frac{11}{2}
C. y=(x-4)^2+\frac{21}{2} D. y=(x+4)^2-\frac{15}{2}
Zadanie 5.  1 pkt ⋅ Numer: pp-11074 ⋅ Poprawnie: 93/157 [59%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Różnica iloczynu liczby 11 oraz liczby x i kwadratu liczby xjest największa dla liczby x równej:
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10999 ⋅ Poprawnie: 101/166 [60%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Zbiorem wartości funkcji kwadratowej f określonej wzorem f(x)=m(x-1)(x-5) jest przedział liczbowy \langle -12,+\infty), a rozwiązaniem nierówności f(x) \lessdot 0 przedział (1,5).

Wyznacz współczynnik m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-11042 ⋅ Poprawnie: 369/567 [65%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Miejscami zerowymi funkcji kwadratowej są liczby -3 oraz 6. Do wykresu tej funkcji należy punkt A=(3,-36). Zapisz wzór tej funkcji w postaci iloczynowej y=a(x-x_1)(x-x_2).

Podaj współczynnik a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11024 ⋅ Poprawnie: 121/338 [35%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
Na rysunku pokazano tylko część wykresu funkcji f(x)=ax^2+bx+c, dla której D_f=\mathbb{R}.

Wówczas:

Odpowiedzi:
T/N : miejscami zerowymi tej funkcji są liczby -2 i 4 T/N : funkcja przyjmuje wartości większe od zera dla x \lessdot 1
T/N : zbiorem wartości tej funkcji jest przedział (-\infty,9)  
Zadanie 9.  1 pkt ⋅ Numer: pp-11055 ⋅ Poprawnie: 46/98 [46%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wykresy funkcji określonych wzorami f(x)=3x^2-18x+27 i g(x)=3x^2-12x+12 są symetryczne względem prostej o równaniu x=m.

Podaj m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10998 ⋅ Poprawnie: 80/169 [47%] Rozwiąż 
Podpunkt 10.1 (0.2 pkt)
 «« Funkcja określona wzorem f(x)=(2m+8)x^2+3x-14 osiąga wartość największą wtedy i tylko wtedy, gdy parametr m należy do pewnego przedziału liczbowego.

Przedział ten ma postać:

Odpowiedzi:
A. (p,q) B. \langle p,q\rangle
C. \langle p,+\infty) D. (-\infty,p)
E. (-\infty,p\rangle F. (p,+\infty)
Podpunkt 10.2 (0.8 pkt)
 Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-10985 ⋅ Poprawnie: 217/329 [65%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Dana jest funkcja g(x)=-\frac{1}{4}(x+6)x, gdzie x\in\langle -8,-5\rangle.

Wyznacz f_{min}.

Odpowiedź:
f_{min}=
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-11730 ⋅ Poprawnie: 21/39 [53%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Większa część zawodników klubu sportowego liczącego 51 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-10969 ⋅ Poprawnie: 79/138 [57%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Punkt M=(a,3\cdot a) należy do wykresu funkcji f(x)=(1-a)x-a.

Wyznacz najmniejsze możliwe i największe możliwe a.

Odpowiedzi:
a_{min}= (wpisz liczbę całkowitą)
a_{max}= (wpisz liczbę całkowitą)
Zadanie 14.  1 pkt ⋅ Numer: pp-10971 ⋅ Poprawnie: 130/195 [66%] Rozwiąż 
Podpunkt 14.1 (0.2 pkt)
 Równanie x^2-(k-2)x+49=0 z niewiadomą x ma dwa różne rozwiązania wtedy i tylko wtedy, gdy parametr k należy do zbioru A. Zapisz zbiór Aw postaci sumy przedziałów.

Zbiór A jest postaci:

Odpowiedzi:
A. (p,+\infty) B. (-\infty,p)\cap(q,+\infty)
C. (-\infty,p) D. (-\infty,p)\cup(q,+\infty)
E. \langle p,q\rangle F. (p,q)
Podpunkt 14.2 (0.8 pkt)
 Liczba p jest najmniejszym, a liczba q największym z końców liczbowych tych przedziałów.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-10964 ⋅ Poprawnie: 68/113 [60%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Ile liczb całkowitych spełnia nierówność 3\pi\cdot x > 2x^2:
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm