Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11727 ⋅ Poprawnie: 28/45 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=x^2+bx+c należą punkty o współrzędnych (5,3) i (10,-7).

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11072 ⋅ Poprawnie: 315/528 [59%] Rozwiąż 
Podpunkt 2.1 (0.5 pkt)
 « O funkcji kwadratowej opisanej wzorem f(x)=a(x-p)^2+q wiadomo, że ma dwa miejsca zerowe -8 i -4 oraz że najmniejszą jej wartością jest liczba -2.

Wyznacz wartość parametru a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (0.5 pkt)
 Wyznacz wartość parametru p.
Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11009 ⋅ Poprawnie: 212/393 [53%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 « Maksymalny zbiór, w którym funkcja kwadratowa f(x)=-3(x+2)^2+8 jest rosnąca jest pewnym przedziałem liczbowym.

Przedział ten ma postać:

Odpowiedzi:
A. (-\infty,p) B. \langle p,q\rangle
C. \langle p,+\infty) D. (p,+\infty)
E. (-\infty,p\rangle F. (p,q)
Podpunkt 3.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11008 ⋅ Poprawnie: 400/562 [71%] Rozwiąż 
Podpunkt 4.1 (0.8 pkt)
 « Zbiorem wartości funkcji kwadratowej f(x)=-x^2-\sqrt{17} jest pewnien przedział liczbowy.

Podaj ten koniec tego przedziału, który jest liczbą niewymierną.

Odpowiedź:
m\sqrt{n}= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 4.2 (0.2 pkt)
 Przedział ten ma postać:
Odpowiedzi:
A. \left\langle p, q \right\rangle B. \left\langle p,+\infty\right)
C. \left(-\infty,p\right\rangle D. \left(p, q\right)
Zadanie 5.  1 pkt ⋅ Numer: pp-10997 ⋅ Poprawnie: 196/269 [72%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wskaż funkcję, która nie przyjmuje wartości ujemnych:
Odpowiedzi:
A. y=4(x-8)^2-5 B. y=-6(x+1)^2+3
C. y=(x+2)^2-1 D. y=(8-x)^2+5
Zadanie 6.  1 pkt ⋅ Numer: pp-10980 ⋅ Poprawnie: 201/342 [58%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Liczby 5 i -\frac{5}{2} są miejscami zerowymi funkcji określonej wzorem g(x)=ax^2+\frac{5}{2}x+\frac{25}{2}.

Wyznacz wartość współczynnika a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-11019 ⋅ Poprawnie: 560/777 [72%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Zbiorem wartości funkcji kwadratowej określonej wzorem f(x)=(x-4)(x+8) jest przedział liczbowy \langle ......,+\infty).

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11470 ⋅ Poprawnie: 93/154 [60%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Przesuwając wykres funkcji określonej wzorem h(x)=x^2-4 o k=3 jednostek w prawo otrzymamy wykres funkcji opisanej wzorem y=x^2+bx+c.

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11048 ⋅ Poprawnie: 71/143 [49%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Prosta o równaniu y+......=0 ma dokładnie jeden punkt wspólny z parabolą określoną równaniem y=2(x+2)^2+10.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11050 ⋅ Poprawnie: 82/195 [42%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Wykres funkcji kwadratowej y=-5(x-2)^2+10 nie ma punktów wspólnych z prostą o równaniu:
Odpowiedzi:
A. x=2 B. x=0
C. y=11 D. y=8
Zadanie 11.  1 pkt ⋅ Numer: pp-11466 ⋅ Poprawnie: 202/334 [60%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Dana jest funkcja kwadratowa f(x)=-0,5(x+3m)^2+15m, gdzie m > 0.

Wówczas:

Odpowiedzi:
A. dla m=-\frac{1}{2} funkcja jest rosnąca B. wierzchołek paraboli, która jest wykresem tej funkcji należy do prostej y=-5x
C. największą wartością funkcji jest -15m D. dla pewnego m funkcja ma jedno miejsce zerowe
Zadanie 12.  1 pkt ⋅ Numer: pp-11646 ⋅ Poprawnie: 57/103 [55%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Mniejsza część zawodników klubu sportowego liczącego 53 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-11065 ⋅ Poprawnie: 60/107 [56%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Funkcja f określona jest wzorem f(x)=\frac{x^2-9x-36}{x+9}.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : f przyjmuje wartości dodatnie T/N : f przyjmuje tylko wartości ujemne
T/N : f ma dwa miejsca zerowe  
Zadanie 14.  1 pkt ⋅ Numer: pp-10967 ⋅ Poprawnie: 118/168 [70%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 » Pole powierzchni trójkąta prostokątnego jest równe 96, a jedna z jego przyprostokątnych jest o 4 dłuższa od drugiej.

Oblicz kwadrat długości przeciwprostokątnej tego trójkąta.

Odpowiedź:
c^2= (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-10958 ⋅ Poprawnie: 250/427 [58%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 «« Najmniejszą liczbą całkowitą należącą do dziedziny funkcji f(x)=\sqrt{-x^2-\frac{7}{2}x+\frac{9}{2}} jest ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm