Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11643 ⋅ Poprawnie: 93/191 [48%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=x^2+bx+c należą punkty o współrzędnych (10,8) i (3,-13).

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10990 ⋅ Poprawnie: 262/408 [64%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Funkcja f(x)=x^2-26x+169 dla argumentu \sqrt{13} przyjmuje wartość \left(......\cdot\sqrt{13}-13\right)^2.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11029 ⋅ Poprawnie: 232/353 [65%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Prosta o równaniu -5x-3=0 jest osią symetrii paraboli:
Odpowiedzi:
A. y=2x^2+\frac{18}{5}x-4 B. y=4x^2+\frac{8}{5}x-4
C. y=4x^2+\frac{24}{5}x-4 D. y=2x^2-\frac{18}{5}x-4
E. y=4x^2-\frac{8}{5}x-4 F. y=4x^2+\frac{12}{5}x-4
Zadanie 4.  1 pkt ⋅ Numer: pp-11056 ⋅ Poprawnie: 610/800 [76%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Parabola o wierzchołku P=(11,-2) i ramionach skierowanych w dół może być wykresem funkcji określonej wzorem:
Odpowiedzi:
A. y=3(x+2)^2-2 B. y=-2(x-11)^2-2
C. y=-2(x+11)^2-2 D. y=(x-11)^2+2
Zadanie 5.  1 pkt ⋅ Numer: pp-11084 ⋅ Poprawnie: 115/172 [66%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dana jest funkcja y=x^2-3.

Do zbioru ZW_f nie należy liczba:

Odpowiedzi:
A. 9-4\sqrt{6} B. 5-4\sqrt{3}
C. 6-5\sqrt{3} D. 6-4\sqrt{6}
Zadanie 6.  1 pkt ⋅ Numer: pp-10980 ⋅ Poprawnie: 201/342 [58%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Liczby -1 i \frac{7}{2} są miejscami zerowymi funkcji określonej wzorem g(x)=ax^2-10x-14.

Wyznacz wartość współczynnika a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-11019 ⋅ Poprawnie: 560/777 [72%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Zbiorem wartości funkcji kwadratowej określonej wzorem f(x)=(x-8)(x+4) jest przedział liczbowy \langle ......,+\infty).

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11016 ⋅ Poprawnie: 400/609 [65%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
« Funkcja f, której wykres pokazano na rysunku zdefiniowana jest wzorem:
Odpowiedzi:
A. f(x)=-\frac{4}{5}\left(x+\frac{5}{2}\right)\left(x+\frac{1}{2}\right) B. f(x)=-\frac{4}{5}\left(x-\frac{5}{2}\right)\left(x+\frac{1}{2}\right)
C. f(x)=-\frac{4}{5}\left(x-\frac{5}{2}\right)\left(x-\frac{1}{2}\right) D. f(x)=-\frac{5}{4}\left(x-\frac{5}{2}\right)\left(x+\frac{1}{2}\right)
Zadanie 9.  1 pkt ⋅ Numer: pp-11027 ⋅ Poprawnie: 42/93 [45%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Prosta o równaniu x=-8 jest osią symetrii wykresu funkcji kwadratowej, której część wykresu pokazano na poniższym rysunku. Zbiór A zawiera wszystkie te wartości rzeczywiste x, dla których f(x)\leqslant 0.

Podaj najmniejszą liczbę należącą do zbioru A.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11062 ⋅ Poprawnie: 141/183 [77%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
Na rysunku pokazano cześć wykresu funkcji g(x)=ax^2+bc+c.

Które z poniższych zdań jest prawdziwe?

Odpowiedzi:
A. funkcja rośnie w przedziale (-2,4) B. miejscami zerowymi funkcji to -2 i 6
C. miejsca zerowe tej funkcji to -2 i 4 D. f(x) > 0 \iff x \lessdot 1
Zadanie 11.  1 pkt ⋅ Numer: pp-11466 ⋅ Poprawnie: 202/334 [60%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Dana jest funkcja kwadratowa f(x)=-0,5(x+5m)^2+15m, gdzie m > 0.

Wówczas:

Odpowiedzi:
A. wierzchołek paraboli, która jest wykresem tej funkcji należy do prostej y=-3x B. największą wartością funkcji jest -15m
C. dla m=-\frac{1}{2} funkcja jest rosnąca D. dla pewnego m funkcja ma jedno miejsce zerowe
Zadanie 12.  1 pkt ⋅ Numer: pp-11645 ⋅ Poprawnie: 37/67 [55%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « Rzucono pionowo do góry kamień z prędkością początkową 10\ m/s. Wysokość s\ [m], jaką osiągnie ten kamień po t sekundach czasu opisuje wzór s(t)=8t-2t^2.

Podaj maksymalną wysokość jaką osiągnie ten kamień.

Odpowiedź:
s_{max}(t)= (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-10969 ⋅ Poprawnie: 79/138 [57%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Punkt M=(a,10\cdot a) należy do wykresu funkcji f(x)=(1-a)x-a.

Wyznacz najmniejsze możliwe i największe możliwe a.

Odpowiedzi:
a_{min}= (wpisz liczbę całkowitą)
a_{max}= (wpisz liczbę całkowitą)
Zadanie 14.  1 pkt ⋅ Numer: pp-10974 ⋅ Poprawnie: 173/270 [64%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Ile rozwiązań ma równanie (x^2-5x-6)\sqrt{16-x^2}=0?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-10964 ⋅ Poprawnie: 68/113 [60%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Ile liczb całkowitych spełnia nierówność 9\pi\cdot x > 5x^2:
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm