Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11640 ⋅ Poprawnie: 84/117 [71%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wykres funkcji kwadratowej określonej wzorem
y=-\frac{1}{6}(x-4)^2-4 otrzymano przesuwając wykres funkcji
y=-\frac{1}{6}x^2 o
p jednostek
wzdłuż osi
Ox i o
q jednostek
wzdłuż osi
Oy , przy czym liczby
p i
q mogą być ujemne.
Podaj liczby p i q .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11059 ⋅ Poprawnie: 233/411 [56%]
Rozwiąż
Podpunkt 2.1 (0.5 pkt)
Parabola
y=(1+9x)^2-1
ma wierzchołek w punkcie o współrzędnych
\left(x_w,y_w\right) .
Wyznacz współrzędną x_w .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11005 ⋅ Poprawnie: 356/560 [63%]
Rozwiąż
Podpunkt 3.1 (0.2 pkt)
« Funkcja
y=-(x+7)^2-2 jest rosnąca w pewnym
przedziale liczbowym.
Przedział ten ma postać:
Odpowiedzi:
A. \langle p,q\rangle
B. (-\infty,p)
C. (p,q)
D. \langle p,+\infty)
E. (p,+\infty)
F. (-\infty,p\rangle
Podpunkt 3.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11044 ⋅ Poprawnie: 141/222 [63%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wykres funkcji kwadratowej
g przecina oś
Ox w dwóch punktach.
Funkcja g opisana jest wzorem:
Odpowiedzi:
A. g(x)=9(x+1)^2-\sqrt{8}
B. g(x)=8(x-9)^2+12
C. g(x)=11(x+12)^2+12
D. g(x)=-11(x-3)^2-7
Zadanie 5. 1 pkt ⋅ Numer: pp-11505 ⋅ Poprawnie: 439/842 [52%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
(1 pkt)
Zbiorem wartości funkcji określonej wzorem
f(x)=-4(x+1981)^2+m-40
jest przedział
(-\infty, 2021\rangle .
Wówczas liczba m jest równa:
Odpowiedzi:
A. 2141
B. 1981
C. 2061
D. 1941
Zadanie 6. 1 pkt ⋅ Numer: pp-10982 ⋅ Poprawnie: 56/126 [44%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Wyznacz sumę miejsc zerowych funkcji określonej wzorem
f(x)=\frac{-x^2-5x}{\sqrt{-5-x}}
.
Odpowiedź:
x_1+x_2=
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-11427 ⋅ Poprawnie: 672/822 [81%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Funkcja kwadratowa jest określona wzorem
f(x)=-(x+8)(x-4) . Liczby
x_1 i
x_2 są różnymi
miejscami zerowymi funkcji
f spełniającymi warunek
x_1+x_2=......... .
Podaj brakującą liczbę.
Odpowiedzi:
A. x_1+x_2=8
B. x_1+x_2=4
C. x_1+x_2=-4
D. x_1+x_2=-8
Zadanie 8. 1 pkt ⋅ Numer: pp-11064 ⋅ Poprawnie: 289/472 [61%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Wykres funkcji kwadratowej określonej wzorem
y=ax^2+bx+c
pokazano na rysunku:
Podaj współczynnik a i b .
Odpowiedzi:
Zadanie 9. 1 pkt ⋅ Numer: pp-11534 ⋅ Poprawnie: 197/295 [66%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
(1 pkt)
Jeden z poniższych wzorów opisuje funkcję postaci
y=ax^2+bx+c , której wykres pokazano na rysunku:
Wskaż ten wzór:
Odpowiedzi:
A. y=a(x-2)^2+1
B. y=a(x-1)^2+2
C. y=a(x+1)^2-2
D. y=a(x-2)^2-1
E. y=a(x-1)^2-2
F. y=a(x+1)^2+2
Zadanie 10. 1 pkt ⋅ Numer: pp-11070 ⋅ Poprawnie: 76/122 [62%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Wyznacz największą całkowitą wartość funkcji określonej wzorem
f(x)=-x^2-7x-2 .
Odpowiedź:
max_{\mathbb{Z}}=
(wpisz liczbę całkowitą)
Zadanie 11. 1 pkt ⋅ Numer: pp-11466 ⋅ Poprawnie: 202/334 [60%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
« Dana jest funkcja kwadratowa
f(x)=-0,5(x+2m)^2+8m , gdzie
m > 0 .
Wówczas:
Odpowiedzi:
A. dla pewnego m funkcja ma jedno miejsce zerowe
B. dla m=-\frac{1}{2} funkcja jest rosnąca
C. największą wartością funkcji jest -8m
D. wierzchołek paraboli, która jest wykresem tej funkcji należy do prostej y=-4x
Zadanie 12. 1 pkt ⋅ Numer: pp-11730 ⋅ Poprawnie: 21/39 [53%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Większa część zawodników klubu sportowego liczącego
59 osób,
zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z
pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.
Ilu zawodników było chorych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 13. 1 pkt ⋅ Numer: pp-10975 ⋅ Poprawnie: 325/496 [65%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Liczba ujemna spełnia równanie
x^2-2x-50=0 .
Oblicz kwadrat tej liczby.
Odpowiedź:
x^2=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 14. 1 pkt ⋅ Numer: pp-11550 ⋅ Poprawnie: 102/147 [69%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Oblicz iloczyn wszystkich rozwiązań równania
(x^2-5)(x-3)^2(x^2+x-6)=0 .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 15. 1 pkt ⋅ Numer: pp-10962 ⋅ Poprawnie: 383/585 [65%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
Iloczyn
(x+7)(1-x) jest nieujemny, wtedy i tylko wtedy, gdy liczba
x
należy do zbioru
A . Zapisz zbiór
A
w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Rozwiąż