Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11727 ⋅ Poprawnie: 28/45 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=x^2+bx+c należą punkty o współrzędnych (0,3) i (5,-7).

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10989 ⋅ Poprawnie: 700/1010 [69%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Największą wartością funkcji kwadratowej f(x)=-4(x-2)^2-1 jest ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11028 ⋅ Poprawnie: 605/791 [76%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Osią symetrii paraboli o równaniu y=-11x^2-308x-330 jest prosta określona: równaniem x=..........

Podaj brakującą liczbę.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11056 ⋅ Poprawnie: 610/800 [76%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Parabola o wierzchołku P=(-5,1) i ramionach skierowanych w dół może być wykresem funkcji określonej wzorem:
Odpowiedzi:
A. y=(x+5)^2-1 B. y=3(x-1)^2+1
C. y=-2(x+5)^2+1 D. y=-2(x-5)^2+1
Zadanie 5.  1 pkt ⋅ Numer: pp-10997 ⋅ Poprawnie: 176/242 [72%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wskaż funkcję, która nie przyjmuje wartości ujemnych:
Odpowiedzi:
A. y=(x+2)^2-5 B. y=3(x-4)^2-6
C. y=(5-x)^2+6 D. y=-7(x+5)^2-9
Zadanie 6.  1 pkt ⋅ Numer: pp-11057 ⋅ Poprawnie: 399/626 [63%] Rozwiąż 
Podpunkt 6.1 (0.5 pkt)
 » Wierzchołek paraboli o równaniu y=(-1+3x)(x+3) ma współrzędne (x_w,y_w).

Wyznacz współrzędną x_w.

Odpowiedź:
x_w=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (0.5 pkt)
 Wyznacz współrzędną y_w.
Odpowiedź:
y_w=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11427 ⋅ Poprawnie: 672/822 [81%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Funkcja kwadratowa jest określona wzorem f(x)=-(-12x-12)(x+5). Liczby x_1 i x_2 są różnymi miejscami zerowymi funkcji f spełniającymi warunek x_1+x_2=..........

Podaj brakującą liczbę.

Odpowiedzi:
A. x_1+x_2=-12 B. x_1+x_2=6
C. x_1+x_2=12 D. x_1+x_2=-6
Zadanie 8.  1 pkt ⋅ Numer: pp-11011 ⋅ Poprawnie: 67/91 [73%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Dane są funkcje: f(x)=x^2+\frac{\sqrt{6}}{2} i g(x)=\frac{\sqrt{6}}{3}.

Wówczas, zachodzi warunek:

Odpowiedzi:
A. f(x)-g(x)=x^2 B. f(x)=g(x)
C. f(x) \lessdot g(x) D. f(x) > g(x)
Zadanie 9.  1 pkt ⋅ Numer: pp-11027 ⋅ Poprawnie: 42/93 [45%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Prosta o równaniu x=-3 jest osią symetrii wykresu funkcji kwadratowej, której część wykresu pokazano na poniższym rysunku. Zbiór A zawiera wszystkie te wartości rzeczywiste x, dla których f(x)\leqslant 0.

Podaj najmniejszą liczbę należącą do zbioru A.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11051 ⋅ Poprawnie: 40/77 [51%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Wykres funkcji y=x^2-6 ma dokładnie jeden punkt wspólny z prostą:
Odpowiedzi:
A. x=1 B. y=6
C. y=6x D. y=-6x+1
Zadanie 11.  1 pkt ⋅ Numer: pp-10978 ⋅ Poprawnie: 466/732 [63%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Najmniejszą wartość w przedziale \langle -8, -4\rangle funkcja kwadratowa określona wzorem f(x)=-\left(x+5\right)^{2}+5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-11646 ⋅ Poprawnie: 57/103 [55%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Mniejsza część zawodników klubu sportowego liczącego 49 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-10972 ⋅ Poprawnie: 687/861 [79%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Wiadomo, że 9x^2+6x+1=0.

Oblicz x.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 14.  1 pkt ⋅ Numer: pp-10973 ⋅ Poprawnie: 61/114 [53%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 » Dana jest funkcja f(x)= \begin{cases} -\frac{1}{3}x-1,\qquad x\in(-\infty,-15) \\ x^2-220,\qquad x\in\langle -15,+\infty) \end{cases} . Liczba rozwiązań równania f(x)=4 jest równa:
Odpowiedzi:
A. 3 B. 2
C. 1 D. 0
Zadanie 15.  1 pkt ⋅ Numer: pp-10960 ⋅ Poprawnie: 252/530 [47%] Rozwiąż 
Podpunkt 15.1 (0.2 pkt)
 Wyznacz dziedzinę funkcji określonej wzorem f(x)=\sqrt{16-36x^2} .

Zbiór ten jest postaci:

Odpowiedzi:
A. (-\infty,p\rangle\cup\langle q,+\infty) B. (-\infty,p\rangle
C. \langle p,+\infty) D. (p,+\infty)
E. \langle p,q\rangle F. (p,q)
Podpunkt 15.2 (0.8 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm