Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11596 ⋅ Poprawnie: 98/142 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=ax^2 należy punkt o współrzędnych \left(3,\frac{9\sqrt{2}}{5}\right).

Wyznacz współczynnik a.

Odpowiedź:
a= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10990 ⋅ Poprawnie: 263/409 [64%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Funkcja f(x)=x^2-26x+169 dla argumentu \sqrt{13} przyjmuje wartość \left(......\cdot\sqrt{13}-13\right)^2.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10991 ⋅ Poprawnie: 197/342 [57%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zbiorem wartości funkcji kwadratowej f(x)=-x^2+ax-\frac{a^2}{4}-a jest przedział (-\infty,10\rangle.

Wyznacz wartość parametru a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11008 ⋅ Poprawnie: 400/563 [71%] Rozwiąż 
Podpunkt 4.1 (0.8 pkt)
 « Zbiorem wartości funkcji kwadratowej f(x)=x^2-\sqrt{13} jest pewnien przedział liczbowy.

Podaj ten koniec tego przedziału, który jest liczbą niewymierną.

Odpowiedź:
m\sqrt{n}= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 4.2 (0.2 pkt)
 Przedział ten ma postać:
Odpowiedzi:
A. \left(-\infty,p\right\rangle B. \left(p, q\right)
C. \left\langle p,+\infty\right) D. \left\langle p, q \right\rangle
Zadanie 5.  1 pkt ⋅ Numer: pp-11083 ⋅ Poprawnie: 83/187 [44%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Dla x=6 funkcja f(x)=x^2+bx+c przyjmuje wartość najmniejszą równą -1.

Wyznacz wartość współczynnika c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10996 ⋅ Poprawnie: 345/564 [61%] Rozwiąż 
Podpunkt 6.1 (0.2 pkt)
 Zbiór tych wszystkich wartości m, dla których funkcja kwadratowa określona wzorem f(x)=x^2+7x+m nie ma ani jednego miejsca zerowego jest przedziałem liczbowym.

Przedział ten ma postać:

Odpowiedzi:
A. (-\infty, p) B. \langle p, +\infty)
C. (-\infty, p\rangle D. (p, q)
E. \langle p, q\rangle F. (p, +\infty)
Podpunkt 6.2 (0.8 pkt)
 Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11079 ⋅ Poprawnie: 269/363 [74%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Dana jest funkcja kwadratowa opisana wzorem h(x)=-5(x+1)(x-8). Wyznacz maksymalny przedział, w którym funkcja ta jest malejąca.

Podaj najmniejszy z końców liczbowych tego przedziału.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11014 ⋅ Poprawnie: 32/80 [40%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
Niech A=(-2,4). Wiadomo, że A\cap ZW_g=\emptyset.

Wykres funkcji g pokazano na rysunku:

Odpowiedzi:
A. C B. B
C. D D. A
Zadanie 9.  1 pkt ⋅ Numer: pp-11055 ⋅ Poprawnie: 47/99 [47%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wykresy funkcji określonych wzorami f(x)=3x^2+12x+12 i g(x)=3x^2+18x+27 są symetryczne względem prostej o równaniu x=m.

Podaj m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-11045 ⋅ Poprawnie: 41/79 [51%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
Liczby a i b spełniają warunek a\cdot b \lessdot 0.

Liczba rozwiązań układu równań \begin{cases} y=ax^2+b \\ y=0 \end{cases} jest równa:

Odpowiedzi:
A. 0 B. 3
C. 2 D. 1
Zadanie 11.  1 pkt ⋅ Numer: pp-10978 ⋅ Poprawnie: 475/746 [63%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Najmniejszą wartość w przedziale \langle 9, 13\rangle funkcja kwadratowa określona wzorem f(x)=-\left(x-12\right)^{2}+5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-11646 ⋅ Poprawnie: 59/105 [56%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Mniejsza część zawodników klubu sportowego liczącego 89 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-10975 ⋅ Poprawnie: 326/498 [65%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Liczba ujemna spełnia równanie x^2-2x-128=0.

Oblicz kwadrat tej liczby.

Odpowiedź:
x^2= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 14.  1 pkt ⋅ Numer: pp-11550 ⋅ Poprawnie: 112/170 [65%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Oblicz iloczyn wszystkich rozwiązań równania (x^2-6)(x-4)^2(x^2+x-6)=0.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-10961 ⋅ Poprawnie: 398/724 [54%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 « Suma wszystkich rozwiązań całkowitych nierówności (9-4x)(x+8)\geqslant 0 jest równa ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm