Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11727 ⋅ Poprawnie: 28/45 [62%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=x^2+bx+c
należą punkty o współrzędnych
(0,0) i
(5,-10) .
Wyznacz współczynniki b i c .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11012 ⋅ Poprawnie: 639/965 [66%]
Rozwiąż
Podpunkt 2.1 (0.5 pkt)
Postać kanoniczna trójmianu kwadratowego
y=-3x^2-24x-\frac{142}{3}
opisana jest wzorem
y=a(x-p)^2+q .
Podaj wartość parametru p .
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Podpunkt 2.2 (0.5 pkt)
Podaj wartość parametru
q .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11005 ⋅ Poprawnie: 358/562 [63%]
Rozwiąż
Podpunkt 3.1 (0.2 pkt)
« Funkcja
y=-(x-4)^2+1 jest rosnąca w pewnym
przedziale liczbowym.
Przedział ten ma postać:
Odpowiedzi:
A. \langle p,+\infty)
B. (p,+\infty)
C. (-\infty,p)
D. \langle p,q\rangle
E. (-\infty,p\rangle
F. (p,q)
Podpunkt 3.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11056 ⋅ Poprawnie: 610/801 [76%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Parabola o wierzchołku
P=(6,2) i ramionach
skierowanych w dół może być wykresem funkcji określonej wzorem:
Odpowiedzi:
A. y=3(x-2)^2+2
B. y=(x-6)^2-2
C. y=-2(x-6)^2+2
D. y=-2(x+6)^2+2
Zadanie 5. 1 pkt ⋅ Numer: pp-11408 ⋅ Poprawnie: 170/221 [76%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej
f :
Zbiór wartości funkcji określonej wzorem y=-f(-x) jest równy:
Odpowiedzi:
A. (-\infty,+\infty)
B. \langle 4,+\infty)
C. (-\infty, 4\rangle
D. \langle -4,0\rangle
Zadanie 6. 1 pkt ⋅ Numer: pp-10996 ⋅ Poprawnie: 345/564 [61%]
Rozwiąż
Podpunkt 6.1 (0.2 pkt)
Zbiór tych wszystkich wartości
m , dla których funkcja kwadratowa
określona wzorem
f(x)=x^2+6x+m nie ma ani
jednego miejsca zerowego jest przedziałem liczbowym.
Przedział ten ma postać:
Odpowiedzi:
A. (p, q)
B. (-\infty, p\rangle
C. (-\infty, p)
D. \langle p, +\infty)
E. (p, +\infty)
F. \langle p, q\rangle
Podpunkt 6.2 (0.8 pkt)
Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-11075 ⋅ Poprawnie: 99/170 [58%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Dana jest funkcja kwadratowa określona wzorem
f(x)=(5-x)(2x-6) .
Wierzchołek wykresu tej funkcji należy do prostej określonej równaniem
x=m .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-11011 ⋅ Poprawnie: 68/92 [73%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
» Dane są funkcje:
f(x)=x^2+\frac{\sqrt{12}}{2} i
g(x)=\frac{\sqrt{12}}{3} .
Wówczas, zachodzi warunek:
Odpowiedzi:
A. f(x)=g(x)
B. f(x) > g(x)
C. f(x)-g(x)=x^2
D. f(x) \lessdot g(x)
Zadanie 9. 1 pkt ⋅ Numer: pp-11728 ⋅ Poprawnie: 4/13 [30%]
Rozwiąż
Podpunkt 9.1 (0.2 pkt)
Zbiorem wartości funkcji
y=-(x-8)(x+8)
określonej dla
x\in(3,7\rangle jest pewien przedział liczbowy.
Przedział ten ma postać:
Odpowiedzi:
A. (p,q\rangle
B. (-\infty,p\rangle
C. (p,+\infty)
D. (p,q)
E. \langle p,q\rangle
F. \langle p,q)
Podpunkt 9.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-11081 ⋅ Poprawnie: 41/75 [54%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
» Wykres funkcji kwadratowej opisanej wzorem
g(x)=-x^2+9x-11
przecięto prostą o równaniu
y=9 . Niech
P i
Q będą punktami
przecięcia tych wykresów.
Oblicz |PQ| .
Odpowiedź:
|PQ|=
(wpisz liczbę całkowitą)
Zadanie 11. 1 pkt ⋅ Numer: pp-10988 ⋅ Poprawnie: 71/94 [75%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
» Wyznacz najmniejszą wartość funkcji kwadratowej określonej wzorem
f(x)=x^2+12x .
Odpowiedź:
f_{min}(x)=
(wpisz liczbę całkowitą)
Zadanie 12. 1 pkt ⋅ Numer: pp-11080 ⋅ Poprawnie: 265/399 [66%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
« Suma dwóch liczb jest równa
24\sqrt{2} , a ich
iloczyn ma największą możliwą wartość.
Oblicz mniejszą z tych liczb.
Odpowiedź:
min=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 13. 1 pkt ⋅ Numer: pp-11058 ⋅ Poprawnie: 93/185 [50%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
« Wierzchołek paraboli będącej wykresem funkcji kwadratowej określonej wzorem
y=(2x+4)^2+\frac{19}{2} należy do prostej o równaniu
y=......\cdot x .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 14. 1 pkt ⋅ Numer: pp-11550 ⋅ Poprawnie: 112/170 [65%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Oblicz iloczyn wszystkich rozwiązań równania
(x^2-5)(x-2)^2(x^2-x-6)=0 .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 15. 1 pkt ⋅ Numer: pp-10958 ⋅ Poprawnie: 251/429 [58%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
«« Najmniejszą liczbą całkowitą należącą do dziedziny funkcji
f(x)=\sqrt{-x^2-\frac{7}{2}x+\frac{39}{2}}
jest
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Rozwiąż