Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11726 ⋅ Poprawnie: 19/33 [57%] Rozwiąż 
Podpunkt 1.1 (0.5 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=ax^2+bx+c należą punkty o współrzędnych (4,5), (6,0) i (10,2).

Wyznacz współczynnik b.

Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
 Wyznacz współczynnik c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10990 ⋅ Poprawnie: 262/408 [64%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Funkcja f(x)=x^2-26x+169 dla argumentu \sqrt{13} przyjmuje wartość \left(......\cdot\sqrt{13}-13\right)^2.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10991 ⋅ Poprawnie: 183/325 [56%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zbiorem wartości funkcji kwadratowej f(x)=-x^2+ax-\frac{a^2}{4}-a jest przedział (-\infty,-10\rangle.

Wyznacz wartość parametru a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11040 ⋅ Poprawnie: 241/404 [59%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Punkt P=(12,-8) należy do wykresu funkcji g(x)=x^2-mx+1.

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11505 ⋅ Poprawnie: 439/842 [52%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 (1 pkt) Zbiorem wartości funkcji określonej wzorem f(x)=-2(x+2071)^2+m+50 jest przedział (-\infty, 2021\rangle.

Wówczas liczba m jest równa:

Odpowiedzi:
A. 1971 B. 2071
C. 2121 D. 1921
Zadanie 6.  1 pkt ⋅ Numer: pp-10999 ⋅ Poprawnie: 101/166 [60%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Zbiorem wartości funkcji kwadratowej f określonej wzorem f(x)=m(x+6)(x-2) jest przedział liczbowy \langle -64,+\infty), a rozwiązaniem nierówności f(x) \lessdot 0 przedział (-6,2).

Wyznacz współczynnik m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-11535 ⋅ Poprawnie: 55/85 [64%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=f(x) należy punkt P=(3, -36). Osią symetrii wykresu tej funkcji jest prosta określona równaniem x=-1, a liczba 7 jest miejscem zerowym tej funkcji. Zapisz wzór tej funkcji w postaci iloczynowej y=a(x-x_1)(x-x_2).

Wyznacz wartość współczynnika a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11011 ⋅ Poprawnie: 67/91 [73%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Dane są funkcje: f(x)=x^2+\frac{\sqrt{11}}{2} i g(x)=\frac{\sqrt{11}}{3}.

Wówczas, zachodzi warunek:

Odpowiedzi:
A. f(x) \lessdot g(x) B. f(x)-g(x)=x^2
C. f(x)=g(x) D. f(x) > g(x)
Zadanie 9.  1 pkt ⋅ Numer: pp-11048 ⋅ Poprawnie: 71/143 [49%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Prosta o równaniu y+......=0 ma dokładnie jeden punkt wspólny z parabolą określoną równaniem y=2(x-10)^2-7.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11050 ⋅ Poprawnie: 82/195 [42%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Wykres funkcji kwadratowej y=-5(x+10)^2-7 nie ma punktów wspólnych z prostą o równaniu:
Odpowiedzi:
A. y=-8 B. x=12
C. x=-10 D. y=-5
Zadanie 11.  1 pkt ⋅ Numer: pp-10978 ⋅ Poprawnie: 466/732 [63%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Najmniejszą wartość w przedziale \langle 9, 13\rangle funkcja kwadratowa określona wzorem f(x)=-\left(x-12\right)^{2}+5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-11646 ⋅ Poprawnie: 57/103 [55%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Mniejsza część zawodników klubu sportowego liczącego 89 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-10975 ⋅ Poprawnie: 325/496 [65%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Liczba ujemna spełnia równanie x^2-2x-128=0.

Oblicz kwadrat tej liczby.

Odpowiedź:
x^2= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 14.  1 pkt ⋅ Numer: pp-10968 ⋅ Poprawnie: 331/548 [60%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Ile rozwiązań całkowitych ma równanie \left(x^2+5\right)\left(x^2-3x+2\right)=0.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-10959 ⋅ Poprawnie: 224/427 [52%] Rozwiąż 
Podpunkt 15.1 (0.2 pkt)
 » Wyznacz zbiór wszystkich rozwiązań nierówności -1 \lessdot x^2+\frac{9}{5}x \lessdot 0 .

Zbiór ten ma postać:

Odpowiedzi:
A. (p,+\infty) B. (p,q)
C. (-\infty,p) D. (-\infty,p\rangle
E. \langle p,q\rangle F. (-\infty,p)\cup\langle q,+\infty)
Podpunkt 15.2 (0.8 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm