Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11595 ⋅ Poprawnie: 119/162 [73%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=ax^2 należy punkt o współrzędnych (-3\sqrt{2},54\sqrt{2}).

Wyznacz współczynnik a.

Odpowiedź:
a= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10990 ⋅ Poprawnie: 262/408 [64%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Funkcja f(x)=x^2-24x+144 dla argumentu 2\sqrt{3} przyjmuje wartość \left(......\cdot\sqrt{12}-12\right)^2.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11009 ⋅ Poprawnie: 212/393 [53%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 « Maksymalny zbiór, w którym funkcja kwadratowa f(x)=-3(x+5)^2+6 jest rosnąca jest pewnym przedziałem liczbowym.

Przedział ten ma postać:

Odpowiedzi:
A. (-\infty,p) B. \langle p,q\rangle
C. (p,q) D. (-\infty,p\rangle
E. (p,+\infty) F. \langle p,+\infty)
Podpunkt 3.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11038 ⋅ Poprawnie: 134/227 [59%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Gdy przesuniemy wykres funkcji f(x)=-5(x-5)^2+\frac{5}{2} o p=2 jednostek w lewo i q=11 jednostek w górę, to otrzymamy wykres funkcji:
Odpowiedzi:
A. y=-5(x+6)^2+\frac{9}{2} B. y=-5(x-3)^2+\frac{27}{2}
C. y=-5(x-3)^2-\frac{17}{2} D. y=-5(x-7)^2+\frac{27}{2}
Zadanie 5.  1 pkt ⋅ Numer: pp-11074 ⋅ Poprawnie: 93/157 [59%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Różnica iloczynu liczby 4 oraz liczby x i kwadratu liczby xjest największa dla liczby x równej:
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-11013 ⋅ Poprawnie: 1052/1528 [68%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Trójmian kwadratowy y=-3x^2+12x+36 można zapisać w postaci y=a(x-6)(x-m).

Wyznacz wartości parametrów a i m.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
m= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-11010 ⋅ Poprawnie: 114/226 [50%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=-(x-5)(x-3). Wyznacz maksymalny przedział, w którym funkcja ta jest rosnąca.

Podaj najmniejszy koniec liczbowy tego przedziału.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11017 ⋅ Poprawnie: 336/557 [60%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
Dana jest funkcja określona wzorem g(x)=ax^2+bx+c. Postać iloczynowa funkcji g opisana jest wzorem g(x)=a(x+3)(x-1).

Wyznacz współczynnik c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11534 ⋅ Poprawnie: 214/313 [68%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 (1 pkt) Jeden z poniższych wzorów opisuje funkcję postaci y=ax^2+bx+c, której wykres pokazano na rysunku:

Wskaż ten wzór:

Odpowiedzi:
A. y=a(x+1)^2+2 B. y=a(x-1)^2+2
C. y=a(x-2)^2-1 D. y=a(x-1)^2-2
E. y=a(x-2)^2+1 F. y=a(x+1)^2-2
Zadanie 10.  1 pkt ⋅ Numer: pp-11000 ⋅ Poprawnie: 63/91 [69%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Jeśli wykres funkcji kwadratowej określonej wzorem f(x)=x^2+4x+m-10 przecina prostą o równaniu y=-3, to parametr m należy do pewnego przedziału liczbowego nieograniczonego.

Podaj najmniejszą lub największą liczbę całkowitą z tego przedziału.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11409 ⋅ Poprawnie: 216/332 [65%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej f:

Podaj największą wartość funkcji f w przedziale \langle 1,4\rangle.

Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-11645 ⋅ Poprawnie: 37/67 [55%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « Rzucono pionowo do góry kamień z prędkością początkową 10\ m/s. Wysokość s\ [m], jaką osiągnie ten kamień po t sekundach czasu opisuje wzór s(t)=16t-8t^2.

Podaj maksymalną wysokość jaką osiągnie ten kamień.

Odpowiedź:
s_{max}(t)= (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-10975 ⋅ Poprawnie: 325/496 [65%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Liczba ujemna spełnia równanie x^2-2x-98=0.

Oblicz kwadrat tej liczby.

Odpowiedź:
x^2= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 14.  1 pkt ⋅ Numer: pp-10968 ⋅ Poprawnie: 352/569 [61%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Ile rozwiązań całkowitych ma równanie \left(x^2-3\right)\left(x^2+5x-2\right)=0.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-10960 ⋅ Poprawnie: 252/530 [47%] Rozwiąż 
Podpunkt 15.1 (0.2 pkt)
 Wyznacz dziedzinę funkcji określonej wzorem f(x)=\sqrt{4-81x^2} .

Zbiór ten jest postaci:

Odpowiedzi:
A. (-\infty,p\rangle\cup\langle q,+\infty) B. (-\infty,p\rangle
C. \langle p,+\infty) D. (p,+\infty)
E. \langle p,q\rangle F. (p,q)
Podpunkt 15.2 (0.8 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm