Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11726 ⋅ Poprawnie: 19/34 [55%] Rozwiąż 
Podpunkt 1.1 (0.5 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=ax^2+bx+c należą punkty o współrzędnych (-5,10), (-3,5) i (1,7).

Wyznacz współczynnik b.

Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
 Wyznacz współczynnik c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11059 ⋅ Poprawnie: 235/414 [56%] Rozwiąż 
Podpunkt 2.1 (0.5 pkt)
 Parabola y=(1+5x)^2+2 ma wierzchołek w punkcie o współrzędnych \left(x_w,y_w\right).

Wyznacz współrzędną x_w.

Odpowiedź:
x_w=
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (0.5 pkt)
 Wyznacz współrzędną y_w.
Odpowiedź:
y_w=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11009 ⋅ Poprawnie: 212/393 [53%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 « Maksymalny zbiór, w którym funkcja kwadratowa f(x)=-4(x+3)^2+1 jest rosnąca jest pewnym przedziałem liczbowym.

Przedział ten ma postać:

Odpowiedzi:
A. (-\infty,p\rangle B. \langle p,+\infty)
C. (p,+\infty) D. (p,q)
E. \langle p,q\rangle F. (-\infty,p)
Podpunkt 3.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11060 ⋅ Poprawnie: 133/184 [72%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wierzchołek paraboli o równaniu y=(x-1)^2+2m+5 należy do prostej o równaniu y=6.

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11083 ⋅ Poprawnie: 83/187 [44%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Dla x=-3 funkcja f(x)=x^2+bx+c przyjmuje wartość najmniejszą równą 1.

Wyznacz wartość współczynnika c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11001 ⋅ Poprawnie: 534/743 [71%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Jeżeli miejscami zerowymi funkcji kwadratowej są liczby -3 oraz 5, a wierzchołek paraboli będącej jej wykresem ma współrzędne (1,-32), to wzór tej funkcji można zapisać w postaci:
Odpowiedzi:
A. f(x)=2(x-3)(x-5) B. f(x)=\frac{3}{2}(x-3)(x-5)
C. f(x)=2(x+3)(x+5) D. f(x)=2(x+3)(x-5)
Zadanie 7.  1 pkt ⋅ Numer: pp-11079 ⋅ Poprawnie: 269/363 [74%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Dana jest funkcja kwadratowa opisana wzorem h(x)=-3(x-1)(x-2). Wyznacz maksymalny przedział, w którym funkcja ta jest malejąca.

Podaj najmniejszy z końców liczbowych tego przedziału.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11014 ⋅ Poprawnie: 32/80 [40%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
Niech A=(-2,4). Wiadomo, że A\cap ZW_g=\emptyset.

Wykres funkcji g pokazano na rysunku:

Odpowiedzi:
A. C B. D
C. A D. B
Zadanie 9.  1 pkt ⋅ Numer: pp-11043 ⋅ Poprawnie: 148/269 [55%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Liczba punktów wspólnych wykresu funkcji h(x)=2x^2+1x+\frac{5}{9} z osiami układu współrzędnych jest równa:
Odpowiedzi:
A. 1 B. 0
C. 3 D. 2
Zadanie 10.  1 pkt ⋅ Numer: pp-11081 ⋅ Poprawnie: 41/75 [54%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » Wykres funkcji kwadratowej opisanej wzorem g(x)=-x^2-11x-15 przecięto prostą o równaniu y=9. Niech P i Q będą punktami przecięcia tych wykresów.

Oblicz |PQ|.

Odpowiedź:
|PQ|= (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-10988 ⋅ Poprawnie: 72/95 [75%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
» Wyznacz najmniejszą wartość funkcji kwadratowej określonej wzorem f(x)=x^2+12x.
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-11067 ⋅ Poprawnie: 144/278 [51%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « Rozpatrujemy prostokąty o obwodzie 44. Na takim prostokącie o największym polu powierzchni opisano okrąg.

Oblicz długość promienia tego okręgu.

Odpowiedź:
R= \cdot
(wpisz trzy liczby całkowite)
Zadanie 13.  1 pkt ⋅ Numer: pp-10975 ⋅ Poprawnie: 326/498 [65%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Liczba ujemna spełnia równanie x^2-2x-18=0.

Oblicz kwadrat tej liczby.

Odpowiedź:
x^2= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 14.  1 pkt ⋅ Numer: pp-10968 ⋅ Poprawnie: 354/571 [61%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Ile rozwiązań całkowitych ma równanie \left(x^2+4\right)\left(x^2+5x+6\right)=0.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-10963 ⋅ Poprawnie: 111/235 [47%] Rozwiąż 
Podpunkt 15.1 (0.2 pkt)
 Funkcja opisana jest wzorem f(x)=-3x^2-2x+4. Zbiorem rozwiązań nierówności f(x) > f(-x) jest pewien przedział liczbowy.

Przedział ten ma postać:

Odpowiedzi:
A. (-\infty,p\rangle B. \langle p,+\infty)
C. (p,+\infty) D. (p,q)
E. (-\infty,p) F. (p,q\rangle
Podpunkt 15.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm