Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11596 ⋅ Poprawnie: 97/141 [68%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=ax^2
należy punkt o współrzędnych
\left(-3,\frac{9\sqrt{5}}{7}\right) .
Wyznacz współczynnik a .
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-10979 ⋅ Poprawnie: 172/316 [54%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Dana jest funkcja
f określona wzorem
f(x)=-3(x-3)^2+5 .
Wyznacz największą wartość funkcji określonej wzorem h(x)=f(x+5)-1 .
Odpowiedź:
h_{max}(x)=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11006 ⋅ Poprawnie: 343/642 [53%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Wskaż funkcję, która w przedziale
(-\infty,3) jest malejąca:
Odpowiedzi:
A. y=(x-3)^2-7
B. y=(x+3)^2-7
C. y=(x-7)^2+3
D. y=(x+7)^2+3
E. y=-(x+3)^2+3
F. y=-(x-3)^2+7
Zadanie 4. 1 pkt ⋅ Numer: pp-11039 ⋅ Poprawnie: 241/289 [83%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Punkt
(4,-11) jest wierzchołkiem paraboli.
Punkt o współrzędnych
P=(0,1) należy do tej
paraboli.
Zatem zbiorem wartości funkcji, której wykresem jest ta parabola jest:
Odpowiedzi:
A. \langle 11,+\infty)
B. (-\infty,11\rangle
C. \langle -11,+\infty)
D. (-\infty,-11\rangle
Zadanie 5. 1 pkt ⋅ Numer: pp-11074 ⋅ Poprawnie: 93/157 [59%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Różnica iloczynu liczby
12 oraz liczby
x i kwadratu liczby
x jest największa dla liczby
x równej:
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 1 pkt ⋅ Numer: pp-11013 ⋅ Poprawnie: 1052/1528 [68%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Trójmian kwadratowy
y=-2x^2-18x-40 można zapisać w postaci
y=a(x+4)(x-m) .
Wyznacz wartości parametrów a i m .
Odpowiedzi:
Zadanie 7. 1 pkt ⋅ Numer: pp-11042 ⋅ Poprawnie: 369/567 [65%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Miejscami zerowymi funkcji kwadratowej są liczby
-1
oraz
6 . Do wykresu tej funkcji należy punkt
A=(-2,-16) . Zapisz wzór tej funkcji w postaci iloczynowej
y=a(x-x_1)(x-x_2) .
Podaj współczynnik a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-11470 ⋅ Poprawnie: 93/154 [60%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
» Przesuwając wykres funkcji określonej wzorem
h(x)=x^2-6 o
k=3 jednostek
w prawo otrzymamy wykres funkcji opisanej wzorem
y=x^2+bx+c .
Wyznacz współczynniki b i c .
Odpowiedzi:
Zadanie 9. 1 pkt ⋅ Numer: pp-11469 ⋅ Poprawnie: 89/138 [64%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Układ równań
\begin{cases}
y=m \\
y=-3x^2-6x-10
\end{cases}
ma dokładnie jedno rozwiązanie.
Wyznacz wartość parametru m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-11054 ⋅ Poprawnie: 29/55 [52%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Pole powierzchni figury ograniczonej parabolą o równaniu
y=x^2-49
i osią
Ox jest:
Odpowiedzi:
A. mniejsze od 343
B. większe od 343
C. większe od 686
D. równe 343
Zadanie 11. 1 pkt ⋅ Numer: pp-10988 ⋅ Poprawnie: 67/90 [74%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
» Wyznacz najmniejszą wartość funkcji kwadratowej określonej wzorem
f(x)=x^2+12x .
Odpowiedź:
f_{min}(x)=
(wpisz liczbę całkowitą)
Zadanie 12. 1 pkt ⋅ Numer: pp-11067 ⋅ Poprawnie: 143/276 [51%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
« Rozpatrujemy prostokąty o obwodzie
36 . Na takim
prostokącie o największym polu powierzchni opisano okrąg.
Oblicz długość promienia tego okręgu.
Odpowiedź:
Zadanie 13. 1 pkt ⋅ Numer: pp-10976 ⋅ Poprawnie: 665/871 [76%]
Rozwiąż
Podpunkt 13.1 (0.5 pkt)
» Równanie
(2x-7)(x+2)=(2x-7)(2x-1) ma dwa
rozwiązania.
Wyznacz najmniejsze rozwiązanie tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (0.5 pkt)
Wyznacz największe rozwiązanie tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 14. 1 pkt ⋅ Numer: pp-10974 ⋅ Poprawnie: 173/270 [64%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Ile rozwiązań ma równanie
(x^2+4x-12)\sqrt{16-x^2}=0 ?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 15. 1 pkt ⋅ Numer: pp-10959 ⋅ Poprawnie: 224/427 [52%]
Rozwiąż
Podpunkt 15.1 (0.2 pkt)
» Wyznacz zbiór wszystkich rozwiązań nierówności
-1 \lessdot x^2+\frac{3}{5}x \lessdot 0
.
Zbiór ten ma postać:
Odpowiedzi:
A. \langle p,q\rangle
B. (p,q)
C. (-\infty,p\rangle
D. (-\infty,p)
E. (-\infty,p)\cup\langle q,+\infty)
F. (p,+\infty)
Podpunkt 15.2 (0.8 pkt)
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż