Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11596 ⋅ Poprawnie: 97/141 [68%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=ax^2 należy punkt o współrzędnych \left(4,8\sqrt{3}\right).

Wyznacz współczynnik a.

Odpowiedź:
a= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11002 ⋅ Poprawnie: 730/998 [73%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Funkcja kwadratowa f(x)=x^2+bx+c jest malejąca dla x\in(-\infty,-7\rangle, a zbiorem jej wartości jest przedział \langle 8,+\infty). Postać kanoniczna tej funkcji opisana jest wzorem y=(x-p)^2+q.

Podaj wartości parametrów p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10983 ⋅ Poprawnie: 303/535 [56%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wierzchołek paraboli y=x^2+10x leży na prostej o równaniu:
Odpowiedzi:
A. y=-\frac{5}{2}x B. y=10x
C. y=-10x D. y=\frac{5}{2}x
E. y=-5x F. y=5x
Zadanie 4.  1 pkt ⋅ Numer: pp-11008 ⋅ Poprawnie: 400/562 [71%] Rozwiąż 
Podpunkt 4.1 (0.8 pkt)
 « Zbiorem wartości funkcji kwadratowej f(x)=-x^2-\sqrt{3} jest pewnien przedział liczbowy.

Podaj ten koniec tego przedziału, który jest liczbą niewymierną.

Odpowiedź:
m\sqrt{n}= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 4.2 (0.2 pkt)
 Przedział ten ma postać:
Odpowiedzi:
A. \left(-\infty,p\right\rangle B. \left\langle p,+\infty\right)
C. \left(p, q\right) D. \left\langle p, q \right\rangle
Zadanie 5.  1 pkt ⋅ Numer: pp-11061 ⋅ Poprawnie: 96/143 [67%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Oblicz odległość wierzchołka paraboli o równaniu y=x^2-x+\frac{5}{4} od osi Ox.
Odpowiedź:
d= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11001 ⋅ Poprawnie: 532/741 [71%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Jeżeli miejscami zerowymi funkcji kwadratowej są liczby 1 oraz 5, a wierzchołek paraboli będącej jej wykresem ma współrzędne (3,-12), to wzór tej funkcji można zapisać w postaci:
Odpowiedzi:
A. f(x)=\frac{9}{4}(x+1)(x-5) B. f(x)=3(x-1)(x-5)
C. f(x)=3(x+1)(x-5) D. f(x)=3(x-1)(x+5)
Zadanie 7.  1 pkt ⋅ Numer: pp-11078 ⋅ Poprawnie: 195/345 [56%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Dana jest funkcja f(x)=-2(x-11)(x). Wyznacz maksymalny przedział, w którym funkcja f jest rosnąca.

Podaj mniejszy z końców liczbowych tego przedziału.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11024 ⋅ Poprawnie: 121/338 [35%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
Na rysunku pokazano tylko część wykresu funkcji f(x)=ax^2+bx+c, dla której D_f=\mathbb{R}.

Wówczas:

Odpowiedzi:
T/N : funkcja jest rosnąca w przedziale (-2, 4) T/N : funkcja przyjmuje wartości większe od zera dla x \lessdot 1
T/N : zbiorem wartości tej funkcji jest przedział (-\infty,9)  
Zadanie 9.  1 pkt ⋅ Numer: pp-11048 ⋅ Poprawnie: 71/143 [49%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Prosta o równaniu y+......=0 ma dokładnie jeden punkt wspólny z parabolą określoną równaniem y=2(x-6)^2-7.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11410 ⋅ Poprawnie: 269/400 [67%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej f:

Osią symetrii wykresu funkcji f jest prosta o równaniu:

Odpowiedzi:
A. y=-4 B. x-2=0
C. y-2=0 D. x=-4
Zadanie 11.  1 pkt ⋅ Numer: pp-11465 ⋅ Poprawnie: 479/942 [50%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 » Najmniejszą wartość w przedziale \langle -8, -4\rangle funkcja kwadratowa f(x)=-\left(x+7\right)^{2}-5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-11730 ⋅ Poprawnie: 21/39 [53%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Większa część zawodników klubu sportowego liczącego 77 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-10972 ⋅ Poprawnie: 711/882 [80%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Wiadomo, że 25x^2-10x+1=0.

Oblicz x.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 14.  1 pkt ⋅ Numer: pp-10967 ⋅ Poprawnie: 118/168 [70%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 » Pole powierzchni trójkąta prostokątnego jest równe 210, a jedna z jego przyprostokątnych jest o 1 dłuższa od drugiej.

Oblicz kwadrat długości przeciwprostokątnej tego trójkąta.

Odpowiedź:
c^2= (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-10964 ⋅ Poprawnie: 68/113 [60%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Ile liczb całkowitych spełnia nierówność 8\pi\cdot x > 3x^2:
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm