Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11727 ⋅ Poprawnie: 28/45 [62%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=x^2+bx+c
należą punkty o współrzędnych
(1,11) i
(6,1) .
Wyznacz współczynniki b i c .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11002 ⋅ Poprawnie: 715/975 [73%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Funkcja kwadratowa
f(x)=x^2+bx+c jest malejąca dla
x\in(-\infty,-8\rangle , a zbiorem jej wartości
jest przedział
\langle 2,+\infty) .
Postać kanoniczna tej funkcji opisana jest wzorem
y=(x-p)^2+q .
Podaj wartości parametrów p i q .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-11003 ⋅ Poprawnie: 522/880 [59%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
» Wskaż funkcję kwadratową rosnąca w przedziale
(-\infty,-8\rangle :
Odpowiedzi:
A. y=-(x+2)^2-8
B. y=(x+8)^2+2
C. y=-(x-2)^2-1
D. y=(x-8)^2+2
E. y=-(x+8)^2+2
F. y=-(x+2)^2+8
Zadanie 4. 1 pkt ⋅ Numer: pp-11044 ⋅ Poprawnie: 141/222 [63%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wykres funkcji kwadratowej
g przecina oś
Ox w dwóch punktach.
Funkcja g opisana jest wzorem:
Odpowiedzi:
A. g(x)=4(x+8)^2+3
B. g(x)=11(x+3)^2-\sqrt{13}
C. g(x)=5(x+12)^2+9
D. g(x)=-12(x+9)^2-13
Zadanie 5. 1 pkt ⋅ Numer: pp-11073 ⋅ Poprawnie: 183/338 [54%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Dana jest funkcja kwadratowa
f(x)=x^2+bx+c , przy czym
f(-9)=f(3)=6 .
Wyznacz współczynnik b .
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-10981 ⋅ Poprawnie: 97/205 [47%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Wyznacz największą wartość funkcji określonej wzorem
f(x)=-3(x+3)(x-3) w przedziale
\left\langle -\frac{1}{2},5\right\rangle .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-11506 ⋅ Poprawnie: 459/800 [57%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Osią symetrii paraboli będącej wykresem funkcji kwadratowej określonej równaniem
f(x)=-\frac{1}{2}(x+306)(x-102) , jest prosta określona:
równaniem
x-......=0 .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-11034 ⋅ Poprawnie: 114/249 [45%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Przesuwając wykres funkcji określonej wzorem
h(x)=x^2-2
o
k=3 jednostek w lewo otrzymamy wykres funkcji
opisanej wzorem
y=x^2+bx+c .
Wyznacz współczynniki b i c .
Odpowiedzi:
Zadanie 9. 1 pkt ⋅ Numer: pp-11468 ⋅ Poprawnie: 197/293 [67%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Funkcja określona wzorem
f(x)=5x^2+......\cdot x+18 jest
malejąca w przedziale
(-\infty,1) i rosnąca w przedziale
(1,+\infty) .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-11054 ⋅ Poprawnie: 29/55 [52%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Pole powierzchni figury ograniczonej parabolą o równaniu
y=x^2-1
i osią
Ox jest:
Odpowiedzi:
A. mniejsze od 1
B. większe od 2
C. równe 1
D. większe od 1
Zadanie 11. 1 pkt ⋅ Numer: pp-10978 ⋅ Poprawnie: 466/732 [63%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
« Najmniejszą wartość w przedziale
\langle -14, -10\rangle funkcja kwadratowa
określona wzorem
f(x)=-\left(x+11\right)^{2}+5
przyjmuje dla argumentu
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 12. 1 pkt ⋅ Numer: pp-11646 ⋅ Poprawnie: 57/103 [55%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Mniejsza część zawodników klubu sportowego liczącego
33 osób,
zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z
pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.
Ilu zawodników było chorych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 13. 1 pkt ⋅ Numer: pp-10972 ⋅ Poprawnie: 687/861 [79%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Wiadomo, że
64x^2+16x+1=0 .
Oblicz x .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 14. 1 pkt ⋅ Numer: pp-10967 ⋅ Poprawnie: 118/168 [70%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
» Pole powierzchni trójkąta prostokątnego jest równe
96 , a jedna z jego przyprostokątnych jest o
4 dłuższa od drugiej.
Oblicz kwadrat długości przeciwprostokątnej tego trójkąta.
Odpowiedź:
c^2=
(wpisz liczbę całkowitą)
Zadanie 15. 1 pkt ⋅ Numer: pp-10965 ⋅ Poprawnie: 537/880 [61%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
Wskaż te nierówności, których rozwiązaniem jest zbiór
\mathbb{R} :
Odpowiedzi:
T/N : 2x^2+6x+1 \geqslant 0
T/N : x^2+\frac{2}{3}x+\frac{1}{9} > 0
Rozwiąż