Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11595 ⋅ Poprawnie: 119/162 [73%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=ax^2 należy punkt o współrzędnych (2\sqrt{2},56\sqrt{5}).

Wyznacz współczynnik a.

Odpowiedź:
a= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11430 ⋅ Poprawnie: 985/1244 [79%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wykresem funkcji kwadratowej f(x)=x^2+4x+1 jest parabola, której wierzchołkiem jest punkt o współrzędnych \left(x_w, y_w\right).

Podaj współrzędne wierzchołka paraboli x_w i y_w.

Odpowiedzi:
x_w= (wpisz liczbę całkowitą)
y_w= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11028 ⋅ Poprawnie: 608/794 [76%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Osią symetrii paraboli o równaniu y=14x^2+420x+490 jest prosta określona: równaniem x=..........

Podaj brakującą liczbę.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11032 ⋅ Poprawnie: 205/354 [57%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Funkcja kwadratowa g spełnia warunek g(2)=g(10). Osią symetrii wykresu tej funkcji jest prosta określona równaniem x+m=0.

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11505 ⋅ Poprawnie: 441/844 [52%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 (1 pkt) Zbiorem wartości funkcji określonej wzorem f(x)=-5(x+2041)^2+m+20 jest przedział (-\infty, 2021\rangle.

Wówczas liczba m jest równa:

Odpowiedzi:
A. 2041 B. 1981
C. 2001 D. 2061
Zadanie 6.  1 pkt ⋅ Numer: pp-11001 ⋅ Poprawnie: 533/742 [71%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Jeżeli miejscami zerowymi funkcji kwadratowej są liczby 2 oraz 4, a wierzchołek paraboli będącej jej wykresem ma współrzędne (3,-4), to wzór tej funkcji można zapisać w postaci:
Odpowiedzi:
A. f(x)=3(x+2)(x-4) B. f(x)=4(x-2)(x+4)
C. f(x)=4(x-2)(x-4) D. f(x)=4(x+2)(x-4)
Zadanie 7.  1 pkt ⋅ Numer: pp-11010 ⋅ Poprawnie: 117/231 [50%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=-(x+2)(x+4). Wyznacz maksymalny przedział, w którym funkcja ta jest rosnąca.

Podaj najmniejszy koniec liczbowy tego przedziału.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-10966 ⋅ Poprawnie: 34/58 [58%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
« Zbiorem wartości funkcji y=-(x-3)(x+3) określonej dla x\in(1,4\rangle jest pewien przedział liczbowy, którego lewy koniec jest równy p, a prawy koniec jest równy q.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11468 ⋅ Poprawnie: 198/294 [67%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Funkcja określona wzorem f(x)=2x^2+......\cdot x+18 jest malejąca w przedziale (-\infty,-1) i rosnąca w przedziale (-1,+\infty).

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11000 ⋅ Poprawnie: 64/93 [68%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Jeśli wykres funkcji kwadratowej określonej wzorem f(x)=x^2+4x+m+7 przecina prostą o równaniu y=-3, to parametr m należy do pewnego przedziału liczbowego nieograniczonego.

Podaj najmniejszą lub największą liczbę całkowitą z tego przedziału.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-10978 ⋅ Poprawnie: 475/746 [63%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Najmniejszą wartość w przedziale \langle 3, 7\rangle funkcja kwadratowa określona wzorem f(x)=-\left(x-6\right)^{2}+5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-11645 ⋅ Poprawnie: 39/71 [54%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « Rzucono pionowo do góry kamień z prędkością początkową 10\ m/s. Wysokość s\ [m], jaką osiągnie ten kamień po t sekundach czasu opisuje wzór s(t)=10t-t^2.

Podaj maksymalną wysokość jaką osiągnie ten kamień.

Odpowiedź:
s_{max}(t)= (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-11058 ⋅ Poprawnie: 93/185 [50%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 « Wierzchołek paraboli będącej wykresem funkcji kwadratowej określonej wzorem y=(2x+5)^2+\frac{15}{2} należy do prostej o równaniu y=......\cdot x.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 14.  1 pkt ⋅ Numer: pp-11066 ⋅ Poprawnie: 218/289 [75%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 « Wierzchołkiem paraboli będącej wykresem funkcji f(x)=-x^2+bx+c jest punkt o współrzędnych (5,2).

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-10959 ⋅ Poprawnie: 225/429 [52%] Rozwiąż 
Podpunkt 15.1 (0.2 pkt)
 » Wyznacz zbiór wszystkich rozwiązań nierówności -1 \lessdot x^2+\frac{4}{5}x \lessdot 0 .

Zbiór ten ma postać:

Odpowiedzi:
A. (p,q) B. (-\infty,p)
C. (p,+\infty) D. (-\infty,p\rangle
E. (-\infty,p)\cup\langle q,+\infty) F. \langle p,q\rangle
Podpunkt 15.2 (0.8 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm