Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11726 ⋅ Poprawnie: 19/33 [57%]
Rozwiąż
Podpunkt 1.1 (0.5 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=ax^2+bx+c
należą punkty o współrzędnych
(3,5) ,
(5,0) i
(9,2) .
Wyznacz współczynnik b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-10990 ⋅ Poprawnie: 262/408 [64%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Funkcja
f(x)=x^2-24x+144
dla argumentu
2\sqrt{3} przyjmuje wartość
\left(......\cdot\sqrt{12}-12\right)^2 .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11052 ⋅ Poprawnie: 812/1143 [71%]
Rozwiąż
Podpunkt 3.1 (0.8 pkt)
Zbiorem wartości funkcji kwadratowej
y=-x^2+10 x-31 jest pewien przedział liczbowy.
Podaj ten koniec tego przedziału, który jest liczbą całkowitą.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 3.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -\frac{1}{2}
B. -\frac{3}{4}
C. +\infty
D. -\infty
E. \frac{3}{4}
F. \frac{1}{2}
Zadanie 4. 1 pkt ⋅ Numer: pp-11008 ⋅ Poprawnie: 400/562 [71%]
Rozwiąż
Podpunkt 4.1 (0.8 pkt)
« Zbiorem wartości funkcji kwadratowej
f(x)=-x^2-\sqrt{17} jest pewnien przedział liczbowy.
Podaj ten koniec tego przedziału, który jest liczbą niewymierną.
Odpowiedź:
m\sqrt{n}=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 4.2 (0.2 pkt)
Odpowiedzi:
A. \left\langle p, q \right\rangle
B. \left(p, q\right)
C. \left(-\infty,p\right\rangle
D. \left\langle p,+\infty\right)
Zadanie 5. 1 pkt ⋅ Numer: pp-10997 ⋅ Poprawnie: 196/269 [72%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Wskaż funkcję, która nie przyjmuje wartości ujemnych:
Odpowiedzi:
A. y=(x+3)^2-7
B. y=2+(-1-x)^2
C. y=3(x-3)^2-2
D. y=-7(x+5)^2-4
Zadanie 6. 1 pkt ⋅ Numer: pp-11013 ⋅ Poprawnie: 1052/1528 [68%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Trójmian kwadratowy
y=4x^2+44x+120 można zapisać w postaci
y=a(x+5)(x-m) .
Wyznacz wartości parametrów a i m .
Odpowiedzi:
Zadanie 7. 1 pkt ⋅ Numer: pp-10987 ⋅ Poprawnie: 50/92 [54%]
Rozwiąż
Podpunkt 7.1 (0.2 pkt)
Wykres funkcji
g(x)=5(m-4)+2x+x^2 nie przecina osi
Ox , wtedy i tylko wtedy, gdy
m
należy do pewnego przedziału.
Przedział ten ma postać:
Odpowiedzi:
A. (p,q)
B. \langle p,+\infty)
C. (-\infty,p\rangle
D. \langle p,q\rangle
E. (p,+\infty)
F. (-\infty,p)
Podpunkt 7.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-11004 ⋅ Poprawnie: 127/373 [34%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Funkcja kwadratowa określona jest wzorem
f(x)=-3(x+2018)(x-666) .
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : f(-680) > f(-670)
T/N : f(600) < f(670)
Zadanie 9. 1 pkt ⋅ Numer: pp-11467 ⋅ Poprawnie: 90/179 [50%]
Rozwiąż
Podpunkt 9.1 (0.2 pkt)
Zbiorem wartości funkcji
y=-(x-10)(x+10)
określonej dla
x\in(1,4\rangle jest pewien przedział liczbowy.
Przedział ten ma postać:
Odpowiedzi:
A. (p,q\rangle
B. \langle p,q)
C. (-\infty,p\rangle
D. (p,q)
E. (p,+\infty)
F. \langle p,q\rangle
Podpunkt 9.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-11045 ⋅ Poprawnie: 40/78 [51%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Liczby
a i
b spełniają
warunek
a\cdot b \lessdot 0 .
Liczba rozwiązań układu równań
\begin{cases}
y=ax^2+b \\
y=0
\end{cases}
jest równa:
Odpowiedzi:
Zadanie 11. 1 pkt ⋅ Numer: pp-11409 ⋅ Poprawnie: 216/332 [65%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej
f :
Podaj największą wartość funkcji f w przedziale
\langle 1,4\rangle .
Odpowiedź:
f_{max}(x)=
(wpisz liczbę całkowitą)
Zadanie 12. 1 pkt ⋅ Numer: pp-11645 ⋅ Poprawnie: 37/67 [55%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
« Rzucono pionowo do góry kamień z prędkością początkową
10\ m/s .
Wysokość
s\ [m] , jaką osiągnie ten kamień po
t
sekundach czasu opisuje wzór
s(t)=16t-t^2 .
Podaj maksymalną wysokość jaką osiągnie ten kamień.
Odpowiedź:
s_{max}(t)=
(wpisz liczbę całkowitą)
Zadanie 13. 1 pkt ⋅ Numer: pp-10972 ⋅ Poprawnie: 711/882 [80%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Wiadomo, że
49x^2-14x+1=0 .
Oblicz x .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 14. 1 pkt ⋅ Numer: pp-10968 ⋅ Poprawnie: 352/569 [61%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Ile rozwiązań całkowitych ma równanie
\left(x^2+4\right)\left(x^2-3x-7\right)=0 .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 15. 1 pkt ⋅ Numer: pp-10962 ⋅ Poprawnie: 383/585 [65%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
Iloczyn
(x-8)(-6-x) jest nieujemny, wtedy i tylko wtedy, gdy liczba
x
należy do zbioru
A . Zapisz zbiór
A
w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Rozwiąż