Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11726 ⋅ Poprawnie: 19/34 [55%]
Rozwiąż
Podpunkt 1.1 (0.5 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=ax^2+bx+c
należą punkty o współrzędnych
(-5,10) ,
(-3,5) i
(1,7) .
Wyznacz współczynnik b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11059 ⋅ Poprawnie: 235/414 [56%]
Rozwiąż
Podpunkt 2.1 (0.5 pkt)
Parabola
y=(1+5x)^2+2
ma wierzchołek w punkcie o współrzędnych
\left(x_w,y_w\right) .
Wyznacz współrzędną x_w .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11009 ⋅ Poprawnie: 212/393 [53%]
Rozwiąż
Podpunkt 3.1 (0.2 pkt)
« Maksymalny zbiór, w którym funkcja kwadratowa
f(x)=-4(x+3)^2+1 jest rosnąca jest pewnym przedziałem liczbowym.
Przedział ten ma postać:
Odpowiedzi:
A. (-\infty,p\rangle
B. \langle p,+\infty)
C. (p,+\infty)
D. (p,q)
E. \langle p,q\rangle
F. (-\infty,p)
Podpunkt 3.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11060 ⋅ Poprawnie: 133/184 [72%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wierzchołek paraboli o równaniu
y=(x-1)^2+2m+5
należy do prostej o równaniu
y=6 .
Wyznacz wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11083 ⋅ Poprawnie: 83/187 [44%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
» Dla
x=-3 funkcja
f(x)=x^2+bx+c przyjmuje wartość najmniejszą równą
1 .
Wyznacz wartość współczynnika c .
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-11001 ⋅ Poprawnie: 534/743 [71%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Jeżeli miejscami zerowymi funkcji kwadratowej są liczby
-3 oraz
5 , a
wierzchołek paraboli będącej jej wykresem ma współrzędne
(1,-32) , to wzór tej funkcji można zapisać
w postaci:
Odpowiedzi:
A. f(x)=2(x-3)(x-5)
B. f(x)=\frac{3}{2}(x-3)(x-5)
C. f(x)=2(x+3)(x+5)
D. f(x)=2(x+3)(x-5)
Zadanie 7. 1 pkt ⋅ Numer: pp-11079 ⋅ Poprawnie: 269/363 [74%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Dana jest funkcja kwadratowa opisana wzorem
h(x)=-3(x-1)(x-2) . Wyznacz maksymalny przedział, w którym funkcja ta
jest malejąca.
Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-11014 ⋅ Poprawnie: 32/80 [40%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Niech
A=(-2,4) . Wiadomo, że
A\cap ZW_g=\emptyset .
Wykres funkcji g pokazano na rysunku:
Odpowiedzi:
Zadanie 9. 1 pkt ⋅ Numer: pp-11043 ⋅ Poprawnie: 148/269 [55%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Liczba punktów wspólnych wykresu funkcji
h(x)=2x^2+1x+\frac{5}{9} z osiami układu
współrzędnych jest równa:
Odpowiedzi:
Zadanie 10. 1 pkt ⋅ Numer: pp-11081 ⋅ Poprawnie: 41/75 [54%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
» Wykres funkcji kwadratowej opisanej wzorem
g(x)=-x^2-11x-15
przecięto prostą o równaniu
y=9 . Niech
P i
Q będą punktami
przecięcia tych wykresów.
Oblicz |PQ| .
Odpowiedź:
|PQ|=
(wpisz liczbę całkowitą)
Zadanie 11. 1 pkt ⋅ Numer: pp-10988 ⋅ Poprawnie: 72/95 [75%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
» Wyznacz najmniejszą wartość funkcji kwadratowej określonej wzorem
f(x)=x^2+12x .
Odpowiedź:
f_{min}(x)=
(wpisz liczbę całkowitą)
Zadanie 12. 1 pkt ⋅ Numer: pp-11067 ⋅ Poprawnie: 144/278 [51%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
« Rozpatrujemy prostokąty o obwodzie
44 . Na takim
prostokącie o największym polu powierzchni opisano okrąg.
Oblicz długość promienia tego okręgu.
Odpowiedź:
Zadanie 13. 1 pkt ⋅ Numer: pp-10975 ⋅ Poprawnie: 326/498 [65%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Liczba ujemna spełnia równanie
x^2-2x-18=0 .
Oblicz kwadrat tej liczby.
Odpowiedź:
x^2=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 14. 1 pkt ⋅ Numer: pp-10968 ⋅ Poprawnie: 354/571 [61%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Ile rozwiązań całkowitych ma równanie
\left(x^2+4\right)\left(x^2+5x+6\right)=0 .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 15. 1 pkt ⋅ Numer: pp-10963 ⋅ Poprawnie: 111/235 [47%]
Rozwiąż
Podpunkt 15.1 (0.2 pkt)
Funkcja opisana jest wzorem
f(x)=-3x^2-2x+4 .
Zbiorem rozwiązań nierówności
f(x) > f(-x)
jest pewien przedział liczbowy.
Przedział ten ma postać:
Odpowiedzi:
A. (-\infty,p\rangle
B. \langle p,+\infty)
C. (p,+\infty)
D. (p,q)
E. (-\infty,p)
F. (p,q\rangle
Podpunkt 15.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Rozwiąż