Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11595 ⋅ Poprawnie: 119/162 [73%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=ax^2 należy punkt o współrzędnych (-4\sqrt{2},224\sqrt{2}).

Wyznacz współczynnik a.

Odpowiedź:
a= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11031 ⋅ Poprawnie: 419/591 [70%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wierzchołkiem paraboli, która jest wykresem funkcji f jest punkt W=(4,-9). Wówczas:
Odpowiedzi:
T/N : f(0)=f(8) T/N : f(1)=f(6)
T/N : f(-2)=f(10)  
Zadanie 3.  1 pkt ⋅ Numer: pp-11003 ⋅ Poprawnie: 533/896 [59%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Wskaż funkcję kwadratową rosnąca w przedziale (-\infty,3\rangle:
Odpowiedzi:
A. y=-(x-6)^2-3 B. y=-(x-6)^2+3
C. y=-(x+6)^2+3 D. y=(x+3)^2-6
E. y=(x-3)^2-6 F. y=-(x-3)^2-6
Zadanie 4.  1 pkt ⋅ Numer: pp-11044 ⋅ Poprawnie: 141/222 [63%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wykres funkcji kwadratowej g przecina oś Ox w dwóch punktach.

Funkcja g opisana jest wzorem:

Odpowiedzi:
A. g(x)=-10(x+7)^2-11 B. g(x)=12(x+3)^2+7
C. g(x)=4(x-9)^2-\sqrt{2} D. g(x)=5(x-9)^2+5
Zadanie 5.  1 pkt ⋅ Numer: pp-11505 ⋅ Poprawnie: 439/842 [52%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 (1 pkt) Zbiorem wartości funkcji określonej wzorem f(x)=-2(x+2041)^2+m+20 jest przedział (-\infty, 2021\rangle.

Wówczas liczba m jest równa:

Odpowiedzi:
A. 2041 B. 2061
C. 1981 D. 2001
Zadanie 6.  1 pkt ⋅ Numer: pp-10981 ⋅ Poprawnie: 97/212 [45%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Wyznacz największą wartość funkcji określonej wzorem f(x)=-2(x+7)(x+1) w przedziale \left\langle -\frac{9}{2},-1\right\rangle.
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11042 ⋅ Poprawnie: 369/567 [65%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Miejscami zerowymi funkcji kwadratowej są liczby -5 oraz -7. Do wykresu tej funkcji należy punkt A=(2,-126). Zapisz wzór tej funkcji w postaci iloczynowej y=a(x-x_1)(x-x_2).

Podaj współczynnik a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11018 ⋅ Poprawnie: 89/155 [57%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
» Dana są funkcje h(x)=2-x oraz g(x)=x+4.

Wykres funkcji g(x)\cdot h(x) przedstawia rysunek:

Odpowiedzi:
A. B B. D
C. C D. A
Zadanie 9.  1 pkt ⋅ Numer: pp-11055 ⋅ Poprawnie: 46/98 [46%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wykresy funkcji określonych wzorami f(x)=3x^2+24x+48 i g(x)=3x^2-18x+27 są symetryczne względem prostej o równaniu x=m.

Podaj m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10998 ⋅ Poprawnie: 80/169 [47%] Rozwiąż 
Podpunkt 10.1 (0.2 pkt)
 «« Funkcja określona wzorem f(x)=(3m-6)x^2+3x-14 osiąga wartość największą wtedy i tylko wtedy, gdy parametr m należy do pewnego przedziału liczbowego.

Przedział ten ma postać:

Odpowiedzi:
A. (-\infty,p) B. \langle p,q\rangle
C. (p,q) D. (-\infty,p\rangle
E. \langle p,+\infty) F. (p,+\infty)
Podpunkt 10.2 (0.8 pkt)
 Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-10985 ⋅ Poprawnie: 218/330 [66%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Dana jest funkcja g(x)=-\frac{1}{4}(x+6)x, gdzie x\in\langle -12,-9\rangle.

Wyznacz f_{min}.

Odpowiedź:
f_{min}=
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-11067 ⋅ Poprawnie: 143/276 [51%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « Rozpatrujemy prostokąty o obwodzie 100. Na takim prostokącie o największym polu powierzchni opisano okrąg.

Oblicz długość promienia tego okręgu.

Odpowiedź:
R= \cdot
(wpisz trzy liczby całkowite)
Zadanie 13.  1 pkt ⋅ Numer: pp-10970 ⋅ Poprawnie: 187/259 [72%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 « W turnieju szachowym, w którym uczestniczy ......... szachistów, każdy uczestnik rozgrywa jedną partię z każdym innym uczestnikiem. Łącznie rozegrano w tym turnieju 820 partii szachów.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 14.  1 pkt ⋅ Numer: pp-11550 ⋅ Poprawnie: 110/168 [65%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Oblicz iloczyn wszystkich rozwiązań równania (x^2-8)(x-3)^2(x^2+x-6)=0.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-10959 ⋅ Poprawnie: 224/427 [52%] Rozwiąż 
Podpunkt 15.1 (0.2 pkt)
 » Wyznacz zbiór wszystkich rozwiązań nierówności -1 \lessdot x^2+\frac{3}{5}x \lessdot 0 .

Zbiór ten ma postać:

Odpowiedzi:
A. \langle p,q\rangle B. (-\infty,p)\cup\langle q,+\infty)
C. (p,+\infty) D. (-\infty,p)
E. (p,q) F. (-\infty,p\rangle
Podpunkt 15.2 (0.8 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm