Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11727 ⋅ Poprawnie: 28/45 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=x^2+bx+c należą punkty o współrzędnych (0,5) i (5,-5).

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10990 ⋅ Poprawnie: 262/408 [64%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Funkcja f(x)=x^2-22x+121 dla argumentu \sqrt{11} przyjmuje wartość \left(......\cdot\sqrt{11}-11\right)^2.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10983 ⋅ Poprawnie: 303/535 [56%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wierzchołek paraboli y=x^2+10x leży na prostej o równaniu:
Odpowiedzi:
A. y=-\frac{5}{2}x B. y=-10x
C. y=5x D. y=-5x
E. y=\frac{5}{2}x F. y=10x
Zadanie 4.  1 pkt ⋅ Numer: pp-11032 ⋅ Poprawnie: 203/352 [57%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Funkcja kwadratowa g spełnia warunek g(2)=g(7). Osią symetrii wykresu tej funkcji jest prosta określona równaniem x+m=0.

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11083 ⋅ Poprawnie: 83/187 [44%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Dla x=4 funkcja f(x)=x^2+bx+c przyjmuje wartość najmniejszą równą 1.

Wyznacz wartość współczynnika c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10980 ⋅ Poprawnie: 201/342 [58%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Liczby 1 i -\frac{1}{2} są miejscami zerowymi funkcji określonej wzorem g(x)=ax^2-\frac{3}{2}x-\frac{3}{2}.

Wyznacz wartość współczynnika a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-11042 ⋅ Poprawnie: 369/567 [65%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Miejscami zerowymi funkcji kwadratowej są liczby -5 oraz 3. Do wykresu tej funkcji należy punkt A=(2,-14). Zapisz wzór tej funkcji w postaci iloczynowej y=a(x-x_1)(x-x_2).

Podaj współczynnik a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11064 ⋅ Poprawnie: 289/479 [60%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
Wykres funkcji kwadratowej określonej wzorem y=ax^2+bx+c pokazano na rysunku:

Podaj współczynnik a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11026 ⋅ Poprawnie: 240/317 [75%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
Dana jest funkcja g:\mathbb{R}\to\mathbb{R} określona wzorem g(x)=x^2-3+2x.

Wykres funkcji g przedstawia rysunek:

Odpowiedzi:
A. D B. C
C. B D. A
Zadanie 10.  1 pkt ⋅ Numer: pp-11051 ⋅ Poprawnie: 40/77 [51%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Wykres funkcji y=x^2-13 ma dokładnie jeden punkt wspólny z prostą:
Odpowiedzi:
A. y=-13x+1 B. x=1
C. y=13x D. y=13
Zadanie 11.  1 pkt ⋅ Numer: pp-10978 ⋅ Poprawnie: 474/743 [63%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Najmniejszą wartość w przedziale \langle 4, 8\rangle funkcja kwadratowa określona wzorem f(x)=-\left(x-7\right)^{2}+5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-11645 ⋅ Poprawnie: 37/67 [55%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « Rzucono pionowo do góry kamień z prędkością początkową 10\ m/s. Wysokość s\ [m], jaką osiągnie ten kamień po t sekundach czasu opisuje wzór s(t)=14t-7t^2.

Podaj maksymalną wysokość jaką osiągnie ten kamień.

Odpowiedź:
s_{max}(t)= (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-10970 ⋅ Poprawnie: 187/259 [72%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 « W turnieju szachowym, w którym uczestniczy ......... szachistów, każdy uczestnik rozgrywa jedną partię z każdym innym uczestnikiem. Łącznie rozegrano w tym turnieju 946 partii szachów.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 14.  1 pkt ⋅ Numer: pp-10971 ⋅ Poprawnie: 130/195 [66%] Rozwiąż 
Podpunkt 14.1 (0.2 pkt)
 Równanie x^2-(k-4)x+25=0 z niewiadomą x ma dwa różne rozwiązania wtedy i tylko wtedy, gdy parametr k należy do zbioru A. Zapisz zbiór Aw postaci sumy przedziałów.

Zbiór A jest postaci:

Odpowiedzi:
A. (-\infty,p)\cap(q,+\infty) B. (p,q)
C. \langle p,q\rangle D. (-\infty,p)
E. (-\infty,p)\cup(q,+\infty) F. (p,+\infty)
Podpunkt 14.2 (0.8 pkt)
 Liczba p jest najmniejszym, a liczba q największym z końców liczbowych tych przedziałów.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-10957 ⋅ Poprawnie: 641/967 [66%] Rozwiąż 
Podpunkt 15.1 (0.2 pkt)
 » Wyznacz dziedzinę funkcji określonej wzorem f(x)=\frac{x-1}{\sqrt{x^2-8x+12}} .

Zbiór ten ma postać:

Odpowiedzi:
A. \langle p,q\rangle B. (p,q)
C. \mathbb{R}-(p,q) D. (-\infty,p)\cup(q,+\infty)
E. \mathbb{R}-\{p\} F. \mathbb{R}-\{p, q\}
Podpunkt 15.2 (0.8 pkt)
 Zbiór A jest zbiorem wszystkich liczb nie należących do dziedziny tej funkcji.

Wyznacz najmniejszą i największą liczbę w zbiorze A.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm