Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11644 ⋅ Poprawnie: 33/93 [35%]
Rozwiąż
Podpunkt 1.1 (0.5 pkt)
» Do wykresu funkcji kwadratowej określonej wzorem
y=ax^2+bx+c
należą punkty o współrzędnych
(-2,2) ,
(2,0) i
(4,11) .
Wyznacz współczynnik b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11002 ⋅ Poprawnie: 730/998 [73%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Funkcja kwadratowa
f(x)=x^2+bx+c jest malejąca dla
x\in(-\infty,-8\rangle , a zbiorem jej wartości
jest przedział
\langle -5,+\infty) .
Postać kanoniczna tej funkcji opisana jest wzorem
y=(x-p)^2+q .
Podaj wartości parametrów p i q .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-11009 ⋅ Poprawnie: 212/393 [53%]
Rozwiąż
Podpunkt 3.1 (0.2 pkt)
« Maksymalny zbiór, w którym funkcja kwadratowa
f(x)=-2(x+8)^2-5 jest rosnąca jest pewnym przedziałem liczbowym.
Przedział ten ma postać:
Odpowiedzi:
A. (p,q)
B. \langle p,q\rangle
C. \langle p,+\infty)
D. (-\infty,p)
E. (p,+\infty)
F. (-\infty,p\rangle
Podpunkt 3.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11056 ⋅ Poprawnie: 610/800 [76%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Parabola o wierzchołku
P=(-12,-8) i ramionach
skierowanych w dół może być wykresem funkcji określonej wzorem:
Odpowiedzi:
A. y=(x+12)^2+8
B. y=-2(x-12)^2-8
C. y=3(x+8)^2-8
D. y=-2(x+12)^2-8
Zadanie 5. 1 pkt ⋅ Numer: pp-11061 ⋅ Poprawnie: 96/143 [67%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
» Oblicz odległość wierzchołka paraboli o równaniu
y=x^2+7x+\frac{37}{4} od osi
Ox .
Odpowiedź:
d=
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-11013 ⋅ Poprawnie: 1052/1528 [68%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Trójmian kwadratowy
y=2x^2-2x-60 można zapisać w postaci
y=a(x-6)(x-m) .
Wyznacz wartości parametrów a i m .
Odpowiedzi:
Zadanie 7. 1 pkt ⋅ Numer: pp-11079 ⋅ Poprawnie: 268/362 [74%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Dana jest funkcja kwadratowa opisana wzorem
h(x)=-2(x+8)(x+9) . Wyznacz maksymalny przedział, w którym funkcja ta
jest malejąca.
Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-11470 ⋅ Poprawnie: 93/154 [60%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
» Przesuwając wykres funkcji określonej wzorem
h(x)=x^2-1 o
k=3 jednostek
w prawo otrzymamy wykres funkcji opisanej wzorem
y=x^2+bx+c .
Wyznacz współczynniki b i c .
Odpowiedzi:
Zadanie 9. 1 pkt ⋅ Numer: pp-11022 ⋅ Poprawnie: 73/224 [32%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Rysunek przedstawia wykres funkcji kwadratowej
h(x)=a(x+b)^2+c .
Zatem:
Odpowiedzi:
A. c=5
B. c=-5
C. b=5
D. b=-5
Zadanie 10. 1 pkt ⋅ Numer: pp-11053 ⋅ Poprawnie: 57/109 [52%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Prosta o równaniu
y+2m=0 ma dokładnie jeden punkt
wspólny z wykresem funkcji kwadratowej określonej wzorem
f(x)=-\frac{1}{2}x^2-10x-7 .
Wyznacz wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-11466 ⋅ Poprawnie: 202/334 [60%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
« Dana jest funkcja kwadratowa
f(x)=-0,5(x+2m)^2+4m , gdzie
m > 0 .
Wówczas:
Odpowiedzi:
A. największą wartością funkcji jest -4m
B. dla m=-\frac{1}{2} funkcja jest rosnąca
C. dla pewnego m funkcja ma jedno miejsce zerowe
D. wierzchołek paraboli, która jest wykresem tej funkcji należy do prostej y=-2x
Zadanie 12. 1 pkt ⋅ Numer: pp-11646 ⋅ Poprawnie: 57/103 [55%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Mniejsza część zawodników klubu sportowego liczącego
31 osób,
zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z
pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.
Ilu zawodników było chorych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 13. 1 pkt ⋅ Numer: pp-10976 ⋅ Poprawnie: 665/871 [76%]
Rozwiąż
Podpunkt 13.1 (0.5 pkt)
» Równanie
(2x-1)(x+2)=(2x-1)(2x-2) ma dwa
rozwiązania.
Wyznacz najmniejsze rozwiązanie tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (0.5 pkt)
Wyznacz największe rozwiązanie tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 14. 1 pkt ⋅ Numer: pp-10974 ⋅ Poprawnie: 173/270 [64%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Ile rozwiązań ma równanie
(x^2+10x+24)\sqrt{9-x^2}=0 ?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 15. 1 pkt ⋅ Numer: pp-10964 ⋅ Poprawnie: 68/113 [60%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
Ile liczb całkowitych spełnia nierówność
9\pi\cdot x > 3x^2 :
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Rozwiąż