Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11727 ⋅ Poprawnie: 28/45 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=x^2+bx+c należą punkty o współrzędnych (0,0) i (5,-10).

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11012 ⋅ Poprawnie: 639/965 [66%] Rozwiąż 
Podpunkt 2.1 (0.5 pkt)
 Postać kanoniczna trójmianu kwadratowego y=-3x^2-24x-\frac{142}{3} opisana jest wzorem y=a(x-p)^2+q.

Podaj wartość parametru p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 2.2 (0.5 pkt)
 Podaj wartość parametru q.
Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11005 ⋅ Poprawnie: 358/562 [63%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 « Funkcja y=-(x-4)^2+1 jest rosnąca w pewnym przedziale liczbowym.

Przedział ten ma postać:

Odpowiedzi:
A. \langle p,+\infty) B. (p,+\infty)
C. (-\infty,p) D. \langle p,q\rangle
E. (-\infty,p\rangle F. (p,q)
Podpunkt 3.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11056 ⋅ Poprawnie: 610/801 [76%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Parabola o wierzchołku P=(6,2) i ramionach skierowanych w dół może być wykresem funkcji określonej wzorem:
Odpowiedzi:
A. y=3(x-2)^2+2 B. y=(x-6)^2-2
C. y=-2(x-6)^2+2 D. y=-2(x+6)^2+2
Zadanie 5.  1 pkt ⋅ Numer: pp-11408 ⋅ Poprawnie: 170/221 [76%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji kwadratowej f:

Zbiór wartości funkcji określonej wzorem y=-f(-x) jest równy:

Odpowiedzi:
A. (-\infty,+\infty) B. \langle 4,+\infty)
C. (-\infty, 4\rangle D. \langle -4,0\rangle
Zadanie 6.  1 pkt ⋅ Numer: pp-10996 ⋅ Poprawnie: 345/564 [61%] Rozwiąż 
Podpunkt 6.1 (0.2 pkt)
 Zbiór tych wszystkich wartości m, dla których funkcja kwadratowa określona wzorem f(x)=x^2+6x+m nie ma ani jednego miejsca zerowego jest przedziałem liczbowym.

Przedział ten ma postać:

Odpowiedzi:
A. (p, q) B. (-\infty, p\rangle
C. (-\infty, p) D. \langle p, +\infty)
E. (p, +\infty) F. \langle p, q\rangle
Podpunkt 6.2 (0.8 pkt)
 Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11075 ⋅ Poprawnie: 99/170 [58%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Dana jest funkcja kwadratowa określona wzorem f(x)=(5-x)(2x-6). Wierzchołek wykresu tej funkcji należy do prostej określonej równaniem x=m.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11011 ⋅ Poprawnie: 68/92 [73%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Dane są funkcje: f(x)=x^2+\frac{\sqrt{12}}{2} i g(x)=\frac{\sqrt{12}}{3}.

Wówczas, zachodzi warunek:

Odpowiedzi:
A. f(x)=g(x) B. f(x) > g(x)
C. f(x)-g(x)=x^2 D. f(x) \lessdot g(x)
Zadanie 9.  1 pkt ⋅ Numer: pp-11728 ⋅ Poprawnie: 4/13 [30%] Rozwiąż 
Podpunkt 9.1 (0.2 pkt)
 Zbiorem wartości funkcji y=-(x-8)(x+8) określonej dla x\in(3,7\rangle jest pewien przedział liczbowy.

Przedział ten ma postać:

Odpowiedzi:
A. (p,q\rangle B. (-\infty,p\rangle
C. (p,+\infty) D. (p,q)
E. \langle p,q\rangle F. \langle p,q)
Podpunkt 9.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11081 ⋅ Poprawnie: 41/75 [54%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » Wykres funkcji kwadratowej opisanej wzorem g(x)=-x^2+9x-11 przecięto prostą o równaniu y=9. Niech P i Q będą punktami przecięcia tych wykresów.

Oblicz |PQ|.

Odpowiedź:
|PQ|= (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-10988 ⋅ Poprawnie: 71/94 [75%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
» Wyznacz najmniejszą wartość funkcji kwadratowej określonej wzorem f(x)=x^2+12x.
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-11080 ⋅ Poprawnie: 265/399 [66%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « Suma dwóch liczb jest równa 24\sqrt{2}, a ich iloczyn ma największą możliwą wartość.

Oblicz mniejszą z tych liczb.

Odpowiedź:
min= \cdot
(wpisz dwie liczby całkowite)
Zadanie 13.  1 pkt ⋅ Numer: pp-11058 ⋅ Poprawnie: 93/185 [50%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 « Wierzchołek paraboli będącej wykresem funkcji kwadratowej określonej wzorem y=(2x+4)^2+\frac{19}{2} należy do prostej o równaniu y=......\cdot x.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 14.  1 pkt ⋅ Numer: pp-11550 ⋅ Poprawnie: 112/170 [65%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Oblicz iloczyn wszystkich rozwiązań równania (x^2-5)(x-2)^2(x^2-x-6)=0.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-10958 ⋅ Poprawnie: 251/429 [58%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 «« Najmniejszą liczbą całkowitą należącą do dziedziny funkcji f(x)=\sqrt{-x^2-\frac{7}{2}x+\frac{39}{2}} jest ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm