Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11726 ⋅ Poprawnie: 19/33 [57%] Rozwiąż 
Podpunkt 1.1 (0.5 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=ax^2+bx+c należą punkty o współrzędnych (1,5), (3,0) i (7,2).

Wyznacz współczynnik b.

Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
 Wyznacz współczynnik c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11031 ⋅ Poprawnie: 419/591 [70%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wierzchołkiem paraboli, która jest wykresem funkcji f jest punkt W=(6,-7). Wówczas:
Odpowiedzi:
T/N : f(3)=f(10) T/N : f(0)=f(12)
T/N : f(2)=f(9)  
Zadanie 3.  1 pkt ⋅ Numer: pp-11003 ⋅ Poprawnie: 533/897 [59%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Wskaż funkcję kwadratową rosnąca w przedziale (-\infty,4\rangle:
Odpowiedzi:
A. y=-(x-5)^2+4 B. y=-(x-4)^2-5
C. y=(x-4)^2-5 D. y=-(x+5)^2+\frac{5}{2}
E. y=(x+4)^2-5 F. y=-(x-5)^2-4
Zadanie 4.  1 pkt ⋅ Numer: pp-11038 ⋅ Poprawnie: 134/227 [59%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Gdy przesuniemy wykres funkcji f(x)=-5(x+2)^2+\frac{3}{2} o p=5 jednostek w lewo i q=13 jednostek w górę, to otrzymamy wykres funkcji:
Odpowiedzi:
A. y=-5(x+7)^2-\frac{23}{2} B. y=-5(x+7)^2+\frac{29}{2}
C. y=-5(x-3)^2+\frac{29}{2} D. y=-5(x+15)^2+\frac{13}{2}
Zadanie 5.  1 pkt ⋅ Numer: pp-11061 ⋅ Poprawnie: 96/143 [67%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Oblicz odległość wierzchołka paraboli o równaniu y=x^2-5x+\frac{13}{4} od osi Ox.
Odpowiedź:
d= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10981 ⋅ Poprawnie: 97/212 [45%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Wyznacz największą wartość funkcji określonej wzorem f(x)=-2(x+5)(x-1) w przedziale \left\langle -\frac{5}{2},2\right\rangle.
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11506 ⋅ Poprawnie: 459/800 [57%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Osią symetrii paraboli będącej wykresem funkcji kwadratowej określonej równaniem f(x)=-\frac{1}{2}(x+126)(x-378), jest prosta określona: równaniem x-......=0.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11024 ⋅ Poprawnie: 121/338 [35%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
Na rysunku pokazano tylko część wykresu funkcji f(x)=ax^2+bx+c, dla której D_f=\mathbb{R}.

Wówczas:

Odpowiedzi:
T/N : funkcja jest rosnąca w przedziale (-2, 4) T/N : f(-5)=h(8)
T/N : miejscami zerowymi tej funkcji są liczby -2 i 4  
Zadanie 9.  1 pkt ⋅ Numer: pp-11468 ⋅ Poprawnie: 197/293 [67%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Funkcja określona wzorem f(x)=2x^2+......\cdot x+18 jest malejąca w przedziale (-\infty,-3) i rosnąca w przedziale (-3,+\infty).

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11070 ⋅ Poprawnie: 76/122 [62%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Wyznacz największą całkowitą wartość funkcji określonej wzorem f(x)=-x^2-3x+3.
Odpowiedź:
max_{\mathbb{Z}}= (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-10978 ⋅ Poprawnie: 474/743 [63%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Najmniejszą wartość w przedziale \langle 3, 7\rangle funkcja kwadratowa określona wzorem f(x)=-\left(x-6\right)^{2}+5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-11730 ⋅ Poprawnie: 21/39 [53%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Większa część zawodników klubu sportowego liczącego 59 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-11058 ⋅ Poprawnie: 92/184 [50%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 « Wierzchołek paraboli będącej wykresem funkcji kwadratowej określonej wzorem y=(2x+5)^2-\frac{1}{2} należy do prostej o równaniu y=......\cdot x.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 14.  1 pkt ⋅ Numer: pp-10974 ⋅ Poprawnie: 173/270 [64%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Ile rozwiązań ma równanie (x^2+x-12)\sqrt{9-x^2}=0?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-10964 ⋅ Poprawnie: 68/113 [60%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Ile liczb całkowitych spełnia nierówność 7\pi\cdot x > 3x^2:
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm