Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11595 ⋅ Poprawnie: 119/162 [73%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=ax^2
należy punkt o współrzędnych
(-3\sqrt{2},126\sqrt{3}) .
Wyznacz współczynnik a .
Odpowiedź:
a=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11430 ⋅ Poprawnie: 984/1243 [79%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wykresem funkcji kwadratowej
f(x)=x^2+8x-2
jest parabola, której wierzchołkiem jest punkt o współrzędnych
\left(x_w, y_w\right) .
Podaj współrzędne wierzchołka paraboli x_w i
y_w .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-11009 ⋅ Poprawnie: 212/393 [53%]
Rozwiąż
Podpunkt 3.1 (0.2 pkt)
« Maksymalny zbiór, w którym funkcja kwadratowa
f(x)=-2(x-7)^2-3 jest rosnąca jest pewnym przedziałem liczbowym.
Przedział ten ma postać:
Odpowiedzi:
A. \langle p,q\rangle
B. (p,+\infty)
C. \langle p,+\infty)
D. (-\infty,p\rangle
E. (-\infty,p)
F. (p,q)
Podpunkt 3.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11039 ⋅ Poprawnie: 241/289 [83%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Punkt
(10,-4) jest wierzchołkiem paraboli.
Punkt o współrzędnych
P=(0,-11) należy do tej
paraboli.
Zatem zbiorem wartości funkcji, której wykresem jest ta parabola jest:
Odpowiedzi:
A. (-\infty,-4\rangle
B. \langle -11,+\infty)
C. (-\infty,11\rangle
D. \langle 11,+\infty)
Zadanie 5. 1 pkt ⋅ Numer: pp-11061 ⋅ Poprawnie: 96/143 [67%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
» Oblicz odległość wierzchołka paraboli o równaniu
y=x^2-9x+\frac{77}{4} od osi
Ox .
Odpowiedź:
d=
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-10981 ⋅ Poprawnie: 97/212 [45%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Wyznacz największą wartość funkcji określonej wzorem
f(x)=-2(x+5)(x-1) w przedziale
\left\langle -\frac{5}{2},1\right\rangle .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-11010 ⋅ Poprawnie: 114/226 [50%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Funkcja kwadratowa określona jest wzorem
f(x)=-(x-3)(x+7) . Wyznacz maksymalny przedział, w którym funkcja
ta jest rosnąca.
Podaj najmniejszy koniec liczbowy tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-11020 ⋅ Poprawnie: 56/110 [50%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
«« Funkcja kwadratowa spełnia warunki:
y=px^2+qx+r i
p\cdot r \lessdot 0 .
Wykres tej funkcji pokazano na rysunku:
Odpowiedzi:
Zadanie 9. 1 pkt ⋅ Numer: pp-11534 ⋅ Poprawnie: 214/313 [68%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
(1 pkt)
Jeden z poniższych wzorów opisuje funkcję postaci
y=ax^2+bx+c , której wykres pokazano na rysunku:
Wskaż ten wzór:
Odpowiedzi:
A. y=a(x-2)^2+1
B. y=a(x+1)^2-2
C. y=a(x-1)^2-2
D. y=a(x-2)^2-1
E. y=a(x+1)^2+2
F. y=a(x-1)^2+2
Zadanie 10. 1 pkt ⋅ Numer: pp-11054 ⋅ Poprawnie: 29/55 [52%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Pole powierzchni figury ograniczonej parabolą o równaniu
y=x^2-81
i osią
Ox jest:
Odpowiedzi:
A. większe od 1458
B. równe 729
C. mniejsze od 729
D. większe od 729
Zadanie 11. 1 pkt ⋅ Numer: pp-11466 ⋅ Poprawnie: 202/334 [60%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
« Dana jest funkcja kwadratowa
f(x)=-0,5(x+5m)^2+15m , gdzie
m > 0 .
Wówczas:
Odpowiedzi:
A. dla pewnego m funkcja ma jedno miejsce zerowe
B. dla m=-\frac{1}{2} funkcja jest rosnąca
C. największą wartością funkcji jest -15m
D. wierzchołek paraboli, która jest wykresem tej funkcji należy do prostej y=-3x
Zadanie 12. 1 pkt ⋅ Numer: pp-11645 ⋅ Poprawnie: 37/67 [55%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
« Rzucono pionowo do góry kamień z prędkością początkową
10\ m/s .
Wysokość
s\ [m] , jaką osiągnie ten kamień po
t
sekundach czasu opisuje wzór
s(t)=14t-t^2 .
Podaj maksymalną wysokość jaką osiągnie ten kamień.
Odpowiedź:
s_{max}(t)=
(wpisz liczbę całkowitą)
Zadanie 13. 1 pkt ⋅ Numer: pp-10975 ⋅ Poprawnie: 325/496 [65%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Liczba ujemna spełnia równanie
x^2-2x-128=0 .
Oblicz kwadrat tej liczby.
Odpowiedź:
x^2=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 14. 1 pkt ⋅ Numer: pp-10971 ⋅ Poprawnie: 130/195 [66%]
Rozwiąż
Podpunkt 14.1 (0.2 pkt)
Równanie
x^2-(k-5)x+16=0 z niewiadomą
x ma dwa różne rozwiązania wtedy i tylko wtedy, gdy parametr
k należy do zbioru
A . Zapisz zbiór
A w postaci sumy przedziałów.
Zbiór A jest postaci:
Odpowiedzi:
A. (-\infty,p)\cap(q,+\infty)
B. \langle p,q\rangle
C. (-\infty,p)\cup(q,+\infty)
D. (p,q)
E. (-\infty,p)
F. (p,+\infty)
Podpunkt 14.2 (0.8 pkt)
Liczba
p jest najmniejszym, a liczba
q
największym z końców liczbowych tych przedziałów.
Podaj liczby p i q .
Odpowiedzi:
Zadanie 15. 1 pkt ⋅ Numer: pp-10957 ⋅ Poprawnie: 641/967 [66%]
Rozwiąż
Podpunkt 15.1 (0.2 pkt)
» Wyznacz dziedzinę funkcji określonej wzorem
f(x)=\frac{x-1}{\sqrt{x^2-5x-24}}
.
Zbiór ten ma postać:
Odpowiedzi:
A. \mathbb{R}-\{p, q\}
B. \langle p,q\rangle
C. \mathbb{R}-\{p\}
D. (-\infty,p)\cup(q,+\infty)
E. \mathbb{R}-(p,q)
F. (p,q)
Podpunkt 15.2 (0.8 pkt)
Zbiór
A jest zbiorem wszystkich liczb nie należących do dziedziny
tej funkcji.
Wyznacz najmniejszą i największą liczbę w zbiorze A .
Odpowiedzi:
Rozwiąż