Funkcja kwadratowa
f(x)=x^2+bx+c jest malejąca dla
x\in(-\infty,-8\rangle, a zbiorem jej wartości
jest przedział \langle 5,+\infty).
Postać kanoniczna tej funkcji opisana jest wzorem y=(x-p)^2+q.
Podaj wartości parametrów p i q.
Odpowiedzi:
p
=
(wpisz liczbę całkowitą)
q
=
(wpisz liczbę całkowitą)
Zadanie 3.1 pkt ⋅ Numer: pp-11006 ⋅ Poprawnie: 343/642 [53%]
Do wykresu funkcji kwadratowej określonej wzorem y=f(x)
należy punkt P=(1, -30). Osią symetrii wykresu
tej funkcji jest prosta określona równaniem x=-1, a liczba 6
jest miejscem zerowym tej funkcji. Zapisz wzór tej funkcji w postaci iloczynowej y=a(x-x_1)(x-x_2).
Wyznacz wartość współczynnika a.
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 8.1 pkt ⋅ Numer: pp-11451 ⋅ Poprawnie: 160/257 [62%]
Wykres funkcji określonej wzorem f(x)=x^2-2
przesunięto o k=5 jednostek w prawo. W wyniku
tego przesunięcia otrzymano wykres funkcji określonej wzorem
y=x^2+bx+c.
Wyznacz współczynniki b i c.
Odpowiedzi:
b
=
(wpisz liczbę całkowitą)
c
=
(wpisz liczbę całkowitą)
Zadanie 9.1 pkt ⋅ Numer: pp-11026 ⋅ Poprawnie: 240/317 [75%]
« W turnieju szachowym, w którym uczestniczy ......... szachistów, każdy uczestnik rozgrywa jedną partię z każdym
innym uczestnikiem. Łącznie rozegrano w tym turnieju 210
partii szachów.
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 14.1 pkt ⋅ Numer: pp-10968 ⋅ Poprawnie: 352/569 [61%]