Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11726 ⋅ Poprawnie: 19/33 [57%]
Rozwiąż
Podpunkt 1.1 (0.5 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=ax^2+bx+c
należą punkty o współrzędnych
(3,3) ,
(5,-2) i
(9,0) .
Wyznacz współczynnik b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-10979 ⋅ Poprawnie: 172/316 [54%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Dana jest funkcja
f określona wzorem
f(x)=-5(x+4)^2-1 .
Wyznacz największą wartość funkcji określonej wzorem h(x)=f(x-2)+2 .
Odpowiedź:
h_{max}(x)=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11028 ⋅ Poprawnie: 605/791 [76%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Osią symetrii paraboli o równaniu
y=27x^2+729x+891 jest prosta określona:
równaniem
x=......... .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-11037 ⋅ Poprawnie: 198/319 [62%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Gdy przesuniemy wykres funkcji
f(x)=x^2+\frac{7}{2} o
p=7 jednostek w lewo i
q=12 jednostek w dół,
to otrzymamy wykres funkcji:
Odpowiedzi:
A. y=(x-7)^2-\frac{17}{2}
B. y=(x+12)^2+\frac{21}{2}
C. y=(x-7)^2+\frac{31}{2}
D. y=(x+7)^2-\frac{17}{2}
Zadanie 5. 1 pkt ⋅ Numer: pp-11082 ⋅ Poprawnie: 134/245 [54%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
» W przedziale
\langle -1,2\rangle funkcja
y=3x^2-3x-3 osiąga wartość najmniejszą
równą
......... .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 1 pkt ⋅ Numer: pp-11041 ⋅ Poprawnie: 353/671 [52%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Wyznacz największa wartość funkcji określonej wzorem
y=-3(x+8)(x+5) .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-11079 ⋅ Poprawnie: 268/362 [74%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Dana jest funkcja kwadratowa opisana wzorem
h(x)=-5(x+8)(x+7) . Wyznacz maksymalny przedział, w którym funkcja ta
jest malejąca.
Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-11024 ⋅ Poprawnie: 121/338 [35%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Na rysunku pokazano tylko część wykresu funkcji
f(x)=ax^2+bx+c , dla której
D_f=\mathbb{R} .
Wówczas:
Odpowiedzi:
T/N : funkcja przyjmuje wartości większe od zera dla x \lessdot 1
T/N : zbiorem wartości tej funkcji jest przedział (-\infty,9)
T/N : funkcja jest rosnąca w przedziale (-2, 4)
Zadanie 9. 1 pkt ⋅ Numer: pp-11055 ⋅ Poprawnie: 46/98 [46%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Wykresy funkcji określonych wzorami
f(x)=3x^2-24x+48 i
g(x)=3x^2+30x+75 są symetryczne względem prostej
o równaniu
x=m .
Podaj m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-11000 ⋅ Poprawnie: 63/91 [69%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Jeśli wykres funkcji kwadratowej określonej wzorem
f(x)=x^2+4x+m+14
przecina prostą o równaniu
y=-3 , to parametr
m należy do pewnego przedziału liczbowego nieograniczonego.
Podaj najmniejszą lub największą liczbę całkowitą z tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 11. 1 pkt ⋅ Numer: pp-10985 ⋅ Poprawnie: 217/329 [65%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Dana jest funkcja
g(x)=-\frac{1}{4}(x+6)x , gdzie
x\in\langle -8,-5\rangle .
Wyznacz f_{min} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-11646 ⋅ Poprawnie: 57/103 [55%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Mniejsza część zawodników klubu sportowego liczącego
87 osób,
zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z
pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.
Ilu zawodników było chorych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 13. 1 pkt ⋅ Numer: pp-10969 ⋅ Poprawnie: 79/138 [57%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Punkt
M=(a,9\cdot a) należy do wykresu funkcji
f(x)=(1-a)x-a .
Wyznacz najmniejsze możliwe i największe możliwe a .
Odpowiedzi:
Zadanie 14. 1 pkt ⋅ Numer: pp-11550 ⋅ Poprawnie: 102/147 [69%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Oblicz iloczyn wszystkich rozwiązań równania
(x^2-5)(x-2)^2(x^2-x-6)=0 .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 15. 1 pkt ⋅ Numer: pp-10964 ⋅ Poprawnie: 68/113 [60%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
Ile liczb całkowitych spełnia nierówność
9\pi\cdot x > 6x^2 :
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Rozwiąż