Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11644 ⋅ Poprawnie: 33/93 [35%]
Rozwiąż
Podpunkt 1.1 (0.5 pkt)
» Do wykresu funkcji kwadratowej określonej wzorem
y=ax^2+bx+c
należą punkty o współrzędnych
(-2,7) ,
(2,9) i
(4,22) .
Wyznacz współczynnik b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-10993 ⋅ Poprawnie: 570/824 [69%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Funkcja kwadratowa określona jest wzorem
f(x)=x^2-8x+c .
Jeżeli
f(4)=-19 , to
f(1)=......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11003 ⋅ Poprawnie: 533/896 [59%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
» Wskaż funkcję kwadratową rosnąca w przedziale
(-\infty,-2\rangle :
Odpowiedzi:
A. y=-(x-6)^2-3
B. y=-(x+6)^2-2
C. y=(x-2)^2+6
D. y=-(x+2)^2+6
E. y=-(x+6)^2+2
F. y=(x+2)^2+6
Zadanie 4. 1 pkt ⋅ Numer: pp-11037 ⋅ Poprawnie: 209/334 [62%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Gdy przesuniemy wykres funkcji
f(x)=x^2+\frac{7}{2} o
p=5 jednostek w lewo i
q=11 jednostek w dół,
to otrzymamy wykres funkcji:
Odpowiedzi:
A. y=(x-5)^2-\frac{15}{2}
B. y=(x+5)^2-\frac{15}{2}
C. y=(x-5)^2+\frac{29}{2}
D. y=(x+11)^2+\frac{17}{2}
Zadanie 5. 1 pkt ⋅ Numer: pp-11084 ⋅ Poprawnie: 115/172 [66%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Dana jest funkcja
y=x^2-3 .
Do zbioru ZW_f nie należy liczba:
Odpowiedzi:
A. 3-3\sqrt{7}
B. 6-6\sqrt{2}
C. 6-6\sqrt{2}
D. 4-2\sqrt{5}
Zadanie 6. 1 pkt ⋅ Numer: pp-10996 ⋅ Poprawnie: 344/563 [61%]
Rozwiąż
Podpunkt 6.1 (0.2 pkt)
Zbiór tych wszystkich wartości
m , dla których funkcja kwadratowa
określona wzorem
f(x)=x^2+4x+m nie ma ani
jednego miejsca zerowego jest przedziałem liczbowym.
Przedział ten ma postać:
Odpowiedzi:
A. (-\infty, p\rangle
B. (-\infty, p)
C. \langle p, q\rangle
D. (p, +\infty)
E. \langle p, +\infty)
F. (p, q)
Podpunkt 6.2 (0.8 pkt)
Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-11010 ⋅ Poprawnie: 114/226 [50%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Funkcja kwadratowa określona jest wzorem
f(x)=-(x-4)(x+2) . Wyznacz maksymalny przedział, w którym funkcja
ta jest rosnąca.
Podaj najmniejszy koniec liczbowy tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-11004 ⋅ Poprawnie: 127/373 [34%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Funkcja kwadratowa określona jest wzorem
f(x)=-3(x+2018)(x-666) .
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : f(-680) > f(-670)
T/N : f(-666) > f(-667)
Zadanie 9. 1 pkt ⋅ Numer: pp-11023 ⋅ Poprawnie: 294/453 [64%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Na podstawie wykresu funkcji określonej wzorem
y=ax^2+bx+c wskaż jej wzór:
Odpowiedzi:
A. y=-x^2+2x+2
B. y=x^2+2x+4
C. y=-x^2-2x+2
D. y=x^2-2x+4
Zadanie 10. 1 pkt ⋅ Numer: pp-11062 ⋅ Poprawnie: 141/183 [77%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Na rysunku pokazano cześć wykresu funkcji
g(x)=ax^2+bc+c .
Które z poniższych zdań jest prawdziwe?
Odpowiedzi:
A. miejsca zerowe tej funkcji to -2 i 4
B. miejscami zerowymi funkcji to -2 i 6
C. f(x) > 0 \iff x \lessdot 1
D. funkcja rośnie w przedziale (-2,4)
Zadanie 11. 1 pkt ⋅ Numer: pp-11409 ⋅ Poprawnie: 216/332 [65%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej
f :
Podaj największą wartość funkcji f w przedziale
\langle 1,4\rangle .
Odpowiedź:
f_{max}(x)=
(wpisz liczbę całkowitą)
Zadanie 12. 1 pkt ⋅ Numer: pp-11080 ⋅ Poprawnie: 264/397 [66%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
« Suma dwóch liczb jest równa
14\sqrt{2} , a ich
iloczyn ma największą możliwą wartość.
Oblicz mniejszą z tych liczb.
Odpowiedź:
min=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 13. 1 pkt ⋅ Numer: pp-11065 ⋅ Poprawnie: 60/107 [56%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Funkcja
f określona jest wzorem
f(x)=\frac{x^2-7x-18}{x+6} .
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : f ma zbiór \mathbb{R} za dziedzinę
T/N : f przyjmuje wartości dodatnie
T/N : f nie ma miejsc zerowych
Zadanie 14. 1 pkt ⋅ Numer: pp-10974 ⋅ Poprawnie: 173/270 [64%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Ile rozwiązań ma równanie
(x^2-4x-5)\sqrt{16-x^2}=0 ?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 15. 1 pkt ⋅ Numer: pp-10959 ⋅ Poprawnie: 224/427 [52%]
Rozwiąż
Podpunkt 15.1 (0.2 pkt)
» Wyznacz zbiór wszystkich rozwiązań nierówności
-1 \lessdot x^2-\frac{2}{5}x \lessdot 0
.
Zbiór ten ma postać:
Odpowiedzi:
A. (-\infty,p\rangle
B. (-\infty,p)\cup\langle q,+\infty)
C. (-\infty,p)
D. (p,+\infty)
E. \langle p,q\rangle
F. (p,q)
Podpunkt 15.2 (0.8 pkt)
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż