Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11644 ⋅ Poprawnie: 33/93 [35%]
Rozwiąż
Podpunkt 1.1 (0.5 pkt)
» Do wykresu funkcji kwadratowej określonej wzorem
y=ax^2+bx+c
należą punkty o współrzędnych
(-2,9) ,
(2,11) i
(4,36) .
Wyznacz współczynnik b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11059 ⋅ Poprawnie: 233/411 [56%]
Rozwiąż
Podpunkt 2.1 (0.5 pkt)
Parabola
y=(-4-10x)^2+6
ma wierzchołek w punkcie o współrzędnych
\left(x_w,y_w\right) .
Wyznacz współrzędną x_w .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11030 ⋅ Poprawnie: 898/1172 [76%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wskaż funkcję kwadratową, której zbiorem wartości jest przedział
\langle 5,+\infty) :
Odpowiedzi:
A. y=(x+3)^2-5
B. y=(x-4)^2-5
C. y=-(x-3)^2+5
D. y=-(x+6)^2+5
E. y=(x+5)^2+5
F. y=-2(x+2)^2-5
Zadanie 4. 1 pkt ⋅ Numer: pp-11056 ⋅ Poprawnie: 610/800 [76%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Parabola o wierzchołku
P=(6,-1) i ramionach
skierowanych w dół może być wykresem funkcji określonej wzorem:
Odpowiedzi:
A. y=3(x+1)^2-1
B. y=(x-6)^2+1
C. y=-2(x-6)^2-1
D. y=-2(x+6)^2-1
Zadanie 5. 1 pkt ⋅ Numer: pp-11071 ⋅ Poprawnie: 117/135 [86%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
W zbiorze wartości funkcji
f(x)=-4(x+3)^2+2 zawarty
jest przedział:
Odpowiedzi:
A. (-2,3)
B. (2,+\infty)
C. (-3,3)
D. (-\infty,2)
Zadanie 6. 1 pkt ⋅ Numer: pp-10980 ⋅ Poprawnie: 201/342 [58%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Liczby
4 i
\frac{7}{2} są miejscami
zerowymi funkcji określonej wzorem
g(x)=ax^2-\frac{45}{2}x+42 .
Wyznacz wartość współczynnika a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-11078 ⋅ Poprawnie: 195/345 [56%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Dana jest funkcja
f(x)=-5(x-9)(x-6) .
Wyznacz maksymalny przedział, w którym funkcja
f jest
rosnąca.
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-11024 ⋅ Poprawnie: 121/338 [35%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Na rysunku pokazano tylko część wykresu funkcji
f(x)=ax^2+bx+c , dla której
D_f=\mathbb{R} .
Wówczas:
Odpowiedzi:
T/N : funkcja jest rosnąca w przedziale (-2, 4)
T/N : miejscami zerowymi tej funkcji są liczby -2 i 4
T/N : zbiorem wartości tej funkcji jest przedział (-\infty,9)
Zadanie 9. 1 pkt ⋅ Numer: pp-10994 ⋅ Poprawnie: 87/175 [49%]
Rozwiąż
Podpunkt 9.1 (0.2 pkt)
« Zbiorem wartości funkcji
f(x)=2x^2+4x+m-2 jest przedział liczbowy zawarty w przedziale
\langle 0,+\infty) , wtedy i tylko wtedy, gdy parametr
m należy do pewnego przedziału.
Przedział, do którego należy parametr m ma postać:
Odpowiedzi:
A. (-\infty,p)
B. (p,+\infty)
C. (p,q)
D. \langle p,q\rangle
E. (-\infty,p\rangle
F. \langle p,+\infty)
Podpunkt 9.2 (0.8 pkt)
Podaj najmiejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-11410 ⋅ Poprawnie: 269/400 [67%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej
f :
Osią symetrii wykresu funkcji f
jest prosta o równaniu:
Odpowiedzi:
A. x-2=0
B. y=-4
C. x=-4
D. y-2=0
Zadanie 11. 1 pkt ⋅ Numer: pp-10988 ⋅ Poprawnie: 67/90 [74%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
» Wyznacz najmniejszą wartość funkcji kwadratowej określonej wzorem
f(x)=x^2+12x .
Odpowiedź:
f_{min}(x)=
(wpisz liczbę całkowitą)
Zadanie 12. 1 pkt ⋅ Numer: pp-11080 ⋅ Poprawnie: 264/397 [66%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
« Suma dwóch liczb jest równa
28\sqrt{2} , a ich
iloczyn ma największą możliwą wartość.
Oblicz mniejszą z tych liczb.
Odpowiedź:
min=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 13. 1 pkt ⋅ Numer: pp-11065 ⋅ Poprawnie: 60/107 [56%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Funkcja
f określona jest wzorem
f(x)=\frac{x^2-5x-6}{x+4} .
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : f przyjmuje wartości dodatnie
T/N : f ma zbiór \mathbb{R} za dziedzinę
T/N : f ma dwa miejsca zerowe
Zadanie 14. 1 pkt ⋅ Numer: pp-11077 ⋅ Poprawnie: 140/228 [61%]
Rozwiąż
Podpunkt 14.1 (0.2 pkt)
» Funkcja kwadratowa opisana wzorem
g(x)=mx^2-2x-2 ma dokładnie dwa miejsca zerowe wtedy
i tylko wtedy, gdy parametr
m należy do pewnego przedziału liczbowego.
Przedział ten ma postać:
Odpowiedzi:
A. (p,q)
B. \langle p,+\infty)
C. (-\infty,p\rangle
D. (-\infty,p)
E. (p,+\infty)
F. \langle p, q\rangle
Podpunkt 14.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 15. 1 pkt ⋅ Numer: pp-10963 ⋅ Poprawnie: 110/233 [47%]
Rozwiąż
Podpunkt 15.1 (0.2 pkt)
Funkcja opisana jest wzorem
f(x)=3x^2+5x+3 .
Zbiorem rozwiązań nierówności
f(x) > f(-x)
jest pewien przedział liczbowy.
Przedział ten ma postać:
Odpowiedzi:
A. (-\infty,p\rangle
B. (p,+\infty)
C. (p,q\rangle
D. (-\infty,p)
E. (p, q)
F. \langle p,+\infty)
Podpunkt 15.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Rozwiąż