Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11640 ⋅ Poprawnie: 84/117 [71%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wykres funkcji kwadratowej określonej wzorem
y=-\frac{1}{2}(x+6)^2+5 otrzymano przesuwając wykres funkcji
y=-\frac{1}{2}x^2 o
p jednostek
wzdłuż osi
Ox i o
q jednostek
wzdłuż osi
Oy , przy czym liczby
p i
q mogą być ujemne.
Podaj liczby p i q .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11031 ⋅ Poprawnie: 419/591 [70%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Wierzchołkiem paraboli, która jest wykresem funkcji
f
jest punkt
W=(-9,1) .
Wówczas:
Odpowiedzi:
T/N : f(-20)=f(2)
T/N : f(-18)=f(0)
T/N : f(-17)=f(-2)
Zadanie 3. 1 pkt ⋅ Numer: pp-11009 ⋅ Poprawnie: 212/393 [53%]
Rozwiąż
Podpunkt 3.1 (0.2 pkt)
« Maksymalny zbiór, w którym funkcja kwadratowa
f(x)=-2(x+4)^2+6 jest rosnąca jest pewnym przedziałem liczbowym.
Przedział ten ma postać:
Odpowiedzi:
A. \langle p,q\rangle
B. (-\infty,p\rangle
C. (p,+\infty)
D. \langle p,+\infty)
E. (-\infty,p)
F. (p,q)
Podpunkt 3.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11008 ⋅ Poprawnie: 400/562 [71%]
Rozwiąż
Podpunkt 4.1 (0.8 pkt)
« Zbiorem wartości funkcji kwadratowej
f(x)=x^2-\sqrt{3} jest pewnien przedział liczbowy.
Podaj ten koniec tego przedziału, który jest liczbą niewymierną.
Odpowiedź:
m\sqrt{n}=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 4.2 (0.2 pkt)
Odpowiedzi:
A. \left(p, q\right)
B. \left\langle p,+\infty\right)
C. \left\langle p, q \right\rangle
D. \left(-\infty,p\right\rangle
Zadanie 5. 1 pkt ⋅ Numer: pp-11083 ⋅ Poprawnie: 83/187 [44%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
» Dla
x=6 funkcja
f(x)=x^2+bx+c przyjmuje wartość najmniejszą równą
-3 .
Wyznacz wartość współczynnika c .
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-10980 ⋅ Poprawnie: 201/342 [58%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Liczby
4 i
-\frac{11}{2} są miejscami
zerowymi funkcji określonej wzorem
g(x)=ax^2-3x+44 .
Wyznacz wartość współczynnika a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-11075 ⋅ Poprawnie: 96/167 [57%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Dana jest funkcja kwadratowa określona wzorem
f(x)=(5-x)(2x-6) .
Wierzchołek wykresu tej funkcji należy do prostej określonej równaniem
x=m .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-11016 ⋅ Poprawnie: 400/609 [65%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Funkcja
f , której wykres pokazano na rysunku
zdefiniowana jest wzorem:
Odpowiedzi:
A. f(x)=-\frac{4}{5}\left(x-\frac{5}{2}\right)\left(x+\frac{1}{2}\right)
B. f(x)=-\frac{4}{5}\left(x+\frac{5}{2}\right)\left(x+\frac{1}{2}\right)
C. f(x)=-\frac{5}{4}\left(x-\frac{5}{2}\right)\left(x+\frac{1}{2}\right)
D. f(x)=-\frac{4}{5}\left(x-\frac{5}{2}\right)\left(x-\frac{1}{2}\right)
Zadanie 9. 1 pkt ⋅ Numer: pp-11048 ⋅ Poprawnie: 71/143 [49%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
» Prosta o równaniu
y+......=0 ma dokładnie jeden
punkt wspólny z parabolą określoną równaniem
y=2(x-10)^2-5 .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-11062 ⋅ Poprawnie: 141/183 [77%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Na rysunku pokazano cześć wykresu funkcji
g(x)=ax^2+bc+c .
Które z poniższych zdań jest prawdziwe?
Odpowiedzi:
A. miejscami zerowymi funkcji to -2 i 6
B. funkcja rośnie w przedziale (-2,4)
C. f(x) > 0 \iff x \lessdot 1
D. miejsca zerowe tej funkcji to -2 i 4
Zadanie 11. 1 pkt ⋅ Numer: pp-10988 ⋅ Poprawnie: 67/90 [74%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
» Wyznacz najmniejszą wartość funkcji kwadratowej określonej wzorem
f(x)=x^2+12x .
Odpowiedź:
f_{min}(x)=
(wpisz liczbę całkowitą)
Zadanie 12. 1 pkt ⋅ Numer: pp-11080 ⋅ Poprawnie: 264/397 [66%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
« Suma dwóch liczb jest równa
6\sqrt{2} , a ich
iloczyn ma największą możliwą wartość.
Oblicz mniejszą z tych liczb.
Odpowiedź:
min=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 13. 1 pkt ⋅ Numer: pp-10975 ⋅ Poprawnie: 325/496 [65%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Liczba ujemna spełnia równanie
x^2-2x-50=0 .
Oblicz kwadrat tej liczby.
Odpowiedź:
x^2=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 14. 1 pkt ⋅ Numer: pp-10971 ⋅ Poprawnie: 130/195 [66%]
Rozwiąż
Podpunkt 14.1 (0.2 pkt)
Równanie
x^2-(k+5)x+25=0 z niewiadomą
x ma dwa różne rozwiązania wtedy i tylko wtedy, gdy parametr
k należy do zbioru
A . Zapisz zbiór
A w postaci sumy przedziałów.
Zbiór A jest postaci:
Odpowiedzi:
A. (-\infty,p)\cup(q,+\infty)
B. (-\infty,p)\cap(q,+\infty)
C. (p,+\infty)
D. (p,q)
E. \langle p,q\rangle
F. (-\infty,p)
Podpunkt 14.2 (0.8 pkt)
Liczba
p jest najmniejszym, a liczba
q
największym z końców liczbowych tych przedziałów.
Podaj liczby p i q .
Odpowiedzi:
Zadanie 15. 1 pkt ⋅ Numer: pp-10962 ⋅ Poprawnie: 383/585 [65%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
Iloczyn
(x-9)(-5-x) jest nieujemny, wtedy i tylko wtedy, gdy liczba
x
należy do zbioru
A . Zapisz zbiór
A
w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Rozwiąż