Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11595 ⋅ Poprawnie: 119/162 [73%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=ax^2 należy punkt o współrzędnych (-4\sqrt{2},256\sqrt{3}).

Wyznacz współczynnik a.

Odpowiedź:
a= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10993 ⋅ Poprawnie: 570/824 [69%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=x^2-8x+c. Jeżeli f(-3)=41, to f(1)=..........

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10991 ⋅ Poprawnie: 198/343 [57%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zbiorem wartości funkcji kwadratowej f(x)=-x^2+ax-\frac{a^2}{4}-a jest przedział (-\infty,-9\rangle.

Wyznacz wartość parametru a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11052 ⋅ Poprawnie: 814/1145 [71%] Rozwiąż 
Podpunkt 4.1 (0.8 pkt)
 Zbiorem wartości funkcji kwadratowej y=-x^2+6 x-14 jest pewien przedział liczbowy.

Podaj ten koniec tego przedziału, który jest liczbą całkowitą.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 4.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. \frac{3}{4} B. -\frac{1}{2}
C. +\infty D. -\frac{3}{4}
E. \frac{1}{2} F. -\infty
Zadanie 5.  1 pkt ⋅ Numer: pp-11029 ⋅ Poprawnie: 233/354 [65%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Prosta o równaniu -4x-3=0 jest osią symetrii paraboli:
Odpowiedzi:
A. y=2x^2+\frac{9}{2}x-4 B. y=2x^2-\frac{9}{2}x-4
C. y=4x^2-2x-4 D. y=4x^2+3x-4
E. y=4x^2+2x-4 F. y=4x^2+6x-4
Zadanie 6.  1 pkt ⋅ Numer: pp-11056 ⋅ Poprawnie: 610/801 [76%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Parabola o wierzchołku P=(6,-7) i ramionach skierowanych w dół może być wykresem funkcji określonej wzorem:
Odpowiedzi:
A. y=-2(x+6)^2-7 B. y=-2(x-6)^2-7
C. y=3(x+7)^2-7 D. y=(x-6)^2+7
Zadanie 7.  1 pkt ⋅ Numer: pp-11084 ⋅ Poprawnie: 115/172 [66%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Dana jest funkcja y=x^2-5.

Do zbioru ZW_f nie należy liczba:

Odpowiedzi:
A. 7-4\sqrt{6} B. 9-8\sqrt{3}
C. 8-6\sqrt{5} D. 6-7\sqrt{2}
Zadanie 8.  1 pkt ⋅ Numer: pp-10980 ⋅ Poprawnie: 202/343 [58%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Liczby -3 i -\frac{11}{2} są miejscami zerowymi funkcji określonej wzorem g(x)=ax^2+17x+33.

Wyznacz wartość współczynnika a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11010 ⋅ Poprawnie: 117/231 [50%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=-(x-9)(x+3). Wyznacz maksymalny przedział, w którym funkcja ta jest rosnąca.

Podaj najmniejszy koniec liczbowy tego przedziału.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11535 ⋅ Poprawnie: 55/85 [64%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=f(x) należy punkt P=(1, -30). Osią symetrii wykresu tej funkcji jest prosta określona równaniem x=-2, a liczba 5 jest miejscem zerowym tej funkcji. Zapisz wzór tej funkcji w postaci iloczynowej y=a(x-x_1)(x-x_2).

Wyznacz wartość współczynnika a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-11451 ⋅ Poprawnie: 160/257 [62%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Wykres funkcji określonej wzorem f(x)=x^2-5 przesunięto o k=3 jednostek w prawo. W wyniku tego przesunięcia otrzymano wykres funkcji określonej wzorem y=x^2+bx+c.

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-11047 ⋅ Poprawnie: 118/160 [73%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Ile punktów wspólnych z osią Ox ma wykres funkcji kwadratowej f(x)=5-6(x-3)^2:
Odpowiedzi:
A. 3 B. 2
C. 0 D. 1
Zadanie 13.  1 pkt ⋅ Numer: pp-11000 ⋅ Poprawnie: 64/93 [68%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Jeśli wykres funkcji kwadratowej określonej wzorem f(x)=x^2+4x+m+8 przecina prostą o równaniu y=-3, to parametr m należy do pewnego przedziału liczbowego nieograniczonego.

Podaj najmniejszą lub największą liczbę całkowitą z tego przedziału.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 14.  1 pkt ⋅ Numer: pp-11466 ⋅ Poprawnie: 204/338 [60%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 « Dana jest funkcja kwadratowa f(x)=-0,5(x+5m)^2+10m, gdzie m > 0.

Wówczas:

Odpowiedzi:
A. dla pewnego m funkcja ma jedno miejsce zerowe B. wierzchołek paraboli, która jest wykresem tej funkcji należy do prostej y=-2x
C. dla m=-\frac{1}{2} funkcja jest rosnąca D. największą wartością funkcji jest -10m
Zadanie 15.  1 pkt ⋅ Numer: pp-11645 ⋅ Poprawnie: 39/71 [54%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 « Rzucono pionowo do góry kamień z prędkością początkową 10\ m/s. Wysokość s\ [m], jaką osiągnie ten kamień po t sekundach czasu opisuje wzór s(t)=12t-t^2.

Podaj maksymalną wysokość jaką osiągnie ten kamień.

Odpowiedź:
s_{max}(t)= (wpisz liczbę całkowitą)
Zadanie 16.  1 pkt ⋅ Numer: pp-11065 ⋅ Poprawnie: 60/108 [55%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 Funkcja f określona jest wzorem f(x)=\frac{x^2+x-42}{x-1}.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : f ma dwa miejsca zerowe T/N : f nie ma miejsc zerowych
T/N : f ma zbiór \mathbb{R} za dziedzinę  
Zadanie 17.  1 pkt ⋅ Numer: pp-11066 ⋅ Poprawnie: 218/289 [75%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 « Wierzchołkiem paraboli będącej wykresem funkcji f(x)=-x^2+bx+c jest punkt o współrzędnych (5,-6).

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 18.  1 pkt ⋅ Numer: pp-10974 ⋅ Poprawnie: 177/275 [64%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Ile rozwiązań ma równanie (x^2+x-12)\sqrt{9-x^2}=0?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 19.  1 pkt ⋅ Numer: pp-10962 ⋅ Poprawnie: 384/587 [65%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 Iloczyn (x-5)(-6-x) jest nieujemny, wtedy i tylko wtedy, gdy liczba x należy do zbioru A. Zapisz zbiór A w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 20.  1 pkt ⋅ Numer: pp-10963 ⋅ Poprawnie: 111/235 [47%] Rozwiąż 
Podpunkt 20.1 (0.2 pkt)
 Funkcja opisana jest wzorem f(x)=2x^2-4x-5. Zbiorem rozwiązań nierówności f(x) > f(-x) jest pewien przedział liczbowy.

Przedział ten ma postać:

Odpowiedzi:
A. (p,+\infty) B. (-\infty,p\rangle
C. (p,q\rangle D. \langle p,+\infty)
E. (p,q) F. (-\infty,p)
Podpunkt 20.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm