Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11643 ⋅ Poprawnie: 93/191 [48%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=x^2+bx+c
należą punkty o współrzędnych
(5,14) i
(-2,-7) .
Wyznacz współczynniki b i c .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-10993 ⋅ Poprawnie: 570/824 [69%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Funkcja kwadratowa określona jest wzorem
f(x)=x^2-8x+c .
Jeżeli
f(2)=-4 , to
f(1)=......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11002 ⋅ Poprawnie: 730/998 [73%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Funkcja kwadratowa
f(x)=x^2+bx+c jest malejąca dla
x\in(-\infty,-5\rangle , a zbiorem jej wartości
jest przedział
\langle -6,+\infty) .
Postać kanoniczna tej funkcji opisana jest wzorem
y=(x-p)^2+q .
Podaj wartości parametrów p i q .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-11052 ⋅ Poprawnie: 812/1143 [71%]
Rozwiąż
Podpunkt 4.1 (0.8 pkt)
Zbiorem wartości funkcji kwadratowej
y=-x^2+6 x-5 jest pewien przedział liczbowy.
Podaj ten koniec tego przedziału, który jest liczbą całkowitą.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 4.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A. \frac{1}{2}
B. +\infty
C. -\frac{3}{4}
D. -\infty
E. \frac{3}{4}
F. -\frac{1}{2}
Zadanie 5. 1 pkt ⋅ Numer: pp-11008 ⋅ Poprawnie: 400/562 [71%]
Rozwiąż
Podpunkt 5.1 (0.8 pkt)
« Zbiorem wartości funkcji kwadratowej
f(x)=x^2-\sqrt{19} jest pewnien przedział liczbowy.
Podaj ten koniec tego przedziału, który jest liczbą niewymierną.
Odpowiedź:
m\sqrt{n}=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.2 pkt)
Odpowiedzi:
A. \left(-\infty,p\right\rangle
B. \left(p, q\right)
C. \left\langle p,+\infty\right)
D. \left\langle p, q \right\rangle
Zadanie 6. 1 pkt ⋅ Numer: pp-11060 ⋅ Poprawnie: 133/184 [72%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Wierzchołek paraboli o równaniu
y=(x+10)^2+2m+9
należy do prostej o równaniu
y=5 .
Wyznacz wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-11073 ⋅ Poprawnie: 183/338 [54%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Dana jest funkcja kwadratowa
f(x)=x^2+bx+c , przy czym
f(4)=f(5)=4 .
Wyznacz współczynnik b .
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-10986 ⋅ Poprawnie: 417/622 [67%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Wyznacz przedział o maksymalnej długości, w którym funkcja określona wzorem
h(x)=\frac{1}{2}(x-1)(x-7) jest rosnąca.
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-10999 ⋅ Poprawnie: 101/166 [60%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Zbiorem wartości funkcji kwadratowej
f
określonej wzorem
f(x)=m(x+8)(x+6)
jest przedział liczbowy
\langle -4,+\infty) , a rozwiązaniem
nierówności
f(x) \lessdot 0 przedział
(-8,-6) .
Wyznacz współczynnik m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-11075 ⋅ Poprawnie: 96/167 [57%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Dana jest funkcja kwadratowa określona wzorem
f(x)=(4-x)(3x+6) .
Wierzchołek wykresu tej funkcji należy do prostej określonej równaniem
x=m .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-11011 ⋅ Poprawnie: 67/91 [73%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
» Dane są funkcje:
f(x)=x^2+\frac{\sqrt{13}}{2} i
g(x)=\frac{\sqrt{13}}{3} .
Wówczas, zachodzi warunek:
Odpowiedzi:
A. f(x)-g(x)=x^2
B. f(x) > g(x)
C. f(x)=g(x)
D. f(x) \lessdot g(x)
Zadanie 12. 1 pkt ⋅ Numer: pp-11469 ⋅ Poprawnie: 89/138 [64%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
« Układ równań
\begin{cases}
y=m \\
y=3x^2+6x-10
\end{cases}
ma dokładnie jedno rozwiązanie.
Wyznacz wartość parametru m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 13. 1 pkt ⋅ Numer: pp-11035 ⋅ Poprawnie: 23/28 [82%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Daja jest funkcja kwadratowa g określona jest wzorem
g(x)=x^2+3 . Jej wykres ma dokładnie jeden punkt
wspólny z prostą y=-9 , gdy przesuniemy go o:
Odpowiedzi:
A. 12 jednostek w górę wzdłuż osi Oy
B. 12 jednostek w dół wzdłuż osi Oy
C. 12 jednostek w prawo wzdłuż osi Ox
D. 3 jednostki w lewo wzdłuż osi Ox
Zadanie 14. 1 pkt ⋅ Numer: pp-11466 ⋅ Poprawnie: 202/334 [60%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
« Dana jest funkcja kwadratowa
f(x)=-0,5(x+4m)^2+16m , gdzie
m > 0 .
Wówczas:
Odpowiedzi:
A. dla m=-\frac{1}{2} funkcja jest rosnąca
B. wierzchołek paraboli, która jest wykresem tej funkcji należy do prostej y=-4x
C. największą wartością funkcji jest -16m
D. dla pewnego m funkcja ma jedno miejsce zerowe
Zadanie 15. 1 pkt ⋅ Numer: pp-11646 ⋅ Poprawnie: 57/103 [55%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
Mniejsza część zawodników klubu sportowego liczącego
75 osób,
zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z
pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.
Ilu zawodników było chorych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 16. 1 pkt ⋅ Numer: pp-10970 ⋅ Poprawnie: 187/259 [72%]
Rozwiąż
Podpunkt 16.1 (1 pkt)
« W turnieju szachowym, w którym uczestniczy
......... szachistów, każdy uczestnik rozgrywa jedną partię z każdym
innym uczestnikiem. Łącznie rozegrano w tym turnieju
903
partii szachów.
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 17. 1 pkt ⋅ Numer: pp-11066 ⋅ Poprawnie: 218/289 [75%]
Rozwiąż
Podpunkt 17.1 (1 pkt)
« Wierzchołkiem paraboli będącej wykresem funkcji
f(x)=-x^2+bx+c jest punkt o współrzędnych
(5,4) .
Wyznacz współczynniki b i c .
Odpowiedzi:
Zadanie 18. 1 pkt ⋅ Numer: pp-11550 ⋅ Poprawnie: 110/168 [65%]
Rozwiąż
Podpunkt 18.1 (1 pkt)
Oblicz iloczyn wszystkich rozwiązań równania
(x^2-7)(x-3)^2(x^2+x-6)=0 .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 19. 1 pkt ⋅ Numer: pp-10961 ⋅ Poprawnie: 398/724 [54%]
Rozwiąż
Podpunkt 19.1 (1 pkt)
« Suma wszystkich rozwiązań całkowitych nierówności
(5-7x)(x+5)\geqslant 0
jest równa
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 20. 1 pkt ⋅ Numer: pp-10963 ⋅ Poprawnie: 110/233 [47%]
Rozwiąż
Podpunkt 20.1 (0.2 pkt)
Funkcja opisana jest wzorem
f(x)=2x^2+3x+1 .
Zbiorem rozwiązań nierówności
f(x) > f(-x)
jest pewien przedział liczbowy.
Przedział ten ma postać:
Odpowiedzi:
A. (p, q)
B. \langle p,+\infty)
C. (-\infty,p)
D. (-\infty,p\rangle
E. (p,q\rangle
F. (p,+\infty)
Podpunkt 20.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Rozwiąż