Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11596 ⋅ Poprawnie: 97/141 [68%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=ax^2
należy punkt o współrzędnych
\left(4,\frac{16\sqrt{5}}{5}\right) .
Wyznacz współczynnik a .
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-11059 ⋅ Poprawnie: 233/411 [56%]
Rozwiąż
Podpunkt 2.1 (0.5 pkt)
Parabola
y=(4+2x)^2+11
ma wierzchołek w punkcie o współrzędnych
\left(x_w,y_w\right) .
Wyznacz współrzędną x_w .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11430 ⋅ Poprawnie: 983/1242 [79%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wykresem funkcji kwadratowej
f(x)=x^2-2x+2
jest parabola, której wierzchołkiem jest punkt o współrzędnych
\left(x_w, y_w\right) .
Podaj współrzędne wierzchołka paraboli x_w i
y_w .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-11005 ⋅ Poprawnie: 356/560 [63%]
Rozwiąż
Podpunkt 4.1 (0.2 pkt)
« Funkcja
y=-(x-2)^2+1 jest rosnąca w pewnym
przedziale liczbowym.
Przedział ten ma postać:
Odpowiedzi:
A. (p,+\infty)
B. (-\infty,p\rangle
C. (-\infty,p)
D. (p,q)
E. \langle p,q\rangle
F. \langle p,+\infty)
Podpunkt 4.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11008 ⋅ Poprawnie: 400/562 [71%]
Rozwiąż
Podpunkt 5.1 (0.8 pkt)
« Zbiorem wartości funkcji kwadratowej
f(x)=x^2-\sqrt{23} jest pewnien przedział liczbowy.
Podaj ten koniec tego przedziału, który jest liczbą niewymierną.
Odpowiedź:
m\sqrt{n}=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.2 pkt)
Odpowiedzi:
A. \left(p, q\right)
B. \left\langle p,+\infty\right)
C. \left\langle p, q \right\rangle
D. \left(-\infty,p\right\rangle
Zadanie 6. 1 pkt ⋅ Numer: pp-11061 ⋅ Poprawnie: 96/143 [67%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Oblicz odległość wierzchołka paraboli o równaniu
y=x^2-x-\frac{7}{4} od osi
Ox .
Odpowiedź:
d=
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-10997 ⋅ Poprawnie: 196/269 [72%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Wskaż funkcję, która nie przyjmuje wartości ujemnych:
Odpowiedzi:
A. y=-4(x+6)^2
B. y=4(x-6)^2-8
C. y=3+(-2-x)^2
D. y=(x+7)^2-8
Zadanie 8. 1 pkt ⋅ Numer: pp-10982 ⋅ Poprawnie: 56/126 [44%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Wyznacz sumę miejsc zerowych funkcji określonej wzorem
f(x)=\frac{-x^2-4x}{\sqrt{-4-x}}
.
Odpowiedź:
x_1+x_2=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-11010 ⋅ Poprawnie: 114/226 [50%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Funkcja kwadratowa określona jest wzorem
f(x)=-(x+7)(x+9) . Wyznacz maksymalny przedział, w którym funkcja
ta jest rosnąca.
Podaj najmniejszy koniec liczbowy tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-11079 ⋅ Poprawnie: 268/362 [74%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Dana jest funkcja kwadratowa opisana wzorem
h(x)=-3(x-4)(x-11) . Wyznacz maksymalny przedział, w którym funkcja ta
jest malejąca.
Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-11011 ⋅ Poprawnie: 67/91 [73%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
» Dane są funkcje:
f(x)=x^2+\frac{\sqrt{6}}{2} i
g(x)=\frac{\sqrt{6}}{3} .
Wówczas, zachodzi warunek:
Odpowiedzi:
A. f(x)=g(x)
B. f(x) \lessdot g(x)
C. f(x) > g(x)
D. f(x)-g(x)=x^2
Zadanie 12. 1 pkt ⋅ Numer: pp-11046 ⋅ Poprawnie: 282/415 [67%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Wskaż wykres mający
3 punkty wspólne z osiami
układu współrzędnych:
Odpowiedzi:
A. y=2x^2+5x+4
B. y=4x^2+6x+6
C. y=-3(x-2)^2+5
D. y=6x^2-2x+8
Zadanie 13. 1 pkt ⋅ Numer: pp-11050 ⋅ Poprawnie: 82/195 [42%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Wykres funkcji kwadratowej
y=-5(x+3)^2+1 nie ma
punktów wspólnych z prostą o równaniu:
Odpowiedzi:
A. y=-1
B. x=-3
C. y=3
D. x=5
Zadanie 14. 1 pkt ⋅ Numer: pp-10988 ⋅ Poprawnie: 67/90 [74%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
» Wyznacz najmniejszą wartość funkcji kwadratowej określonej wzorem
f(x)=x^2+12x .
Odpowiedź:
f_{min}(x)=
(wpisz liczbę całkowitą)
Zadanie 15. 1 pkt ⋅ Numer: pp-11646 ⋅ Poprawnie: 57/103 [55%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
Mniejsza część zawodników klubu sportowego liczącego
61 osób,
zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z
pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.
Ilu zawodników było chorych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 16. 1 pkt ⋅ Numer: pp-11065 ⋅ Poprawnie: 60/107 [56%]
Rozwiąż
Podpunkt 16.1 (1 pkt)
Funkcja
f określona jest wzorem
f(x)=\frac{x^2+5x-6}{x-5} .
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : f przyjmuje wartości dodatnie
T/N : f ma dwa miejsca zerowe
T/N : f przyjmuje tylko wartości ujemne
Zadanie 17. 1 pkt ⋅ Numer: pp-11066 ⋅ Poprawnie: 218/289 [75%]
Rozwiąż
Podpunkt 17.1 (1 pkt)
« Wierzchołkiem paraboli będącej wykresem funkcji
f(x)=-x^2+bx+c jest punkt o współrzędnych
(3,1) .
Wyznacz współczynniki b i c .
Odpowiedzi:
Zadanie 18. 1 pkt ⋅ Numer: pp-11077 ⋅ Poprawnie: 140/228 [61%]
Rozwiąż
Podpunkt 18.1 (0.2 pkt)
» Funkcja kwadratowa opisana wzorem
g(x)=mx^2-2x-\frac{4}{3} ma dokładnie dwa miejsca zerowe wtedy
i tylko wtedy, gdy parametr
m należy do pewnego przedziału liczbowego.
Przedział ten ma postać:
Odpowiedzi:
A. \langle p, q\rangle
B. (p,q)
C. (-\infty,p\rangle
D. (-\infty,p)
E. \langle p,+\infty)
F. (p,+\infty)
Podpunkt 18.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 19. 1 pkt ⋅ Numer: pp-10962 ⋅ Poprawnie: 383/585 [65%]
Rozwiąż
Podpunkt 19.1 (1 pkt)
Iloczyn
(x-2)(1-x) jest nieujemny, wtedy i tylko wtedy, gdy liczba
x
należy do zbioru
A . Zapisz zbiór
A
w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 20. 1 pkt ⋅ Numer: pp-10957 ⋅ Poprawnie: 641/967 [66%]
Rozwiąż
Podpunkt 20.1 (0.2 pkt)
» Wyznacz dziedzinę funkcji określonej wzorem
f(x)=\frac{x-1}{\sqrt{x^2-4x+3}}
.
Zbiór ten ma postać:
Odpowiedzi:
A. (p,q)
B. (-\infty,p)\cup(q,+\infty)
C. \langle p,q\rangle
D. \mathbb{R}-(p,q)
E. \mathbb{R}-\{p, q\}
F. \mathbb{R}-\{p\}
Podpunkt 20.2 (0.8 pkt)
Zbiór
A jest zbiorem wszystkich liczb nie należących do dziedziny
tej funkcji.
Wyznacz najmniejszą i największą liczbę w zbiorze A .
Odpowiedzi:
Rozwiąż