Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11640 ⋅ Poprawnie: 84/117 [71%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wykres funkcji kwadratowej określonej wzorem y=-\frac{3}{5}(x-2)^2-3 otrzymano przesuwając wykres funkcji y=-\frac{3}{5}x^2 o p jednostek wzdłuż osi Ox i o q jednostek wzdłuż osi Oy, przy czym liczby p i q mogą być ujemne.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11059 ⋅ Poprawnie: 235/414 [56%] Rozwiąż 
Podpunkt 2.1 (0.5 pkt)
 Parabola y=(-8-10x)^2-8 ma wierzchołek w punkcie o współrzędnych \left(x_w,y_w\right).

Wyznacz współrzędną x_w.

Odpowiedź:
x_w=
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (0.5 pkt)
 Wyznacz współrzędną y_w.
Odpowiedź:
y_w=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11430 ⋅ Poprawnie: 985/1244 [79%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wykresem funkcji kwadratowej f(x)=x^2+10x-4 jest parabola, której wierzchołkiem jest punkt o współrzędnych \left(x_w, y_w\right).

Podaj współrzędne wierzchołka paraboli x_w i y_w.

Odpowiedzi:
x_w= (wpisz liczbę całkowitą)
y_w= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11006 ⋅ Poprawnie: 345/643 [53%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Wskaż funkcję, która w przedziale (-\infty,7) jest malejąca:
Odpowiedzi:
A. y=-(x+7)^2+7 B. y=(x-7)^2-5
C. y=(x-5)^2+7 D. y=-(x-7)^2+5
E. y=(x+7)^2-5 F. y=(x+5)^2+7
Zadanie 5.  1 pkt ⋅ Numer: pp-11038 ⋅ Poprawnie: 136/229 [59%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Gdy przesuniemy wykres funkcji f(x)=-2(x+6)^2-\frac{5}{2} o p=3 jednostek w lewo i q=9 jednostek w górę, to otrzymamy wykres funkcji:
Odpowiedzi:
A. y=-2(x+9)^2-\frac{23}{2} B. y=-2(x+3)^2+\frac{13}{2}
C. y=-2(x+15)^2+\frac{1}{2} D. y=-2(x+9)^2+\frac{13}{2}
Zadanie 6.  1 pkt ⋅ Numer: pp-11060 ⋅ Poprawnie: 133/184 [72%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wierzchołek paraboli o równaniu y=(x+8)^2+2m-3 należy do prostej o równaniu y=8.

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-10997 ⋅ Poprawnie: 199/271 [73%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wskaż funkcję, która nie przyjmuje wartości ujemnych:
Odpowiedzi:
A. y=6(x-5)^2-6 B. y=2+(-2-x)^2
C. y=-6(x+2)^2+2 D. y=(x+8)^2-3
Zadanie 8.  1 pkt ⋅ Numer: pp-10982 ⋅ Poprawnie: 57/128 [44%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Wyznacz sumę miejsc zerowych funkcji określonej wzorem f(x)=\frac{-x^2+x+30}{\sqrt{6-x}} .
Odpowiedź:
x_1+x_2= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-10996 ⋅ Poprawnie: 345/564 [61%] Rozwiąż 
Podpunkt 9.1 (0.2 pkt)
 Zbiór tych wszystkich wartości m, dla których funkcja kwadratowa określona wzorem f(x)=x^2+7x+m nie ma ani jednego miejsca zerowego jest przedziałem liczbowym.

Przedział ten ma postać:

Odpowiedzi:
A. (p, q) B. \langle p, +\infty)
C. \langle p, q\rangle D. (-\infty, p\rangle
E. (-\infty, p) F. (p, +\infty)
Podpunkt 9.2 (0.8 pkt)
 Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10987 ⋅ Poprawnie: 50/93 [53%] Rozwiąż 
Podpunkt 10.1 (0.2 pkt)
 Wykres funkcji g(x)=5(m-3)+2x+x^2 nie przecina osi Ox, wtedy i tylko wtedy, gdy m należy do pewnego przedziału.

Przedział ten ma postać:

Odpowiedzi:
A. \langle p,+\infty) B. \langle p,q\rangle
C. (p,q) D. (p,+\infty)
E. (-\infty,p) F. (-\infty,p\rangle
Podpunkt 10.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-11064 ⋅ Poprawnie: 290/480 [60%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
Wykres funkcji kwadratowej określonej wzorem y=ax^2+bx+c pokazano na rysunku:

Podaj współczynnik a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-11467 ⋅ Poprawnie: 90/180 [50%] Rozwiąż 
Podpunkt 12.1 (0.2 pkt)
 Zbiorem wartości funkcji y=-(x-10)(x+10) określonej dla x\in(1,4\rangle jest pewien przedział liczbowy.

Przedział ten ma postać:

Odpowiedzi:
A. (-\infty,p\rangle B. (p,q\rangle
C. \langle p,q) D. (p,q)
E. \langle p,q\rangle F. (p,+\infty)
Podpunkt 12.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-11081 ⋅ Poprawnie: 41/75 [54%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 » Wykres funkcji kwadratowej opisanej wzorem g(x)=-x^2+3x+59 przecięto prostą o równaniu y=5. Niech P i Q będą punktami przecięcia tych wykresów.

Oblicz |PQ|.

Odpowiedź:
|PQ|= (wpisz liczbę całkowitą)
Zadanie 14.  1 pkt ⋅ Numer: pp-11409 ⋅ Poprawnie: 221/338 [65%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej f:

Podaj największą wartość funkcji f w przedziale \langle 1,4\rangle.

Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-11067 ⋅ Poprawnie: 144/278 [51%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 « Rozpatrujemy prostokąty o obwodzie 84. Na takim prostokącie o największym polu powierzchni opisano okrąg.

Oblicz długość promienia tego okręgu.

Odpowiedź:
R= \cdot
(wpisz trzy liczby całkowite)
Zadanie 16.  1 pkt ⋅ Numer: pp-11065 ⋅ Poprawnie: 60/108 [55%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 Funkcja f określona jest wzorem f(x)=\frac{x^2-2x-80}{x+2}.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : f nie ma miejsc zerowych T/N : f przyjmuje wartości dodatnie
T/N : f ma zbiór \mathbb{R} za dziedzinę  
Zadanie 17.  1 pkt ⋅ Numer: pp-10969 ⋅ Poprawnie: 80/139 [57%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 Punkt M=(a,9\cdot a) należy do wykresu funkcji f(x)=(1-a)x-a.

Wyznacz najmniejsze możliwe i największe możliwe a.

Odpowiedzi:
a_{min}= (wpisz liczbę całkowitą)
a_{max}= (wpisz liczbę całkowitą)
Zadanie 18.  1 pkt ⋅ Numer: pp-11550 ⋅ Poprawnie: 112/170 [65%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Oblicz iloczyn wszystkich rozwiązań równania (x^2-7)(x-4)^2(x^2+x-6)=0.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 19.  1 pkt ⋅ Numer: pp-10965 ⋅ Poprawnie: 537/881 [60%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 Wskaż te nierówności, których rozwiązaniem jest zbiór \mathbb{R}:
Odpowiedzi:
T/N : x^2+x+\frac{1}{4} > 0 T/N : x^2+2x-3 \geqslant 0
Zadanie 20.  1 pkt ⋅ Numer: pp-10964 ⋅ Poprawnie: 70/115 [60%] Rozwiąż 
Podpunkt 20.1 (1 pkt)
 Ile liczb całkowitych spełnia nierówność 9\pi\cdot x > 3x^2:
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm