Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11727 ⋅ Poprawnie: 28/45 [62%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=x^2+bx+c
należą punkty o współrzędnych
(-6,9) i
(-1,-1) .
Wyznacz współczynniki b i c .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-10990 ⋅ Poprawnie: 263/409 [64%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Funkcja
f(x)=x^2-14x+49
dla argumentu
\sqrt{7} przyjmuje wartość
\left(......\cdot\sqrt{7}-7\right)^2 .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11012 ⋅ Poprawnie: 639/965 [66%]
Rozwiąż
Podpunkt 3.1 (0.5 pkt)
Postać kanoniczna trójmianu kwadratowego
y=3x^2-12x+\frac{41}{3}
opisana jest wzorem
y=a(x-p)^2+q .
Podaj wartość parametru p .
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Podpunkt 3.2 (0.5 pkt)
Podaj wartość parametru
q .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-11006 ⋅ Poprawnie: 345/643 [53%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Wskaż funkcję, która w przedziale
(-\infty,5) jest malejąca:
Odpowiedzi:
A. y=(x+5)^2-2
B. y=(x+2)^2+5
C. y=-(x+5)^2+5
D. y=(x-5)^2-2
E. y=-(x-5)^2+2
F. y=(x-2)^2+5
Zadanie 5. 1 pkt ⋅ Numer: pp-11038 ⋅ Poprawnie: 136/229 [59%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Gdy przesuniemy wykres funkcji
f(x)=5(x+6)^2+\frac{3}{2} o
p=4 jednostek w lewo i
q=11 jednostek w górę,
to otrzymamy wykres funkcji:
Odpowiedzi:
A. y=5(x+17)^2+\frac{11}{2}
B. y=5(x+10)^2-\frac{19}{2}
C. y=5(x+2)^2+\frac{25}{2}
D. y=5(x+10)^2+\frac{25}{2}
Zadanie 6. 1 pkt ⋅ Numer: pp-11063 ⋅ Poprawnie: 179/291 [61%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Funkcja
f(x)=2x^2+12x+33 nie przyjmuje wartości:
Odpowiedzi:
A. \frac{15\sqrt{7}}{2}
B. \frac{4\sqrt{2}}{3}
C. \frac{15\cdot\pi}{3}
D. \frac{30+\sqrt{2}}{2}
Zadanie 7. 1 pkt ⋅ Numer: pp-11071 ⋅ Poprawnie: 118/136 [86%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
W zbiorze wartości funkcji
f(x)=-2(x-3)^2+2 zawarty
jest przedział:
Odpowiedzi:
A. (-2,3)
B. (-3,3)
C. (2,+\infty)
D. (-\infty,2)
Zadanie 8. 1 pkt ⋅ Numer: pp-11041 ⋅ Poprawnie: 367/696 [52%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Wyznacz największa wartość funkcji określonej wzorem
y=-3(x+6)(x-5) .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 1 pkt ⋅ Numer: pp-11042 ⋅ Poprawnie: 371/569 [65%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Miejscami zerowymi funkcji kwadratowej są liczby
-3
oraz
7 . Do wykresu tej funkcji należy punkt
A=(2,50) . Zapisz wzór tej funkcji w postaci iloczynowej
y=a(x-x_1)(x-x_2) .
Podaj współczynnik a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-11068 ⋅ Poprawnie: 166/295 [56%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Prosta o równaniu
x=m jest osią symetrii wykresu funkcji
kwadratowej określonej wzorem
f(x)=(-1-4x)(x-2) .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-11011 ⋅ Poprawnie: 68/92 [73%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
» Dane są funkcje:
f(x)=x^2+\frac{\sqrt{8}}{2} i
g(x)=\frac{\sqrt{8}}{3} .
Wówczas, zachodzi warunek:
Odpowiedzi:
A. f(x)-g(x)=x^2
B. f(x) > g(x)
C. f(x)=g(x)
D. f(x) \lessdot g(x)
Zadanie 12. 1 pkt ⋅ Numer: pp-11022 ⋅ Poprawnie: 76/227 [33%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
« Rysunek przedstawia wykres funkcji kwadratowej
h(x)=a(x+b)^2+c .
Zatem:
Odpowiedzi:
A. c=-5
B. b=-5
C. c=5
D. b=5
Zadanie 13. 1 pkt ⋅ Numer: pp-11081 ⋅ Poprawnie: 41/75 [54%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
» Wykres funkcji kwadratowej opisanej wzorem
g(x)=-x^2+14x-36
przecięto prostą o równaniu
y=9 . Niech
P i
Q będą punktami
przecięcia tych wykresów.
Oblicz |PQ| .
Odpowiedź:
|PQ|=
(wpisz liczbę całkowitą)
Zadanie 14. 1 pkt ⋅ Numer: pp-11409 ⋅ Poprawnie: 221/338 [65%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej
f :
Podaj największą wartość funkcji f w przedziale
\langle 1,4\rangle .
Odpowiedź:
f_{max}(x)=
(wpisz liczbę całkowitą)
Zadanie 15. 1 pkt ⋅ Numer: pp-11067 ⋅ Poprawnie: 144/278 [51%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
« Rozpatrujemy prostokąty o obwodzie
60 . Na takim
prostokącie o największym polu powierzchni opisano okrąg.
Oblicz długość promienia tego okręgu.
Odpowiedź:
Zadanie 16. 1 pkt ⋅ Numer: pp-10975 ⋅ Poprawnie: 326/498 [65%]
Rozwiąż
Podpunkt 16.1 (1 pkt)
Liczba ujemna spełnia równanie
x^2-2x-32=0 .
Oblicz kwadrat tej liczby.
Odpowiedź:
x^2=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 17. 1 pkt ⋅ Numer: pp-10967 ⋅ Poprawnie: 119/170 [70%]
Rozwiąż
Podpunkt 17.1 (1 pkt)
» Pole powierzchni trójkąta prostokątnego jest równe
96 , a jedna z jego przyprostokątnych jest o
4 dłuższa od drugiej.
Oblicz kwadrat długości przeciwprostokątnej tego trójkąta.
Odpowiedź:
c^2=
(wpisz liczbę całkowitą)
Zadanie 18. 1 pkt ⋅ Numer: pp-10968 ⋅ Poprawnie: 354/571 [61%]
Rozwiąż
Podpunkt 18.1 (1 pkt)
Ile rozwiązań całkowitych ma równanie
\left(x^2+5\right)\left(x^2+3x+8\right)=0 .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 19. 1 pkt ⋅ Numer: pp-10958 ⋅ Poprawnie: 251/429 [58%]
Rozwiąż
Podpunkt 19.1 (1 pkt)
«« Najmniejszą liczbą całkowitą należącą do dziedziny funkcji
f(x)=\sqrt{-x^2-\frac{13}{2}x-\frac{11}{2}}
jest
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 20. 1 pkt ⋅ Numer: pp-10964 ⋅ Poprawnie: 70/115 [60%]
Rozwiąż
Podpunkt 20.1 (1 pkt)
Ile liczb całkowitych spełnia nierówność
5\pi\cdot x > 2x^2 :
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Rozwiąż