Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11726 ⋅ Poprawnie: 19/33 [57%] Rozwiąż 
Podpunkt 1.1 (0.5 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=ax^2+bx+c należą punkty o współrzędnych (-7,8), (-5,3) i (-1,5).

Wyznacz współczynnik b.

Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
 Wyznacz współczynnik c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11059 ⋅ Poprawnie: 234/412 [56%] Rozwiąż 
Podpunkt 2.1 (0.5 pkt)
 Parabola y=(-2+10x)^2+11 ma wierzchołek w punkcie o współrzędnych \left(x_w,y_w\right).

Wyznacz współrzędną x_w.

Odpowiedź:
x_w=
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (0.5 pkt)
 Wyznacz współrzędną y_w.
Odpowiedź:
y_w=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11430 ⋅ Poprawnie: 984/1243 [79%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wykresem funkcji kwadratowej f(x)=x^2-10x-1 jest parabola, której wierzchołkiem jest punkt o współrzędnych \left(x_w, y_w\right).

Podaj współrzędne wierzchołka paraboli x_w i y_w.

Odpowiedzi:
x_w= (wpisz liczbę całkowitą)
y_w= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11006 ⋅ Poprawnie: 344/642 [53%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Wskaż funkcję, która w przedziale (-\infty,-7) jest malejąca:
Odpowiedzi:
A. y=(x+7)^2-2 B. y=(x+2)^2-7
C. y=(x-2)^2-7 D. y=-(x-7)^2-7
E. y=(x-7)^2-2 F. y=-(x+7)^2+2
Zadanie 5.  1 pkt ⋅ Numer: pp-11032 ⋅ Poprawnie: 203/352 [57%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Funkcja kwadratowa g spełnia warunek g(-10)=g(-2). Osią symetrii wykresu tej funkcji jest prosta określona równaniem x+m=0.

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-11044 ⋅ Poprawnie: 141/222 [63%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wykres funkcji kwadratowej g przecina oś Ox w dwóch punktach.

Funkcja g opisana jest wzorem:

Odpowiedzi:
A. g(x)=9(x+9)^2+12 B. g(x)=-4(x+9)^2-10
C. g(x)=10(x-2)^2-\sqrt{14} D. g(x)=3(x+4)^2+13
Zadanie 7.  1 pkt ⋅ Numer: pp-11071 ⋅ Poprawnie: 118/136 [86%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 W zbiorze wartości funkcji f(x)=-(x-1)^2+4 zawarty jest przedział:
Odpowiedzi:
A. (4,+\infty) B. (-1,5)
C. (-4,5) D. (-\infty,4)
Zadanie 8.  1 pkt ⋅ Numer: pp-11041 ⋅ Poprawnie: 365/693 [52%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wyznacz największa wartość funkcji określonej wzorem y=-3(x+2)(x-8).
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-11001 ⋅ Poprawnie: 532/741 [71%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Jeżeli miejscami zerowymi funkcji kwadratowej są liczby -2 oraz 8, a wierzchołek paraboli będącej jej wykresem ma współrzędne (3,-50), to wzór tej funkcji można zapisać w postaci:
Odpowiedzi:
A. f(x)=2(x+2)(x-8) B. f(x)=\frac{3}{2}(x-2)(x-8)
C. f(x)=2(x-2)(x-8) D. f(x)=2(x+2)(x+8)
Zadanie 10.  1 pkt ⋅ Numer: pp-10987 ⋅ Poprawnie: 50/92 [54%] Rozwiąż 
Podpunkt 10.1 (0.2 pkt)
 Wykres funkcji g(x)=5(m-1)+2x+x^2 nie przecina osi Ox, wtedy i tylko wtedy, gdy m należy do pewnego przedziału.

Przedział ten ma postać:

Odpowiedzi:
A. (-\infty,p) B. \langle p,q\rangle
C. (-\infty,p\rangle D. (p,+\infty)
E. \langle p,+\infty) F. (p,q)
Podpunkt 10.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-11024 ⋅ Poprawnie: 121/338 [35%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
Na rysunku pokazano tylko część wykresu funkcji f(x)=ax^2+bx+c, dla której D_f=\mathbb{R}.

Wówczas:

Odpowiedzi:
T/N : funkcja przyjmuje wartości większe od zera dla x \lessdot 1 T/N : funkcja jest rosnąca w przedziale (-2, 4)
T/N : miejscami zerowymi tej funkcji są liczby -2 i 4  
Zadanie 12.  1 pkt ⋅ Numer: pp-11048 ⋅ Poprawnie: 71/143 [49%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 » Prosta o równaniu y+......=0 ma dokładnie jeden punkt wspólny z parabolą określoną równaniem y=2(x+9)^2-2.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-11049 ⋅ Poprawnie: 69/111 [62%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Wykres funkcji kwadratowej f(x)=-4(x+9)^2-2 ma dwa punkty wspólne z prostą:
Odpowiedzi:
A. x=9 B. x=-9
C. y=0 D. y=-5
Zadanie 14.  1 pkt ⋅ Numer: pp-11465 ⋅ Poprawnie: 479/942 [50%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 » Najmniejszą wartość w przedziale \langle 9, 13\rangle funkcja kwadratowa f(x)=-\left(x-10\right)^{2}-5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-11646 ⋅ Poprawnie: 57/103 [55%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Mniejsza część zawodników klubu sportowego liczącego 35 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 16.  1 pkt ⋅ Numer: pp-10972 ⋅ Poprawnie: 711/882 [80%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 Wiadomo, że 49x^2+14x+1=0.

Oblicz x.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 17.  1 pkt ⋅ Numer: pp-10971 ⋅ Poprawnie: 130/195 [66%] Rozwiąż 
Podpunkt 17.1 (0.2 pkt)
 Równanie x^2-(k+5)x+16=0 z niewiadomą x ma dwa różne rozwiązania wtedy i tylko wtedy, gdy parametr k należy do zbioru A. Zapisz zbiór Aw postaci sumy przedziałów.

Zbiór A jest postaci:

Odpowiedzi:
A. (p,q) B. (p,+\infty)
C. (-\infty,p) D. (-\infty,p)\cup(q,+\infty)
E. (-\infty,p)\cap(q,+\infty) F. \langle p,q\rangle
Podpunkt 17.2 (0.8 pkt)
 Liczba p jest najmniejszym, a liczba q największym z końców liczbowych tych przedziałów.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 18.  1 pkt ⋅ Numer: pp-11077 ⋅ Poprawnie: 140/228 [61%] Rozwiąż 
Podpunkt 18.1 (0.2 pkt)
 » Funkcja kwadratowa opisana wzorem g(x)=mx^2-2x-\frac{7}{3} ma dokładnie dwa miejsca zerowe wtedy i tylko wtedy, gdy parametr m należy do pewnego przedziału liczbowego.

Przedział ten ma postać:

Odpowiedzi:
A. (p,q) B. \langle p, q\rangle
C. \langle p,+\infty) D. (-\infty,p)
E. (-\infty,p\rangle F. (p,+\infty)
Podpunkt 18.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 19.  1 pkt ⋅ Numer: pp-10965 ⋅ Poprawnie: 537/880 [61%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 Wskaż te nierówności, których rozwiązaniem jest zbiór \mathbb{R}:
Odpowiedzi:
T/N : 2x^2+5x+3 \geqslant 0 T/N : 2x^2+x-2 \geqslant 0
Zadanie 20.  1 pkt ⋅ Numer: pp-10957 ⋅ Poprawnie: 641/967 [66%] Rozwiąż 
Podpunkt 20.1 (0.2 pkt)
 » Wyznacz dziedzinę funkcji określonej wzorem f(x)=\frac{x-1}{\sqrt{x^2+11x+18}} .

Zbiór ten ma postać:

Odpowiedzi:
A. \mathbb{R}-\{p, q\} B. (-\infty,p)\cup(q,+\infty)
C. \mathbb{R}-\{p\} D. \mathbb{R}-(p,q)
E. \langle p,q\rangle F. (p,q)
Podpunkt 20.2 (0.8 pkt)
 Zbiór A jest zbiorem wszystkich liczb nie należących do dziedziny tej funkcji.

Wyznacz najmniejszą i największą liczbę w zbiorze A.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm