Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11726 ⋅ Poprawnie: 19/33 [57%]
Rozwiąż
Podpunkt 1.1 (0.5 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=ax^2+bx+c
należą punkty o współrzędnych
(-5,14) ,
(-3,9) i
(1,11) .
Wyznacz współczynnik b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-10993 ⋅ Poprawnie: 570/824 [69%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Funkcja kwadratowa określona jest wzorem
f(x)=x^2-8x+c .
Jeżeli
f(4)=-24 , to
f(1)=......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-10983 ⋅ Poprawnie: 303/535 [56%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wierzchołek paraboli
y=x^2-8x leży na prostej
o równaniu:
Odpowiedzi:
A. y=-8x
B. y=-2x
C. y=8x
D. y=4x
E. y=2x
F. y=-4x
Zadanie 4. 1 pkt ⋅ Numer: pp-11005 ⋅ Poprawnie: 356/560 [63%]
Rozwiąż
Podpunkt 4.1 (0.2 pkt)
« Funkcja
y=-(x+4)^2+6 jest rosnąca w pewnym
przedziale liczbowym.
Przedział ten ma postać:
Odpowiedzi:
A. (p,q)
B. (-\infty,p\rangle
C. (-\infty,p)
D. \langle p,q\rangle
E. \langle p,+\infty)
F. (p,+\infty)
Podpunkt 4.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11037 ⋅ Poprawnie: 209/334 [62%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Gdy przesuniemy wykres funkcji
f(x)=x^2+\frac{1}{2} o
p=3 jednostek w lewo i
q=11 jednostek w dół,
to otrzymamy wykres funkcji:
Odpowiedzi:
A. y=(x-3)^2-\frac{21}{2}
B. y=(x+11)^2+\frac{7}{2}
C. y=(x-3)^2+\frac{23}{2}
D. y=(x+3)^2-\frac{21}{2}
Zadanie 6. 1 pkt ⋅ Numer: pp-11040 ⋅ Poprawnie: 241/404 [59%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Punkt
P=(-6,9) należy do wykresu funkcji
g(x)=x^2-mx+1 .
Wyznacz wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-11071 ⋅ Poprawnie: 117/135 [86%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
W zbiorze wartości funkcji
f(x)=-(x-4)^2-1 zawarty
jest przedział:
Odpowiedzi:
A. (-1,+\infty)
B. (-1,0)
C. (-\infty,-1)
D. (-2,0)
Zadanie 8. 1 pkt ⋅ Numer: pp-10980 ⋅ Poprawnie: 201/342 [58%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Liczby
4 i
\frac{1}{2} są miejscami
zerowymi funkcji określonej wzorem
g(x)=ax^2+9x-4 .
Wyznacz wartość współczynnika a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-11042 ⋅ Poprawnie: 369/567 [65%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Miejscami zerowymi funkcji kwadratowej są liczby
-2
oraz
4 . Do wykresu tej funkcji należy punkt
A=(-3,-14) . Zapisz wzór tej funkcji w postaci iloczynowej
y=a(x-x_1)(x-x_2) .
Podaj współczynnik a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-11075 ⋅ Poprawnie: 96/167 [57%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Dana jest funkcja kwadratowa określona wzorem
f(x)=(1-x)(3x+3) .
Wierzchołek wykresu tej funkcji należy do prostej określonej równaniem
x=m .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-11017 ⋅ Poprawnie: 336/557 [60%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Dana jest funkcja określona wzorem
g(x)=ax^2+bx+c . Postać iloczynowa
funkcji
g opisana jest wzorem
g(x)=a(x+3)(x-1) .
Wyznacz współczynnik c .
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 12. 1 pkt ⋅ Numer: pp-11467 ⋅ Poprawnie: 90/179 [50%]
Rozwiąż
Podpunkt 12.1 (0.2 pkt)
Zbiorem wartości funkcji
y=-(x-4)(x+4)
określonej dla
x\in(3,7\rangle jest pewien przedział liczbowy.
Przedział ten ma postać:
Odpowiedzi:
A. (-\infty,p\rangle
B. \langle p,q)
C. (p,+\infty)
D. (p,q\rangle
E. \langle p,q\rangle
F. (p,q)
Podpunkt 12.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 13. 1 pkt ⋅ Numer: pp-11035 ⋅ Poprawnie: 23/28 [82%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Daja jest funkcja kwadratowa g określona jest wzorem
g(x)=x^2+3 . Jej wykres ma dokładnie jeden punkt
wspólny z prostą y=-9 , gdy przesuniemy go o:
Odpowiedzi:
A. 12 jednostek w dół wzdłuż osi Oy
B. 12 jednostek w prawo wzdłuż osi Ox
C. 3 jednostki w lewo wzdłuż osi Ox
D. 12 jednostek w górę wzdłuż osi Oy
Zadanie 14. 1 pkt ⋅ Numer: pp-11465 ⋅ Poprawnie: 479/942 [50%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
» Najmniejszą wartość w przedziale
\langle 5, 9\rangle funkcja kwadratowa
f(x)=-\left(x-6\right)^{2}-5
przyjmuje dla argumentu
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 15. 1 pkt ⋅ Numer: pp-11646 ⋅ Poprawnie: 57/103 [55%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
Mniejsza część zawodników klubu sportowego liczącego
45 osób,
zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z
pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.
Ilu zawodników było chorych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 16. 1 pkt ⋅ Numer: pp-11058 ⋅ Poprawnie: 92/184 [50%]
Rozwiąż
Podpunkt 16.1 (1 pkt)
« Wierzchołek paraboli będącej wykresem funkcji kwadratowej określonej wzorem
y=(2x-5)^2+\frac{25}{2} należy do prostej o równaniu
y=......\cdot x .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 17. 1 pkt ⋅ Numer: pp-11066 ⋅ Poprawnie: 218/289 [75%]
Rozwiąż
Podpunkt 17.1 (1 pkt)
« Wierzchołkiem paraboli będącej wykresem funkcji
f(x)=-x^2+bx+c jest punkt o współrzędnych
(-5,7) .
Wyznacz współczynniki b i c .
Odpowiedzi:
Zadanie 18. 1 pkt ⋅ Numer: pp-11550 ⋅ Poprawnie: 110/167 [65%]
Rozwiąż
Podpunkt 18.1 (1 pkt)
Oblicz iloczyn wszystkich rozwiązań równania
(x^2-5)(x-4)^2(x^2-x-6)=0 .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 19. 1 pkt ⋅ Numer: pp-10962 ⋅ Poprawnie: 383/585 [65%]
Rozwiąż
Podpunkt 19.1 (1 pkt)
Iloczyn
(x+5)(7-x) jest nieujemny, wtedy i tylko wtedy, gdy liczba
x
należy do zbioru
A . Zapisz zbiór
A
w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 20. 1 pkt ⋅ Numer: pp-10959 ⋅ Poprawnie: 224/427 [52%]
Rozwiąż
Podpunkt 20.1 (0.2 pkt)
» Wyznacz zbiór wszystkich rozwiązań nierówności
-1 \lessdot x^2-x \lessdot 0
.
Zbiór ten ma postać:
Odpowiedzi:
A. \langle p,q\rangle
B. (-\infty,p)\cup\langle q,+\infty)
C. (p,+\infty)
D. (-\infty,p\rangle
E. (p,q)
F. (-\infty,p)
Podpunkt 20.2 (0.8 pkt)
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż