Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11595 ⋅ Poprawnie: 119/162 [73%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=ax^2
należy punkt o współrzędnych
(2\sqrt{2},24\sqrt{5}) .
Wyznacz współczynnik a .
Odpowiedź:
a=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11059 ⋅ Poprawnie: 235/414 [56%]
Rozwiąż
Podpunkt 2.1 (0.5 pkt)
Parabola
y=(4+9x)^2+6
ma wierzchołek w punkcie o współrzędnych
\left(x_w,y_w\right) .
Wyznacz współrzędną x_w .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11012 ⋅ Poprawnie: 641/966 [66%]
Rozwiąż
Podpunkt 3.1 (0.5 pkt)
Postać kanoniczna trójmianu kwadratowego
y=-3x^2-18x-\frac{77}{3}
opisana jest wzorem
y=a(x-p)^2+q .
Podaj wartość parametru p .
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Podpunkt 3.2 (0.5 pkt)
Podaj wartość parametru
q .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-11052 ⋅ Poprawnie: 815/1146 [71%]
Rozwiąż
Podpunkt 4.1 (0.8 pkt)
Zbiorem wartości funkcji kwadratowej
y=-x^2-10 x-23 jest pewien przedział liczbowy.
Podaj ten koniec tego przedziału, który jest liczbą całkowitą.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 4.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -\frac{1}{2}
B. \frac{1}{2}
C. -\frac{3}{4}
D. -\infty
E. \frac{3}{4}
F. +\infty
Zadanie 5. 1 pkt ⋅ Numer: pp-11037 ⋅ Poprawnie: 210/336 [62%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Gdy przesuniemy wykres funkcji
f(x)=x^2+\frac{5}{2} o
p=2 jednostek w lewo i
q=8 jednostek w dół,
to otrzymamy wykres funkcji:
Odpowiedzi:
A. y=(x+8)^2+\frac{9}{2}
B. y=(x-2)^2-\frac{11}{2}
C. y=(x-2)^2+\frac{21}{2}
D. y=(x+2)^2-\frac{11}{2}
Zadanie 6. 1 pkt ⋅ Numer: pp-11044 ⋅ Poprawnie: 142/223 [63%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Wykres funkcji kwadratowej
g przecina oś
Ox w dwóch punktach.
Funkcja g opisana jest wzorem:
Odpowiedzi:
A. g(x)=-2(x-4)^2-8
B. g(x)=-9(x+4)^2+\sqrt{11}
C. g(x)=7(x+1)^2+12
D. g(x)=2(x-2)^2+2
Zadanie 7. 1 pkt ⋅ Numer: pp-11505 ⋅ Poprawnie: 441/844 [52%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
(1 pkt)
Zbiorem wartości funkcji określonej wzorem
f(x)=-5(x+1981)^2+m-40
jest przedział
(-\infty, 2021\rangle .
Wówczas liczba m jest równa:
Odpowiedzi:
A. 1981
B. 2141
C. 2101
D. 2061
Zadanie 8. 1 pkt ⋅ Numer: pp-10986 ⋅ Poprawnie: 417/622 [67%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Wyznacz przedział o maksymalnej długości, w którym funkcja określona wzorem
h(x)=\frac{1}{2}(x+7)(x-3) jest rosnąca.
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-11010 ⋅ Poprawnie: 117/231 [50%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Funkcja kwadratowa określona jest wzorem
f(x)=-(x-7)(x+3) . Wyznacz maksymalny przedział, w którym funkcja
ta jest rosnąca.
Podaj najmniejszy koniec liczbowy tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-11079 ⋅ Poprawnie: 269/363 [74%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Dana jest funkcja kwadratowa opisana wzorem
h(x)=-2(x+6)(x-9) . Wyznacz maksymalny przedział, w którym funkcja ta
jest malejąca.
Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-11011 ⋅ Poprawnie: 68/92 [73%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
» Dane są funkcje:
f(x)=x^2+\frac{\sqrt{3}}{2} i
g(x)=\frac{\sqrt{3}}{3} .
Wówczas, zachodzi warunek:
Odpowiedzi:
A. f(x) \lessdot g(x)
B. f(x)=g(x)
C. f(x) > g(x)
D. f(x)-g(x)=x^2
Zadanie 12. 1 pkt ⋅ Numer: pp-11026 ⋅ Poprawnie: 241/318 [75%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Dana jest funkcja
g:\mathbb{R}\to\mathbb{R} określona wzorem
g(x)=x^2-3+2x .
Wykres funkcji g przedstawia rysunek:
Odpowiedzi:
Zadanie 13. 1 pkt ⋅ Numer: pp-11035 ⋅ Poprawnie: 24/29 [82%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Daja jest funkcja kwadratowa g określona jest wzorem
g(x)=x^2+3 . Jej wykres ma dokładnie jeden punkt
wspólny z prostą y=-9 , gdy przesuniemy go o:
Odpowiedzi:
A. 3 jednostki w lewo wzdłuż osi Ox
B. 12 jednostek w górę wzdłuż osi Oy
C. 12 jednostek w dół wzdłuż osi Oy
D. 12 jednostek w prawo wzdłuż osi Ox
Zadanie 14. 1 pkt ⋅ Numer: pp-11465 ⋅ Poprawnie: 481/946 [50%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
» Najmniejszą wartość w przedziale
\langle 8, 12\rangle funkcja kwadratowa
f(x)=-\left(x-9\right)^{2}-5
przyjmuje dla argumentu
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 15. 1 pkt ⋅ Numer: pp-11645 ⋅ Poprawnie: 40/72 [55%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
« Rzucono pionowo do góry kamień z prędkością początkową
10\ m/s .
Wysokość
s\ [m] , jaką osiągnie ten kamień po
t
sekundach czasu opisuje wzór
s(t)=6t-t^2 .
Podaj maksymalną wysokość jaką osiągnie ten kamień.
Odpowiedź:
s_{max}(t)=
(wpisz liczbę całkowitą)
Zadanie 16. 1 pkt ⋅ Numer: pp-10970 ⋅ Poprawnie: 190/262 [72%]
Rozwiąż
Podpunkt 16.1 (1 pkt)
« W turnieju szachowym, w którym uczestniczy
......... szachistów, każdy uczestnik rozgrywa jedną partię z każdym
innym uczestnikiem. Łącznie rozegrano w tym turnieju
276
partii szachów.
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 17. 1 pkt ⋅ Numer: pp-10967 ⋅ Poprawnie: 119/170 [70%]
Rozwiąż
Podpunkt 17.1 (1 pkt)
» Pole powierzchni trójkąta prostokątnego jest równe
210 , a jedna z jego przyprostokątnych jest o
1 dłuższa od drugiej.
Oblicz kwadrat długości przeciwprostokątnej tego trójkąta.
Odpowiedź:
c^2=
(wpisz liczbę całkowitą)
Zadanie 18. 1 pkt ⋅ Numer: pp-10974 ⋅ Poprawnie: 178/276 [64%]
Rozwiąż
Podpunkt 18.1 (1 pkt)
Ile rozwiązań ma równanie
(x^2+3x-10)\sqrt{16-x^2}=0 ?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 19. 1 pkt ⋅ Numer: pp-10958 ⋅ Poprawnie: 251/430 [58%]
Rozwiąż
Podpunkt 19.1 (1 pkt)
«« Najmniejszą liczbą całkowitą należącą do dziedziny funkcji
f(x)=\sqrt{-x^2-\frac{7}{2}x+30}
jest
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 20. 1 pkt ⋅ Numer: pp-10963 ⋅ Poprawnie: 111/235 [47%]
Rozwiąż
Podpunkt 20.1 (0.2 pkt)
Funkcja opisana jest wzorem
f(x)=-3x^2+2x+2 .
Zbiorem rozwiązań nierówności
f(x) > f(-x)
jest pewien przedział liczbowy.
Przedział ten ma postać:
Odpowiedzi:
A. (p,+\infty)
B. (-\infty,p)
C. (p, q)
D. (-\infty,p\rangle
E. \langle p,+\infty)
F. (p,q\rangle
Podpunkt 20.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Rozwiąż