Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11643 ⋅ Poprawnie: 93/191 [48%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=x^2+bx+c należą punkty o współrzędnych (5,14) i (-2,-7).

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10993 ⋅ Poprawnie: 570/824 [69%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=x^2-8x+c. Jeżeli f(2)=-4, to f(1)=..........

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11002 ⋅ Poprawnie: 730/998 [73%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Funkcja kwadratowa f(x)=x^2+bx+c jest malejąca dla x\in(-\infty,-5\rangle, a zbiorem jej wartości jest przedział \langle -6,+\infty). Postać kanoniczna tej funkcji opisana jest wzorem y=(x-p)^2+q.

Podaj wartości parametrów p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11052 ⋅ Poprawnie: 812/1143 [71%] Rozwiąż 
Podpunkt 4.1 (0.8 pkt)
 Zbiorem wartości funkcji kwadratowej y=-x^2+6 x-5 jest pewien przedział liczbowy.

Podaj ten koniec tego przedziału, który jest liczbą całkowitą.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 4.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. \frac{1}{2} B. +\infty
C. -\frac{3}{4} D. -\infty
E. \frac{3}{4} F. -\frac{1}{2}
Zadanie 5.  1 pkt ⋅ Numer: pp-11008 ⋅ Poprawnie: 400/562 [71%] Rozwiąż 
Podpunkt 5.1 (0.8 pkt)
 « Zbiorem wartości funkcji kwadratowej f(x)=x^2-\sqrt{19} jest pewnien przedział liczbowy.

Podaj ten koniec tego przedziału, który jest liczbą niewymierną.

Odpowiedź:
m\sqrt{n}= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.2 pkt)
 Przedział ten ma postać:
Odpowiedzi:
A. \left(-\infty,p\right\rangle B. \left(p, q\right)
C. \left\langle p,+\infty\right) D. \left\langle p, q \right\rangle
Zadanie 6.  1 pkt ⋅ Numer: pp-11060 ⋅ Poprawnie: 133/184 [72%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wierzchołek paraboli o równaniu y=(x+10)^2+2m+9 należy do prostej o równaniu y=5.

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11073 ⋅ Poprawnie: 183/338 [54%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Dana jest funkcja kwadratowa f(x)=x^2+bx+c, przy czym f(4)=f(5)=4.

Wyznacz współczynnik b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-10986 ⋅ Poprawnie: 417/622 [67%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wyznacz przedział o maksymalnej długości, w którym funkcja określona wzorem h(x)=\frac{1}{2}(x-1)(x-7) jest rosnąca.

Podaj mniejszy z końców liczbowych tego przedziału.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-10999 ⋅ Poprawnie: 101/166 [60%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Zbiorem wartości funkcji kwadratowej f określonej wzorem f(x)=m(x+8)(x+6) jest przedział liczbowy \langle -4,+\infty), a rozwiązaniem nierówności f(x) \lessdot 0 przedział (-8,-6).

Wyznacz współczynnik m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11075 ⋅ Poprawnie: 96/167 [57%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Dana jest funkcja kwadratowa określona wzorem f(x)=(4-x)(3x+6). Wierzchołek wykresu tej funkcji należy do prostej określonej równaniem x=m.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-11011 ⋅ Poprawnie: 67/91 [73%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 » Dane są funkcje: f(x)=x^2+\frac{\sqrt{13}}{2} i g(x)=\frac{\sqrt{13}}{3}.

Wówczas, zachodzi warunek:

Odpowiedzi:
A. f(x)-g(x)=x^2 B. f(x) > g(x)
C. f(x)=g(x) D. f(x) \lessdot g(x)
Zadanie 12.  1 pkt ⋅ Numer: pp-11469 ⋅ Poprawnie: 89/138 [64%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « Układ równań \begin{cases} y=m \\ y=3x^2+6x-10 \end{cases} ma dokładnie jedno rozwiązanie.

Wyznacz wartość parametru m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-11035 ⋅ Poprawnie: 23/28 [82%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
Daja jest funkcja kwadratowa g określona jest wzorem g(x)=x^2+3. Jej wykres ma dokładnie jeden punkt wspólny z prostą y=-9, gdy przesuniemy go o:
Odpowiedzi:
A. 12 jednostek w górę wzdłuż osi Oy B. 12 jednostek w dół wzdłuż osi Oy
C. 12 jednostek w prawo wzdłuż osi Ox D. 3 jednostki w lewo wzdłuż osi Ox
Zadanie 14.  1 pkt ⋅ Numer: pp-11466 ⋅ Poprawnie: 202/334 [60%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 « Dana jest funkcja kwadratowa f(x)=-0,5(x+4m)^2+16m, gdzie m > 0.

Wówczas:

Odpowiedzi:
A. dla m=-\frac{1}{2} funkcja jest rosnąca B. wierzchołek paraboli, która jest wykresem tej funkcji należy do prostej y=-4x
C. największą wartością funkcji jest -16m D. dla pewnego m funkcja ma jedno miejsce zerowe
Zadanie 15.  1 pkt ⋅ Numer: pp-11646 ⋅ Poprawnie: 57/103 [55%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Mniejsza część zawodników klubu sportowego liczącego 75 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 16.  1 pkt ⋅ Numer: pp-10970 ⋅ Poprawnie: 187/259 [72%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 « W turnieju szachowym, w którym uczestniczy ......... szachistów, każdy uczestnik rozgrywa jedną partię z każdym innym uczestnikiem. Łącznie rozegrano w tym turnieju 903 partii szachów.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 17.  1 pkt ⋅ Numer: pp-11066 ⋅ Poprawnie: 218/289 [75%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 « Wierzchołkiem paraboli będącej wykresem funkcji f(x)=-x^2+bx+c jest punkt o współrzędnych (5,4).

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 18.  1 pkt ⋅ Numer: pp-11550 ⋅ Poprawnie: 110/168 [65%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Oblicz iloczyn wszystkich rozwiązań równania (x^2-7)(x-3)^2(x^2+x-6)=0.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 19.  1 pkt ⋅ Numer: pp-10961 ⋅ Poprawnie: 398/724 [54%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 « Suma wszystkich rozwiązań całkowitych nierówności (5-7x)(x+5)\geqslant 0 jest równa ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 20.  1 pkt ⋅ Numer: pp-10963 ⋅ Poprawnie: 110/233 [47%] Rozwiąż 
Podpunkt 20.1 (0.2 pkt)
 Funkcja opisana jest wzorem f(x)=2x^2+3x+1. Zbiorem rozwiązań nierówności f(x) > f(-x) jest pewien przedział liczbowy.

Przedział ten ma postać:

Odpowiedzi:
A. (p, q) B. \langle p,+\infty)
C. (-\infty,p) D. (-\infty,p\rangle
E. (p,q\rangle F. (p,+\infty)
Podpunkt 20.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm