Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11596 ⋅ Poprawnie: 97/141 [68%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=ax^2 należy punkt o współrzędnych \left(2,\frac{4\sqrt{3}}{5}\right).

Wyznacz współczynnik a.

Odpowiedź:
a= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11059 ⋅ Poprawnie: 234/412 [56%] Rozwiąż 
Podpunkt 2.1 (0.5 pkt)
 Parabola y=(-7+5x)^2+2 ma wierzchołek w punkcie o współrzędnych \left(x_w,y_w\right).

Wyznacz współrzędną x_w.

Odpowiedź:
x_w=
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (0.5 pkt)
 Wyznacz współrzędną y_w.
Odpowiedź:
y_w=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11430 ⋅ Poprawnie: 984/1243 [79%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wykresem funkcji kwadratowej f(x)=x^2-4x-4 jest parabola, której wierzchołkiem jest punkt o współrzędnych \left(x_w, y_w\right).

Podaj współrzędne wierzchołka paraboli x_w i y_w.

Odpowiedzi:
x_w= (wpisz liczbę całkowitą)
y_w= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11003 ⋅ Poprawnie: 533/897 [59%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Wskaż funkcję kwadratową rosnąca w przedziale (-\infty,-3\rangle:
Odpowiedzi:
A. y=(x+3)^2-5 B. y=(x-3)^2-5
C. y=-(x-5)^2+3 D. y=-(x-5)^2-3
E. y=-(x+3)^2-5 F. y=-(x+5)^2+\frac{5}{2}
Zadanie 5.  1 pkt ⋅ Numer: pp-11008 ⋅ Poprawnie: 400/562 [71%] Rozwiąż 
Podpunkt 5.1 (0.8 pkt)
 « Zbiorem wartości funkcji kwadratowej f(x)=-x^2-\sqrt{7} jest pewnien przedział liczbowy.

Podaj ten koniec tego przedziału, który jest liczbą niewymierną.

Odpowiedź:
m\sqrt{n}= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.2 pkt)
 Przedział ten ma postać:
Odpowiedzi:
A. \left\langle p, q \right\rangle B. \left(p, q\right)
C. \left(-\infty,p\right\rangle D. \left\langle p,+\infty\right)
Zadanie 6.  1 pkt ⋅ Numer: pp-11061 ⋅ Poprawnie: 96/143 [67%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Oblicz odległość wierzchołka paraboli o równaniu y=x^2+3x-\frac{3}{4} od osi Ox.
Odpowiedź:
d= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-11083 ⋅ Poprawnie: 83/187 [44%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Dla x=-2 funkcja f(x)=x^2+bx+c przyjmuje wartość najmniejszą równą -4.

Wyznacz wartość współczynnika c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11013 ⋅ Poprawnie: 1052/1528 [68%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Trójmian kwadratowy y=-2x^2-6x+8 można zapisać w postaci y=a(x+4)(x-m).

Wyznacz wartości parametrów a i m.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
m= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11001 ⋅ Poprawnie: 532/741 [71%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Jeżeli miejscami zerowymi funkcji kwadratowej są liczby 1 oraz 3, a wierzchołek paraboli będącej jej wykresem ma współrzędne (2,-2), to wzór tej funkcji można zapisać w postaci:
Odpowiedzi:
A. f(x)=2(x-1)(x+3) B. f(x)=2(x+1)(x-3)
C. f(x)=\frac{3}{2}(x+1)(x-3) D. f(x)=2(x-1)(x-3)
Zadanie 10.  1 pkt ⋅ Numer: pp-11079 ⋅ Poprawnie: 268/362 [74%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Dana jest funkcja kwadratowa opisana wzorem h(x)=-3(x+7)(x-2). Wyznacz maksymalny przedział, w którym funkcja ta jest malejąca.

Podaj najmniejszy z końców liczbowych tego przedziału.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-11018 ⋅ Poprawnie: 89/155 [57%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
» Dana są funkcje h(x)=2-x oraz g(x)=x+4.

Wykres funkcji g(x)\cdot h(x) przedstawia rysunek:

Odpowiedzi:
A. D B. A
C. C D. B
Zadanie 12.  1 pkt ⋅ Numer: pp-11469 ⋅ Poprawnie: 89/138 [64%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « Układ równań \begin{cases} y=m \\ y=2x^2-4x-10 \end{cases} ma dokładnie jedno rozwiązanie.

Wyznacz wartość parametru m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-11081 ⋅ Poprawnie: 40/74 [54%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 » Wykres funkcji kwadratowej opisanej wzorem g(x)=-x^2-4x+14 przecięto prostą o równaniu y=9. Niech P i Q będą punktami przecięcia tych wykresów.

Oblicz |PQ|.

Odpowiedź:
|PQ|= (wpisz liczbę całkowitą)
Zadanie 14.  1 pkt ⋅ Numer: pp-11466 ⋅ Poprawnie: 202/334 [60%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 « Dana jest funkcja kwadratowa f(x)=-0,5(x+3m)^2+6m, gdzie m > 0.

Wówczas:

Odpowiedzi:
A. dla pewnego m funkcja ma jedno miejsce zerowe B. dla m=-\frac{1}{2} funkcja jest rosnąca
C. wierzchołek paraboli, która jest wykresem tej funkcji należy do prostej y=-2x D. największą wartością funkcji jest -6m
Zadanie 15.  1 pkt ⋅ Numer: pp-11080 ⋅ Poprawnie: 264/397 [66%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 « Suma dwóch liczb jest równa 12\sqrt{2}, a ich iloczyn ma największą możliwą wartość.

Oblicz mniejszą z tych liczb.

Odpowiedź:
min= \cdot
(wpisz dwie liczby całkowite)
Zadanie 16.  1 pkt ⋅ Numer: pp-10975 ⋅ Poprawnie: 325/496 [65%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 Liczba ujemna spełnia równanie x^2-2x-18=0.

Oblicz kwadrat tej liczby.

Odpowiedź:
x^2= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 17.  1 pkt ⋅ Numer: pp-10971 ⋅ Poprawnie: 130/195 [66%] Rozwiąż 
Podpunkt 17.1 (0.2 pkt)
 Równanie x^2-(k+2)x+9=0 z niewiadomą x ma dwa różne rozwiązania wtedy i tylko wtedy, gdy parametr k należy do zbioru A. Zapisz zbiór Aw postaci sumy przedziałów.

Zbiór A jest postaci:

Odpowiedzi:
A. \langle p,q\rangle B. (-\infty,p)\cup(q,+\infty)
C. (-\infty,p)\cap(q,+\infty) D. (-\infty,p)
E. (p,q) F. (p,+\infty)
Podpunkt 17.2 (0.8 pkt)
 Liczba p jest najmniejszym, a liczba q największym z końców liczbowych tych przedziałów.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 18.  1 pkt ⋅ Numer: pp-10973 ⋅ Poprawnie: 61/114 [53%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 » Dana jest funkcja f(x)= \begin{cases} -\frac{1}{3}x-1,\qquad x\in(-\infty,-15) \\ x^2-220,\qquad x\in\langle -15,+\infty) \end{cases} . Liczba rozwiązań równania f(x)=4 jest równa:
Odpowiedzi:
A. 2 B. 3
C. 1 D. 0
Zadanie 19.  1 pkt ⋅ Numer: pp-10958 ⋅ Poprawnie: 250/427 [58%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 «« Najmniejszą liczbą całkowitą należącą do dziedziny funkcji f(x)=\sqrt{-x^2-\frac{7}{2}x+11} jest ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 20.  1 pkt ⋅ Numer: pp-10957 ⋅ Poprawnie: 641/967 [66%] Rozwiąż 
Podpunkt 20.1 (0.2 pkt)
 » Wyznacz dziedzinę funkcji określonej wzorem f(x)=\frac{x-1}{\sqrt{x^2+10x+24}} .

Zbiór ten ma postać:

Odpowiedzi:
A. \mathbb{R}-(p,q) B. (-\infty,p)\cup(q,+\infty)
C. \mathbb{R}-\{p\} D. \langle p,q\rangle
E. \mathbb{R}-\{p, q\} F. (p,q)
Podpunkt 20.2 (0.8 pkt)
 Zbiór A jest zbiorem wszystkich liczb nie należących do dziedziny tej funkcji.

Wyznacz najmniejszą i największą liczbę w zbiorze A.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm