Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11727 ⋅ Poprawnie: 28/45 [62%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=x^2+bx+c
należą punkty o współrzędnych
(0,5) i
(5,-5) .
Wyznacz współczynniki b i c .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-10989 ⋅ Poprawnie: 706/1015 [69%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Największą wartością funkcji kwadratowej
f(x)=-4(x+4)^2-1 jest
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11002 ⋅ Poprawnie: 730/998 [73%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Funkcja kwadratowa
f(x)=x^2+bx+c jest malejąca dla
x\in(-\infty,5\rangle , a zbiorem jej wartości
jest przedział
\langle 1,+\infty) .
Postać kanoniczna tej funkcji opisana jest wzorem
y=(x-p)^2+q .
Podaj wartości parametrów p i q .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-11030 ⋅ Poprawnie: 900/1173 [76%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wskaż funkcję kwadratową, której zbiorem wartości jest przedział
\langle 1,+\infty) :
Odpowiedzi:
A. y=-(x-1)^2+1
B. y=(x-6)^2-1
C. y=(x+2)^2-1
D. y=-2(x+5)^2-1
E. y=-(x+1)^2+1
F. y=(x+3)^2+1
Zadanie 5. 1 pkt ⋅ Numer: pp-11028 ⋅ Poprawnie: 608/794 [76%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Osią symetrii paraboli o równaniu
y=19x^2+551x+589 jest prosta określona:
równaniem
x=......... .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 1 pkt ⋅ Numer: pp-11061 ⋅ Poprawnie: 99/146 [67%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Oblicz odległość wierzchołka paraboli o równaniu
y=x^2-7x+\frac{53}{4} od osi
Ox .
Odpowiedź:
d=
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-11071 ⋅ Poprawnie: 118/136 [86%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
W zbiorze wartości funkcji
f(x)=-(x+4)^2+3 zawarty
jest przedział:
Odpowiedzi:
A. (-3,4)
B. (-4,4)
C. (3,+\infty)
D. (-\infty,3)
Zadanie 8. 1 pkt ⋅ Numer: pp-10980 ⋅ Poprawnie: 202/343 [58%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Liczby
1 i
-\frac{1}{2} są miejscami
zerowymi funkcji określonej wzorem
g(x)=ax^2-\frac{3}{2}x-\frac{3}{2} .
Wyznacz wartość współczynnika a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-11010 ⋅ Poprawnie: 117/231 [50%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Funkcja kwadratowa określona jest wzorem
f(x)=-(x-6)(x-2) . Wyznacz maksymalny przedział, w którym funkcja
ta jest rosnąca.
Podaj najmniejszy koniec liczbowy tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-11068 ⋅ Poprawnie: 166/295 [56%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Prosta o równaniu
x=m jest osią symetrii wykresu funkcji
kwadratowej określonej wzorem
f(x)=(1-4x)(x+4) .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-11018 ⋅ Poprawnie: 89/155 [57%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
» Dana są funkcje
h(x)=2-x
oraz
g(x)=x+4 .
Wykres funkcji g(x)\cdot h(x) przedstawia rysunek:
Odpowiedzi:
Zadanie 12. 1 pkt ⋅ Numer: pp-11469 ⋅ Poprawnie: 90/139 [64%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
« Układ równań
\begin{cases}
y=m \\
y=2x^2-4x-10
\end{cases}
ma dokładnie jedno rozwiązanie.
Wyznacz wartość parametru m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 13. 1 pkt ⋅ Numer: pp-11062 ⋅ Poprawnie: 142/184 [77%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Na rysunku pokazano cześć wykresu funkcji
g(x)=ax^2+bc+c .
Które z poniższych zdań jest prawdziwe?
Odpowiedzi:
A. miejsca zerowe tej funkcji to -2 i 4
B. miejscami zerowymi funkcji to -2 i 6
C. funkcja rośnie w przedziale (-2,4)
D. f(x) > 0 \iff x \lessdot 1
Zadanie 14. 1 pkt ⋅ Numer: pp-10988 ⋅ Poprawnie: 71/94 [75%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
» Wyznacz najmniejszą wartość funkcji kwadratowej określonej wzorem
f(x)=x^2+12x .
Odpowiedź:
f_{min}(x)=
(wpisz liczbę całkowitą)
Zadanie 15. 1 pkt ⋅ Numer: pp-11067 ⋅ Poprawnie: 144/278 [51%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
« Rozpatrujemy prostokąty o obwodzie
108 . Na takim
prostokącie o największym polu powierzchni opisano okrąg.
Oblicz długość promienia tego okręgu.
Odpowiedź:
Zadanie 16. 1 pkt ⋅ Numer: pp-10975 ⋅ Poprawnie: 326/498 [65%]
Rozwiąż
Podpunkt 16.1 (1 pkt)
Liczba ujemna spełnia równanie
x^2-2x-98=0 .
Oblicz kwadrat tej liczby.
Odpowiedź:
x^2=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 17. 1 pkt ⋅ Numer: pp-10971 ⋅ Poprawnie: 131/196 [66%]
Rozwiąż
Podpunkt 17.1 (0.2 pkt)
Równanie
x^2-(k-4)x+25=0 z niewiadomą
x ma dwa różne rozwiązania wtedy i tylko wtedy, gdy parametr
k należy do zbioru
A . Zapisz zbiór
A w postaci sumy przedziałów.
Zbiór A jest postaci:
Odpowiedzi:
A. (-\infty,p)\cup(q,+\infty)
B. (p,q)
C. (-\infty,p)
D. (p,+\infty)
E. (-\infty,p)\cap(q,+\infty)
F. \langle p,q\rangle
Podpunkt 17.2 (0.8 pkt)
Liczba
p jest najmniejszym, a liczba
q
największym z końców liczbowych tych przedziałów.
Podaj liczby p i q .
Odpowiedzi:
Zadanie 18. 1 pkt ⋅ Numer: pp-10974 ⋅ Poprawnie: 177/275 [64%]
Rozwiąż
Podpunkt 18.1 (1 pkt)
Ile rozwiązań ma równanie
(x^2-5x+4)\sqrt{9-x^2}=0 ?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 19. 1 pkt ⋅ Numer: pp-10965 ⋅ Poprawnie: 537/881 [60%]
Rozwiąż
Podpunkt 19.1 (1 pkt)
Wskaż te nierówności, których rozwiązaniem jest zbiór
\mathbb{R} :
Odpowiedzi:
T/N : 2x^2-4x-4 \geqslant 0
T/N : x^2+3x+2 \geqslant 0
Zadanie 20. 1 pkt ⋅ Numer: pp-10959 ⋅ Poprawnie: 225/429 [52%]
Rozwiąż
Podpunkt 20.1 (0.2 pkt)
» Wyznacz zbiór wszystkich rozwiązań nierówności
-1 \lessdot x^2+\frac{6}{5}x \lessdot 0
.
Zbiór ten ma postać:
Odpowiedzi:
A. (-\infty,p\rangle
B. (p,q)
C. (p,+\infty)
D. (-\infty,p)\cup\langle q,+\infty)
E. (-\infty,p)
F. \langle p,q\rangle
Podpunkt 20.2 (0.8 pkt)
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż