Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11640 ⋅ Poprawnie: 84/117 [71%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wykres funkcji kwadratowej określonej wzorem
y=-\frac{3}{5}(x+4)^2+6 otrzymano przesuwając wykres funkcji
y=-\frac{3}{5}x^2 o
p jednostek
wzdłuż osi
Ox i o
q jednostek
wzdłuż osi
Oy , przy czym liczby
p i
q mogą być ujemne.
Podaj liczby p i q .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11059 ⋅ Poprawnie: 233/411 [56%]
Rozwiąż
Podpunkt 2.1 (0.5 pkt)
Parabola
y=(-8+9x)^2-5
ma wierzchołek w punkcie o współrzędnych
\left(x_w,y_w\right) .
Wyznacz współrzędną x_w .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11430 ⋅ Poprawnie: 983/1242 [79%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wykresem funkcji kwadratowej
f(x)=x^2-8x-4
jest parabola, której wierzchołkiem jest punkt o współrzędnych
\left(x_w, y_w\right) .
Podaj współrzędne wierzchołka paraboli x_w i
y_w .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-11030 ⋅ Poprawnie: 898/1172 [76%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wskaż funkcję kwadratową, której zbiorem wartości jest przedział
\langle -4,+\infty) :
Odpowiedzi:
A. y=-2(x+4)^2+4
B. y=-(x-4)^2-4
C. y=(x-6)^2+4
D. y=(x+2)^2-4
E. y=-(x+1)^2-4
F. y=(x+2)^2+4
Zadanie 5. 1 pkt ⋅ Numer: pp-11008 ⋅ Poprawnie: 400/562 [71%]
Rozwiąż
Podpunkt 5.1 (0.8 pkt)
« Zbiorem wartości funkcji kwadratowej
f(x)=x^2-\sqrt{17} jest pewnien przedział liczbowy.
Podaj ten koniec tego przedziału, który jest liczbą niewymierną.
Odpowiedź:
m\sqrt{n}=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.2 pkt)
Odpowiedzi:
A. \left(-\infty,p\right\rangle
B. \left\langle p, q \right\rangle
C. \left\langle p,+\infty\right)
D. \left(p, q\right)
Zadanie 6. 1 pkt ⋅ Numer: pp-11056 ⋅ Poprawnie: 610/800 [76%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Parabola o wierzchołku
P=(-9,-8) i ramionach
skierowanych w dół może być wykresem funkcji określonej wzorem:
Odpowiedzi:
A. y=3(x+8)^2-8
B. y=(x+9)^2+8
C. y=-2(x+9)^2-8
D. y=-2(x-9)^2-8
Zadanie 7. 1 pkt ⋅ Numer: pp-11084 ⋅ Poprawnie: 115/172 [66%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Dana jest funkcja
y=x^2-2 .
Do zbioru ZW_f nie należy liczba:
Odpowiedzi:
A. 5-3\sqrt{3}
B. 2-3\sqrt{2}
C. 4-3\sqrt{3}
D. 5-4\sqrt{2}
Zadanie 8. 1 pkt ⋅ Numer: pp-10980 ⋅ Poprawnie: 201/342 [58%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Liczby
-3 i
-\frac{3}{2} są miejscami
zerowymi funkcji określonej wzorem
g(x)=ax^2-\frac{27}{2}x-\frac{27}{2} .
Wyznacz wartość współczynnika a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-10999 ⋅ Poprawnie: 101/166 [60%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Zbiorem wartości funkcji kwadratowej
f
określonej wzorem
f(x)=m(x+5)(x+3)
jest przedział liczbowy
\langle -2,+\infty) , a rozwiązaniem
nierówności
f(x) \lessdot 0 przedział
(-5,-3) .
Wyznacz współczynnik m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-11075 ⋅ Poprawnie: 96/167 [57%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Dana jest funkcja kwadratowa określona wzorem
f(x)=(-5-x)(2x+2) .
Wierzchołek wykresu tej funkcji należy do prostej określonej równaniem
x=m .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-11015 ⋅ Poprawnie: 79/132 [59%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Na rysunku przedstawiony jest fragment paraboli będącej wykresem funkcji
kwadratowej
y=f(x) .
Funkcja g określona jest wzorem
g(x)=2\cdot f(x)-5 . Wówczas zbiór
ZW_g jest pewnym przedziałem liczbowym.
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 12. 1 pkt ⋅ Numer: pp-11055 ⋅ Poprawnie: 46/98 [46%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Wykresy funkcji określonych wzorami
f(x)=3x^2+24x+48 i
g(x)=3x^2+18x+27 są symetryczne względem prostej
o równaniu
x=m .
Podaj m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 13. 1 pkt ⋅ Numer: pp-11049 ⋅ Poprawnie: 69/111 [62%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Wykres funkcji kwadratowej
f(x)=-4(x+8)^2-6 ma dwa
punkty wspólne z prostą:
Odpowiedzi:
A. y=-7
B. y=-5
C. x=-8
D. x=8
Zadanie 14. 1 pkt ⋅ Numer: pp-10978 ⋅ Poprawnie: 474/743 [63%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
« Najmniejszą wartość w przedziale
\langle -12, -8\rangle funkcja kwadratowa
określona wzorem
f(x)=-\left(x+9\right)^{2}+5
przyjmuje dla argumentu
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 15. 1 pkt ⋅ Numer: pp-11080 ⋅ Poprawnie: 264/397 [66%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
« Suma dwóch liczb jest równa
4\sqrt{2} , a ich
iloczyn ma największą możliwą wartość.
Oblicz mniejszą z tych liczb.
Odpowiedź:
min=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 16. 1 pkt ⋅ Numer: pp-10970 ⋅ Poprawnie: 187/259 [72%]
Rozwiąż
Podpunkt 16.1 (1 pkt)
« W turnieju szachowym, w którym uczestniczy
......... szachistów, każdy uczestnik rozgrywa jedną partię z każdym
innym uczestnikiem. Łącznie rozegrano w tym turnieju
276
partii szachów.
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 17. 1 pkt ⋅ Numer: pp-10969 ⋅ Poprawnie: 79/138 [57%]
Rozwiąż
Podpunkt 17.1 (1 pkt)
Punkt
M=(a,-8\cdot a) należy do wykresu funkcji
f(x)=(1-a)x-a .
Wyznacz najmniejsze możliwe i największe możliwe a .
Odpowiedzi:
Zadanie 18. 1 pkt ⋅ Numer: pp-10974 ⋅ Poprawnie: 173/270 [64%]
Rozwiąż
Podpunkt 18.1 (1 pkt)
Ile rozwiązań ma równanie
(x^2+9x+20)\sqrt{9-x^2}=0 ?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 19. 1 pkt ⋅ Numer: pp-10958 ⋅ Poprawnie: 250/427 [58%]
Rozwiąż
Podpunkt 19.1 (1 pkt)
«« Najmniejszą liczbą całkowitą należącą do dziedziny funkcji
f(x)=\sqrt{-x^2+\frac{19}{2}x-\frac{35}{2}}
jest
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 20. 1 pkt ⋅ Numer: pp-10960 ⋅ Poprawnie: 252/530 [47%]
Rozwiąż
Podpunkt 20.1 (0.2 pkt)
Wyznacz dziedzinę funkcji określonej wzorem
f(x)=\sqrt{16-4x^2}
.
Zbiór ten jest postaci:
Odpowiedzi:
A. (-\infty,p\rangle\cup\langle q,+\infty)
B. (p,q)
C. \langle p,q\rangle
D. (-\infty,p\rangle
E. \langle p,+\infty)
F. (p,+\infty)
Podpunkt 20.2 (0.8 pkt)
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Rozwiąż