Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11595 ⋅ Poprawnie: 119/162 [73%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=ax^2 należy punkt o współrzędnych (4\sqrt{2},288\sqrt{5}).

Wyznacz współczynnik a.

Odpowiedź:
a= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11072 ⋅ Poprawnie: 315/528 [59%] Rozwiąż 
Podpunkt 2.1 (0.5 pkt)
 « O funkcji kwadratowej opisanej wzorem f(x)=a(x-p)^2+q wiadomo, że ma dwa miejsca zerowe -5 i 7 oraz że najmniejszą jej wartością jest liczba -18.

Wyznacz wartość parametru a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (0.5 pkt)
 Wyznacz wartość parametru p.
Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11002 ⋅ Poprawnie: 730/998 [73%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Funkcja kwadratowa f(x)=x^2+bx+c jest malejąca dla x\in(-\infty,2\rangle, a zbiorem jej wartości jest przedział \langle 5,+\infty). Postać kanoniczna tej funkcji opisana jest wzorem y=(x-p)^2+q.

Podaj wartości parametrów p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11052 ⋅ Poprawnie: 812/1143 [71%] Rozwiąż 
Podpunkt 4.1 (0.8 pkt)
 Zbiorem wartości funkcji kwadratowej y=-x^2+2 x+3 jest pewien przedział liczbowy.

Podaj ten koniec tego przedziału, który jest liczbą całkowitą.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 4.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. \frac{3}{4} B. -\frac{1}{2}
C. -\infty D. +\infty
E. \frac{1}{2} F. -\frac{3}{4}
Zadanie 5.  1 pkt ⋅ Numer: pp-11038 ⋅ Poprawnie: 134/227 [59%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Gdy przesuniemy wykres funkcji f(x)=4(x+2)^2+\frac{5}{2} o p=6 jednostek w lewo i q=13 jednostek w górę, to otrzymamy wykres funkcji:
Odpowiedzi:
A. y=4(x+8)^2+\frac{31}{2} B. y=4(x+15)^2+\frac{17}{2}
C. y=4(x-4)^2+\frac{31}{2} D. y=4(x+8)^2-\frac{21}{2}
Zadanie 6.  1 pkt ⋅ Numer: pp-11060 ⋅ Poprawnie: 133/184 [72%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wierzchołek paraboli o równaniu y=(x+5)^2+2m+10 należy do prostej o równaniu y=2.

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11083 ⋅ Poprawnie: 82/186 [44%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Dla x=1 funkcja f(x)=x^2+bx+c przyjmuje wartość najmniejszą równą 3.

Wyznacz wartość współczynnika c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-10986 ⋅ Poprawnie: 417/622 [67%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wyznacz przedział o maksymalnej długości, w którym funkcja określona wzorem h(x)=\frac{1}{2}(x-1)(x-5) jest rosnąca.

Podaj mniejszy z końców liczbowych tego przedziału.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-10999 ⋅ Poprawnie: 101/166 [60%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Zbiorem wartości funkcji kwadratowej f określonej wzorem f(x)=m(x-1)(x-7) jest przedział liczbowy \langle -36,+\infty), a rozwiązaniem nierówności f(x) \lessdot 0 przedział (1,7).

Wyznacz współczynnik m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11068 ⋅ Poprawnie: 164/293 [55%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Prosta o równaniu x=mjest osią symetrii wykresu funkcji kwadratowej określonej wzorem f(x)=(2-3x)(x-3).

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-11004 ⋅ Poprawnie: 127/373 [34%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
Funkcja kwadratowa określona jest wzorem f(x)=-3(x+2018)(x-666).

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : f(-680) > f(-670) T/N : f(-701) \lessdot f(-801)
Zadanie 12.  1 pkt ⋅ Numer: pp-11467 ⋅ Poprawnie: 90/179 [50%] Rozwiąż 
Podpunkt 12.1 (0.2 pkt)
 Zbiorem wartości funkcji y=-(x-6)(x+6) określonej dla x\in(3,7\rangle jest pewien przedział liczbowy.

Przedział ten ma postać:

Odpowiedzi:
A. (-\infty,p\rangle B. \langle p,q\rangle
C. (p,q\rangle D. (p,+\infty)
E. \langle p,q) F. (p,q)
Podpunkt 12.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-11051 ⋅ Poprawnie: 40/77 [51%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Wykres funkcji y=x^2-10 ma dokładnie jeden punkt wspólny z prostą:
Odpowiedzi:
A. y=10x B. y=10
C. x=4 D. y=-10x+1
Zadanie 14.  1 pkt ⋅ Numer: pp-10985 ⋅ Poprawnie: 229/342 [66%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Dana jest funkcja g(x)=-\frac{1}{3}(x+6)x, gdzie x\in\langle -6,-3\rangle.

Wyznacz f_{min}.

Odpowiedź:
f_{min}=
(wpisz dwie liczby całkowite)
Zadanie 15.  1 pkt ⋅ Numer: pp-11067 ⋅ Poprawnie: 143/276 [51%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 « Rozpatrujemy prostokąty o obwodzie 100. Na takim prostokącie o największym polu powierzchni opisano okrąg.

Oblicz długość promienia tego okręgu.

Odpowiedź:
R= \cdot
(wpisz trzy liczby całkowite)
Zadanie 16.  1 pkt ⋅ Numer: pp-10972 ⋅ Poprawnie: 711/882 [80%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 Wiadomo, że 16x^2-8x+1=0.

Oblicz x.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 17.  1 pkt ⋅ Numer: pp-10976 ⋅ Poprawnie: 665/871 [76%] Rozwiąż 
Podpunkt 17.1 (0.5 pkt)
 » Równanie (2x-5)(x+2)=(2x-5)(2x-7) ma dwa rozwiązania.

Wyznacz najmniejsze rozwiązanie tego równania.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 17.2 (0.5 pkt)
 Wyznacz największe rozwiązanie tego równania.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 18.  1 pkt ⋅ Numer: pp-10968 ⋅ Poprawnie: 352/569 [61%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Ile rozwiązań całkowitych ma równanie \left(x^2+5\right)\left(x^2+2x+7\right)=0.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 19.  1 pkt ⋅ Numer: pp-10962 ⋅ Poprawnie: 383/585 [65%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 Iloczyn (x-1)(5-x) jest nieujemny, wtedy i tylko wtedy, gdy liczba x należy do zbioru A. Zapisz zbiór A w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 20.  1 pkt ⋅ Numer: pp-10960 ⋅ Poprawnie: 252/530 [47%] Rozwiąż 
Podpunkt 20.1 (0.2 pkt)
 Wyznacz dziedzinę funkcji określonej wzorem f(x)=\sqrt{36-64x^2} .

Zbiór ten jest postaci:

Odpowiedzi:
A. (-\infty,p\rangle B. (p,+\infty)
C. \langle p,+\infty) D. (-\infty,p\rangle\cup\langle q,+\infty)
E. \langle p,q\rangle F. (p,q)
Podpunkt 20.2 (0.8 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm