Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11643 ⋅ Poprawnie: 93/191 [48%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=x^2+bx+c należą punkty o współrzędnych (-2,15) i (-9,-6).

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11072 ⋅ Poprawnie: 315/528 [59%] Rozwiąż 
Podpunkt 2.1 (0.5 pkt)
 « O funkcji kwadratowej opisanej wzorem f(x)=a(x-p)^2+q wiadomo, że ma dwa miejsca zerowe -7 i 9 oraz że najmniejszą jej wartością jest liczba -16.

Wyznacz wartość parametru a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (0.5 pkt)
 Wyznacz wartość parametru p.
Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11002 ⋅ Poprawnie: 730/998 [73%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Funkcja kwadratowa f(x)=x^2+bx+c jest malejąca dla x\in(-\infty,4\rangle, a zbiorem jej wartości jest przedział \langle 6,+\infty). Postać kanoniczna tej funkcji opisana jest wzorem y=(x-p)^2+q.

Podaj wartości parametrów p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11009 ⋅ Poprawnie: 212/393 [53%] Rozwiąż 
Podpunkt 4.1 (0.2 pkt)
 « Maksymalny zbiór, w którym funkcja kwadratowa f(x)=-5(x-8)^2-7 jest rosnąca jest pewnym przedziałem liczbowym.

Przedział ten ma postać:

Odpowiedzi:
A. (p,+\infty) B. \langle p,+\infty)
C. \langle p,q\rangle D. (-\infty,p\rangle
E. (p,q) F. (-\infty,p)
Podpunkt 4.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11029 ⋅ Poprawnie: 232/353 [65%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Prosta o równaniu 5x-3=0 jest osią symetrii paraboli:
Odpowiedzi:
A. y=2x^2-\frac{18}{5}x-4 B. y=4x^2+\frac{8}{5}x-4
C. y=4x^2-\frac{12}{5}x-4 D. y=2x^2+\frac{18}{5}x-4
E. y=4x^2-\frac{24}{5}x-4 F. y=4x^2-\frac{8}{5}x-4
Zadanie 6.  1 pkt ⋅ Numer: pp-11063 ⋅ Poprawnie: 178/290 [61%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Funkcja f(x)=3x^2+24x+54 nie przyjmuje wartości:
Odpowiedzi:
A. 3\sqrt{7} B. \frac{8\sqrt{2}}{5}
C. \frac{6\cdot\pi}{3} D. \frac{12+\sqrt{2}}{2}
Zadanie 7.  1 pkt ⋅ Numer: pp-11071 ⋅ Poprawnie: 117/135 [86%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 W zbiorze wartości funkcji f(x)=-4(x+2)^2-4 zawarty jest przedział:
Odpowiedzi:
A. (-4,+\infty) B. (-\infty,-4)
C. (-4,-3) D. (-5,-3)
Zadanie 8.  1 pkt ⋅ Numer: pp-10986 ⋅ Poprawnie: 417/622 [67%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wyznacz przedział o maksymalnej długości, w którym funkcja określona wzorem h(x)=\frac{1}{2}(x-5)(x-7) jest rosnąca.

Podaj mniejszy z końców liczbowych tego przedziału.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-10996 ⋅ Poprawnie: 344/563 [61%] Rozwiąż 
Podpunkt 9.1 (0.2 pkt)
 Zbiór tych wszystkich wartości m, dla których funkcja kwadratowa określona wzorem f(x)=x^2+5x+m nie ma ani jednego miejsca zerowego jest przedziałem liczbowym.

Przedział ten ma postać:

Odpowiedzi:
A. \langle p, +\infty) B. (-\infty, p\rangle
C. (p, q) D. (p, +\infty)
E. (-\infty, p) F. \langle p, q\rangle
Podpunkt 9.2 (0.8 pkt)
 Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-11075 ⋅ Poprawnie: 96/167 [57%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Dana jest funkcja kwadratowa określona wzorem f(x)=(6-x)(3x+6). Wierzchołek wykresu tej funkcji należy do prostej określonej równaniem x=m.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-11014 ⋅ Poprawnie: 32/77 [41%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
Niech A=(-2,4). Wiadomo, że A\cap ZW_g=\emptyset.

Wykres funkcji g pokazano na rysunku:

Odpowiedzi:
A. C B. A
C. D D. B
Zadanie 12.  1 pkt ⋅ Numer: pp-11469 ⋅ Poprawnie: 89/138 [64%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « Układ równań \begin{cases} y=m \\ y=3x^2-6x-10 \end{cases} ma dokładnie jedno rozwiązanie.

Wyznacz wartość parametru m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-11051 ⋅ Poprawnie: 40/77 [51%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Wykres funkcji y=x^2-9 ma dokładnie jeden punkt wspólny z prostą:
Odpowiedzi:
A. y=9x B. y=9
C. x=-8 D. y=-9x+1
Zadanie 14.  1 pkt ⋅ Numer: pp-10988 ⋅ Poprawnie: 67/90 [74%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
» Wyznacz najmniejszą wartość funkcji kwadratowej określonej wzorem f(x)=x^2+12x.
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-11067 ⋅ Poprawnie: 143/276 [51%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 « Rozpatrujemy prostokąty o obwodzie 68. Na takim prostokącie o największym polu powierzchni opisano okrąg.

Oblicz długość promienia tego okręgu.

Odpowiedź:
R= \cdot
(wpisz trzy liczby całkowite)
Zadanie 16.  1 pkt ⋅ Numer: pp-11058 ⋅ Poprawnie: 92/184 [50%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 « Wierzchołek paraboli będącej wykresem funkcji kwadratowej określonej wzorem y=(2x-10)^2+\frac{31}{2} należy do prostej o równaniu y=......\cdot x.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 17.  1 pkt ⋅ Numer: pp-10971 ⋅ Poprawnie: 130/195 [66%] Rozwiąż 
Podpunkt 17.1 (0.2 pkt)
 Równanie x^2-(k+6)x+49=0 z niewiadomą x ma dwa różne rozwiązania wtedy i tylko wtedy, gdy parametr k należy do zbioru A. Zapisz zbiór Aw postaci sumy przedziałów.

Zbiór A jest postaci:

Odpowiedzi:
A. \langle p,q\rangle B. (-\infty,p)\cup(q,+\infty)
C. (p,q) D. (-\infty,p)\cap(q,+\infty)
E. (p,+\infty) F. (-\infty,p)
Podpunkt 17.2 (0.8 pkt)
 Liczba p jest najmniejszym, a liczba q największym z końców liczbowych tych przedziałów.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 18.  1 pkt ⋅ Numer: pp-10968 ⋅ Poprawnie: 352/569 [61%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Ile rozwiązań całkowitych ma równanie \left(x^2+5\right)\left(x^2-4x+7\right)=0.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 19.  1 pkt ⋅ Numer: pp-10965 ⋅ Poprawnie: 537/880 [61%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 Wskaż te nierówności, których rozwiązaniem jest zbiór \mathbb{R}:
Odpowiedzi:
T/N : x^2+x+\frac{1}{4} > 0 T/N : x^2-22x+242\geqslant 0
Zadanie 20.  1 pkt ⋅ Numer: pp-10964 ⋅ Poprawnie: 68/113 [60%] Rozwiąż 
Podpunkt 20.1 (1 pkt)
 Ile liczb całkowitych spełnia nierówność 6\pi\cdot x > 2x^2:
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm