Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11596 ⋅ Poprawnie: 97/141 [68%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=ax^2 należy punkt o współrzędnych \left(4,\frac{16\sqrt{5}}{5}\right).

Wyznacz współczynnik a.

Odpowiedź:
a= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11059 ⋅ Poprawnie: 233/411 [56%] Rozwiąż 
Podpunkt 2.1 (0.5 pkt)
 Parabola y=(4+2x)^2+11 ma wierzchołek w punkcie o współrzędnych \left(x_w,y_w\right).

Wyznacz współrzędną x_w.

Odpowiedź:
x_w=
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (0.5 pkt)
 Wyznacz współrzędną y_w.
Odpowiedź:
y_w=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11430 ⋅ Poprawnie: 983/1242 [79%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wykresem funkcji kwadratowej f(x)=x^2-2x+2 jest parabola, której wierzchołkiem jest punkt o współrzędnych \left(x_w, y_w\right).

Podaj współrzędne wierzchołka paraboli x_w i y_w.

Odpowiedzi:
x_w= (wpisz liczbę całkowitą)
y_w= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11005 ⋅ Poprawnie: 356/560 [63%] Rozwiąż 
Podpunkt 4.1 (0.2 pkt)
 « Funkcja y=-(x-2)^2+1 jest rosnąca w pewnym przedziale liczbowym.

Przedział ten ma postać:

Odpowiedzi:
A. (p,+\infty) B. (-\infty,p\rangle
C. (-\infty,p) D. (p,q)
E. \langle p,q\rangle F. \langle p,+\infty)
Podpunkt 4.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11008 ⋅ Poprawnie: 400/562 [71%] Rozwiąż 
Podpunkt 5.1 (0.8 pkt)
 « Zbiorem wartości funkcji kwadratowej f(x)=x^2-\sqrt{23} jest pewnien przedział liczbowy.

Podaj ten koniec tego przedziału, który jest liczbą niewymierną.

Odpowiedź:
m\sqrt{n}= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.2 pkt)
 Przedział ten ma postać:
Odpowiedzi:
A. \left(p, q\right) B. \left\langle p,+\infty\right)
C. \left\langle p, q \right\rangle D. \left(-\infty,p\right\rangle
Zadanie 6.  1 pkt ⋅ Numer: pp-11061 ⋅ Poprawnie: 96/143 [67%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Oblicz odległość wierzchołka paraboli o równaniu y=x^2-x-\frac{7}{4} od osi Ox.
Odpowiedź:
d= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-10997 ⋅ Poprawnie: 196/269 [72%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wskaż funkcję, która nie przyjmuje wartości ujemnych:
Odpowiedzi:
A. y=-4(x+6)^2 B. y=4(x-6)^2-8
C. y=3+(-2-x)^2 D. y=(x+7)^2-8
Zadanie 8.  1 pkt ⋅ Numer: pp-10982 ⋅ Poprawnie: 56/126 [44%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Wyznacz sumę miejsc zerowych funkcji określonej wzorem f(x)=\frac{-x^2-4x}{\sqrt{-4-x}} .
Odpowiedź:
x_1+x_2= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11010 ⋅ Poprawnie: 114/226 [50%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=-(x+7)(x+9). Wyznacz maksymalny przedział, w którym funkcja ta jest rosnąca.

Podaj najmniejszy koniec liczbowy tego przedziału.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11079 ⋅ Poprawnie: 268/362 [74%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Dana jest funkcja kwadratowa opisana wzorem h(x)=-3(x-4)(x-11). Wyznacz maksymalny przedział, w którym funkcja ta jest malejąca.

Podaj najmniejszy z końców liczbowych tego przedziału.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-11011 ⋅ Poprawnie: 67/91 [73%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 » Dane są funkcje: f(x)=x^2+\frac{\sqrt{6}}{2} i g(x)=\frac{\sqrt{6}}{3}.

Wówczas, zachodzi warunek:

Odpowiedzi:
A. f(x)=g(x) B. f(x) \lessdot g(x)
C. f(x) > g(x) D. f(x)-g(x)=x^2
Zadanie 12.  1 pkt ⋅ Numer: pp-11046 ⋅ Poprawnie: 282/415 [67%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Wskaż wykres mający 3 punkty wspólne z osiami układu współrzędnych:
Odpowiedzi:
A. y=2x^2+5x+4 B. y=4x^2+6x+6
C. y=-3(x-2)^2+5 D. y=6x^2-2x+8
Zadanie 13.  1 pkt ⋅ Numer: pp-11050 ⋅ Poprawnie: 82/195 [42%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Wykres funkcji kwadratowej y=-5(x+3)^2+1 nie ma punktów wspólnych z prostą o równaniu:
Odpowiedzi:
A. y=-1 B. x=-3
C. y=3 D. x=5
Zadanie 14.  1 pkt ⋅ Numer: pp-10988 ⋅ Poprawnie: 67/90 [74%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
» Wyznacz najmniejszą wartość funkcji kwadratowej określonej wzorem f(x)=x^2+12x.
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-11646 ⋅ Poprawnie: 57/103 [55%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Mniejsza część zawodników klubu sportowego liczącego 61 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 16.  1 pkt ⋅ Numer: pp-11065 ⋅ Poprawnie: 60/107 [56%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 Funkcja f określona jest wzorem f(x)=\frac{x^2+5x-6}{x-5}.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : f przyjmuje wartości dodatnie T/N : f ma dwa miejsca zerowe
T/N : f przyjmuje tylko wartości ujemne  
Zadanie 17.  1 pkt ⋅ Numer: pp-11066 ⋅ Poprawnie: 218/289 [75%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 « Wierzchołkiem paraboli będącej wykresem funkcji f(x)=-x^2+bx+c jest punkt o współrzędnych (3,1).

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 18.  1 pkt ⋅ Numer: pp-11077 ⋅ Poprawnie: 140/228 [61%] Rozwiąż 
Podpunkt 18.1 (0.2 pkt)
 » Funkcja kwadratowa opisana wzorem g(x)=mx^2-2x-\frac{4}{3} ma dokładnie dwa miejsca zerowe wtedy i tylko wtedy, gdy parametr m należy do pewnego przedziału liczbowego.

Przedział ten ma postać:

Odpowiedzi:
A. \langle p, q\rangle B. (p,q)
C. (-\infty,p\rangle D. (-\infty,p)
E. \langle p,+\infty) F. (p,+\infty)
Podpunkt 18.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 19.  1 pkt ⋅ Numer: pp-10962 ⋅ Poprawnie: 383/585 [65%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 Iloczyn (x-2)(1-x) jest nieujemny, wtedy i tylko wtedy, gdy liczba x należy do zbioru A. Zapisz zbiór A w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 20.  1 pkt ⋅ Numer: pp-10957 ⋅ Poprawnie: 641/967 [66%] Rozwiąż 
Podpunkt 20.1 (0.2 pkt)
 » Wyznacz dziedzinę funkcji określonej wzorem f(x)=\frac{x-1}{\sqrt{x^2-4x+3}} .

Zbiór ten ma postać:

Odpowiedzi:
A. (p,q) B. (-\infty,p)\cup(q,+\infty)
C. \langle p,q\rangle D. \mathbb{R}-(p,q)
E. \mathbb{R}-\{p, q\} F. \mathbb{R}-\{p\}
Podpunkt 20.2 (0.8 pkt)
 Zbiór A jest zbiorem wszystkich liczb nie należących do dziedziny tej funkcji.

Wyznacz najmniejszą i największą liczbę w zbiorze A.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm