Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11596 ⋅ Poprawnie: 97/141 [68%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=ax^2
należy punkt o współrzędnych
\left(-4,4\sqrt{3}\right) .
Wyznacz współczynnik a .
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-10989 ⋅ Poprawnie: 700/1010 [69%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Największą wartością funkcji kwadratowej
f(x)=-4(x-2)^2-6 jest
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-10991 ⋅ Poprawnie: 188/333 [56%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Zbiorem wartości funkcji kwadratowej
f(x)=-x^2+ax-\frac{a^2}{4}-a jest przedział
(-\infty,12\rangle .
Wyznacz wartość parametru a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11005 ⋅ Poprawnie: 356/560 [63%]
Rozwiąż
Podpunkt 4.1 (0.2 pkt)
« Funkcja
y=-(x+3)^2+6 jest rosnąca w pewnym
przedziale liczbowym.
Przedział ten ma postać:
Odpowiedzi:
A. \langle p,+\infty)
B. (-\infty,p\rangle
C. \langle p,q\rangle
D. (p,q)
E. (p,+\infty)
F. (-\infty,p)
Podpunkt 4.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11038 ⋅ Poprawnie: 134/227 [59%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Gdy przesuniemy wykres funkcji
f(x)=-2(x+1)^2+\frac{1}{2} o
p=3 jednostek w lewo i
q=9 jednostek w górę,
to otrzymamy wykres funkcji:
Odpowiedzi:
A. y=-2(x+10)^2+\frac{7}{2}
B. y=-2(x-2)^2+\frac{19}{2}
C. y=-2(x+4)^2-\frac{17}{2}
D. y=-2(x+4)^2+\frac{19}{2}
Zadanie 6. 1 pkt ⋅ Numer: pp-11060 ⋅ Poprawnie: 133/184 [72%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Wierzchołek paraboli o równaniu
y=(x+1)^2+2m+3
należy do prostej o równaniu
y=1 .
Wyznacz wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-11408 ⋅ Poprawnie: 159/209 [76%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej
f :
Zbiór wartości funkcji określonej wzorem y=-f(x) jest równy:
Odpowiedzi:
A. \langle -4,0\rangle
B. (-\infty,+\infty)
C. (-\infty, 4\rangle
D. \langle 4,+\infty)
Zadanie 8. 1 pkt ⋅ Numer: pp-10981 ⋅ Poprawnie: 97/205 [47%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Wyznacz największą wartość funkcji określonej wzorem
f(x)=-3(x+1)(x-5) w przedziale
\left\langle \frac{3}{2},7\right\rangle .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 1 pkt ⋅ Numer: pp-11042 ⋅ Poprawnie: 369/560 [65%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Miejscami zerowymi funkcji kwadratowej są liczby
-7
oraz
4 . Do wykresu tej funkcji należy punkt
A=(-1,60) . Zapisz wzór tej funkcji w postaci iloczynowej
y=a(x-x_1)(x-x_2) .
Podaj współczynnik a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-11506 ⋅ Poprawnie: 459/800 [57%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Osią symetrii paraboli będącej wykresem funkcji kwadratowej określonej równaniem
f(x)=-\frac{1}{2}(x+114)(x-570) , jest prosta określona:
równaniem
x-......=0 .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 11. 1 pkt ⋅ Numer: pp-11024 ⋅ Poprawnie: 121/338 [35%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Na rysunku pokazano tylko część wykresu funkcji
f(x)=ax^2+bx+c , dla której
D_f=\mathbb{R} .
Wówczas:
Odpowiedzi:
T/N : zbiorem wartości tej funkcji jest przedział (-\infty,9)
T/N : funkcja przyjmuje wartości większe od zera dla x \lessdot 1
T/N : miejscami zerowymi tej funkcji są liczby -2 i 4
Zadanie 12. 1 pkt ⋅ Numer: pp-11047 ⋅ Poprawnie: 118/159 [74%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Ile punktów wspólnych z osią
Ox ma wykres funkcji
kwadratowej
f(x)=-4+8(x-3)^2 :
Odpowiedzi:
Zadanie 13. 1 pkt ⋅ Numer: pp-11410 ⋅ Poprawnie: 268/393 [68%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej
f :
Osią symetrii wykresu funkcji f
jest prosta o równaniu:
Odpowiedzi:
A. y=-4
B. y-2=0
C. x=-4
D. x-2=0
Zadanie 14. 1 pkt ⋅ Numer: pp-10978 ⋅ Poprawnie: 470/737 [63%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
« Najmniejszą wartość w przedziale
\langle -7, -3\rangle funkcja kwadratowa
określona wzorem
f(x)=-\left(x+4\right)^{2}+5
przyjmuje dla argumentu
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 15. 1 pkt ⋅ Numer: pp-11645 ⋅ Poprawnie: 26/56 [46%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
« Rzucono pionowo do góry kamień z prędkością początkową
10\ m/s .
Wysokość
s\ [m] , jaką osiągnie ten kamień po
t
sekundach czasu opisuje wzór
s(t)=18t-3t^2 .
Podaj maksymalną wysokość jaką osiągnie ten kamień.
Odpowiedź:
s_{max}(t)=
(wpisz liczbę całkowitą)
Zadanie 16. 1 pkt ⋅ Numer: pp-10970 ⋅ Poprawnie: 187/259 [72%]
Rozwiąż
Podpunkt 16.1 (1 pkt)
« W turnieju szachowym, w którym uczestniczy
......... szachistów, każdy uczestnik rozgrywa jedną partię z każdym
innym uczestnikiem. Łącznie rozegrano w tym turnieju
435
partii szachów.
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 17. 1 pkt ⋅ Numer: pp-10967 ⋅ Poprawnie: 118/168 [70%]
Rozwiąż
Podpunkt 17.1 (1 pkt)
» Pole powierzchni trójkąta prostokątnego jest równe
240 , a jedna z jego przyprostokątnych jest o
14 dłuższa od drugiej.
Oblicz kwadrat długości przeciwprostokątnej tego trójkąta.
Odpowiedź:
c^2=
(wpisz liczbę całkowitą)
Zadanie 18. 1 pkt ⋅ Numer: pp-10974 ⋅ Poprawnie: 173/270 [64%]
Rozwiąż
Podpunkt 18.1 (1 pkt)
Ile rozwiązań ma równanie
(x^2-3x-10)\sqrt{16-x^2}=0 ?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 19. 1 pkt ⋅ Numer: pp-10958 ⋅ Poprawnie: 250/427 [58%]
Rozwiąż
Podpunkt 19.1 (1 pkt)
«« Najmniejszą liczbą całkowitą należącą do dziedziny funkcji
f(x)=\sqrt{-x^2+\frac{3}{2}x+\frac{9}{2}}
jest
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 20. 1 pkt ⋅ Numer: pp-10963 ⋅ Poprawnie: 110/233 [47%]
Rozwiąż
Podpunkt 20.1 (0.2 pkt)
Funkcja opisana jest wzorem
f(x)=-x^2+5x+2 .
Zbiorem rozwiązań nierówności
f(x) > f(-x)
jest pewien przedział liczbowy.
Przedział ten ma postać:
Odpowiedzi:
A. \langle p,+\infty)
B. (p,+\infty)
C. (-\infty,p)
D. (p, q)
E. (-\infty,p\rangle
F. (p,q\rangle
Podpunkt 20.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Rozwiąż