Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11727 ⋅ Poprawnie: 28/45 [62%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=x^2+bx+c
należą punkty o współrzędnych
(0,8) i
(5,-2) .
Wyznacz współczynniki b i c .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11072 ⋅ Poprawnie: 315/528 [59%]
Rozwiąż
Podpunkt 2.1 (0.5 pkt)
« O funkcji kwadratowej opisanej wzorem
f(x)=a(x-p)^2+q wiadomo, że ma dwa
miejsca zerowe
-1 i
3 oraz
że najmniejszą jej wartością jest liczba
-2 .
Wyznacz wartość parametru a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (0.5 pkt)
Wyznacz wartość parametru
p .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-10979 ⋅ Poprawnie: 172/316 [54%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Dana jest funkcja
f określona wzorem
f(x)=-2(x-4)^2+5 .
Wyznacz największą wartość funkcji określonej wzorem h(x)=f(x-1)+2 .
Odpowiedź:
h_{max}(x)=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11030 ⋅ Poprawnie: 899/1172 [76%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wskaż funkcję kwadratową, której zbiorem wartości jest przedział
\langle 6,+\infty) :
Odpowiedzi:
A. y=(x-4)^2-6
B. y=-2(x+6)^2-6
C. y=(x+6)^2+6
D. y=(x+4)^2-6
E. y=-(x+5)^2+6
F. y=-(x-1)^2+6
Zadanie 5. 1 pkt ⋅ Numer: pp-11028 ⋅ Poprawnie: 606/792 [76%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Osią symetrii paraboli o równaniu
y=-26x^2-1014x-1170 jest prosta określona:
równaniem
x=......... .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 1 pkt ⋅ Numer: pp-11039 ⋅ Poprawnie: 241/289 [83%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Punkt
(-11,12) jest wierzchołkiem paraboli.
Punkt o współrzędnych
P=(0,11) należy do tej
paraboli.
Zatem zbiorem wartości funkcji, której wykresem jest ta parabola jest:
Odpowiedzi:
A. \langle 11,+\infty)
B. \langle -11,+\infty)
C. (-\infty,12\rangle
D. (-\infty,-11\rangle
Zadanie 7. 1 pkt ⋅ Numer: pp-11071 ⋅ Poprawnie: 118/136 [86%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
W zbiorze wartości funkcji
f(x)=-3(x+1)^2+4 zawarty
jest przedział:
Odpowiedzi:
A. (-4,5)
B. (4,+\infty)
C. (-\infty,4)
D. (-1,5)
Zadanie 8. 1 pkt ⋅ Numer: pp-11041 ⋅ Poprawnie: 365/693 [52%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Wyznacz największa wartość funkcji określonej wzorem
y=-3(x-8)(x-7) .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 1 pkt ⋅ Numer: pp-11010 ⋅ Poprawnie: 114/226 [50%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Funkcja kwadratowa określona jest wzorem
f(x)=-(x+2)(x+8) . Wyznacz maksymalny przedział, w którym funkcja
ta jest rosnąca.
Podaj najmniejszy koniec liczbowy tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-11068 ⋅ Poprawnie: 164/293 [55%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Prosta o równaniu
x=m jest osią symetrii wykresu funkcji
kwadratowej określonej wzorem
f(x)=(1+2x)(x+4) .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-10966 ⋅ Poprawnie: 34/58 [58%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
« Zbiorem wartości funkcji
y=-(x-3)(x+3)
określonej dla
x\in(1,4\rangle jest pewien przedział liczbowy,
którego lewy koniec jest równy
p , a prawy koniec jest równy
q .
Podaj liczby p i q .
Odpowiedzi:
Zadanie 12. 1 pkt ⋅ Numer: pp-11021 ⋅ Poprawnie: 480/645 [74%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Wykres funkcji
f(x)=-(x+3)^2-2 pokazany jest na rysunku:
Odpowiedzi:
Zadanie 13. 1 pkt ⋅ Numer: pp-11049 ⋅ Poprawnie: 69/111 [62%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Wykres funkcji kwadratowej
f(x)=-4(x+9)^2+10 ma dwa
punkty wspólne z prostą:
Odpowiedzi:
A. y=12
B. y=7
C. x=9
D. x=-9
Zadanie 14. 1 pkt ⋅ Numer: pp-10985 ⋅ Poprawnie: 230/342 [67%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Dana jest funkcja
g(x)=-\frac{1}{3}(x+6)x , gdzie
x\in\langle -6,-3\rangle .
Wyznacz f_{min} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 15. 1 pkt ⋅ Numer: pp-11080 ⋅ Poprawnie: 264/397 [66%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
« Suma dwóch liczb jest równa
4\sqrt{2} , a ich
iloczyn ma największą możliwą wartość.
Oblicz mniejszą z tych liczb.
Odpowiedź:
min=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 16. 1 pkt ⋅ Numer: pp-10970 ⋅ Poprawnie: 187/259 [72%]
Rozwiąż
Podpunkt 16.1 (1 pkt)
« W turnieju szachowym, w którym uczestniczy
......... szachistów, każdy uczestnik rozgrywa jedną partię z każdym
innym uczestnikiem. Łącznie rozegrano w tym turnieju
253
partii szachów.
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 17. 1 pkt ⋅ Numer: pp-10976 ⋅ Poprawnie: 665/871 [76%]
Rozwiąż
Podpunkt 17.1 (0.5 pkt)
» Równanie
(2x-1)(x+2)=(2x-1)(2x-9) ma dwa
rozwiązania.
Wyznacz najmniejsze rozwiązanie tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 17.2 (0.5 pkt)
Wyznacz największe rozwiązanie tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 18. 1 pkt ⋅ Numer: pp-10968 ⋅ Poprawnie: 352/569 [61%]
Rozwiąż
Podpunkt 18.1 (1 pkt)
Ile rozwiązań całkowitych ma równanie
\left(x^2-5\right)\left(x^2+6x+7\right)=0 .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 19. 1 pkt ⋅ Numer: pp-10958 ⋅ Poprawnie: 250/427 [58%]
Rozwiąż
Podpunkt 19.1 (1 pkt)
«« Najmniejszą liczbą całkowitą należącą do dziedziny funkcji
f(x)=\sqrt{-x^2+\frac{19}{2}x-\frac{35}{2}}
jest
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 20. 1 pkt ⋅ Numer: pp-10959 ⋅ Poprawnie: 224/427 [52%]
Rozwiąż
Podpunkt 20.1 (0.2 pkt)
» Wyznacz zbiór wszystkich rozwiązań nierówności
-1 \lessdot x^2-\frac{8}{5}x \lessdot 0
.
Zbiór ten ma postać:
Odpowiedzi:
A. (-\infty,p\rangle
B. (-\infty,p)\cup\langle q,+\infty)
C. (p,q)
D. (p,+\infty)
E. (-\infty,p)
F. \langle p,q\rangle
Podpunkt 20.2 (0.8 pkt)
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż