Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11640 ⋅ Poprawnie: 84/117 [71%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wykres funkcji kwadratowej określonej wzorem
y=-\frac{2}{5}(x-6)^2+2 otrzymano przesuwając wykres funkcji
y=-\frac{2}{5}x^2 o
p jednostek
wzdłuż osi
Ox i o
q jednostek
wzdłuż osi
Oy , przy czym liczby
p i
q mogą być ujemne.
Podaj liczby p i q .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-10989 ⋅ Poprawnie: 706/1015 [69%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Największą wartością funkcji kwadratowej
f(x)=-4(x-1)^2+4 jest
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-10979 ⋅ Poprawnie: 173/317 [54%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Dana jest funkcja
f określona wzorem
f(x)=-4(x+2)^2-1 .
Wyznacz największą wartość funkcji określonej wzorem h(x)=f(x-6)+2 .
Odpowiedź:
h_{max}(x)=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11003 ⋅ Poprawnie: 534/899 [59%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Wskaż funkcję kwadratową rosnąca w przedziale
(-\infty,-1\rangle :
Odpowiedzi:
A. y=-(x-4)^2+1
B. y=-(x+1)^2-4
C. y=-(x+4)^2+2
D. y=(x-1)^2-4
E. y=(x+1)^2-4
F. y=-(x-4)^2-1
Zadanie 5. 1 pkt ⋅ Numer: pp-11008 ⋅ Poprawnie: 400/563 [71%]
Rozwiąż
Podpunkt 5.1 (0.8 pkt)
« Zbiorem wartości funkcji kwadratowej
f(x)=x^2-\sqrt{13} jest pewnien przedział liczbowy.
Podaj ten koniec tego przedziału, który jest liczbą niewymierną.
Odpowiedź:
m\sqrt{n}=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.2 pkt)
Odpowiedzi:
A. \left(-\infty,p\right\rangle
B. \left\langle p,+\infty\right)
C. \left(p, q\right)
D. \left\langle p, q \right\rangle
Zadanie 6. 1 pkt ⋅ Numer: pp-11039 ⋅ Poprawnie: 241/289 [83%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Punkt
(-2,-6) jest wierzchołkiem paraboli.
Punkt o współrzędnych
P=(0,-2) należy do tej
paraboli.
Zatem zbiorem wartości funkcji, której wykresem jest ta parabola jest:
Odpowiedzi:
A. (-\infty,6\rangle
B. (-\infty,-6\rangle
C. \langle -6,+\infty)
D. \langle 6,+\infty)
Zadanie 7. 1 pkt ⋅ Numer: pp-11505 ⋅ Poprawnie: 441/844 [52%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
(1 pkt)
Zbiorem wartości funkcji określonej wzorem
f(x)=-3(x+2011)^2+m-10
jest przedział
(-\infty, 2021\rangle .
Wówczas liczba m jest równa:
Odpowiedzi:
A. 2041
B. 2051
C. 2031
D. 2011
Zadanie 8. 1 pkt ⋅ Numer: pp-11057 ⋅ Poprawnie: 399/627 [63%]
Rozwiąż
Podpunkt 8.1 (0.5 pkt)
» Wierzchołek paraboli o równaniu
y=(-1+4x)(x+4) ma współrzędne
(x_w,y_w) .
Wyznacz współrzędną x_w .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 1 pkt ⋅ Numer: pp-11042 ⋅ Poprawnie: 372/570 [65%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Miejscami zerowymi funkcji kwadratowej są liczby
2
oraz
1 . Do wykresu tej funkcji należy punkt
A=(-3,40) . Zapisz wzór tej funkcji w postaci iloczynowej
y=a(x-x_1)(x-x_2) .
Podaj współczynnik a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-11075 ⋅ Poprawnie: 99/170 [58%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Dana jest funkcja kwadratowa określona wzorem
f(x)=(5-x)(3x+3) .
Wierzchołek wykresu tej funkcji należy do prostej określonej równaniem
x=m .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-11064 ⋅ Poprawnie: 290/480 [60%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Wykres funkcji kwadratowej określonej wzorem
y=ax^2+bx+c
pokazano na rysunku:
Podaj współczynnik a i b .
Odpowiedzi:
Zadanie 12. 1 pkt ⋅ Numer: pp-11534 ⋅ Poprawnie: 216/314 [68%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
(1 pkt)
Jeden z poniższych wzorów opisuje funkcję postaci
y=ax^2+bx+c , której wykres pokazano na rysunku:
Wskaż ten wzór:
Odpowiedzi:
A. y=a(x-2)^2-1
B. y=a(x+1)^2+2
C. y=a(x-2)^2+1
D. y=a(x-1)^2+2
E. y=a(x-1)^2-2
F. y=a(x+1)^2-2
Zadanie 13. 1 pkt ⋅ Numer: pp-11000 ⋅ Poprawnie: 64/93 [68%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Jeśli wykres funkcji kwadratowej określonej wzorem
f(x)=x^2+4x+m-7
przecina prostą o równaniu
y=-3 , to parametr
m należy do pewnego przedziału liczbowego nieograniczonego.
Podaj najmniejszą lub największą liczbę całkowitą z tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 14. 1 pkt ⋅ Numer: pp-10988 ⋅ Poprawnie: 72/95 [75%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
» Wyznacz najmniejszą wartość funkcji kwadratowej określonej wzorem
f(x)=x^2+12x .
Odpowiedź:
f_{min}(x)=
(wpisz liczbę całkowitą)
Zadanie 15. 1 pkt ⋅ Numer: pp-11067 ⋅ Poprawnie: 144/278 [51%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
« Rozpatrujemy prostokąty o obwodzie
60 . Na takim
prostokącie o największym polu powierzchni opisano okrąg.
Oblicz długość promienia tego okręgu.
Odpowiedź:
Zadanie 16. 1 pkt ⋅ Numer: pp-10972 ⋅ Poprawnie: 712/883 [80%]
Rozwiąż
Podpunkt 16.1 (1 pkt)
Wiadomo, że
16x^2+8x+1=0 .
Oblicz x .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 17. 1 pkt ⋅ Numer: pp-10969 ⋅ Poprawnie: 80/139 [57%]
Rozwiąż
Podpunkt 17.1 (1 pkt)
Punkt
M=(a,-2\cdot a) należy do wykresu funkcji
f(x)=(1-a)x-a .
Wyznacz najmniejsze możliwe i największe możliwe a .
Odpowiedzi:
Zadanie 18. 1 pkt ⋅ Numer: pp-10968 ⋅ Poprawnie: 354/571 [61%]
Rozwiąż
Podpunkt 18.1 (1 pkt)
Ile rozwiązań całkowitych ma równanie
\left(x^2-4\right)\left(x^2+6x-7\right)=0 .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 19. 1 pkt ⋅ Numer: pp-10958 ⋅ Poprawnie: 251/430 [58%]
Rozwiąż
Podpunkt 19.1 (1 pkt)
«« Najmniejszą liczbą całkowitą należącą do dziedziny funkcji
f(x)=\sqrt{-x^2+\frac{5}{2}x+\frac{3}{2}}
jest
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 20. 1 pkt ⋅ Numer: pp-10960 ⋅ Poprawnie: 252/533 [47%]
Rozwiąż
Podpunkt 20.1 (0.2 pkt)
Wyznacz dziedzinę funkcji określonej wzorem
f(x)=\sqrt{25-9x^2}
.
Zbiór ten jest postaci:
Odpowiedzi:
A. (p,q)
B. \langle p,+\infty)
C. (-\infty,p\rangle\cup\langle q,+\infty)
D. (-\infty,p\rangle
E. \langle p,q\rangle
F. (p,+\infty)
Podpunkt 20.2 (0.8 pkt)
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Rozwiąż