Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11595 ⋅ Poprawnie: 119/162 [73%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=ax^2
należy punkt o współrzędnych
(3\sqrt{2},144\sqrt{7}) .
Wyznacz współczynnik a .
Odpowiedź:
a=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11031 ⋅ Poprawnie: 419/591 [70%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Wierzchołkiem paraboli, która jest wykresem funkcji
f
jest punkt
W=(-1,-3) .
Wówczas:
Odpowiedzi:
T/N : f(-5)=f(3)
T/N : f(-6)=f(5)
T/N : f(-5)=f(4)
Zadanie 3. 1 pkt ⋅ Numer: pp-10979 ⋅ Poprawnie: 172/316 [54%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Dana jest funkcja
f określona wzorem
f(x)=-4(x-3)^2+4 .
Wyznacz największą wartość funkcji określonej wzorem h(x)=f(x-4)-5 .
Odpowiedź:
h_{max}(x)=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11052 ⋅ Poprawnie: 812/1143 [71%]
Rozwiąż
Podpunkt 4.1 (0.8 pkt)
Zbiorem wartości funkcji kwadratowej
y=-x^2-2 x-3 jest pewien przedział liczbowy.
Podaj ten koniec tego przedziału, który jest liczbą całkowitą.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 4.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A. \frac{3}{4}
B. -\frac{1}{2}
C. \frac{1}{2}
D. -\frac{3}{4}
E. +\infty
F. -\infty
Zadanie 5. 1 pkt ⋅ Numer: pp-11032 ⋅ Poprawnie: 203/352 [57%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Funkcja kwadratowa
g spełnia warunek
g(-8)=g(-3) . Osią symetrii wykresu tej funkcji
jest prosta określona równaniem
x+m=0 .
Wyznacz wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 1 pkt ⋅ Numer: pp-11044 ⋅ Poprawnie: 141/222 [63%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Wykres funkcji kwadratowej
g przecina oś
Ox w dwóch punktach.
Funkcja g opisana jest wzorem:
Odpowiedzi:
A. g(x)=5(x+10)^2+3
B. g(x)=5(x-5)^2+11
C. g(x)=-6(x+5)^2-1
D. g(x)=-7(x+10)^2+\sqrt{12}
Zadanie 7. 1 pkt ⋅ Numer: pp-11505 ⋅ Poprawnie: 439/842 [52%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
(1 pkt)
Zbiorem wartości funkcji określonej wzorem
f(x)=-5(x+2011)^2+m-10
jest przedział
(-\infty, 2021\rangle .
Wówczas liczba m jest równa:
Odpowiedzi:
A. 2051
B. 2031
C. 2041
D. 2011
Zadanie 8. 1 pkt ⋅ Numer: pp-10980 ⋅ Poprawnie: 201/342 [58%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Liczby
4 i
\frac{9}{2} są miejscami
zerowymi funkcji określonej wzorem
g(x)=ax^2-\frac{51}{2}x+54 .
Wyznacz wartość współczynnika a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-10999 ⋅ Poprawnie: 101/166 [60%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Zbiorem wartości funkcji kwadratowej
f
określonej wzorem
f(x)=m(x+6)(x+2)
jest przedział liczbowy
\langle -12,+\infty) , a rozwiązaniem
nierówności
f(x) \lessdot 0 przedział
(-6,-2) .
Wyznacz współczynnik m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-11078 ⋅ Poprawnie: 195/345 [56%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Dana jest funkcja
f(x)=-3(x+8)(x+3) .
Wyznacz maksymalny przedział, w którym funkcja
f jest
rosnąca.
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-11016 ⋅ Poprawnie: 400/609 [65%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
« Funkcja
f , której wykres pokazano na rysunku
zdefiniowana jest wzorem:
Odpowiedzi:
A. f(x)=-\frac{5}{4}\left(x-\frac{5}{2}\right)\left(x+\frac{1}{2}\right)
B. f(x)=-\frac{4}{5}\left(x+\frac{5}{2}\right)\left(x+\frac{1}{2}\right)
C. f(x)=-\frac{4}{5}\left(x-\frac{5}{2}\right)\left(x+\frac{1}{2}\right)
D. f(x)=-\frac{4}{5}\left(x-\frac{5}{2}\right)\left(x-\frac{1}{2}\right)
Zadanie 12. 1 pkt ⋅ Numer: pp-11047 ⋅ Poprawnie: 118/159 [74%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Ile punktów wspólnych z osią
Ox ma wykres funkcji
kwadratowej
f(x)=-1-2(x-3)^2 :
Odpowiedzi:
Zadanie 13. 1 pkt ⋅ Numer: pp-11051 ⋅ Poprawnie: 40/77 [51%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Wykres funkcji
y=x^2-8 ma dokładnie jeden punkt
wspólny z prostą:
Odpowiedzi:
A. y=8
B. y=-8x+1
C. x=-2
D. y=8x
Zadanie 14. 1 pkt ⋅ Numer: pp-10985 ⋅ Poprawnie: 229/342 [66%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Dana jest funkcja
g(x)=-\frac{1}{3}(x+6)x , gdzie
x\in\langle -9,-6\rangle .
Wyznacz f_{min} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 15. 1 pkt ⋅ Numer: pp-11645 ⋅ Poprawnie: 37/67 [55%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
« Rzucono pionowo do góry kamień z prędkością początkową
10\ m/s .
Wysokość
s\ [m] , jaką osiągnie ten kamień po
t
sekundach czasu opisuje wzór
s(t)=8t-4t^2 .
Podaj maksymalną wysokość jaką osiągnie ten kamień.
Odpowiedź:
s_{max}(t)=
(wpisz liczbę całkowitą)
Zadanie 16. 1 pkt ⋅ Numer: pp-10970 ⋅ Poprawnie: 187/259 [72%]
Rozwiąż
Podpunkt 16.1 (1 pkt)
« W turnieju szachowym, w którym uczestniczy
......... szachistów, każdy uczestnik rozgrywa jedną partię z każdym
innym uczestnikiem. Łącznie rozegrano w tym turnieju
561
partii szachów.
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 17. 1 pkt ⋅ Numer: pp-10967 ⋅ Poprawnie: 118/168 [70%]
Rozwiąż
Podpunkt 17.1 (1 pkt)
» Pole powierzchni trójkąta prostokątnego jest równe
84 , a jedna z jego przyprostokątnych jest o
17 dłuższa od drugiej.
Oblicz kwadrat długości przeciwprostokątnej tego trójkąta.
Odpowiedź:
c^2=
(wpisz liczbę całkowitą)
Zadanie 18. 1 pkt ⋅ Numer: pp-10974 ⋅ Poprawnie: 173/270 [64%]
Rozwiąż
Podpunkt 18.1 (1 pkt)
Ile rozwiązań ma równanie
(x^2+3x+2)\sqrt{16-x^2}=0 ?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 19. 1 pkt ⋅ Numer: pp-10958 ⋅ Poprawnie: 250/427 [58%]
Rozwiąż
Podpunkt 19.1 (1 pkt)
«« Najmniejszą liczbą całkowitą należącą do dziedziny funkcji
f(x)=\sqrt{-x^2-\frac{3}{2}x+\frac{65}{2}}
jest
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 20. 1 pkt ⋅ Numer: pp-10963 ⋅ Poprawnie: 110/233 [47%]
Rozwiąż
Podpunkt 20.1 (0.2 pkt)
Funkcja opisana jest wzorem
f(x)=2x^2+5x+3 .
Zbiorem rozwiązań nierówności
f(x) > f(-x)
jest pewien przedział liczbowy.
Przedział ten ma postać:
Odpowiedzi:
A. (-\infty,p)
B. (-\infty,p\rangle
C. (p, q)
D. (p,+\infty)
E. \langle p,+\infty)
F. (p,q\rangle
Podpunkt 20.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Rozwiąż