Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11644 ⋅ Poprawnie: 34/94 [36%]
Rozwiąż
Podpunkt 1.1 (0.5 pkt)
» Do wykresu funkcji kwadratowej określonej wzorem
y=ax^2+bx+c
należą punkty o współrzędnych
(-2,12) ,
(2,10) i
(4,33) .
Wyznacz współczynnik b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-10993 ⋅ Poprawnie: 572/825 [69%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Funkcja kwadratowa określona jest wzorem
f(x)=x^2-8x+c .
Jeżeli
f(-5)=71 , to
f(1)=......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11002 ⋅ Poprawnie: 730/998 [73%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Funkcja kwadratowa
f(x)=x^2+bx+c jest malejąca dla
x\in(-\infty,6\rangle , a zbiorem jej wartości
jest przedział
\langle 1,+\infty) .
Postać kanoniczna tej funkcji opisana jest wzorem
y=(x-p)^2+q .
Podaj wartości parametrów p i q .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-11052 ⋅ Poprawnie: 815/1146 [71%]
Rozwiąż
Podpunkt 4.1 (0.8 pkt)
Zbiorem wartości funkcji kwadratowej
y=-x^2+10 x-24 jest pewien przedział liczbowy.
Podaj ten koniec tego przedziału, który jest liczbą całkowitą.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 4.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -\infty
B. -\frac{1}{2}
C. \frac{1}{2}
D. +\infty
E. \frac{3}{4}
F. -\frac{3}{4}
Zadanie 5. 1 pkt ⋅ Numer: pp-11037 ⋅ Poprawnie: 210/336 [62%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Gdy przesuniemy wykres funkcji
f(x)=x^2+\frac{5}{2} o
p=1 jednostek w lewo i
q=8 jednostek w dół,
to otrzymamy wykres funkcji:
Odpowiedzi:
A. y=(x+8)^2+\frac{7}{2}
B. y=(x+1)^2-\frac{11}{2}
C. y=(x-1)^2+\frac{21}{2}
D. y=(x-1)^2-\frac{11}{2}
Zadanie 6. 1 pkt ⋅ Numer: pp-11039 ⋅ Poprawnie: 241/289 [83%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Punkt
(2,4) jest wierzchołkiem paraboli.
Punkt o współrzędnych
P=(0,-12) należy do tej
paraboli.
Zatem zbiorem wartości funkcji, której wykresem jest ta parabola jest:
Odpowiedzi:
A. \langle 12,+\infty)
B. (-\infty,4\rangle
C. (-\infty,12\rangle
D. \langle -12,+\infty)
Zadanie 7. 1 pkt ⋅ Numer: pp-10997 ⋅ Poprawnie: 199/271 [73%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Wskaż funkcję, która nie przyjmuje wartości ujemnych:
Odpowiedzi:
A. y=-5(x+6)^2-9
B. y=(x+5)^2-1
C. y=6(x-3)^2-6
D. y=3+(-7-x)^2
Zadanie 8. 1 pkt ⋅ Numer: pp-10982 ⋅ Poprawnie: 57/129 [44%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Wyznacz sumę miejsc zerowych funkcji określonej wzorem
f(x)=\frac{-x^2+6x-5}{\sqrt{5-x}}
.
Odpowiedź:
x_1+x_2=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-11001 ⋅ Poprawnie: 534/743 [71%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Jeżeli miejscami zerowymi funkcji kwadratowej są liczby
-4 oraz
6 , a
wierzchołek paraboli będącej jej wykresem ma współrzędne
(1,-75) , to wzór tej funkcji można zapisać
w postaci:
Odpowiedzi:
A. f(x)=3(x-4)(x-6)
B. f(x)=\frac{9}{4}(x-4)(x-6)
C. f(x)=3(x+4)(x+6)
D. f(x)=3(x+4)(x-6)
Zadanie 10. 1 pkt ⋅ Numer: pp-11075 ⋅ Poprawnie: 99/170 [58%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Dana jest funkcja kwadratowa określona wzorem
f(x)=(5-x)(2x-6) .
Wierzchołek wykresu tej funkcji należy do prostej określonej równaniem
x=m .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-11020 ⋅ Poprawnie: 57/112 [50%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
«« Funkcja kwadratowa spełnia warunki:
y=px^2+qx+r i
p\cdot r \lessdot 0 .
Wykres tej funkcji pokazano na rysunku:
Odpowiedzi:
Zadanie 12. 1 pkt ⋅ Numer: pp-11026 ⋅ Poprawnie: 241/318 [75%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Dana jest funkcja
g:\mathbb{R}\to\mathbb{R} określona wzorem
g(x)=x^2-3+2x .
Wykres funkcji g przedstawia rysunek:
Odpowiedzi:
Zadanie 13. 1 pkt ⋅ Numer: pp-11035 ⋅ Poprawnie: 24/29 [82%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Daja jest funkcja kwadratowa g określona jest wzorem
g(x)=x^2+3 . Jej wykres ma dokładnie jeden punkt
wspólny z prostą y=-9 , gdy przesuniemy go o:
Odpowiedzi:
A. 12 jednostek w prawo wzdłuż osi Ox
B. 12 jednostek w górę wzdłuż osi Oy
C. 3 jednostki w lewo wzdłuż osi Ox
D. 12 jednostek w dół wzdłuż osi Oy
Zadanie 14. 1 pkt ⋅ Numer: pp-11465 ⋅ Poprawnie: 481/946 [50%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
» Najmniejszą wartość w przedziale
\langle 5, 9\rangle funkcja kwadratowa
f(x)=-\left(x-6\right)^{2}-5
przyjmuje dla argumentu
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 15. 1 pkt ⋅ Numer: pp-11645 ⋅ Poprawnie: 40/72 [55%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
« Rzucono pionowo do góry kamień z prędkością początkową
10\ m/s .
Wysokość
s\ [m] , jaką osiągnie ten kamień po
t
sekundach czasu opisuje wzór
s(t)=16t-8t^2 .
Podaj maksymalną wysokość jaką osiągnie ten kamień.
Odpowiedź:
s_{max}(t)=
(wpisz liczbę całkowitą)
Zadanie 16. 1 pkt ⋅ Numer: pp-10975 ⋅ Poprawnie: 326/498 [65%]
Rozwiąż
Podpunkt 16.1 (1 pkt)
Liczba ujemna spełnia równanie
x^2-2x-50=0 .
Oblicz kwadrat tej liczby.
Odpowiedź:
x^2=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 17. 1 pkt ⋅ Numer: pp-10969 ⋅ Poprawnie: 80/139 [57%]
Rozwiąż
Podpunkt 17.1 (1 pkt)
Punkt
M=(a,-5\cdot a) należy do wykresu funkcji
f(x)=(1-a)x-a .
Wyznacz najmniejsze możliwe i największe możliwe a .
Odpowiedzi:
Zadanie 18. 1 pkt ⋅ Numer: pp-10974 ⋅ Poprawnie: 178/276 [64%]
Rozwiąż
Podpunkt 18.1 (1 pkt)
Ile rozwiązań ma równanie
(x^2-3x+2)\sqrt{9-x^2}=0 ?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 19. 1 pkt ⋅ Numer: pp-10962 ⋅ Poprawnie: 385/588 [65%]
Rozwiąż
Podpunkt 19.1 (1 pkt)
Iloczyn
(x-7)(2-x) jest nieujemny, wtedy i tylko wtedy, gdy liczba
x
należy do zbioru
A . Zapisz zbiór
A
w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 20. 1 pkt ⋅ Numer: pp-10960 ⋅ Poprawnie: 253/534 [47%]
Rozwiąż
Podpunkt 20.1 (0.2 pkt)
Wyznacz dziedzinę funkcji określonej wzorem
f(x)=\sqrt{36-9x^2}
.
Zbiór ten jest postaci:
Odpowiedzi:
A. (p,+\infty)
B. (-\infty,p\rangle\cup\langle q,+\infty)
C. (-\infty,p\rangle
D. \langle p,+\infty)
E. \langle p,q\rangle
F. (p,q)
Podpunkt 20.2 (0.8 pkt)
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Rozwiąż