Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11643 ⋅ Poprawnie: 93/191 [48%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=x^2+bx+c
należą punkty o współrzędnych
(0,8) i
(-7,-13) .
Wyznacz współczynniki b i c .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-10990 ⋅ Poprawnie: 262/408 [64%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Funkcja
f(x)=x^2-12x+36
dla argumentu
\sqrt{6} przyjmuje wartość
\left(......\cdot\sqrt{6}-6\right)^2 .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-10991 ⋅ Poprawnie: 197/342 [57%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Zbiorem wartości funkcji kwadratowej
f(x)=-x^2+ax-\frac{a^2}{4}-a jest przedział
(-\infty,-15\rangle .
Wyznacz wartość parametru a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11030 ⋅ Poprawnie: 898/1172 [76%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wskaż funkcję kwadratową, której zbiorem wartości jest przedział
\langle -1,+\infty) :
Odpowiedzi:
A. y=(x-5)^2+1
B. y=-2(x+1)^2+1
C. y=(x+6)^2+1
D. y=-(x+2)^2-1
E. y=-(x-5)^2-1
F. y=(x+1)^2-1
Zadanie 5. 1 pkt ⋅ Numer: pp-11029 ⋅ Poprawnie: 232/353 [65%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
» Prosta o równaniu
5x+6=0 jest osią symetrii
paraboli:
Odpowiedzi:
A. y=-5x^2-6x-4
B. y=-7x^2-\frac{72}{5}x-4
C. y=-5x^2+4x-4
D. y=-5x^2-4x-4
E. y=-5x^2-12x-4
F. y=-7x^2+\frac{72}{5}x-4
Zadanie 6. 1 pkt ⋅ Numer: pp-11060 ⋅ Poprawnie: 133/184 [72%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Wierzchołek paraboli o równaniu
y=(x-4)^2+2m+2
należy do prostej o równaniu
y=-8 .
Wyznacz wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-11083 ⋅ Poprawnie: 82/186 [44%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
» Dla
x=-4 funkcja
f(x)=x^2+bx+c przyjmuje wartość najmniejszą równą
-1 .
Wyznacz wartość współczynnika c .
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-11041 ⋅ Poprawnie: 365/693 [52%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Wyznacz największa wartość funkcji określonej wzorem
y=-3(x+2)(x+8) .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 1 pkt ⋅ Numer: pp-11042 ⋅ Poprawnie: 369/567 [65%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Miejscami zerowymi funkcji kwadratowej są liczby
-2
oraz
-8 . Do wykresu tej funkcji należy punkt
A=(3,-110) . Zapisz wzór tej funkcji w postaci iloczynowej
y=a(x-x_1)(x-x_2) .
Podaj współczynnik a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-11078 ⋅ Poprawnie: 195/345 [56%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Dana jest funkcja
f(x)=-3(x-5)(x+2) .
Wyznacz maksymalny przedział, w którym funkcja
f jest
rosnąca.
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-11007 ⋅ Poprawnie: 387/557 [69%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
» Wyznacz maksymalny przedział, w którym funkcja określona wzorem
f(x)=x^2-6x+\frac{7}{3}
jest rosnąca.
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 12. 1 pkt ⋅ Numer: pp-11046 ⋅ Poprawnie: 282/415 [67%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Wskaż wykres mający
3 punkty wspólne z osiami
układu współrzędnych:
Odpowiedzi:
A. y=6x^2-2x+7
B. y=-2(x-1)^2+1
C. y=-2x^2-3x-4
D. y=4x^2+4x+5
Zadanie 13. 1 pkt ⋅ Numer: pp-11035 ⋅ Poprawnie: 23/28 [82%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Daja jest funkcja kwadratowa g określona jest wzorem
g(x)=x^2+3 . Jej wykres ma dokładnie jeden punkt
wspólny z prostą y=-9 , gdy przesuniemy go o:
Odpowiedzi:
A. 3 jednostki w lewo wzdłuż osi Ox
B. 12 jednostek w prawo wzdłuż osi Ox
C. 12 jednostek w dół wzdłuż osi Oy
D. 12 jednostek w górę wzdłuż osi Oy
Zadanie 14. 1 pkt ⋅ Numer: pp-10985 ⋅ Poprawnie: 229/342 [66%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Dana jest funkcja
g(x)=-\frac{1}{4}(x+6)x , gdzie
x\in\langle -12,-9\rangle .
Wyznacz f_{min} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 15. 1 pkt ⋅ Numer: pp-11645 ⋅ Poprawnie: 37/67 [55%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
« Rzucono pionowo do góry kamień z prędkością początkową
10\ m/s .
Wysokość
s\ [m] , jaką osiągnie ten kamień po
t
sekundach czasu opisuje wzór
s(t)=18t-t^2 .
Podaj maksymalną wysokość jaką osiągnie ten kamień.
Odpowiedź:
s_{max}(t)=
(wpisz liczbę całkowitą)
Zadanie 16. 1 pkt ⋅ Numer: pp-10975 ⋅ Poprawnie: 325/496 [65%]
Rozwiąż
Podpunkt 16.1 (1 pkt)
Liczba ujemna spełnia równanie
x^2-2x-32=0 .
Oblicz kwadrat tej liczby.
Odpowiedź:
x^2=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 17. 1 pkt ⋅ Numer: pp-10976 ⋅ Poprawnie: 665/871 [76%]
Rozwiąż
Podpunkt 17.1 (0.5 pkt)
» Równanie
(2x-1)(x+2)=(2x-1)(2x-4) ma dwa
rozwiązania.
Wyznacz najmniejsze rozwiązanie tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 17.2 (0.5 pkt)
Wyznacz największe rozwiązanie tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 18. 1 pkt ⋅ Numer: pp-10974 ⋅ Poprawnie: 173/270 [64%]
Rozwiąż
Podpunkt 18.1 (1 pkt)
Ile rozwiązań ma równanie
(x^2+5x+4)\sqrt{9-x^2}=0 ?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 19. 1 pkt ⋅ Numer: pp-10962 ⋅ Poprawnie: 383/585 [65%]
Rozwiąż
Podpunkt 19.1 (1 pkt)
Iloczyn
(x+6)(-2-x) jest nieujemny, wtedy i tylko wtedy, gdy liczba
x
należy do zbioru
A . Zapisz zbiór
A
w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 20. 1 pkt ⋅ Numer: pp-10957 ⋅ Poprawnie: 641/967 [66%]
Rozwiąż
Podpunkt 20.1 (0.2 pkt)
» Wyznacz dziedzinę funkcji określonej wzorem
f(x)=\frac{x-1}{\sqrt{x^2+9x+14}}
.
Zbiór ten ma postać:
Odpowiedzi:
A. \mathbb{R}-\{p, q\}
B. \mathbb{R}-\{p\}
C. (p,q)
D. (-\infty,p)\cup(q,+\infty)
E. \mathbb{R}-(p,q)
F. \langle p,q\rangle
Podpunkt 20.2 (0.8 pkt)
Zbiór
A jest zbiorem wszystkich liczb nie należących do dziedziny
tej funkcji.
Wyznacz najmniejszą i największą liczbę w zbiorze A .
Odpowiedzi:
Rozwiąż