Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11640 ⋅ Poprawnie: 84/117 [71%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wykres funkcji kwadratowej określonej wzorem
y=-\frac{3}{5}(x-2)^2-3 otrzymano przesuwając wykres funkcji
y=-\frac{3}{5}x^2 o
p jednostek
wzdłuż osi
Ox i o
q jednostek
wzdłuż osi
Oy , przy czym liczby
p i
q mogą być ujemne.
Podaj liczby p i q .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11059 ⋅ Poprawnie: 235/414 [56%]
Rozwiąż
Podpunkt 2.1 (0.5 pkt)
Parabola
y=(-8-10x)^2-8
ma wierzchołek w punkcie o współrzędnych
\left(x_w,y_w\right) .
Wyznacz współrzędną x_w .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11430 ⋅ Poprawnie: 985/1244 [79%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wykresem funkcji kwadratowej
f(x)=x^2+10x-4
jest parabola, której wierzchołkiem jest punkt o współrzędnych
\left(x_w, y_w\right) .
Podaj współrzędne wierzchołka paraboli x_w i
y_w .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-11006 ⋅ Poprawnie: 345/643 [53%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Wskaż funkcję, która w przedziale
(-\infty,7) jest malejąca:
Odpowiedzi:
A. y=-(x+7)^2+7
B. y=(x-7)^2-5
C. y=(x-5)^2+7
D. y=-(x-7)^2+5
E. y=(x+7)^2-5
F. y=(x+5)^2+7
Zadanie 5. 1 pkt ⋅ Numer: pp-11038 ⋅ Poprawnie: 136/229 [59%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Gdy przesuniemy wykres funkcji
f(x)=-2(x+6)^2-\frac{5}{2} o
p=3 jednostek w lewo i
q=9 jednostek w górę,
to otrzymamy wykres funkcji:
Odpowiedzi:
A. y=-2(x+9)^2-\frac{23}{2}
B. y=-2(x+3)^2+\frac{13}{2}
C. y=-2(x+15)^2+\frac{1}{2}
D. y=-2(x+9)^2+\frac{13}{2}
Zadanie 6. 1 pkt ⋅ Numer: pp-11060 ⋅ Poprawnie: 133/184 [72%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Wierzchołek paraboli o równaniu
y=(x+8)^2+2m-3
należy do prostej o równaniu
y=8 .
Wyznacz wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-10997 ⋅ Poprawnie: 199/271 [73%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Wskaż funkcję, która nie przyjmuje wartości ujemnych:
Odpowiedzi:
A. y=6(x-5)^2-6
B. y=2+(-2-x)^2
C. y=-6(x+2)^2+2
D. y=(x+8)^2-3
Zadanie 8. 1 pkt ⋅ Numer: pp-10982 ⋅ Poprawnie: 57/128 [44%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Wyznacz sumę miejsc zerowych funkcji określonej wzorem
f(x)=\frac{-x^2+x+30}{\sqrt{6-x}}
.
Odpowiedź:
x_1+x_2=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-10996 ⋅ Poprawnie: 345/564 [61%]
Rozwiąż
Podpunkt 9.1 (0.2 pkt)
Zbiór tych wszystkich wartości
m , dla których funkcja kwadratowa
określona wzorem
f(x)=x^2+7x+m nie ma ani
jednego miejsca zerowego jest przedziałem liczbowym.
Przedział ten ma postać:
Odpowiedzi:
A. (p, q)
B. \langle p, +\infty)
C. \langle p, q\rangle
D. (-\infty, p\rangle
E. (-\infty, p)
F. (p, +\infty)
Podpunkt 9.2 (0.8 pkt)
Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-10987 ⋅ Poprawnie: 50/93 [53%]
Rozwiąż
Podpunkt 10.1 (0.2 pkt)
Wykres funkcji
g(x)=5(m-3)+2x+x^2 nie przecina osi
Ox , wtedy i tylko wtedy, gdy
m
należy do pewnego przedziału.
Przedział ten ma postać:
Odpowiedzi:
A. \langle p,+\infty)
B. \langle p,q\rangle
C. (p,q)
D. (p,+\infty)
E. (-\infty,p)
F. (-\infty,p\rangle
Podpunkt 10.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-11064 ⋅ Poprawnie: 290/480 [60%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Wykres funkcji kwadratowej określonej wzorem
y=ax^2+bx+c
pokazano na rysunku:
Podaj współczynnik a i b .
Odpowiedzi:
Zadanie 12. 1 pkt ⋅ Numer: pp-11467 ⋅ Poprawnie: 90/180 [50%]
Rozwiąż
Podpunkt 12.1 (0.2 pkt)
Zbiorem wartości funkcji
y=-(x-10)(x+10)
określonej dla
x\in(1,4\rangle jest pewien przedział liczbowy.
Przedział ten ma postać:
Odpowiedzi:
A. (-\infty,p\rangle
B. (p,q\rangle
C. \langle p,q)
D. (p,q)
E. \langle p,q\rangle
F. (p,+\infty)
Podpunkt 12.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 13. 1 pkt ⋅ Numer: pp-11081 ⋅ Poprawnie: 41/75 [54%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
» Wykres funkcji kwadratowej opisanej wzorem
g(x)=-x^2+3x+59
przecięto prostą o równaniu
y=5 . Niech
P i
Q będą punktami
przecięcia tych wykresów.
Oblicz |PQ| .
Odpowiedź:
|PQ|=
(wpisz liczbę całkowitą)
Zadanie 14. 1 pkt ⋅ Numer: pp-11409 ⋅ Poprawnie: 221/338 [65%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej
f :
Podaj największą wartość funkcji f w przedziale
\langle 1,4\rangle .
Odpowiedź:
f_{max}(x)=
(wpisz liczbę całkowitą)
Zadanie 15. 1 pkt ⋅ Numer: pp-11067 ⋅ Poprawnie: 144/278 [51%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
« Rozpatrujemy prostokąty o obwodzie
84 . Na takim
prostokącie o największym polu powierzchni opisano okrąg.
Oblicz długość promienia tego okręgu.
Odpowiedź:
Zadanie 16. 1 pkt ⋅ Numer: pp-11065 ⋅ Poprawnie: 60/108 [55%]
Rozwiąż
Podpunkt 16.1 (1 pkt)
Funkcja
f określona jest wzorem
f(x)=\frac{x^2-2x-80}{x+2} .
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : f nie ma miejsc zerowych
T/N : f przyjmuje wartości dodatnie
T/N : f ma zbiór \mathbb{R} za dziedzinę
Zadanie 17. 1 pkt ⋅ Numer: pp-10969 ⋅ Poprawnie: 80/139 [57%]
Rozwiąż
Podpunkt 17.1 (1 pkt)
Punkt
M=(a,9\cdot a) należy do wykresu funkcji
f(x)=(1-a)x-a .
Wyznacz najmniejsze możliwe i największe możliwe a .
Odpowiedzi:
Zadanie 18. 1 pkt ⋅ Numer: pp-11550 ⋅ Poprawnie: 112/170 [65%]
Rozwiąż
Podpunkt 18.1 (1 pkt)
Oblicz iloczyn wszystkich rozwiązań równania
(x^2-7)(x-4)^2(x^2+x-6)=0 .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 19. 1 pkt ⋅ Numer: pp-10965 ⋅ Poprawnie: 537/881 [60%]
Rozwiąż
Podpunkt 19.1 (1 pkt)
Wskaż te nierówności, których rozwiązaniem jest zbiór
\mathbb{R} :
Odpowiedzi:
T/N : x^2+x+\frac{1}{4} > 0
T/N : x^2+2x-3 \geqslant 0
Zadanie 20. 1 pkt ⋅ Numer: pp-10964 ⋅ Poprawnie: 70/115 [60%]
Rozwiąż
Podpunkt 20.1 (1 pkt)
Ile liczb całkowitych spełnia nierówność
9\pi\cdot x > 3x^2 :
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Rozwiąż