Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11643 ⋅ Poprawnie: 93/191 [48%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=x^2+bx+c należą punkty o współrzędnych (5,7) i (-2,-14).

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11059 ⋅ Poprawnie: 233/411 [56%] Rozwiąż 
Podpunkt 2.1 (0.5 pkt)
 Parabola y=(9+6x)^2-9 ma wierzchołek w punkcie o współrzędnych \left(x_w,y_w\right).

Wyznacz współrzędną x_w.

Odpowiedź:
x_w=
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (0.5 pkt)
 Wyznacz współrzędną y_w.
Odpowiedź:
y_w=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10991 ⋅ Poprawnie: 197/342 [57%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zbiorem wartości funkcji kwadratowej f(x)=-x^2+ax-\frac{a^2}{4}-a jest przedział (-\infty,-4\rangle.

Wyznacz wartość parametru a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11052 ⋅ Poprawnie: 812/1143 [71%] Rozwiąż 
Podpunkt 4.1 (0.8 pkt)
 Zbiorem wartości funkcji kwadratowej y=-x^2+2 x-3 jest pewien przedział liczbowy.

Podaj ten koniec tego przedziału, który jest liczbą całkowitą.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 4.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. \frac{3}{4} B. \frac{1}{2}
C. +\infty D. -\frac{1}{2}
E. -\frac{3}{4} F. -\infty
Zadanie 5.  1 pkt ⋅ Numer: pp-11038 ⋅ Poprawnie: 134/227 [59%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Gdy przesuniemy wykres funkcji f(x)=-6(x-1)^2-\frac{1}{2} o p=6 jednostek w lewo i q=13 jednostek w górę, to otrzymamy wykres funkcji:
Odpowiedzi:
A. y=-6(x+12)^2+\frac{11}{2} B. y=-6(x+5)^2-\frac{27}{2}
C. y=-6(x-7)^2+\frac{25}{2} D. y=-6(x+5)^2+\frac{25}{2}
Zadanie 6.  1 pkt ⋅ Numer: pp-11039 ⋅ Poprawnie: 241/289 [83%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Punkt (1,-3) jest wierzchołkiem paraboli. Punkt o współrzędnych P=(0,-11) należy do tej paraboli.

Zatem zbiorem wartości funkcji, której wykresem jest ta parabola jest:

Odpowiedzi:
A. \langle 11,+\infty) B. \langle -11,+\infty)
C. (-\infty,-3\rangle D. (-\infty,11\rangle
Zadanie 7.  1 pkt ⋅ Numer: pp-11083 ⋅ Poprawnie: 82/186 [44%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Dla x=1 funkcja f(x)=x^2+bx+c przyjmuje wartość najmniejszą równą -2.

Wyznacz wartość współczynnika c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-10980 ⋅ Poprawnie: 201/342 [58%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Liczby 4 i \frac{1}{2} są miejscami zerowymi funkcji określonej wzorem g(x)=ax^2-9x+4.

Wyznacz wartość współczynnika a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-10999 ⋅ Poprawnie: 101/166 [60%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Zbiorem wartości funkcji kwadratowej f określonej wzorem f(x)=m(x+8)(x+2) jest przedział liczbowy \langle -27,+\infty), a rozwiązaniem nierówności f(x) \lessdot 0 przedział (-8,-2).

Wyznacz współczynnik m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11068 ⋅ Poprawnie: 164/293 [55%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Prosta o równaniu x=mjest osią symetrii wykresu funkcji kwadratowej określonej wzorem f(x)=(-1+2x)(x-4).

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-11017 ⋅ Poprawnie: 336/557 [60%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
Dana jest funkcja określona wzorem g(x)=ax^2+bx+c. Postać iloczynowa funkcji g opisana jest wzorem g(x)=a(x+3)(x-1).

Wyznacz współczynnik c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-11467 ⋅ Poprawnie: 90/179 [50%] Rozwiąż 
Podpunkt 12.1 (0.2 pkt)
 Zbiorem wartości funkcji y=-(x-6)(x+6) określonej dla x\in(2,5\rangle jest pewien przedział liczbowy.

Przedział ten ma postać:

Odpowiedzi:
A. \langle p,q\rangle B. (p,q)
C. (p,+\infty) D. \langle p,q)
E. (p,q\rangle F. (-\infty,p\rangle
Podpunkt 12.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-11076 ⋅ Poprawnie: 82/119 [68%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Do wykresu której funkcji należy punkt o współrzędnych A=(1024, 0):
Odpowiedzi:
A. y=x^2-16384 B. y=(x+1024)^2
C. y=x^2+2048 D. y=(x+2048)(2x-2048)
Zadanie 14.  1 pkt ⋅ Numer: pp-10985 ⋅ Poprawnie: 229/342 [66%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Dana jest funkcja g(x)=-\frac{1}{4}(x+6)x, gdzie x\in\langle -6,-3\rangle.

Wyznacz f_{min}.

Odpowiedź:
f_{min}=
(wpisz dwie liczby całkowite)
Zadanie 15.  1 pkt ⋅ Numer: pp-11067 ⋅ Poprawnie: 143/276 [51%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 « Rozpatrujemy prostokąty o obwodzie 52. Na takim prostokącie o największym polu powierzchni opisano okrąg.

Oblicz długość promienia tego okręgu.

Odpowiedź:
R= \cdot
(wpisz trzy liczby całkowite)
Zadanie 16.  1 pkt ⋅ Numer: pp-10972 ⋅ Poprawnie: 711/882 [80%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 Wiadomo, że 4x^2+4x+1=0.

Oblicz x.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 17.  1 pkt ⋅ Numer: pp-10971 ⋅ Poprawnie: 130/195 [66%] Rozwiąż 
Podpunkt 17.1 (0.2 pkt)
 Równanie x^2-(k-1)x+16=0 z niewiadomą x ma dwa różne rozwiązania wtedy i tylko wtedy, gdy parametr k należy do zbioru A. Zapisz zbiór Aw postaci sumy przedziałów.

Zbiór A jest postaci:

Odpowiedzi:
A. \langle p,q\rangle B. (p,+\infty)
C. (-\infty,p) D. (-\infty,p)\cup(q,+\infty)
E. (-\infty,p)\cap(q,+\infty) F. (p,q)
Podpunkt 17.2 (0.8 pkt)
 Liczba p jest najmniejszym, a liczba q największym z końców liczbowych tych przedziałów.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 18.  1 pkt ⋅ Numer: pp-10973 ⋅ Poprawnie: 61/114 [53%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 » Dana jest funkcja f(x)= \begin{cases} -\frac{1}{3}x-1,\qquad x\in(-\infty,-15) \\ x^2-220,\qquad x\in\langle -15,+\infty) \end{cases} . Liczba rozwiązań równania f(x)=6 jest równa:
Odpowiedzi:
A. 1 B. 3
C. 2 D. 0
Zadanie 19.  1 pkt ⋅ Numer: pp-10961 ⋅ Poprawnie: 398/724 [54%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 « Suma wszystkich rozwiązań całkowitych nierówności (1-4x)(x+1)\geqslant 0 jest równa ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 20.  1 pkt ⋅ Numer: pp-10964 ⋅ Poprawnie: 68/113 [60%] Rozwiąż 
Podpunkt 20.1 (1 pkt)
 Ile liczb całkowitych spełnia nierówność 6\pi\cdot x > 4x^2:
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm