Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11596 ⋅ Poprawnie: 98/143 [68%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=ax^2 należy punkt o współrzędnych \left(4,\frac{16\sqrt{5}}{7}\right).

Wyznacz współczynnik a.

Odpowiedź:
a= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10990 ⋅ Poprawnie: 263/409 [64%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Funkcja f(x)=x^2-26x+169 dla argumentu \sqrt{13} przyjmuje wartość \left(......\cdot\sqrt{13}-13\right)^2.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10979 ⋅ Poprawnie: 173/317 [54%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Dana jest funkcja f określona wzorem f(x)=-6(x-4)^2+4.

Wyznacz największą wartość funkcji określonej wzorem h(x)=f(x-2)-6.

Odpowiedź:
h_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11009 ⋅ Poprawnie: 212/393 [53%] Rozwiąż 
Podpunkt 4.1 (0.2 pkt)
 « Maksymalny zbiór, w którym funkcja kwadratowa f(x)=-5(x-2)^2+8 jest rosnąca jest pewnym przedziałem liczbowym.

Przedział ten ma postać:

Odpowiedzi:
A. \langle p,q\rangle B. (-\infty,p\rangle
C. (-\infty,p) D. \langle p,+\infty)
E. (p,+\infty) F. (p,q)
Podpunkt 4.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11032 ⋅ Poprawnie: 205/354 [57%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Funkcja kwadratowa g spełnia warunek g(2)=g(12). Osią symetrii wykresu tej funkcji jest prosta określona równaniem x+m=0.

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-11061 ⋅ Poprawnie: 99/146 [67%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Oblicz odległość wierzchołka paraboli o równaniu y=x^2-3x+\frac{25}{4} od osi Ox.
Odpowiedź:
d= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-11082 ⋅ Poprawnie: 135/246 [54%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » W przedziale \langle -1,2\rangle funkcja y=3x^2+4x+3 osiąga wartość najmniejszą równą ......... .

Podaj brakującą liczbę.

Odpowiedź:
y_{min}=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-10980 ⋅ Poprawnie: 202/343 [58%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Liczby 5 i \frac{9}{2} są miejscami zerowymi funkcji określonej wzorem g(x)=ax^2-\frac{19}{2}x+\frac{45}{2}.

Wyznacz wartość współczynnika a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11001 ⋅ Poprawnie: 534/743 [71%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Jeżeli miejscami zerowymi funkcji kwadratowej są liczby 6 oraz 8, a wierzchołek paraboli będącej jej wykresem ma współrzędne (7,-3), to wzór tej funkcji można zapisać w postaci:
Odpowiedzi:
A. f(x)=\frac{9}{4}(x+6)(x-8) B. f(x)=3(x-6)(x+8)
C. f(x)=3(x+6)(x-8) D. f(x)=3(x-6)(x-8)
Zadanie 10.  1 pkt ⋅ Numer: pp-11506 ⋅ Poprawnie: 461/803 [57%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Osią symetrii paraboli będącej wykresem funkcji kwadratowej określonej równaniem f(x)=-\frac{1}{2}(x-756)(x+108), jest prosta określona: równaniem x-......=0.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-10966 ⋅ Poprawnie: 34/58 [58%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
« Zbiorem wartości funkcji y=-(x-3)(x+3) określonej dla x\in(1,4\rangle jest pewien przedział liczbowy, którego lewy koniec jest równy p, a prawy koniec jest równy q.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-11469 ⋅ Poprawnie: 90/139 [64%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « Układ równań \begin{cases} y=m \\ y=2x^2-4x-10 \end{cases} ma dokładnie jedno rozwiązanie.

Wyznacz wartość parametru m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-11081 ⋅ Poprawnie: 41/75 [54%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 » Wykres funkcji kwadratowej opisanej wzorem g(x)=-x^2-5x+57 przecięto prostą o równaniu y=7. Niech P i Q będą punktami przecięcia tych wykresów.

Oblicz |PQ|.

Odpowiedź:
|PQ|= (wpisz liczbę całkowitą)
Zadanie 14.  1 pkt ⋅ Numer: pp-10985 ⋅ Poprawnie: 233/345 [67%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Dana jest funkcja g(x)=-\frac{1}{4}(x+6)x, gdzie x\in\langle -6,-3\rangle.

Wyznacz f_{min}.

Odpowiedź:
f_{min}=
(wpisz dwie liczby całkowite)
Zadanie 15.  1 pkt ⋅ Numer: pp-11730 ⋅ Poprawnie: 27/45 [60%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Większa część zawodników klubu sportowego liczącego 79 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 16.  1 pkt ⋅ Numer: pp-10972 ⋅ Poprawnie: 712/883 [80%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 Wiadomo, że 4x^2-4x+1=0.

Oblicz x.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 17.  1 pkt ⋅ Numer: pp-10967 ⋅ Poprawnie: 119/170 [70%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 » Pole powierzchni trójkąta prostokątnego jest równe 330, a jedna z jego przyprostokątnych jest o 49 dłuższa od drugiej.

Oblicz kwadrat długości przeciwprostokątnej tego trójkąta.

Odpowiedź:
c^2= (wpisz liczbę całkowitą)
Zadanie 18.  1 pkt ⋅ Numer: pp-10968 ⋅ Poprawnie: 354/571 [61%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Ile rozwiązań całkowitych ma równanie \left(x^2+2\right)\left(x^2+4x-2\right)=0.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 19.  1 pkt ⋅ Numer: pp-10962 ⋅ Poprawnie: 385/588 [65%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 Iloczyn (x-2)(9-x) jest nieujemny, wtedy i tylko wtedy, gdy liczba x należy do zbioru A. Zapisz zbiór A w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 20.  1 pkt ⋅ Numer: pp-10957 ⋅ Poprawnie: 641/969 [66%] Rozwiąż 
Podpunkt 20.1 (0.2 pkt)
 » Wyznacz dziedzinę funkcji określonej wzorem f(x)=\frac{x-1}{\sqrt{x^2-11x+18}} .

Zbiór ten ma postać:

Odpowiedzi:
A. \langle p,q\rangle B. (p,q)
C. \mathbb{R}-\{p, q\} D. (-\infty,p)\cup(q,+\infty)
E. \mathbb{R}-\{p\} F. \mathbb{R}-(p,q)
Podpunkt 20.2 (0.8 pkt)
 Zbiór A jest zbiorem wszystkich liczb nie należących do dziedziny tej funkcji.

Wyznacz najmniejszą i największą liczbę w zbiorze A.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm