Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11643 ⋅ Poprawnie: 93/191 [48%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=x^2+bx+c
należą punkty o współrzędnych
(-1,7) i
(-8,-14) .
Wyznacz współczynniki b i c .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-10990 ⋅ Poprawnie: 262/408 [64%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Funkcja
f(x)=x^2-6x+9
dla argumentu
\sqrt{3} przyjmuje wartość
\left(......\cdot\sqrt{3}-3\right)^2 .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11002 ⋅ Poprawnie: 715/975 [73%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Funkcja kwadratowa
f(x)=x^2+bx+c jest malejąca dla
x\in(-\infty,-7\rangle , a zbiorem jej wartości
jest przedział
\langle -2,+\infty) .
Postać kanoniczna tej funkcji opisana jest wzorem
y=(x-p)^2+q .
Podaj wartości parametrów p i q .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-11030 ⋅ Poprawnie: 876/1145 [76%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wskaż funkcję kwadratową, której zbiorem wartości jest przedział
\langle -2,+\infty) :
Odpowiedzi:
A. y=-2(x+1)^2+2
B. y=(x+1)^2+2
C. y=(x-3)^2+2
D. y=-(x-6)^2-2
E. y=(x+6)^2-2
F. y=-(x+2)^2-2
Zadanie 5. 1 pkt ⋅ Numer: pp-11008 ⋅ Poprawnie: 400/562 [71%]
Rozwiąż
Podpunkt 5.1 (0.8 pkt)
« Zbiorem wartości funkcji kwadratowej
f(x)=-x^2-\sqrt{11} jest pewnien przedział liczbowy.
Podaj ten koniec tego przedziału, który jest liczbą niewymierną.
Odpowiedź:
m\sqrt{n}=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.2 pkt)
Odpowiedzi:
A. \left\langle p, q \right\rangle
B. \left(p, q\right)
C. \left\langle p,+\infty\right)
D. \left(-\infty,p\right\rangle
Zadanie 6. 1 pkt ⋅ Numer: pp-11060 ⋅ Poprawnie: 133/184 [72%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Wierzchołek paraboli o równaniu
y=(x-6)^2+2m+1
należy do prostej o równaniu
y=14 .
Wyznacz wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-11082 ⋅ Poprawnie: 134/245 [54%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
» W przedziale
\langle -1,2\rangle funkcja
y=2x^2-x+4 osiąga wartość najmniejszą
równą
......... .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-10980 ⋅ Poprawnie: 201/342 [58%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Liczby
-1 i
\frac{11}{2} są miejscami
zerowymi funkcji określonej wzorem
g(x)=ax^2+18x+22 .
Wyznacz wartość współczynnika a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-11427 ⋅ Poprawnie: 672/822 [81%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Funkcja kwadratowa jest określona wzorem
f(x)=-(-x-2)(x+4) . Liczby
x_1 i
x_2 są różnymi
miejscami zerowymi funkcji
f spełniającymi warunek
x_1+x_2=......... .
Podaj brakującą liczbę.
Odpowiedzi:
A. x_1+x_2=6
B. x_1+x_2=-6
C. x_1+x_2=-12
D. x_1+x_2=12
Zadanie 10. 1 pkt ⋅ Numer: pp-10987 ⋅ Poprawnie: 50/92 [54%]
Rozwiąż
Podpunkt 10.1 (0.2 pkt)
Wykres funkcji
g(x)=5(m-1)+2x+x^2 nie przecina osi
Ox , wtedy i tylko wtedy, gdy
m
należy do pewnego przedziału.
Przedział ten ma postać:
Odpowiedzi:
A. (-\infty,p)
B. \langle p,q\rangle
C. \langle p,+\infty)
D. (p,+\infty)
E. (-\infty,p\rangle
F. (p,q)
Podpunkt 10.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-11064 ⋅ Poprawnie: 289/472 [61%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Wykres funkcji kwadratowej określonej wzorem
y=ax^2+bx+c
pokazano na rysunku:
Podaj współczynnik a i b .
Odpowiedzi:
Zadanie 12. 1 pkt ⋅ Numer: pp-11467 ⋅ Poprawnie: 90/179 [50%]
Rozwiąż
Podpunkt 12.1 (0.2 pkt)
Zbiorem wartości funkcji
y=-(x-2)(x+2)
określonej dla
x\in(2,7\rangle jest pewien przedział liczbowy.
Przedział ten ma postać:
Odpowiedzi:
A. (-\infty,p\rangle
B. \langle p,q\rangle
C. \langle p,q)
D. (p,q\rangle
E. (p,q)
F. (p,+\infty)
Podpunkt 12.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 13. 1 pkt ⋅ Numer: pp-11045 ⋅ Poprawnie: 40/78 [51%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Liczby
a i
b spełniają
warunek
a\cdot b \lessdot 0 .
Liczba rozwiązań układu równań
\begin{cases}
y=ax^2+b \\
y=0
\end{cases}
jest równa:
Odpowiedzi:
Zadanie 14. 1 pkt ⋅ Numer: pp-10978 ⋅ Poprawnie: 466/732 [63%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
« Najmniejszą wartość w przedziale
\langle -13, -9\rangle funkcja kwadratowa
określona wzorem
f(x)=-\left(x+10\right)^{2}+5
przyjmuje dla argumentu
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 15. 1 pkt ⋅ Numer: pp-11730 ⋅ Poprawnie: 21/39 [53%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
Większa część zawodników klubu sportowego liczącego
83 osób,
zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z
pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.
Ilu zawodników było chorych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 16. 1 pkt ⋅ Numer: pp-11065 ⋅ Poprawnie: 60/107 [56%]
Rozwiąż
Podpunkt 16.1 (1 pkt)
Funkcja
f określona jest wzorem
f(x)=\frac{x^2+13x+30}{x-14} .
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : f przyjmuje wartości dodatnie
T/N : f ma jedno miejsce zerowe
T/N : f ma dwa miejsca zerowe
Zadanie 17. 1 pkt ⋅ Numer: pp-10969 ⋅ Poprawnie: 79/138 [57%]
Rozwiąż
Podpunkt 17.1 (1 pkt)
Punkt
M=(a,-9\cdot a) należy do wykresu funkcji
f(x)=(1-a)x-a .
Wyznacz najmniejsze możliwe i największe możliwe a .
Odpowiedzi:
Zadanie 18. 1 pkt ⋅ Numer: pp-10974 ⋅ Poprawnie: 173/270 [64%]
Rozwiąż
Podpunkt 18.1 (1 pkt)
Ile rozwiązań ma równanie
(x^2+7x+10)\sqrt{16-x^2}=0 ?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 19. 1 pkt ⋅ Numer: pp-10958 ⋅ Poprawnie: 250/427 [58%]
Rozwiąż
Podpunkt 19.1 (1 pkt)
«« Najmniejszą liczbą całkowitą należącą do dziedziny funkcji
f(x)=\sqrt{-x^2-\frac{1}{2}x+\frac{105}{2}}
jest
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 20. 1 pkt ⋅ Numer: pp-10960 ⋅ Poprawnie: 252/530 [47%]
Rozwiąż
Podpunkt 20.1 (0.2 pkt)
Wyznacz dziedzinę funkcji określonej wzorem
f(x)=\sqrt{1-16x^2}
.
Zbiór ten jest postaci:
Odpowiedzi:
A. (-\infty,p\rangle
B. \langle p,q\rangle
C. \langle p,+\infty)
D. (p,+\infty)
E. (-\infty,p\rangle\cup\langle q,+\infty)
F. (p,q)
Podpunkt 20.2 (0.8 pkt)
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Rozwiąż