Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11726 ⋅ Poprawnie: 19/33 [57%] Rozwiąż 
Podpunkt 1.1 (0.5 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=ax^2+bx+c należą punkty o współrzędnych (0,12), (2,7) i (6,9).

Wyznacz współczynnik b.

Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
 Wyznacz współczynnik c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11031 ⋅ Poprawnie: 419/591 [70%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wierzchołkiem paraboli, która jest wykresem funkcji f jest punkt W=(3,7). Wówczas:
Odpowiedzi:
T/N : f(-4)=f(9) T/N : f(-3)=f(8)
T/N : f(-3)=f(10)  
Zadanie 3.  1 pkt ⋅ Numer: pp-11430 ⋅ Poprawnie: 985/1244 [79%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wykresem funkcji kwadratowej f(x)=x^2+2x+3 jest parabola, której wierzchołkiem jest punkt o współrzędnych \left(x_w, y_w\right).

Podaj współrzędne wierzchołka paraboli x_w i y_w.

Odpowiedzi:
x_w= (wpisz liczbę całkowitą)
y_w= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11030 ⋅ Poprawnie: 900/1173 [76%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wskaż funkcję kwadratową, której zbiorem wartości jest przedział \langle 3,+\infty):
Odpowiedzi:
A. y=-(x-2)^2+3 B. y=-2(x+6)^2-3
C. y=(x-1)^2-3 D. y=(x+4)^2-3
E. y=-(x+2)^2+3 F. y=(x+5)^2+3
Zadanie 5.  1 pkt ⋅ Numer: pp-11029 ⋅ Poprawnie: 233/354 [65%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Prosta o równaniu 3x-2=0 jest osią symetrii paraboli:
Odpowiedzi:
A. y=1x^2-\frac{8}{3}x-4 B. y=3x^2+\frac{4}{3}x-4
C. y=3x^2-\frac{4}{3}x-4 D. y=3x^2-4x-4
E. y=1x^2+\frac{8}{3}x-4 F. y=3x^2-2x-4
Zadanie 6.  1 pkt ⋅ Numer: pp-11039 ⋅ Poprawnie: 241/289 [83%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Punkt (3,7) jest wierzchołkiem paraboli. Punkt o współrzędnych P=(0,6) należy do tej paraboli.

Zatem zbiorem wartości funkcji, której wykresem jest ta parabola jest:

Odpowiedzi:
A. \langle 6,+\infty) B. (-\infty,7\rangle
C. \langle -6,+\infty) D. (-\infty,-6\rangle
Zadanie 7.  1 pkt ⋅ Numer: pp-11083 ⋅ Poprawnie: 83/187 [44%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Dla x=2 funkcja f(x)=x^2+bx+c przyjmuje wartość najmniejszą równą 3.

Wyznacz wartość współczynnika c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-10982 ⋅ Poprawnie: 57/128 [44%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Wyznacz sumę miejsc zerowych funkcji określonej wzorem f(x)=\frac{-x^2+6x-8}{\sqrt{2-x}} .
Odpowiedź:
x_1+x_2= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-10999 ⋅ Poprawnie: 101/167 [60%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Zbiorem wartości funkcji kwadratowej f określonej wzorem f(x)=m(x+5)(x+3) jest przedział liczbowy \langle -2,+\infty), a rozwiązaniem nierówności f(x) \lessdot 0 przedział (-5,-3).

Wyznacz współczynnik m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11078 ⋅ Poprawnie: 196/346 [56%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Dana jest funkcja f(x)=-4(x-7)(x-6). Wyznacz maksymalny przedział, w którym funkcja f jest rosnąca.

Podaj mniejszy z końców liczbowych tego przedziału.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-11007 ⋅ Poprawnie: 388/558 [69%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 » Wyznacz maksymalny przedział, w którym funkcja określona wzorem f(x)=x^2-16x+\frac{7}{5} jest rosnąca.

Podaj mniejszy z końców liczbowych tego przedziału.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-11467 ⋅ Poprawnie: 90/180 [50%] Rozwiąż 
Podpunkt 12.1 (0.2 pkt)
 Zbiorem wartości funkcji y=-(x-7)(x+7) określonej dla x\in(3,8\rangle jest pewien przedział liczbowy.

Przedział ten ma postać:

Odpowiedzi:
A. (p,q) B. \langle p,q)
C. (p,q\rangle D. (p,+\infty)
E. (-\infty,p\rangle F. \langle p,q\rangle
Podpunkt 12.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-11054 ⋅ Poprawnie: 31/57 [54%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Pole powierzchni figury ograniczonej parabolą o równaniu y=x^2-49 i osią Ox jest:
Odpowiedzi:
A. równe 343 B. większe od 343
C. mniejsze od 343 D. większe od 686
Zadanie 14.  1 pkt ⋅ Numer: pp-10978 ⋅ Poprawnie: 475/746 [63%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 « Najmniejszą wartość w przedziale \langle 0, 4\rangle funkcja kwadratowa określona wzorem f(x)=-\left(x-3\right)^{2}+5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-11067 ⋅ Poprawnie: 144/278 [51%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 « Rozpatrujemy prostokąty o obwodzie 84. Na takim prostokącie o największym polu powierzchni opisano okrąg.

Oblicz długość promienia tego okręgu.

Odpowiedź:
R= \cdot
(wpisz trzy liczby całkowite)
Zadanie 16.  1 pkt ⋅ Numer: pp-10975 ⋅ Poprawnie: 326/498 [65%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 Liczba ujemna spełnia równanie x^2-2x-50=0.

Oblicz kwadrat tej liczby.

Odpowiedź:
x^2= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 17.  1 pkt ⋅ Numer: pp-10971 ⋅ Poprawnie: 131/196 [66%] Rozwiąż 
Podpunkt 17.1 (0.2 pkt)
 Równanie x^2-(k-2)x+36=0 z niewiadomą x ma dwa różne rozwiązania wtedy i tylko wtedy, gdy parametr k należy do zbioru A. Zapisz zbiór Aw postaci sumy przedziałów.

Zbiór A jest postaci:

Odpowiedzi:
A. (-\infty,p)\cap(q,+\infty) B. \langle p,q\rangle
C. (-\infty,p) D. (p,+\infty)
E. (-\infty,p)\cup(q,+\infty) F. (p,q)
Podpunkt 17.2 (0.8 pkt)
 Liczba p jest najmniejszym, a liczba q największym z końców liczbowych tych przedziałów.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 18.  1 pkt ⋅ Numer: pp-11550 ⋅ Poprawnie: 112/170 [65%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Oblicz iloczyn wszystkich rozwiązań równania (x^2-8)(x-4)^2(x^2-x-6)=0.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 19.  1 pkt ⋅ Numer: pp-10958 ⋅ Poprawnie: 251/429 [58%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 «« Najmniejszą liczbą całkowitą należącą do dziedziny funkcji f(x)=\sqrt{-x^2-\frac{11}{2}x-\frac{9}{2}} jest ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 20.  1 pkt ⋅ Numer: pp-10963 ⋅ Poprawnie: 111/235 [47%] Rozwiąż 
Podpunkt 20.1 (0.2 pkt)
 Funkcja opisana jest wzorem f(x)=x^2+3x+3. Zbiorem rozwiązań nierówności f(x) > f(-x) jest pewien przedział liczbowy.

Przedział ten ma postać:

Odpowiedzi:
A. (-\infty,p\rangle B. (p, q)
C. \langle p,+\infty) D. (p,q\rangle
E. (p,+\infty) F. (-\infty,p)
Podpunkt 20.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm