Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11596 ⋅ Poprawnie: 97/141 [68%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=ax^2 należy punkt o współrzędnych \left(3,\frac{9\sqrt{5}}{4}\right).

Wyznacz współczynnik a.

Odpowiedź:
a= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10993 ⋅ Poprawnie: 570/824 [69%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=x^2-8x+c. Jeżeli f(5)=-1, to f(1)=..........

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10983 ⋅ Poprawnie: 303/535 [56%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wierzchołek paraboli y=x^2+14x leży na prostej o równaniu:
Odpowiedzi:
A. y=14x B. y=-7x
C. y=\frac{7}{2}x D. y=-14x
E. y=7x F. y=-\frac{7}{2}x
Zadanie 4.  1 pkt ⋅ Numer: pp-11006 ⋅ Poprawnie: 344/642 [53%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Wskaż funkcję, która w przedziale (-\infty,7) jest malejąca:
Odpowiedzi:
A. y=(x+7)^2+8 B. y=-(x-7)^2-8
C. y=(x-7)^2+8 D. y=(x-8)^2+7
E. y=-(x+7)^2+7 F. y=(x+8)^2+7
Zadanie 5.  1 pkt ⋅ Numer: pp-11028 ⋅ Poprawnie: 606/792 [76%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Osią symetrii paraboli o równaniu y=26x^2+1014x+1040 jest prosta określona: równaniem x=..........

Podaj brakującą liczbę.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-11044 ⋅ Poprawnie: 141/222 [63%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wykres funkcji kwadratowej g przecina oś Ox w dwóch punktach.

Funkcja g opisana jest wzorem:

Odpowiedzi:
A. g(x)=11(x+9)^2+11 B. g(x)=9(x-1)^2+3
C. g(x)=-6(x-10)^2+\sqrt{2} D. g(x)=-11(x+7)^2-3
Zadanie 7.  1 pkt ⋅ Numer: pp-10997 ⋅ Poprawnie: 197/269 [73%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wskaż funkcję, która nie przyjmuje wartości ujemnych:
Odpowiedzi:
A. y=8+(-2-x)^2 B. y=-4(x+3)^2+5
C. y=(x+3)^2-1 D. y=7(x-1)^2-1
Zadanie 8.  1 pkt ⋅ Numer: pp-11057 ⋅ Poprawnie: 399/626 [63%] Rozwiąż 
Podpunkt 8.1 (0.5 pkt)
 » Wierzchołek paraboli o równaniu y=(-1-4x)(x+4) ma współrzędne (x_w,y_w).

Wyznacz współrzędną x_w.

Odpowiedź:
x_w=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (0.5 pkt)
 Wyznacz współrzędną y_w.
Odpowiedź:
y_w=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-11010 ⋅ Poprawnie: 114/226 [50%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=-(x-8)(x-2). Wyznacz maksymalny przedział, w którym funkcja ta jest rosnąca.

Podaj najmniejszy koniec liczbowy tego przedziału.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11078 ⋅ Poprawnie: 195/345 [56%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Dana jest funkcja f(x)=-3(x+11)(x). Wyznacz maksymalny przedział, w którym funkcja f jest rosnąca.

Podaj mniejszy z końców liczbowych tego przedziału.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-11470 ⋅ Poprawnie: 93/154 [60%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 » Przesuwając wykres funkcji określonej wzorem h(x)=x^2-8 o k=3 jednostek w prawo otrzymamy wykres funkcji opisanej wzorem y=x^2+bx+c.

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-11468 ⋅ Poprawnie: 197/293 [67%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Funkcja określona wzorem f(x)=4x^2+......\cdot x+18 jest malejąca w przedziale (-\infty,-1) i rosnąca w przedziale (-1,+\infty).

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-11070 ⋅ Poprawnie: 76/122 [62%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Wyznacz największą całkowitą wartość funkcji określonej wzorem f(x)=-x^2+3x+9.
Odpowiedź:
max_{\mathbb{Z}}= (wpisz liczbę całkowitą)
Zadanie 14.  1 pkt ⋅ Numer: pp-10978 ⋅ Poprawnie: 474/743 [63%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 « Najmniejszą wartość w przedziale \langle 8, 12\rangle funkcja kwadratowa określona wzorem f(x)=-\left(x-11\right)^{2}+5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-11080 ⋅ Poprawnie: 264/397 [66%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 « Suma dwóch liczb jest równa 30\sqrt{2}, a ich iloczyn ma największą możliwą wartość.

Oblicz mniejszą z tych liczb.

Odpowiedź:
min= \cdot
(wpisz dwie liczby całkowite)
Zadanie 16.  1 pkt ⋅ Numer: pp-10975 ⋅ Poprawnie: 325/496 [65%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 Liczba ujemna spełnia równanie x^2-2x-128=0.

Oblicz kwadrat tej liczby.

Odpowiedź:
x^2= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 17.  1 pkt ⋅ Numer: pp-10967 ⋅ Poprawnie: 118/168 [70%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 » Pole powierzchni trójkąta prostokątnego jest równe 210, a jedna z jego przyprostokątnych jest o 1 dłuższa od drugiej.

Oblicz kwadrat długości przeciwprostokątnej tego trójkąta.

Odpowiedź:
c^2= (wpisz liczbę całkowitą)
Zadanie 18.  1 pkt ⋅ Numer: pp-11550 ⋅ Poprawnie: 110/168 [65%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Oblicz iloczyn wszystkich rozwiązań równania (x^2-6)(x-4)^2(x^2-x-6)=0.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 19.  1 pkt ⋅ Numer: pp-10961 ⋅ Poprawnie: 398/724 [54%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 « Suma wszystkich rozwiązań całkowitych nierówności (8-9x)(x+2)\geqslant 0 jest równa ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 20.  1 pkt ⋅ Numer: pp-10963 ⋅ Poprawnie: 110/233 [47%] Rozwiąż 
Podpunkt 20.1 (0.2 pkt)
 Funkcja opisana jest wzorem f(x)=3x^2+6x-4. Zbiorem rozwiązań nierówności f(x) > f(-x) jest pewien przedział liczbowy.

Przedział ten ma postać:

Odpowiedzi:
A. (p, q) B. (p,+\infty)
C. (-\infty,p) D. \langle p,+\infty)
E. (-\infty,p\rangle F. (p,q\rangle
Podpunkt 20.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm