Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11727 ⋅ Poprawnie: 28/45 [62%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=x^2+bx+c
należą punkty o współrzędnych
(0,0) i
(5,-10) .
Wyznacz współczynniki b i c .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-10990 ⋅ Poprawnie: 262/408 [64%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Funkcja
f(x)=x^2-10x+25
dla argumentu
\sqrt{5} przyjmuje wartość
\left(......\cdot\sqrt{5}-5\right)^2 .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-10979 ⋅ Poprawnie: 172/316 [54%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Dana jest funkcja
f określona wzorem
f(x)=-3(x+1)^2-5 .
Wyznacz największą wartość funkcji określonej wzorem h(x)=f(x-2)+6 .
Odpowiedź:
h_{max}(x)=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11030 ⋅ Poprawnie: 898/1172 [76%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wskaż funkcję kwadratową, której zbiorem wartości jest przedział
\langle 3,+\infty) :
Odpowiedzi:
A. y=-(x-6)^2+3
B. y=-2(x+6)^2-3
C. y=(x+4)^2+3
D. y=(x-1)^2-3
E. y=(x+4)^2-3
F. y=-(x+1)^2+3
Zadanie 5. 1 pkt ⋅ Numer: pp-11037 ⋅ Poprawnie: 209/334 [62%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Gdy przesuniemy wykres funkcji
f(x)=x^2+\frac{1}{2} o
p=4 jednostek w lewo i
q=9 jednostek w dół,
to otrzymamy wykres funkcji:
Odpowiedzi:
A. y=(x+4)^2-\frac{17}{2}
B. y=(x+9)^2+\frac{9}{2}
C. y=(x-4)^2-\frac{17}{2}
D. y=(x-4)^2+\frac{19}{2}
Zadanie 6. 1 pkt ⋅ Numer: pp-11060 ⋅ Poprawnie: 133/184 [72%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Wierzchołek paraboli o równaniu
y=(x-2)^2+2m+10
należy do prostej o równaniu
y=4 .
Wyznacz wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-11074 ⋅ Poprawnie: 93/157 [59%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Różnica iloczynu liczby
6 oraz liczby
x i kwadratu liczby
x jest największa dla liczby
x równej:
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-11041 ⋅ Poprawnie: 365/693 [52%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Wyznacz największa wartość funkcji określonej wzorem
y=-2(x+8)(x-6) .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 1 pkt ⋅ Numer: pp-11010 ⋅ Poprawnie: 114/226 [50%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Funkcja kwadratowa określona jest wzorem
f(x)=-(x-9)(x+7) . Wyznacz maksymalny przedział, w którym funkcja
ta jest rosnąca.
Podaj najmniejszy koniec liczbowy tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-11075 ⋅ Poprawnie: 96/167 [57%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Dana jest funkcja kwadratowa określona wzorem
f(x)=(-1-x)(2x+2) .
Wierzchołek wykresu tej funkcji należy do prostej określonej równaniem
x=m .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-11015 ⋅ Poprawnie: 79/132 [59%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Na rysunku przedstawiony jest fragment paraboli będącej wykresem funkcji
kwadratowej
y=f(x) .
Funkcja g określona jest wzorem
g(x)=4\cdot f(x)+4 . Wówczas zbiór
ZW_g jest pewnym przedziałem liczbowym.
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 12. 1 pkt ⋅ Numer: pp-11467 ⋅ Poprawnie: 90/179 [50%]
Rozwiąż
Podpunkt 12.1 (0.2 pkt)
Zbiorem wartości funkcji
y=-(x-4)(x+4)
określonej dla
x\in(3,7\rangle jest pewien przedział liczbowy.
Przedział ten ma postać:
Odpowiedzi:
A. (p,q\rangle
B. \langle p,q\rangle
C. (p,q)
D. (p,+\infty)
E. (-\infty,p\rangle
F. \langle p,q)
Podpunkt 12.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 13. 1 pkt ⋅ Numer: pp-11053 ⋅ Poprawnie: 57/109 [52%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Prosta o równaniu
y+2m=0 ma dokładnie jeden punkt
wspólny z wykresem funkcji kwadratowej określonej wzorem
f(x)=-\frac{1}{2}x^2-4x+5 .
Wyznacz wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 14. 1 pkt ⋅ Numer: pp-11465 ⋅ Poprawnie: 479/942 [50%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
» Najmniejszą wartość w przedziale
\langle 5, 9\rangle funkcja kwadratowa
f(x)=-\left(x-6\right)^{2}-5
przyjmuje dla argumentu
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 15. 1 pkt ⋅ Numer: pp-11730 ⋅ Poprawnie: 21/39 [53%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
Większa część zawodników klubu sportowego liczącego
61 osób,
zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z
pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.
Ilu zawodników było chorych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 16. 1 pkt ⋅ Numer: pp-10975 ⋅ Poprawnie: 325/496 [65%]
Rozwiąż
Podpunkt 16.1 (1 pkt)
Liczba ujemna spełnia równanie
x^2-2x-18=0 .
Oblicz kwadrat tej liczby.
Odpowiedź:
x^2=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 17. 1 pkt ⋅ Numer: pp-11066 ⋅ Poprawnie: 218/289 [75%]
Rozwiąż
Podpunkt 17.1 (1 pkt)
« Wierzchołkiem paraboli będącej wykresem funkcji
f(x)=-x^2+bx+c jest punkt o współrzędnych
(-10,8) .
Wyznacz współczynniki b i c .
Odpowiedzi:
Zadanie 18. 1 pkt ⋅ Numer: pp-10973 ⋅ Poprawnie: 61/114 [53%]
Rozwiąż
Podpunkt 18.1 (1 pkt)
» Dana jest funkcja
f(x)=
\begin{cases}
-\frac{1}{3}x-1,\qquad x\in(-\infty,-15) \\
x^2-220,\qquad x\in\langle -15,+\infty)
\end{cases}
.
Liczba rozwiązań równania
f(x)=4 jest równa:
Odpowiedzi:
Zadanie 19. 1 pkt ⋅ Numer: pp-10961 ⋅ Poprawnie: 398/724 [54%]
Rozwiąż
Podpunkt 19.1 (1 pkt)
« Suma wszystkich rozwiązań całkowitych nierówności
(-4-7x)(x+5)\geqslant 0
jest równa
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 20. 1 pkt ⋅ Numer: pp-10964 ⋅ Poprawnie: 68/113 [60%]
Rozwiąż
Podpunkt 20.1 (1 pkt)
Ile liczb całkowitych spełnia nierówność
7\pi\cdot x > 3x^2 :
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Rozwiąż