Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11595 ⋅ Poprawnie: 119/162 [73%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=ax^2
należy punkt o współrzędnych
(-2\sqrt{2},32\sqrt{7}) .
Wyznacz współczynnik a .
Odpowiedź:
a=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11072 ⋅ Poprawnie: 275/488 [56%]
Rozwiąż
Podpunkt 2.1 (0.5 pkt)
« O funkcji kwadratowej opisanej wzorem
f(x)=a(x-p)^2+q wiadomo, że ma dwa
miejsca zerowe
1 i
9 oraz
że najmniejszą jej wartością jest liczba
-10 .
Wyznacz wartość parametru a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (0.5 pkt)
Wyznacz wartość parametru
p .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-10979 ⋅ Poprawnie: 172/316 [54%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Dana jest funkcja
f określona wzorem
f(x)=-6(x+1)^2-3 .
Wyznacz największą wartość funkcji określonej wzorem h(x)=f(x+2)+3 .
Odpowiedź:
h_{max}(x)=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11052 ⋅ Poprawnie: 812/1143 [71%]
Rozwiąż
Podpunkt 4.1 (0.8 pkt)
Zbiorem wartości funkcji kwadratowej
y=-x^2-4 x+3 jest pewien przedział liczbowy.
Podaj ten koniec tego przedziału, który jest liczbą całkowitą.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 4.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A. \frac{1}{2}
B. -\infty
C. -\frac{1}{2}
D. -\frac{3}{4}
E. +\infty
F. \frac{3}{4}
Zadanie 5. 1 pkt ⋅ Numer: pp-11038 ⋅ Poprawnie: 134/227 [59%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Gdy przesuniemy wykres funkcji
f(x)=-4(x+1)^2+\frac{5}{2} o
p=3 jednostek w lewo i
q=12 jednostek w górę,
to otrzymamy wykres funkcji:
Odpowiedzi:
A. y=-4(x+13)^2+\frac{11}{2}
B. y=-4(x+4)^2+\frac{29}{2}
C. y=-4(x+4)^2-\frac{19}{2}
D. y=-4(x-2)^2+\frac{29}{2}
Zadanie 6. 1 pkt ⋅ Numer: pp-11060 ⋅ Poprawnie: 133/184 [72%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Wierzchołek paraboli o równaniu
y=(x+15)^2+2m-6
należy do prostej o równaniu
y=4 .
Wyznacz wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-11505 ⋅ Poprawnie: 439/842 [52%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
(1 pkt)
Zbiorem wartości funkcji określonej wzorem
f(x)=-6(x+2001)^2+m-20
jest przedział
(-\infty, 2021\rangle .
Wówczas liczba m jest równa:
Odpowiedzi:
A. 2041
B. 2061
C. 1981
D. 2081
Zadanie 8. 1 pkt ⋅ Numer: pp-10986 ⋅ Poprawnie: 417/622 [67%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Wyznacz przedział o maksymalnej długości, w którym funkcja określona wzorem
h(x)=\frac{1}{2}(x+4)(x-8) jest rosnąca.
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-10999 ⋅ Poprawnie: 101/166 [60%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Zbiorem wartości funkcji kwadratowej
f
określonej wzorem
f(x)=m(x+1)(x-3)
jest przedział liczbowy
\langle -8,+\infty) , a rozwiązaniem
nierówności
f(x) \lessdot 0 przedział
(-1,3) .
Wyznacz współczynnik m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-11078 ⋅ Poprawnie: 179/327 [54%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Dana jest funkcja
f(x)=-5(x+2)(x-9) .
Wyznacz maksymalny przedział, w którym funkcja
f jest
rosnąca.
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-11451 ⋅ Poprawnie: 160/257 [62%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Wykres funkcji określonej wzorem
f(x)=x^2-3
przesunięto o
k=6 jednostek w prawo. W wyniku
tego przesunięcia otrzymano wykres funkcji określonej wzorem
y=x^2+bx+c .
Wyznacz współczynniki b i c .
Odpowiedzi:
Zadanie 12. 1 pkt ⋅ Numer: pp-11026 ⋅ Poprawnie: 240/317 [75%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Dana jest funkcja
g:\mathbb{R}\to\mathbb{R} określona wzorem
g(x)=x^2-3+2x .
Wykres funkcji g przedstawia rysunek:
Odpowiedzi:
Zadanie 13. 1 pkt ⋅ Numer: pp-11062 ⋅ Poprawnie: 141/183 [77%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Na rysunku pokazano cześć wykresu funkcji
g(x)=ax^2+bc+c .
Które z poniższych zdań jest prawdziwe?
Odpowiedzi:
A. funkcja rośnie w przedziale (-2,4)
B. miejscami zerowymi funkcji to -2 i 6
C. f(x) > 0 \iff x \lessdot 1
D. miejsca zerowe tej funkcji to -2 i 4
Zadanie 14. 1 pkt ⋅ Numer: pp-10988 ⋅ Poprawnie: 67/90 [74%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
» Wyznacz najmniejszą wartość funkcji kwadratowej określonej wzorem
f(x)=x^2+12x .
Odpowiedź:
f_{min}(x)=
(wpisz liczbę całkowitą)
Zadanie 15. 1 pkt ⋅ Numer: pp-11080 ⋅ Poprawnie: 235/374 [62%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
« Suma dwóch liczb jest równa
12\sqrt{2} , a ich
iloczyn ma największą możliwą wartość.
Oblicz mniejszą z tych liczb.
Odpowiedź:
min=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 16. 1 pkt ⋅ Numer: pp-10972 ⋅ Poprawnie: 687/861 [79%]
Rozwiąż
Podpunkt 16.1 (1 pkt)
Wiadomo, że
9x^2+6x+1=0 .
Oblicz x .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 17. 1 pkt ⋅ Numer: pp-10969 ⋅ Poprawnie: 79/138 [57%]
Rozwiąż
Podpunkt 17.1 (1 pkt)
Punkt
M=(a,-3\cdot a) należy do wykresu funkcji
f(x)=(1-a)x-a .
Wyznacz najmniejsze możliwe i największe możliwe a .
Odpowiedzi:
Zadanie 18. 1 pkt ⋅ Numer: pp-10968 ⋅ Poprawnie: 331/548 [60%]
Rozwiąż
Podpunkt 18.1 (1 pkt)
Ile rozwiązań całkowitych ma równanie
\left(x^2-2\right)\left(x^2+5x-4\right)=0 .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 19. 1 pkt ⋅ Numer: pp-10961 ⋅ Poprawnie: 398/724 [54%]
Rozwiąż
Podpunkt 19.1 (1 pkt)
« Suma wszystkich rozwiązań całkowitych nierówności
(8-x)(x+5)\geqslant 0
jest równa
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 20. 1 pkt ⋅ Numer: pp-10964 ⋅ Poprawnie: 68/113 [60%]
Rozwiąż
Podpunkt 20.1 (1 pkt)
Ile liczb całkowitych spełnia nierówność
9\pi\cdot x > 5x^2 :
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Rozwiąż