Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11644 ⋅ Poprawnie: 34/94 [36%] Rozwiąż 
Podpunkt 1.1 (0.5 pkt)
 » Do wykresu funkcji kwadratowej określonej wzorem y=ax^2+bx+c należą punkty o współrzędnych (-2,12), (2,10) i (4,33).

Wyznacz współczynnik b.

Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
 Wyznacz współczynnik c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10993 ⋅ Poprawnie: 572/825 [69%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=x^2-8x+c. Jeżeli f(-5)=71, to f(1)=..........

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11002 ⋅ Poprawnie: 730/998 [73%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Funkcja kwadratowa f(x)=x^2+bx+c jest malejąca dla x\in(-\infty,6\rangle, a zbiorem jej wartości jest przedział \langle 1,+\infty). Postać kanoniczna tej funkcji opisana jest wzorem y=(x-p)^2+q.

Podaj wartości parametrów p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11052 ⋅ Poprawnie: 815/1146 [71%] Rozwiąż 
Podpunkt 4.1 (0.8 pkt)
 Zbiorem wartości funkcji kwadratowej y=-x^2+10 x-24 jest pewien przedział liczbowy.

Podaj ten koniec tego przedziału, który jest liczbą całkowitą.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 4.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -\infty B. -\frac{1}{2}
C. \frac{1}{2} D. +\infty
E. \frac{3}{4} F. -\frac{3}{4}
Zadanie 5.  1 pkt ⋅ Numer: pp-11037 ⋅ Poprawnie: 210/336 [62%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Gdy przesuniemy wykres funkcji f(x)=x^2+\frac{5}{2} o p=1 jednostek w lewo i q=8 jednostek w dół, to otrzymamy wykres funkcji:
Odpowiedzi:
A. y=(x+8)^2+\frac{7}{2} B. y=(x+1)^2-\frac{11}{2}
C. y=(x-1)^2+\frac{21}{2} D. y=(x-1)^2-\frac{11}{2}
Zadanie 6.  1 pkt ⋅ Numer: pp-11039 ⋅ Poprawnie: 241/289 [83%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Punkt (2,4) jest wierzchołkiem paraboli. Punkt o współrzędnych P=(0,-12) należy do tej paraboli.

Zatem zbiorem wartości funkcji, której wykresem jest ta parabola jest:

Odpowiedzi:
A. \langle 12,+\infty) B. (-\infty,4\rangle
C. (-\infty,12\rangle D. \langle -12,+\infty)
Zadanie 7.  1 pkt ⋅ Numer: pp-10997 ⋅ Poprawnie: 199/271 [73%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wskaż funkcję, która nie przyjmuje wartości ujemnych:
Odpowiedzi:
A. y=-5(x+6)^2-9 B. y=(x+5)^2-1
C. y=6(x-3)^2-6 D. y=3+(-7-x)^2
Zadanie 8.  1 pkt ⋅ Numer: pp-10982 ⋅ Poprawnie: 57/129 [44%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Wyznacz sumę miejsc zerowych funkcji określonej wzorem f(x)=\frac{-x^2+6x-5}{\sqrt{5-x}} .
Odpowiedź:
x_1+x_2= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11001 ⋅ Poprawnie: 534/743 [71%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Jeżeli miejscami zerowymi funkcji kwadratowej są liczby -4 oraz 6, a wierzchołek paraboli będącej jej wykresem ma współrzędne (1,-75), to wzór tej funkcji można zapisać w postaci:
Odpowiedzi:
A. f(x)=3(x-4)(x-6) B. f(x)=\frac{9}{4}(x-4)(x-6)
C. f(x)=3(x+4)(x+6) D. f(x)=3(x+4)(x-6)
Zadanie 10.  1 pkt ⋅ Numer: pp-11075 ⋅ Poprawnie: 99/170 [58%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Dana jest funkcja kwadratowa określona wzorem f(x)=(5-x)(2x-6). Wierzchołek wykresu tej funkcji należy do prostej określonej równaniem x=m.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-11020 ⋅ Poprawnie: 57/112 [50%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
«« Funkcja kwadratowa spełnia warunki: y=px^2+qx+r i p\cdot r \lessdot 0.

Wykres tej funkcji pokazano na rysunku:

Odpowiedzi:
A. D B. B
C. A D. C
Zadanie 12.  1 pkt ⋅ Numer: pp-11026 ⋅ Poprawnie: 241/318 [75%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
Dana jest funkcja g:\mathbb{R}\to\mathbb{R} określona wzorem g(x)=x^2-3+2x.

Wykres funkcji g przedstawia rysunek:

Odpowiedzi:
A. B B. C
C. D D. A
Zadanie 13.  1 pkt ⋅ Numer: pp-11035 ⋅ Poprawnie: 24/29 [82%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
Daja jest funkcja kwadratowa g określona jest wzorem g(x)=x^2+3. Jej wykres ma dokładnie jeden punkt wspólny z prostą y=-9, gdy przesuniemy go o:
Odpowiedzi:
A. 12 jednostek w prawo wzdłuż osi Ox B. 12 jednostek w górę wzdłuż osi Oy
C. 3 jednostki w lewo wzdłuż osi Ox D. 12 jednostek w dół wzdłuż osi Oy
Zadanie 14.  1 pkt ⋅ Numer: pp-11465 ⋅ Poprawnie: 481/946 [50%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 » Najmniejszą wartość w przedziale \langle 5, 9\rangle funkcja kwadratowa f(x)=-\left(x-6\right)^{2}-5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-11645 ⋅ Poprawnie: 40/72 [55%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 « Rzucono pionowo do góry kamień z prędkością początkową 10\ m/s. Wysokość s\ [m], jaką osiągnie ten kamień po t sekundach czasu opisuje wzór s(t)=16t-8t^2.

Podaj maksymalną wysokość jaką osiągnie ten kamień.

Odpowiedź:
s_{max}(t)= (wpisz liczbę całkowitą)
Zadanie 16.  1 pkt ⋅ Numer: pp-10975 ⋅ Poprawnie: 326/498 [65%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 Liczba ujemna spełnia równanie x^2-2x-50=0.

Oblicz kwadrat tej liczby.

Odpowiedź:
x^2= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 17.  1 pkt ⋅ Numer: pp-10969 ⋅ Poprawnie: 80/139 [57%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 Punkt M=(a,-5\cdot a) należy do wykresu funkcji f(x)=(1-a)x-a.

Wyznacz najmniejsze możliwe i największe możliwe a.

Odpowiedzi:
a_{min}= (wpisz liczbę całkowitą)
a_{max}= (wpisz liczbę całkowitą)
Zadanie 18.  1 pkt ⋅ Numer: pp-10974 ⋅ Poprawnie: 178/276 [64%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Ile rozwiązań ma równanie (x^2-3x+2)\sqrt{9-x^2}=0?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 19.  1 pkt ⋅ Numer: pp-10962 ⋅ Poprawnie: 385/588 [65%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 Iloczyn (x-7)(2-x) jest nieujemny, wtedy i tylko wtedy, gdy liczba x należy do zbioru A. Zapisz zbiór A w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 20.  1 pkt ⋅ Numer: pp-10960 ⋅ Poprawnie: 253/534 [47%] Rozwiąż 
Podpunkt 20.1 (0.2 pkt)
 Wyznacz dziedzinę funkcji określonej wzorem f(x)=\sqrt{36-9x^2} .

Zbiór ten jest postaci:

Odpowiedzi:
A. (p,+\infty) B. (-\infty,p\rangle\cup\langle q,+\infty)
C. (-\infty,p\rangle D. \langle p,+\infty)
E. \langle p,q\rangle F. (p,q)
Podpunkt 20.2 (0.8 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm