Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-3

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11595  
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=ax^2 należy punkt o współrzędnych (4\sqrt{2},256\sqrt{3}).

Wyznacz współczynnik a.

Odpowiedź:
a= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11059  
Podpunkt 2.1 (0.5 pkt)
 Parabola y=(-6-8x)^2+12 ma wierzchołek w punkcie o współrzędnych \left(x_w,y_w\right).

Wyznacz współrzędną x_w.

Odpowiedź:
x_w=
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (0.5 pkt)
 Wyznacz współrzędną y_w.
Odpowiedź:
y_w=
(wpisz dwie liczby całkowite)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11002  
Podpunkt 3.1 (1 pkt)
 Funkcja kwadratowa f(x)=x^2+bx+c jest malejąca dla x\in(-\infty,5\rangle, a zbiorem jej wartości jest przedział \langle -4,+\infty). Postać kanoniczna tej funkcji opisana jest wzorem y=(x-p)^2+q.

Podaj wartości parametrów p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11009  
Podpunkt 4.1 (0.2 pkt)
 « Maksymalny zbiór, w którym funkcja kwadratowa f(x)=-5(x-5)^2-4 jest rosnąca jest pewnym przedziałem liczbowym.

Przedział ten ma postać:

Odpowiedzi:
A. (-\infty,p\rangle B. (p,+\infty)
C. (-\infty,p) D. (p,q)
E. \langle p,q\rangle F. \langle p,+\infty)
Podpunkt 4.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11008  
Podpunkt 5.1 (0.8 pkt)
 « Zbiorem wartości funkcji kwadratowej f(x)=x^2-\sqrt{17} jest pewnien przedział liczbowy.

Podaj ten koniec tego przedziału, który jest liczbą niewymierną.

Odpowiedź:
m\sqrt{n}= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.2 pkt)
 Przedział ten ma postać:
Odpowiedzi:
A. \left\langle p,+\infty\right) B. \left(-\infty,p\right\rangle
C. \left\langle p, q \right\rangle D. \left(p, q\right)
Zadanie 6.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11063  
Podpunkt 6.1 (1 pkt)
 « Funkcja f(x)=3x^2+12x+30 nie przyjmuje wartości:
Odpowiedzi:
A. \frac{18\cdot\pi}{3} B. 9\sqrt{7}
C. \frac{36+\sqrt{2}}{2} D. \frac{8\sqrt{5}}{3}
Zadanie 7.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11083  
Podpunkt 7.1 (1 pkt)
 » Dla x=4 funkcja f(x)=x^2+bx+c przyjmuje wartość najmniejszą równą -3.

Wyznacz wartość współczynnika c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 8.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10986  
Podpunkt 8.1 (1 pkt)
 Wyznacz przedział o maksymalnej długości, w którym funkcja określona wzorem h(x)=\frac{1}{2}(x-6)(x+4) jest rosnąca.

Podaj mniejszy z końców liczbowych tego przedziału.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 9.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10999  
Podpunkt 9.1 (1 pkt)
 Zbiorem wartości funkcji kwadratowej f określonej wzorem f(x)=m(x+4)(x-8) jest przedział liczbowy \langle -144,+\infty), a rozwiązaniem nierówności f(x) \lessdot 0 przedział (-4,8).

Wyznacz współczynnik m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 10.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11068  
Podpunkt 10.1 (1 pkt)
 Prosta o równaniu x=mjest osią symetrii wykresu funkcji kwadratowej określonej wzorem f(x)=(-2-3x)(x-3).

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 11.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11014  
Podpunkt 11.1 (1 pkt)
Niech A=(-2,4). Wiadomo, że A\cap ZW_g=\emptyset.

Wykres funkcji g pokazano na rysunku:

Odpowiedzi:
A. D B. A
C. C D. B
Zadanie 12.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11468  
Podpunkt 12.1 (1 pkt)
 Funkcja określona wzorem f(x)=2x^2+......\cdot x+18 jest malejąca w przedziale (-\infty,-3) i rosnąca w przedziale (-3,+\infty).

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 13.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11054  
Podpunkt 13.1 (1 pkt)
 Pole powierzchni figury ograniczonej parabolą o równaniu y=x^2-81 i osią Ox jest:
Odpowiedzi:
A. większe od 729 B. równe 729
C. mniejsze od 729 D. większe od 1458
Zadanie 14.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11465  
Podpunkt 14.1 (1 pkt)
 » Najmniejszą wartość w przedziale \langle -9, -5\rangle funkcja kwadratowa f(x)=-\left(x+8\right)^{2}-5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 15.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11645  
Podpunkt 15.1 (1 pkt)
 « Rzucono pionowo do góry kamień z prędkością początkową 10\ m/s. Wysokość s\ [m], jaką osiągnie ten kamień po t sekundach czasu opisuje wzór s(t)=20t-t^2.

Podaj maksymalną wysokość jaką osiągnie ten kamień.

Odpowiedź:
s_{max}(t)= (wpisz liczbę całkowitą)
Zadanie 16.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10970  
Podpunkt 16.1 (1 pkt)
 « W turnieju szachowym, w którym uczestniczy ......... szachistów, każdy uczestnik rozgrywa jedną partię z każdym innym uczestnikiem. Łącznie rozegrano w tym turnieju 990 partii szachów.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 17.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10969  
Podpunkt 17.1 (1 pkt)
 Punkt M=(a,7\cdot a) należy do wykresu funkcji f(x)=(1-a)x-a.

Wyznacz najmniejsze możliwe i największe możliwe a.

Odpowiedzi:
a_{min}= (wpisz liczbę całkowitą)
a_{max}= (wpisz liczbę całkowitą)
Zadanie 18.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10968  
Podpunkt 18.1 (1 pkt)
 Ile rozwiązań całkowitych ma równanie \left(x^2+4\right)\left(x^2-2x+8\right)=0.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 19.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10962  
Podpunkt 19.1 (1 pkt)
 Iloczyn (x-6)(-4-x) jest nieujemny, wtedy i tylko wtedy, gdy liczba x należy do zbioru A. Zapisz zbiór A w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 20.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10960  
Podpunkt 20.1 (0.2 pkt)
 Wyznacz dziedzinę funkcji określonej wzorem f(x)=\sqrt{81-9x^2} .

Zbiór ten jest postaci:

Odpowiedzi:
A. \langle p,q\rangle B. (p,+\infty)
C. \langle p,+\infty) D. (-\infty,p\rangle
E. (-\infty,p\rangle\cup\langle q,+\infty) F. (p,q)
Podpunkt 20.2 (0.8 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm