Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11640 ⋅ Poprawnie: 84/117 [71%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wykres funkcji kwadratowej określonej wzorem y=-\frac{3}{5}(x+1)^2-3 otrzymano przesuwając wykres funkcji y=-\frac{3}{5}x^2 o p jednostek wzdłuż osi Ox i o q jednostek wzdłuż osi Oy, przy czym liczby p i q mogą być ujemne.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11031 ⋅ Poprawnie: 419/591 [70%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wierzchołkiem paraboli, która jest wykresem funkcji f jest punkt W=(4,-8). Wówczas:
Odpowiedzi:
T/N : f(-1)=f(9) T/N : f(-3)=f(11)
T/N : f(2)=f(7)  
Zadanie 3.  1 pkt ⋅ Numer: pp-11002 ⋅ Poprawnie: 730/998 [73%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Funkcja kwadratowa f(x)=x^2+bx+c jest malejąca dla x\in(-\infty,2\rangle, a zbiorem jej wartości jest przedział \langle -5,+\infty). Postać kanoniczna tej funkcji opisana jest wzorem y=(x-p)^2+q.

Podaj wartości parametrów p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11005 ⋅ Poprawnie: 357/561 [63%] Rozwiąż 
Podpunkt 4.1 (0.2 pkt)
 « Funkcja y=-(x-2)^2-5 jest rosnąca w pewnym przedziale liczbowym.

Przedział ten ma postać:

Odpowiedzi:
A. (p,+\infty) B. \langle p,+\infty)
C. (-\infty,p) D. (-\infty,p\rangle
E. (p,q) F. \langle p,q\rangle
Podpunkt 4.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11008 ⋅ Poprawnie: 400/562 [71%] Rozwiąż 
Podpunkt 5.1 (0.8 pkt)
 « Zbiorem wartości funkcji kwadratowej f(x)=-x^2-\sqrt{13} jest pewnien przedział liczbowy.

Podaj ten koniec tego przedziału, który jest liczbą niewymierną.

Odpowiedź:
m\sqrt{n}= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.2 pkt)
 Przedział ten ma postać:
Odpowiedzi:
A. \left(p, q\right) B. \left\langle p,+\infty\right)
C. \left(-\infty,p\right\rangle D. \left\langle p, q \right\rangle
Zadanie 6.  1 pkt ⋅ Numer: pp-11056 ⋅ Poprawnie: 610/800 [76%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Parabola o wierzchołku P=(4,-8) i ramionach skierowanych w dół może być wykresem funkcji określonej wzorem:
Odpowiedzi:
A. y=3(x+8)^2-8 B. y=-2(x-4)^2-8
C. y=(x-4)^2+8 D. y=-2(x+4)^2-8
Zadanie 7.  1 pkt ⋅ Numer: pp-11074 ⋅ Poprawnie: 93/157 [59%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Różnica iloczynu liczby 11 oraz liczby x i kwadratu liczby xjest największa dla liczby x równej:
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-10981 ⋅ Poprawnie: 97/212 [45%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Wyznacz największą wartość funkcji określonej wzorem f(x)=-3(x+5)(x-1) w przedziale \left\langle -\frac{5}{2},1\right\rangle.
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10996 ⋅ Poprawnie: 344/563 [61%] Rozwiąż 
Podpunkt 9.1 (0.2 pkt)
 Zbiór tych wszystkich wartości m, dla których funkcja kwadratowa określona wzorem f(x)=x^2+5x+m nie ma ani jednego miejsca zerowego jest przedziałem liczbowym.

Przedział ten ma postać:

Odpowiedzi:
A. (p, +\infty) B. (p, q)
C. \langle p, q\rangle D. (-\infty, p\rangle
E. (-\infty, p) F. \langle p, +\infty)
Podpunkt 9.2 (0.8 pkt)
 Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-11078 ⋅ Poprawnie: 195/345 [56%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Dana jest funkcja f(x)=-4(x+2)(x+11). Wyznacz maksymalny przedział, w którym funkcja f jest rosnąca.

Podaj mniejszy z końców liczbowych tego przedziału.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-11451 ⋅ Poprawnie: 160/257 [62%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Wykres funkcji określonej wzorem f(x)=x^2-3 przesunięto o k=4 jednostek w prawo. W wyniku tego przesunięcia otrzymano wykres funkcji określonej wzorem y=x^2+bx+c.

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-11022 ⋅ Poprawnie: 73/224 [32%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
« Rysunek przedstawia wykres funkcji kwadratowej h(x)=a(x+b)^2+c.

Zatem:

Odpowiedzi:
A. c=5 B. b=5
C. b=-5 D. c=-5
Zadanie 13.  1 pkt ⋅ Numer: pp-11045 ⋅ Poprawnie: 40/78 [51%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
Liczby a i b spełniają warunek a\cdot b \lessdot 0.

Liczba rozwiązań układu równań \begin{cases} y=ax^2+b \\ y=0 \end{cases} jest równa:

Odpowiedzi:
A. 2 B. 3
C. 1 D. 0
Zadanie 14.  1 pkt ⋅ Numer: pp-10988 ⋅ Poprawnie: 67/90 [74%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
» Wyznacz najmniejszą wartość funkcji kwadratowej określonej wzorem f(x)=x^2+12x.
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-11080 ⋅ Poprawnie: 264/397 [66%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 « Suma dwóch liczb jest równa 22\sqrt{2}, a ich iloczyn ma największą możliwą wartość.

Oblicz mniejszą z tych liczb.

Odpowiedź:
min= \cdot
(wpisz dwie liczby całkowite)
Zadanie 16.  1 pkt ⋅ Numer: pp-11058 ⋅ Poprawnie: 92/184 [50%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 « Wierzchołek paraboli będącej wykresem funkcji kwadratowej określonej wzorem y=(2x+3)^2-\frac{3}{2} należy do prostej o równaniu y=......\cdot x.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 17.  1 pkt ⋅ Numer: pp-10976 ⋅ Poprawnie: 665/871 [76%] Rozwiąż 
Podpunkt 17.1 (0.5 pkt)
 » Równanie (2x-7)(x+2)=(2x-7)(2x-2) ma dwa rozwiązania.

Wyznacz najmniejsze rozwiązanie tego równania.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 17.2 (0.5 pkt)
 Wyznacz największe rozwiązanie tego równania.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 18.  1 pkt ⋅ Numer: pp-11550 ⋅ Poprawnie: 110/168 [65%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Oblicz iloczyn wszystkich rozwiązań równania (x^2-6)(x-3)^2(x^2+x-6)=0.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 19.  1 pkt ⋅ Numer: pp-10962 ⋅ Poprawnie: 383/585 [65%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 Iloczyn (x-3)(-6-x) jest nieujemny, wtedy i tylko wtedy, gdy liczba x należy do zbioru A. Zapisz zbiór A w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 20.  1 pkt ⋅ Numer: pp-10957 ⋅ Poprawnie: 641/967 [66%] Rozwiąż 
Podpunkt 20.1 (0.2 pkt)
 » Wyznacz dziedzinę funkcji określonej wzorem f(x)=\frac{x-1}{\sqrt{x^2+3x-18}} .

Zbiór ten ma postać:

Odpowiedzi:
A. \mathbb{R}-(p,q) B. \langle p,q\rangle
C. \mathbb{R}-\{p\} D. \mathbb{R}-\{p, q\}
E. (-\infty,p)\cup(q,+\infty) F. (p,q)
Podpunkt 20.2 (0.8 pkt)
 Zbiór A jest zbiorem wszystkich liczb nie należących do dziedziny tej funkcji.

Wyznacz najmniejszą i największą liczbę w zbiorze A.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm