Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11644 ⋅ Poprawnie: 33/93 [35%] Rozwiąż 
Podpunkt 1.1 (0.5 pkt)
 » Do wykresu funkcji kwadratowej określonej wzorem y=ax^2+bx+c należą punkty o współrzędnych (-2,1), (2,3) i (4,16).

Wyznacz współczynnik b.

Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
 Wyznacz współczynnik c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10990 ⋅ Poprawnie: 262/408 [64%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Funkcja f(x)=x^2-14x+49 dla argumentu \sqrt{7} przyjmuje wartość \left(......\cdot\sqrt{7}-7\right)^2.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10983 ⋅ Poprawnie: 303/535 [56%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wierzchołek paraboli y=x^2-6x leży na prostej o równaniu:
Odpowiedzi:
A. y=-\frac{3}{2}x B. y=-3x
C. y=3x D. y=\frac{3}{2}x
E. y=-6x F. y=6x
Zadanie 4.  1 pkt ⋅ Numer: pp-11005 ⋅ Poprawnie: 357/561 [63%] Rozwiąż 
Podpunkt 4.1 (0.2 pkt)
 « Funkcja y=-(x+4)^2+5 jest rosnąca w pewnym przedziale liczbowym.

Przedział ten ma postać:

Odpowiedzi:
A. \langle p,q\rangle B. (-\infty,p\rangle
C. (-\infty,p) D. (p,q)
E. \langle p,+\infty) F. (p,+\infty)
Podpunkt 4.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11037 ⋅ Poprawnie: 209/334 [62%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Gdy przesuniemy wykres funkcji f(x)=x^2-\frac{5}{2} o p=2 jednostek w lewo i q=10 jednostek w dół, to otrzymamy wykres funkcji:
Odpowiedzi:
A. y=(x+2)^2-\frac{25}{2} B. y=(x-2)^2+\frac{15}{2}
C. y=(x+10)^2-\frac{1}{2} D. y=(x-2)^2-\frac{25}{2}
Zadanie 6.  1 pkt ⋅ Numer: pp-11061 ⋅ Poprawnie: 96/143 [67%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Oblicz odległość wierzchołka paraboli o równaniu y=x^2-x+\frac{9}{4} od osi Ox.
Odpowiedź:
d= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-10997 ⋅ Poprawnie: 196/269 [72%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wskaż funkcję, która nie przyjmuje wartości ujemnych:
Odpowiedzi:
A. y=(x+1)^2-3 B. y=2(x-7)^2-1
C. y=-5(x+3)^2+4 D. y=(7-x)^2+6
Zadanie 8.  1 pkt ⋅ Numer: pp-10980 ⋅ Poprawnie: 201/342 [58%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Liczby 3 i -\frac{11}{2} są miejscami zerowymi funkcji określonej wzorem g(x)=ax^2-\frac{15}{2}x+\frac{99}{2}.

Wyznacz wartość współczynnika a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11010 ⋅ Poprawnie: 114/226 [50%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=-(x-4)(x+6). Wyznacz maksymalny przedział, w którym funkcja ta jest rosnąca.

Podaj najmniejszy koniec liczbowy tego przedziału.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11535 ⋅ Poprawnie: 55/85 [64%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=f(x) należy punkt P=(-1, -32). Osią symetrii wykresu tej funkcji jest prosta określona równaniem x=-2, a liczba 5 jest miejscem zerowym tej funkcji. Zapisz wzór tej funkcji w postaci iloczynowej y=a(x-x_1)(x-x_2).

Wyznacz wartość współczynnika a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-11004 ⋅ Poprawnie: 127/373 [34%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
Funkcja kwadratowa określona jest wzorem f(x)=-3(x+2018)(x-666).

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : f(-701) \lessdot f(-801) T/N : f(-680) > f(-670)
Zadanie 12.  1 pkt ⋅ Numer: pp-11467 ⋅ Poprawnie: 90/179 [50%] Rozwiąż 
Podpunkt 12.1 (0.2 pkt)
 Zbiorem wartości funkcji y=-(x-3)(x+3) określonej dla x\in(3,6\rangle jest pewien przedział liczbowy.

Przedział ten ma postać:

Odpowiedzi:
A. (p,q) B. (p,+\infty)
C. (-\infty,p\rangle D. (p,q\rangle
E. \langle p,q\rangle F. \langle p,q)
Podpunkt 12.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-11050 ⋅ Poprawnie: 82/195 [42%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Wykres funkcji kwadratowej y=-5(x-5)^2+7 nie ma punktów wspólnych z prostą o równaniu:
Odpowiedzi:
A. x=5 B. x=-3
C. y=8 D. y=5
Zadanie 14.  1 pkt ⋅ Numer: pp-10978 ⋅ Poprawnie: 474/743 [63%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 « Najmniejszą wartość w przedziale \langle 4, 8\rangle funkcja kwadratowa określona wzorem f(x)=-\left(x-7\right)^{2}+5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-11646 ⋅ Poprawnie: 57/103 [55%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Mniejsza część zawodników klubu sportowego liczącego 59 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 16.  1 pkt ⋅ Numer: pp-10970 ⋅ Poprawnie: 187/259 [72%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 « W turnieju szachowym, w którym uczestniczy ......... szachistów, każdy uczestnik rozgrywa jedną partię z każdym innym uczestnikiem. Łącznie rozegrano w tym turnieju 595 partii szachów.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 17.  1 pkt ⋅ Numer: pp-11066 ⋅ Poprawnie: 218/289 [75%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 « Wierzchołkiem paraboli będącej wykresem funkcji f(x)=-x^2+bx+c jest punkt o współrzędnych (-5,7).

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 18.  1 pkt ⋅ Numer: pp-11077 ⋅ Poprawnie: 140/228 [61%] Rozwiąż 
Podpunkt 18.1 (0.2 pkt)
 » Funkcja kwadratowa opisana wzorem g(x)=mx^2-2x-\frac{3}{4} ma dokładnie dwa miejsca zerowe wtedy i tylko wtedy, gdy parametr m należy do pewnego przedziału liczbowego.

Przedział ten ma postać:

Odpowiedzi:
A. (-\infty,p) B. (-\infty,p\rangle
C. \langle p, q\rangle D. \langle p,+\infty)
E. (p,q) F. (p,+\infty)
Podpunkt 18.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 19.  1 pkt ⋅ Numer: pp-10958 ⋅ Poprawnie: 250/427 [58%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 «« Najmniejszą liczbą całkowitą należącą do dziedziny funkcji f(x)=\sqrt{-x^2+\frac{21}{2}x-\frac{49}{2}} jest ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 20.  1 pkt ⋅ Numer: pp-10959 ⋅ Poprawnie: 224/427 [52%] Rozwiąż 
Podpunkt 20.1 (0.2 pkt)
 » Wyznacz zbiór wszystkich rozwiązań nierówności -1 \lessdot x^2+x \lessdot 0 .

Zbiór ten ma postać:

Odpowiedzi:
A. (p,q) B. (-\infty,p\rangle
C. (-\infty,p) D. (p,+\infty)
E. \langle p,q\rangle F. (-\infty,p)\cup\langle q,+\infty)
Podpunkt 20.2 (0.8 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm