Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11595 ⋅ Poprawnie: 119/162 [73%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=ax^2 należy punkt o współrzędnych (-2\sqrt{2},32\sqrt{7}).

Wyznacz współczynnik a.

Odpowiedź:
a= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11072 ⋅ Poprawnie: 275/488 [56%] Rozwiąż 
Podpunkt 2.1 (0.5 pkt)
 « O funkcji kwadratowej opisanej wzorem f(x)=a(x-p)^2+q wiadomo, że ma dwa miejsca zerowe 1 i 9 oraz że najmniejszą jej wartością jest liczba -10.

Wyznacz wartość parametru a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (0.5 pkt)
 Wyznacz wartość parametru p.
Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10979 ⋅ Poprawnie: 172/316 [54%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Dana jest funkcja f określona wzorem f(x)=-6(x+1)^2-3.

Wyznacz największą wartość funkcji określonej wzorem h(x)=f(x+2)+3.

Odpowiedź:
h_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11052 ⋅ Poprawnie: 812/1143 [71%] Rozwiąż 
Podpunkt 4.1 (0.8 pkt)
 Zbiorem wartości funkcji kwadratowej y=-x^2-4 x+3 jest pewien przedział liczbowy.

Podaj ten koniec tego przedziału, który jest liczbą całkowitą.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 4.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. \frac{1}{2} B. -\infty
C. -\frac{1}{2} D. -\frac{3}{4}
E. +\infty F. \frac{3}{4}
Zadanie 5.  1 pkt ⋅ Numer: pp-11038 ⋅ Poprawnie: 134/227 [59%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Gdy przesuniemy wykres funkcji f(x)=-4(x+1)^2+\frac{5}{2} o p=3 jednostek w lewo i q=12 jednostek w górę, to otrzymamy wykres funkcji:
Odpowiedzi:
A. y=-4(x+13)^2+\frac{11}{2} B. y=-4(x+4)^2+\frac{29}{2}
C. y=-4(x+4)^2-\frac{19}{2} D. y=-4(x-2)^2+\frac{29}{2}
Zadanie 6.  1 pkt ⋅ Numer: pp-11060 ⋅ Poprawnie: 133/184 [72%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wierzchołek paraboli o równaniu y=(x+15)^2+2m-6 należy do prostej o równaniu y=4.

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11505 ⋅ Poprawnie: 439/842 [52%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 (1 pkt) Zbiorem wartości funkcji określonej wzorem f(x)=-6(x+2001)^2+m-20 jest przedział (-\infty, 2021\rangle.

Wówczas liczba m jest równa:

Odpowiedzi:
A. 2041 B. 2061
C. 1981 D. 2081
Zadanie 8.  1 pkt ⋅ Numer: pp-10986 ⋅ Poprawnie: 417/622 [67%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wyznacz przedział o maksymalnej długości, w którym funkcja określona wzorem h(x)=\frac{1}{2}(x+4)(x-8) jest rosnąca.

Podaj mniejszy z końców liczbowych tego przedziału.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-10999 ⋅ Poprawnie: 101/166 [60%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Zbiorem wartości funkcji kwadratowej f określonej wzorem f(x)=m(x+1)(x-3) jest przedział liczbowy \langle -8,+\infty), a rozwiązaniem nierówności f(x) \lessdot 0 przedział (-1,3).

Wyznacz współczynnik m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11078 ⋅ Poprawnie: 179/327 [54%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Dana jest funkcja f(x)=-5(x+2)(x-9). Wyznacz maksymalny przedział, w którym funkcja f jest rosnąca.

Podaj mniejszy z końców liczbowych tego przedziału.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-11451 ⋅ Poprawnie: 160/257 [62%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Wykres funkcji określonej wzorem f(x)=x^2-3 przesunięto o k=6 jednostek w prawo. W wyniku tego przesunięcia otrzymano wykres funkcji określonej wzorem y=x^2+bx+c.

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-11026 ⋅ Poprawnie: 240/317 [75%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
Dana jest funkcja g:\mathbb{R}\to\mathbb{R} określona wzorem g(x)=x^2-3+2x.

Wykres funkcji g przedstawia rysunek:

Odpowiedzi:
A. B B. A
C. C D. D
Zadanie 13.  1 pkt ⋅ Numer: pp-11062 ⋅ Poprawnie: 141/183 [77%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
Na rysunku pokazano cześć wykresu funkcji g(x)=ax^2+bc+c.

Które z poniższych zdań jest prawdziwe?

Odpowiedzi:
A. funkcja rośnie w przedziale (-2,4) B. miejscami zerowymi funkcji to -2 i 6
C. f(x) > 0 \iff x \lessdot 1 D. miejsca zerowe tej funkcji to -2 i 4
Zadanie 14.  1 pkt ⋅ Numer: pp-10988 ⋅ Poprawnie: 67/90 [74%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
» Wyznacz najmniejszą wartość funkcji kwadratowej określonej wzorem f(x)=x^2+12x.
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-11080 ⋅ Poprawnie: 235/374 [62%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 « Suma dwóch liczb jest równa 12\sqrt{2}, a ich iloczyn ma największą możliwą wartość.

Oblicz mniejszą z tych liczb.

Odpowiedź:
min= \cdot
(wpisz dwie liczby całkowite)
Zadanie 16.  1 pkt ⋅ Numer: pp-10972 ⋅ Poprawnie: 687/861 [79%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 Wiadomo, że 9x^2+6x+1=0.

Oblicz x.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 17.  1 pkt ⋅ Numer: pp-10969 ⋅ Poprawnie: 79/138 [57%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 Punkt M=(a,-3\cdot a) należy do wykresu funkcji f(x)=(1-a)x-a.

Wyznacz najmniejsze możliwe i największe możliwe a.

Odpowiedzi:
a_{min}= (wpisz liczbę całkowitą)
a_{max}= (wpisz liczbę całkowitą)
Zadanie 18.  1 pkt ⋅ Numer: pp-10968 ⋅ Poprawnie: 331/548 [60%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Ile rozwiązań całkowitych ma równanie \left(x^2-2\right)\left(x^2+5x-4\right)=0.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 19.  1 pkt ⋅ Numer: pp-10961 ⋅ Poprawnie: 398/724 [54%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 « Suma wszystkich rozwiązań całkowitych nierówności (8-x)(x+5)\geqslant 0 jest równa ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 20.  1 pkt ⋅ Numer: pp-10964 ⋅ Poprawnie: 68/113 [60%] Rozwiąż 
Podpunkt 20.1 (1 pkt)
 Ile liczb całkowitych spełnia nierówność 9\pi\cdot x > 5x^2:
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm