Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11595 ⋅ Poprawnie: 119/162 [73%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=ax^2 należy punkt o współrzędnych (2\sqrt{2},24\sqrt{5}).

Wyznacz współczynnik a.

Odpowiedź:
a= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11059 ⋅ Poprawnie: 235/414 [56%] Rozwiąż 
Podpunkt 2.1 (0.5 pkt)
 Parabola y=(4+9x)^2+6 ma wierzchołek w punkcie o współrzędnych \left(x_w,y_w\right).

Wyznacz współrzędną x_w.

Odpowiedź:
x_w=
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (0.5 pkt)
 Wyznacz współrzędną y_w.
Odpowiedź:
y_w=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11012 ⋅ Poprawnie: 641/966 [66%] Rozwiąż 
Podpunkt 3.1 (0.5 pkt)
 Postać kanoniczna trójmianu kwadratowego y=-3x^2-18x-\frac{77}{3} opisana jest wzorem y=a(x-p)^2+q.

Podaj wartość parametru p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 3.2 (0.5 pkt)
 Podaj wartość parametru q.
Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11052 ⋅ Poprawnie: 815/1146 [71%] Rozwiąż 
Podpunkt 4.1 (0.8 pkt)
 Zbiorem wartości funkcji kwadratowej y=-x^2-10 x-23 jest pewien przedział liczbowy.

Podaj ten koniec tego przedziału, który jest liczbą całkowitą.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 4.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -\frac{1}{2} B. \frac{1}{2}
C. -\frac{3}{4} D. -\infty
E. \frac{3}{4} F. +\infty
Zadanie 5.  1 pkt ⋅ Numer: pp-11037 ⋅ Poprawnie: 210/336 [62%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Gdy przesuniemy wykres funkcji f(x)=x^2+\frac{5}{2} o p=2 jednostek w lewo i q=8 jednostek w dół, to otrzymamy wykres funkcji:
Odpowiedzi:
A. y=(x+8)^2+\frac{9}{2} B. y=(x-2)^2-\frac{11}{2}
C. y=(x-2)^2+\frac{21}{2} D. y=(x+2)^2-\frac{11}{2}
Zadanie 6.  1 pkt ⋅ Numer: pp-11044 ⋅ Poprawnie: 142/223 [63%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wykres funkcji kwadratowej g przecina oś Ox w dwóch punktach.

Funkcja g opisana jest wzorem:

Odpowiedzi:
A. g(x)=-2(x-4)^2-8 B. g(x)=-9(x+4)^2+\sqrt{11}
C. g(x)=7(x+1)^2+12 D. g(x)=2(x-2)^2+2
Zadanie 7.  1 pkt ⋅ Numer: pp-11505 ⋅ Poprawnie: 441/844 [52%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 (1 pkt) Zbiorem wartości funkcji określonej wzorem f(x)=-5(x+1981)^2+m-40 jest przedział (-\infty, 2021\rangle.

Wówczas liczba m jest równa:

Odpowiedzi:
A. 1981 B. 2141
C. 2101 D. 2061
Zadanie 8.  1 pkt ⋅ Numer: pp-10986 ⋅ Poprawnie: 417/622 [67%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wyznacz przedział o maksymalnej długości, w którym funkcja określona wzorem h(x)=\frac{1}{2}(x+7)(x-3) jest rosnąca.

Podaj mniejszy z końców liczbowych tego przedziału.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11010 ⋅ Poprawnie: 117/231 [50%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=-(x-7)(x+3). Wyznacz maksymalny przedział, w którym funkcja ta jest rosnąca.

Podaj najmniejszy koniec liczbowy tego przedziału.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11079 ⋅ Poprawnie: 269/363 [74%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Dana jest funkcja kwadratowa opisana wzorem h(x)=-2(x+6)(x-9). Wyznacz maksymalny przedział, w którym funkcja ta jest malejąca.

Podaj najmniejszy z końców liczbowych tego przedziału.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-11011 ⋅ Poprawnie: 68/92 [73%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 » Dane są funkcje: f(x)=x^2+\frac{\sqrt{3}}{2} i g(x)=\frac{\sqrt{3}}{3}.

Wówczas, zachodzi warunek:

Odpowiedzi:
A. f(x) \lessdot g(x) B. f(x)=g(x)
C. f(x) > g(x) D. f(x)-g(x)=x^2
Zadanie 12.  1 pkt ⋅ Numer: pp-11026 ⋅ Poprawnie: 241/318 [75%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
Dana jest funkcja g:\mathbb{R}\to\mathbb{R} określona wzorem g(x)=x^2-3+2x.

Wykres funkcji g przedstawia rysunek:

Odpowiedzi:
A. C B. B
C. A D. D
Zadanie 13.  1 pkt ⋅ Numer: pp-11035 ⋅ Poprawnie: 24/29 [82%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
Daja jest funkcja kwadratowa g określona jest wzorem g(x)=x^2+3. Jej wykres ma dokładnie jeden punkt wspólny z prostą y=-9, gdy przesuniemy go o:
Odpowiedzi:
A. 3 jednostki w lewo wzdłuż osi Ox B. 12 jednostek w górę wzdłuż osi Oy
C. 12 jednostek w dół wzdłuż osi Oy D. 12 jednostek w prawo wzdłuż osi Ox
Zadanie 14.  1 pkt ⋅ Numer: pp-11465 ⋅ Poprawnie: 481/946 [50%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 » Najmniejszą wartość w przedziale \langle 8, 12\rangle funkcja kwadratowa f(x)=-\left(x-9\right)^{2}-5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-11645 ⋅ Poprawnie: 40/72 [55%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 « Rzucono pionowo do góry kamień z prędkością początkową 10\ m/s. Wysokość s\ [m], jaką osiągnie ten kamień po t sekundach czasu opisuje wzór s(t)=6t-t^2.

Podaj maksymalną wysokość jaką osiągnie ten kamień.

Odpowiedź:
s_{max}(t)= (wpisz liczbę całkowitą)
Zadanie 16.  1 pkt ⋅ Numer: pp-10970 ⋅ Poprawnie: 190/262 [72%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 « W turnieju szachowym, w którym uczestniczy ......... szachistów, każdy uczestnik rozgrywa jedną partię z każdym innym uczestnikiem. Łącznie rozegrano w tym turnieju 276 partii szachów.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 17.  1 pkt ⋅ Numer: pp-10967 ⋅ Poprawnie: 119/170 [70%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 » Pole powierzchni trójkąta prostokątnego jest równe 210, a jedna z jego przyprostokątnych jest o 1 dłuższa od drugiej.

Oblicz kwadrat długości przeciwprostokątnej tego trójkąta.

Odpowiedź:
c^2= (wpisz liczbę całkowitą)
Zadanie 18.  1 pkt ⋅ Numer: pp-10974 ⋅ Poprawnie: 178/276 [64%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Ile rozwiązań ma równanie (x^2+3x-10)\sqrt{16-x^2}=0?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 19.  1 pkt ⋅ Numer: pp-10958 ⋅ Poprawnie: 251/430 [58%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 «« Najmniejszą liczbą całkowitą należącą do dziedziny funkcji f(x)=\sqrt{-x^2-\frac{7}{2}x+30} jest ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 20.  1 pkt ⋅ Numer: pp-10963 ⋅ Poprawnie: 111/235 [47%] Rozwiąż 
Podpunkt 20.1 (0.2 pkt)
 Funkcja opisana jest wzorem f(x)=-3x^2+2x+2. Zbiorem rozwiązań nierówności f(x) > f(-x) jest pewien przedział liczbowy.

Przedział ten ma postać:

Odpowiedzi:
A. (p,+\infty) B. (-\infty,p)
C. (p, q) D. (-\infty,p\rangle
E. \langle p,+\infty) F. (p,q\rangle
Podpunkt 20.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm