Wykres funkcji kwadratowej określonej wzorem
y=\frac{3}{5}(x-6)^2+1 otrzymano przesuwając wykres funkcji
y=\frac{3}{5}x^2 o p jednostek
wzdłuż osi Ox i o q jednostek
wzdłuż osi Oy, przy czym liczby p i
q mogą być ujemne.
Podaj liczby p i q.
Odpowiedzi:
p
=
(wpisz liczbę całkowitą)
q
=
(wpisz liczbę całkowitą)
Zadanie 2.1 pkt ⋅ Numer: pp-10986 ⋅ Poprawnie: 417/622 [67%]
« Najmniejszą wartość w przedziale
\langle -9, -5\rangle funkcja kwadratowa
określona wzorem
f(x)=-\left(x+6\right)^{2}+5
przyjmuje dla argumentu ......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5.1.2 pkt ⋅ Numer: pr-10109 ⋅ Poprawnie: 0/0
» Dane jest równanie x^2+mx-2x+1=0. Funkcja
g przyporządkowuje liczbie
m liczbę
\frac{x_1+x_2}{\sqrt{x_1x_2}}, gdzie
x_1,x_2 są pierwiastkami tego równania.
Wyznacz D_g.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców
liczbowych tych przedziałów.
Odpowiedź:
suma=(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Oblicz g(-2-\sqrt{2}).
Odpowiedź:
g(-2-\sqrt{2})=+\cdot√
(wpisz trzy liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat