Wykres funkcji określonej wzorem f(x)=x^2-2
przesunięto o k=3 jednostek w prawo. W wyniku
tego przesunięcia otrzymano wykres funkcji określonej wzorem
y=x^2+bx+c.
Wyznacz współczynniki b i c.
Odpowiedzi:
b
=
(wpisz liczbę całkowitą)
c
=
(wpisz liczbę całkowitą)
Zadanie 4.1 pkt ⋅ Numer: pp-10988 ⋅ Poprawnie: 67/90 [74%]
Zbiorem wartości funkcji kwadratowej określonej wzorem f(x)=ax^2+bx+c
jest przedział \left[-2, +\infty\right). Funkcja ta spełnia warunek
f(-3)=-\frac{3}{2}, a suma
jej miejsc zerowych jest równa -8.
Wyznacz współczynniki a i b.
Odpowiedzi:
a
=
(dwie liczby całkowite)
b
=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Wyznacz współczynnik c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 7.2 pkt ⋅ Numer: pr-20977 ⋅ Poprawnie: 0/0
Na bokach o długości a i b (a\leqslant b) prostokąta
ABCD o obwodzie długości 52 zbudowano trójkąty równoboczne o podstawach
AB, BC, CD i
DA. Utworzona w ten sposób figura geometryczna ma największe możliwe
pole powierzchni.
Podaj długości boków tego prostokąta.
Odpowiedzi:
a
=
(wpisz liczbę całkowitą)
b
=
(wpisz liczbę całkowitą)
Zadanie 8.2 pkt ⋅ Numer: pp-20420 ⋅ Poprawnie: 40/99 [40%]
Funkcja kwadratowa f ma dwa miejsca zerowe x_1
i x_2 takie, że x_1\cdot x_2=6.
Wiedząc, że dla argumentu -\frac{5}{2} funkcja ta przyjmuje wartość
największą równą \frac{1}{8}, wyznacz wzór funkcji
w postaci f(x)=a(x-x_1)(x-x_2).
Podaj liczbę a.
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
Podaj miejsca zerowe tej funkcji.
Odpowiedzi:
x_{min}
=
(wpisz liczbę całkowitą)
x_{max}
=
(wpisz liczbę całkowitą)
Zadanie 10.4 pkt ⋅ Numer: pr-30841 ⋅ Poprawnie: 0/0