Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-10989 ⋅ Poprawnie: 705/1015 [69%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Największą wartością funkcji kwadratowej
f(x)=-4(x-5)^2-4 jest
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11001 ⋅ Poprawnie: 532/741 [71%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Jeżeli miejscami zerowymi funkcji kwadratowej są liczby
-6 oraz
2 , a
wierzchołek paraboli będącej jej wykresem ma współrzędne
(-2,-48) , to wzór tej funkcji można zapisać
w postaci:
Odpowiedzi:
A. f(x)=3(x+6)(x+2)
B. f(x)=3(x+6)(x-2)
C. f(x)=\frac{9}{4}(x-6)(x-2)
D. f(x)=3(x-6)(x-2)
Zadanie 3. 1 pkt ⋅ Numer: pp-11016 ⋅ Poprawnie: 400/609 [65%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Funkcja
f , której wykres pokazano na rysunku
zdefiniowana jest wzorem:
Odpowiedzi:
A. f(x)=-\frac{5}{4}\left(x-\frac{5}{2}\right)\left(x+\frac{1}{2}\right)
B. f(x)=-\frac{4}{5}\left(x-\frac{5}{2}\right)\left(x-\frac{1}{2}\right)
C. f(x)=-\frac{4}{5}\left(x-\frac{5}{2}\right)\left(x+\frac{1}{2}\right)
D. f(x)=-\frac{4}{5}\left(x+\frac{5}{2}\right)\left(x+\frac{1}{2}\right)
Zadanie 4. 1 pkt ⋅ Numer: pp-11730 ⋅ Poprawnie: 21/39 [53%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Większa część zawodników klubu sportowego liczącego
39 osób,
zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z
pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.
Ilu zawodników było chorych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10965 ⋅ Poprawnie: 537/880 [61%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Wskaż te nierówności, których rozwiązaniem jest zbiór
\mathbb{R} :
Odpowiedzi:
T/N : x^2+\frac{2}{3}x+\frac{1}{9} > 0
T/N : x^2+3x+1 \geqslant 0
Zadanie 6. 2 pkt ⋅ Numer: pp-20927 ⋅ Poprawnie: 30/71 [42%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Funkcja kwadratowa
f określona wzorem
f(x)=a(x-p)^2+q spełnia warunek
f(0)=f(10)=-6 , a jej zbiorem wartości
jest przedział
(-\infty, -1\rangle .
Wyznacz współczynnik a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Odpowiedzi:
Zadanie 7. 2 pkt ⋅ Numer: pp-20354 ⋅ Poprawnie: 75/128 [58%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
«« Dana jest funkcja
f(x)=ax^2+bx+c .
Oblicz najmniejszą i największą wartość tej funkcji w przedziale
\langle p,q\rangle .
Podaj wartośc najmniejszą.
Dane
a=1
b=-2
c=-2
p=2
q=6
Odpowiedź:
f_{min}(x)=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj wartośc największą.
Odpowiedź:
f_{max}(x)=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20394 ⋅ Poprawnie: 14/175 [8%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Rozwiąż nierówność
x^2+bx+c \lessdot 0 .
Ile liczb całkowitych z przedziału
\langle -10, 10\rangle spełnia tę nierówność?
Dane
b=-\frac{7}{3}=-2.33333333333333
c=\frac{2}{3}=0.66666666666667
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Zbiór rozwiązań zapisz w postaci sumy przedziałów. Podaj współrzędną punktu,
względem którego zbiór ten jest symetryczny.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pr-20102 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
Rozwiąż nierówność
|x^2+3x+2|-|x-a|\leqslant 3 .
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejsze z rozwiązań
tej nierówności.
Dane
a=6
Odpowiedź:
x_{min}=
+
\cdot
√
(wpisz trzy liczby całkowite)
Podpunkt 9.2 (1 pkt)
Podaj największą liczbę spełniającą tę nierówność.
Odpowiedź:
x_{max}=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 10. 4 pkt ⋅ Numer: pr-30839 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
Rozwiąż równanie
\sqrt{7+x-4\sqrt{x+3}}+\sqrt{12+x-6\sqrt{x+3}}=1
.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Podaj największy z końców
liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Rozwiąż