Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11084 ⋅ Poprawnie: 115/172 [66%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dana jest funkcja y=x^2-2.

Do zbioru ZW_f nie należy liczba:

Odpowiedzi:
A. 2-\sqrt{2} B. 1-2\sqrt{5}
C. 8-5\sqrt{3} D. 4-4\sqrt{2}
Zadanie 2.  1 pkt ⋅ Numer: pp-11506 ⋅ Poprawnie: 461/803 [57%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Osią symetrii paraboli będącej wykresem funkcji kwadratowej określonej równaniem f(x)=-\frac{1}{2}(x-102)(x+306), jest prosta określona: równaniem x-......=0.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11049 ⋅ Poprawnie: 70/112 [62%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wykres funkcji kwadratowej f(x)=-4(x+4)^2-6 ma dwa punkty wspólne z prostą:
Odpowiedzi:
A. y=-7 B. y=-5
C. x=4 D. x=-4
Zadanie 4.  1 pkt ⋅ Numer: pp-11067 ⋅ Poprawnie: 144/278 [51%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Rozpatrujemy prostokąty o obwodzie 68. Na takim prostokącie o największym polu powierzchni opisano okrąg.

Oblicz długość promienia tego okręgu.

Odpowiedź:
R= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11550 ⋅ Poprawnie: 112/170 [65%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz iloczyn wszystkich rozwiązań równania (x^2-5)(x-4)^2(x^2+x-6)=0.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20350 ⋅ Poprawnie: 28/60 [46%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Liczba -5 jest miejscem zerowym funkcji kwadratowej h. Maksymalny przedział, w którym ta funkcja jest malejąca jest równy \langle 0,+\infty). W przedziale \langle -8,-7\rangle największą wartością funkcji h jest -48. Wyznacz wzór funkcji h(x)=ax^2+bx+c.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20976 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Na bokach o długości a i b (a\leqslant b) prostokąta ABCD o obwodzie długości 64 zbudowano półkola o średnicach AB, BC, CD i DA. Utworzona w ten sposób figura geometryczna ma największe możliwe pole powierzchni.

Podaj długości boków tego prostokąta.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20404 ⋅ Poprawnie: 61/148 [41%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Rozwiąż nierówność 6x^2 > b+cx.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Dane
b=4=4.00000000000000
c=-10=-10.00000000000000
Odpowiedź:
suma=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20981 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Rozwiązaniem równania x^2-10x+25-4\sqrt{x^2-8x+12}=-2x+14 , są liczby postaci a+\sqrt{b+c\sqrt{d}} oraz a-\sqrt{b+c\sqrt{d}}.

Podaj liczbe a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj liczbę b+c\sqrt{d}.
Odpowiedź:
b+c\sqrt{d}= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pr-30060 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Dla jakich wartości parametru m\in\mathbb{R} równanie (m+3-a)x^2+(m-a)x-m-1+a=0 ma co najmniej jedno rozwiązanie dodatnie?

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj największy z końców tych przedziałów, który jest liczbą.

Dane
a=-4
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Przedział (a, b) jest zbiorem tych wszystkich wartości parametru m, które nie spełniają warunków zadania.

Podaj środek tego przedziału.

Odpowiedź:
x_{sr}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm