Do wykresu funkcji kwadratowej określonej wzorem y=f(x)
należy punkt P=(6, 14). Osią symetrii wykresu
tej funkcji jest prosta określona równaniem x=1, a liczba 3
jest miejscem zerowym tej funkcji. Zapisz wzór tej funkcji w postaci iloczynowej y=a(x-x_1)(x-x_2).
Wyznacz wartość współczynnika a.
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 3.1 pkt ⋅ Numer: pp-11007 ⋅ Poprawnie: 387/557 [69%]
» Dana jest funkcja
f(x)=
\begin{cases}
-\frac{1}{3}x-1,\qquad x\in(-\infty,-15) \\
x^2-220,\qquad x\in\langle -15,+\infty)
\end{cases}
.
Liczba rozwiązań równania f(x)=3 jest równa:
Odpowiedzi:
A.0
B.1
C.3
D.2
Zadanie 6.2 pkt ⋅ Numer: pp-20348 ⋅ Poprawnie: 23/58 [39%]
« Dana jest funkcja kwadratowa o tej własnosci, że rozwiązaniem nierówności
f(x) \lessdot 0 jest przedział
(-8,2). Rozwiąż nierówność
-f(x+3) \lessdot 0.
Ile liczb całkowitych nie spełnia tej nierówności?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Rozwiązanie tej nierówności zapisz w postaci sumy przedziałów. Podaj sumę
wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma=(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pp-20364 ⋅ Poprawnie: 113/259 [43%]
« Wyznacz te wartości parametru m, dla których
równanie (m+a)x^2-(3m+3a-3)x+m+a=0
ma dwa różne pierwiastki rzeczywiste.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj ten koniec tych wszystkich
przedziałów, który nie jest liczbą całkowitą.
Dane
a=-5
Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Podaj sumę wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma=(wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
Wyznacz zbiór tych wszystkich wartości parametru m\in\mathbb{R},
dla których suma dwóch różnych pierwiastków tego równania jest nie większa
od \frac{5}{2}.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj największy koniec
liczbowy tych przedziałów.
Odpowiedź:
max=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat