« Zbiorem wartości funkcji
f(x)=5x^2-10x+m-2 jest przedział liczbowy zawarty w przedziale
\langle 0,+\infty), wtedy i tylko wtedy, gdy parametr
m należy do pewnego przedziału.
Przedział, do którego należy parametr m ma postać:
Odpowiedzi:
A.(-\infty,p)
B.(p,q)
C.(-\infty,p\rangle
D.(p,+\infty)
E.\langle p,q\rangle
F.\langle p,+\infty)
Podpunkt 3.2 (0.8 pkt)
Podaj najmiejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=(wpisz liczbę całkowitą)
Zadanie 4.1 pkt ⋅ Numer: pp-11466 ⋅ Poprawnie: 202/334 [60%]
« Na przeciwprostokątnej BC trójkąta prostokątnego równoramiennego
ABC zbudowano prostokąt BMNC. Obwód powstałego
pięciokąta ABMNC ma długość 12, a jego
powierzchnia jest największa możliwa.
Podaj długość boku MN tego pięciokąta.
Odpowiedź:
|MN|=
+\cdot√
(wpisz cztery liczby całkowite)
Zadanie 8.2 pkt ⋅ Numer: pp-20384 ⋅ Poprawnie: 90/212 [42%]
« Wyznacz te wartości parametru m\in\mathbb{R}, dla
których suma kwadratów dwóch różnych pierwiastków równania
x^2+(m-2-a)x+2=0 jest większa od
2m^2+(16-4a)m+2a^2-16a+19.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych
tych przedziałów.
Dane
a=-3
Odpowiedź:
min=(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Podaj sumę całkowitych końców tych przedziałów.
Odpowiedź:
suma_Z=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat