Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11083 ⋅ Poprawnie: 82/186 [44%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Dla x=6 funkcja f(x)=x^2+bx+c przyjmuje wartość najmniejszą równą 5.

Wyznacz wartość współczynnika c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11010 ⋅ Poprawnie: 114/226 [50%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=-(x-4)(x-2). Wyznacz maksymalny przedział, w którym funkcja ta jest rosnąca.

Podaj najmniejszy koniec liczbowy tego przedziału.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11467 ⋅ Poprawnie: 90/179 [50%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 Zbiorem wartości funkcji y=-(x-4)(x+4) określonej dla x\in(2,7\rangle jest pewien przedział liczbowy.

Przedział ten ma postać:

Odpowiedzi:
A. (p,q) B. (-\infty,p\rangle
C. (p,q\rangle D. (p,+\infty)
E. \langle p,q) F. \langle p,q\rangle
Podpunkt 3.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10978 ⋅ Poprawnie: 466/732 [63%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Najmniejszą wartość w przedziale \langle -7, -3\rangle funkcja kwadratowa określona wzorem f(x)=-\left(x+4\right)^{2}+5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10960 ⋅ Poprawnie: 252/530 [47%] Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 Wyznacz dziedzinę funkcji określonej wzorem f(x)=\sqrt{16-49x^2} .

Zbiór ten jest postaci:

Odpowiedzi:
A. (p,q) B. \langle p,+\infty)
C. (-\infty,p\rangle\cup\langle q,+\infty) D. \langle p,q\rangle
E. (p,+\infty) F. (-\infty,p\rangle
Podpunkt 5.2 (0.8 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20346 ⋅ Poprawnie: 46/76 [60%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Wyznacz wszystkie wartości parametru m, dla których prosta y=m ma dwa punkty wspólne z wykresem funkcji f(x)=-4x^2+8x.

Odpowiedź zapisz w postaci przedziału. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
suma=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20357 ⋅ Poprawnie: 15/53 [28%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Dana jest funkcja f(x)=ax^2+bx+c. Oblicz najmniejszą i największą wartość tej funkcji w przedziale \langle p,q\rangle.

Podaj wartośc najmniejszą.

Dane
a=-1
b=-\frac{1}{2}=-0.50000000000000
c=\frac{47}{16}=2.93750000000000
p=-3
q=2
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj wartośc największą.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20412 ⋅ Poprawnie: 111/228 [48%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Rozwiąż nierówność 3x^2+bx+c\leqslant 0.

Podaj najmniejszą liczbę całkowitą spełniającą tę nierówność.

Dane
b=\frac{3}{2}=1.50000000000000
c=-9=-9.00000000000000
Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj największą liczbę spełniającą tę nierówność.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20073 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Rozwiąż równanie ax^4+bx^2+c=0.

Podaj najmniejsze rozwiązanie tego równnia.

Dane
a=1
b=-94
c=1053
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj sumę wszystkich dodatnich rozwiązań tego równania.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pr-30084 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Zbadaj liczbę rozwiązań równania -2|x-1|\cdot|3-x|=m+1+a w zależności od wartości parametru m\in\mathbb{R}.

Podaj największe możliwe m, dla którego równanie ma dwa rozwiązania.

Dane
a=-2
Odpowiedź:
max_2= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj najmniejsze możliwe m, dla którego równanie ma trzy rozwiązania.
Odpowiedź:
min_3= (wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
 Podaj długość przedziału tych wartości m, dla których równanie ma cztery rozwiązania.
Odpowiedź:
d_4= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm