Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11084 ⋅ Poprawnie: 115/172 [66%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Dana jest funkcja
y=x^2-2 .
Do zbioru ZW_f nie należy liczba:
Odpowiedzi:
A. 2-\sqrt{2}
B. 1-2\sqrt{5}
C. 8-5\sqrt{3}
D. 4-4\sqrt{2}
Zadanie 2. 1 pkt ⋅ Numer: pp-11506 ⋅ Poprawnie: 461/803 [57%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Osią symetrii paraboli będącej wykresem funkcji kwadratowej określonej równaniem
f(x)=-\frac{1}{2}(x-102)(x+306) , jest prosta określona:
równaniem
x-......=0 .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11049 ⋅ Poprawnie: 70/112 [62%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wykres funkcji kwadratowej
f(x)=-4(x+4)^2-6 ma dwa
punkty wspólne z prostą:
Odpowiedzi:
A. y=-7
B. y=-5
C. x=4
D. x=-4
Zadanie 4. 1 pkt ⋅ Numer: pp-11067 ⋅ Poprawnie: 144/278 [51%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Rozpatrujemy prostokąty o obwodzie
68 . Na takim
prostokącie o największym polu powierzchni opisano okrąg.
Oblicz długość promienia tego okręgu.
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-11550 ⋅ Poprawnie: 112/170 [65%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Oblicz iloczyn wszystkich rozwiązań równania
(x^2-5)(x-4)^2(x^2+x-6)=0 .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20350 ⋅ Poprawnie: 28/60 [46%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Liczba
-5 jest miejscem zerowym funkcji kwadratowej
h . Maksymalny przedział, w którym ta funkcja
jest malejąca jest równy
\langle 0,+\infty) .
W przedziale
\langle -8,-7\rangle największą
wartością funkcji
h jest
-48 . Wyznacz wzór funkcji
h(x)=ax^2+bx+c .
Podaj a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pr-20976 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (2 pkt)
Na bokach o długości
a i
b (
a\leqslant b ) prostokąta
ABCD o obwodzie długości
64 zbudowano półkola o średnicach
AB ,
BC ,
CD i
DA . Utworzona w ten sposób figura geometryczna ma największe możliwe
pole powierzchni.
Podaj długości boków tego prostokąta.
Odpowiedzi:
Zadanie 8. 2 pkt ⋅ Numer: pp-20404 ⋅ Poprawnie: 61/148 [41%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Rozwiąż nierówność
6x^2 > b+cx .
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich
końców liczbowych tych przedziałów.
Dane
b=4=4.00000000000000
c=-10=-10.00000000000000
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pr-20981 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
Rozwiązaniem równania
x^2-10x+25-4\sqrt{x^2-8x+12}=-2x+14
,
są liczby postaci
a+\sqrt{b+c\sqrt{d}} oraz
a-\sqrt{b+c\sqrt{d}} .
Podaj liczbe a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj liczbę
b+c\sqrt{d} .
Odpowiedź:
b+c\sqrt{d}=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 10. 4 pkt ⋅ Numer: pr-30060 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Dla jakich wartości parametru
m\in\mathbb{R} równanie
(m+3-a)x^2+(m-a)x-m-1+a=0 ma co najmniej jedno
rozwiązanie dodatnie?
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj największy z końców
tych przedziałów, który jest liczbą.
Dane
a=-4
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Przedział
(a, b) jest zbiorem tych wszystkich
wartości parametru
m , które nie spełniają warunków
zadania.
Podaj środek tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż