Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11640 ⋅ Poprawnie: 84/117 [71%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wykres funkcji kwadratowej określonej wzorem y=\frac{1}{3}(x+5)^2-6 otrzymano przesuwając wykres funkcji y=\frac{1}{3}x^2 o p jednostek wzdłuż osi Ox i o q jednostek wzdłuż osi Oy, przy czym liczby p i q mogą być ujemne.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11057 ⋅ Poprawnie: 399/626 [63%] Rozwiąż 
Podpunkt 2.1 (0.5 pkt)
 » Wierzchołek paraboli o równaniu y=(1-2x)(x-2) ma współrzędne (x_w,y_w).

Wyznacz współrzędną x_w.

Odpowiedź:
x_w=
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (0.5 pkt)
 Wyznacz współrzędną y_w.
Odpowiedź:
y_w=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11016 ⋅ Poprawnie: 400/609 [65%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
« Funkcja f, której wykres pokazano na rysunku zdefiniowana jest wzorem:
Odpowiedzi:
A. f(x)=-\frac{4}{5}\left(x-\frac{5}{2}\right)\left(x+\frac{1}{2}\right) B. f(x)=-\frac{4}{5}\left(x-\frac{5}{2}\right)\left(x-\frac{1}{2}\right)
C. f(x)=-\frac{4}{5}\left(x+\frac{5}{2}\right)\left(x+\frac{1}{2}\right) D. f(x)=-\frac{5}{4}\left(x-\frac{5}{2}\right)\left(x+\frac{1}{2}\right)
Zadanie 4.  1 pkt ⋅ Numer: pp-11466 ⋅ Poprawnie: 202/334 [60%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Dana jest funkcja kwadratowa f(x)=-0,5(x+3m)^2+12m, gdzie m > 0.

Wówczas:

Odpowiedzi:
A. dla m=-\frac{1}{2} funkcja jest rosnąca B. największą wartością funkcji jest -12m
C. dla pewnego m funkcja ma jedno miejsce zerowe D. wierzchołek paraboli, która jest wykresem tej funkcji należy do prostej y=-4x
Zadanie 5.  1 pkt ⋅ Numer: pp-10975 ⋅ Poprawnie: 325/496 [65%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Liczba ujemna spełnia równanie x^2-2x-18=0.

Oblicz kwadrat tej liczby.

Odpowiedź:
x^2= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20340 ⋅ Poprawnie: 81/204 [39%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Współrzędna y wierzchołka wykresu funkcji f(x)=ax^2+2x-1 jest równa 1.

Wyznacz a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-20943 ⋅ Poprawnie: 21/46 [45%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Sprzedawca miesięcznie sprzedaje k=52 laptopów w cenie 3600 złotych sztuka. Zauważył, że każda obniżka ceny laptopa o 10 złotych zwiększa sprzedaż o jedną sztukę miesięcznie.

Ile powinien kosztować jeden laptop, aby osiągnięty dochód był maksymalny?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20065 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Wyznacz te wartości parametru m, dla których funkcja h(x)=(2+a-m)x^2+(m-a)x+m-4-a ma największą wartość równą 2.

Podaj najmniejsze takie m.

Dane
a=-1
Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj największe takie m.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pr-20997 ⋅ Poprawnie: 11/20 [55%] Rozwiąż 
Podpunkt 9.1 (0.4 pkt)
 «« Dla jakich wartości parametru m\in\mathbb{R} równanie 2x^2-4(m+5)x+(m+6)(m+5)=0 ma dwa rozwiązania spełniające warunek x_1 \lessdot m-1 \lessdot x_2?

Rozwiązaniem jest zbiór postaci:

Odpowiedzi:
A. \langle p, +\infty) B. (p, +\infty)
C. (-\infty, +\infty) D. (-\infty, p)\cup(q, +\infty)
E. (p, q) F. \langle p, q)
G. (-\infty, p) H. (-\infty, p\rangle
Podpunkt 9.2 (0.8 pkt)
 Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 9.3 (0.8 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30068 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Zbadaj liczbę pierwiastków równania (m^2-4m-5)x^2-2(5-m)x+1=0 w zależności od wartości parametru m.

Podaj największe możliwe m, dla którego równanie ma dokładnie jedno rozwiązanie.

Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj sumę wszystkich wartości m, dla których równanie to ma dokładnie jedno rozwiązanie.
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
 Wyznacz te wartości m, dla których równanie to ma dwa rozwiązania.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 10.4 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm