Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10997 ⋅ Poprawnie: 196/269 [72%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wskaż funkcję, która nie przyjmuje wartości ujemnych:
Odpowiedzi:
A. y=-7(x+5)^2+7 B. y=(5-x)^2+6
C. y=(x+1)^2-7 D. y=4(x-6)^2-6
Zadanie 2.  1 pkt ⋅ Numer: pp-10982 ⋅ Poprawnie: 56/126 [44%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wyznacz sumę miejsc zerowych funkcji określonej wzorem f(x)=\frac{-x^2-5x+6}{\sqrt{-6-x}} .
Odpowiedź:
x_1+x_2= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11049 ⋅ Poprawnie: 69/111 [62%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wykres funkcji kwadratowej f(x)=-4(x+9)^2+2 ma dwa punkty wspólne z prostą:
Odpowiedzi:
A. y=4 B. y=0
C. x=9 D. x=-9
Zadanie 4.  1 pkt ⋅ Numer: pp-11466 ⋅ Poprawnie: 202/334 [60%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Dana jest funkcja kwadratowa f(x)=-0,5(x+2m)^2+8m, gdzie m > 0.

Wówczas:

Odpowiedzi:
A. największą wartością funkcji jest -8m B. dla pewnego m funkcja ma jedno miejsce zerowe
C. dla m=-\frac{1}{2} funkcja jest rosnąca D. wierzchołek paraboli, która jest wykresem tej funkcji należy do prostej y=-4x
Zadanie 5.  1 pkt ⋅ Numer: pp-11065 ⋅ Poprawnie: 60/107 [56%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Funkcja f określona jest wzorem f(x)=\frac{x^2+8x-20}{x-8}.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : f nie ma miejsc zerowych T/N : f ma zbiór \mathbb{R} za dziedzinę
T/N : f przyjmuje wartości dodatnie  
Zadanie 6.  2 pkt ⋅ Numer: pp-20336 ⋅ Poprawnie: 81/234 [34%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Punkt P=(-5,0) jest wierzchołkiem paraboli określonej równaniem y=2x^2+4px+q-2. Oblicz wartości współczynników p i q.

Podaj wartość p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj wartość q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20361 ⋅ Poprawnie: 166/428 [38%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Dana jest funkcja f(x)=ax^2+bx+c, gdzie x\in\langle p,q\rangle.

Oblicz najmniejszą wartość funkcji f.

Dane
a=1
b=2
c=-5
p=-5
q=3
Odpowiedź:
y_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Oblicz największą wartość funkcji f.
Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20395 ⋅ Poprawnie: 22/89 [24%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Rozwiąż nierówność ax^2+bx+c > 0.

Ile liczb całkowitych z przedziału \langle -10, 10\rangle spełnia tę nierówność?

Dane
a=-2
b=3=3.00000000000000
c=-1=-1.00000000000000
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Zbiór rozwiązań zapisz w postaci sumy przedziałów. Podaj współrzędną punktu, względem którego zbiór ten jest symetryczny.
Odpowiedź:
x_s=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20995 ⋅ Poprawnie: 9/14 [64%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Funkcja kwadratowa f ma dwa miejsca zerowe x_1 i x_2 takie, że x_1\cdot x_2=-6. Wiedząc, że dla argumentu -\frac{1}{2} funkcja ta przyjmuje wartość największą równą \frac{25}{16}, wyznacz wzór funkcji w postaci f(x)=a(x-x_1)(x-x_2).

Podaj liczbę a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj miejsca zerowe tej funkcji.
Odpowiedzi:
x_{min}= (wpisz liczbę całkowitą)
x_{max}= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30082 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Rozwiąż nierówność \left|x^2+(a+6)x+\frac{a^2}{4}+3a-1\right| \leqslant 6 .

Rozwiązaniem tej nierówności jest zbiór \langle x_1, x_2\rangle\cup\langle x_3, x_4\rangle\, gdzie x_2\lessdot x_3. Podaj x_1+x_2.

Dane
a=1
Odpowiedź:
x_1+x_2= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj x_3.
Odpowiedź:
x_{3}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm