Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11040 ⋅ Poprawnie: 241/404 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt P=(-6,3) należy do wykresu funkcji g(x)=x^2-mx+1.

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11427 ⋅ Poprawnie: 672/822 [81%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Funkcja kwadratowa jest określona wzorem f(x)=-(4x-4)(x-4). Liczby x_1 i x_2 są różnymi miejscami zerowymi funkcji f spełniającymi warunek x_1+x_2=..........

Podaj brakującą liczbę.

Odpowiedzi:
A. x_1+x_2=-5 B. x_1+x_2=-10
C. x_1+x_2=10 D. x_1+x_2=5
Zadanie 3.  1 pkt ⋅ Numer: pp-11043 ⋅ Poprawnie: 148/269 [55%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Liczba punktów wspólnych wykresu funkcji h(x)=2x^2+1x+\frac{5}{9} z osiami układu współrzędnych jest równa:
Odpowiedzi:
A. 2 B. 3
C. 0 D. 1
Zadanie 4.  1 pkt ⋅ Numer: pp-10985 ⋅ Poprawnie: 230/342 [67%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dana jest funkcja g(x)=-\frac{1}{4}(x+6)x, gdzie x\in\langle -4,-1\rangle.

Wyznacz f_{min}.

Odpowiedź:
f_{min}=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11058 ⋅ Poprawnie: 92/184 [50%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Wierzchołek paraboli będącej wykresem funkcji kwadratowej określonej wzorem y=(2x-5)^2+\frac{17}{2} należy do prostej o równaniu y=......\cdot x.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20344 ⋅ Poprawnie: 25/66 [37%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Zbiorem wartości funkcji kwadratowej f jest przedział (-\infty,9\rangle oraz f(x) > 0\iff x\in(-4,2).

Wyznacz wzór funkcji f(x)=ax^2+bx+c i podaj wartość współczynnika a tej funkcji.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj sumę obu współrzędnych wierzchołka tej paraboli.
Odpowiedź:
x_w+y_w=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20976 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Na bokach o długości a i b (a\leqslant b) prostokąta ABCD o obwodzie długości 40 zbudowano półkola o średnicach AB, BC, CD i DA. Utworzona w ten sposób figura geometryczna ma największe możliwe pole powierzchni.

Podaj długości boków tego prostokąta.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20405 ⋅ Poprawnie: 26/128 [20%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wyznacz wszystkie liczby całkowite spełniające nierówność x(x+a) \lessdot b.

Ile jest tych liczb?

Dane
a=\frac{3}{2}=1.50000000000000
b=10=10.00000000000000
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Ile z tych liczb jest ujemnych?
Odpowiedź:
ile_{<0}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20107 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Wyznacz te wartości parametru m\in\mathbb{R}, dla których równanie x^2-(m+a)|x|+1=0 ma cztery różne rozwiązania.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Dane
a=-3
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30083 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Zbadaj liczbę rozwiązań równania x^2-4|x|=2m-a w zależności od wartości parametru m\in\mathbb{R}.

Podaj najmniejsze możliwe m, dla którego równanie ma dwa rozwiązania.

Dane
a=-3
Odpowiedź:
min_2=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Podaj najmniejsze możliwe m, dla którego równanie ma trzy rozwiązania.
Odpowiedź:
min_3=
(wpisz dwie liczby całkowite)
Podpunkt 10.3 (1 pkt)
 Podaj długość przedziału tych wartości m, dla których równanie ma cztery rozwiązania.
Odpowiedź:
d_4= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm