Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11040 ⋅ Poprawnie: 241/404 [59%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Punkt
P=(-3,5) należy do wykresu funkcji
g(x)=x^2-mx+1 .
Wyznacz wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11068 ⋅ Poprawnie: 164/293 [55%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Prosta o równaniu
x=m jest osią symetrii wykresu funkcji
kwadratowej określonej wzorem
f(x)=(1+2x)(x+4) .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11050 ⋅ Poprawnie: 82/195 [42%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wykres funkcji kwadratowej
y=-5(x-3)^2+4 nie ma
punktów wspólnych z prostą o równaniu:
Odpowiedzi:
A. y=3
B. x=-1
C. y=7
D. x=3
Zadanie 4. 1 pkt ⋅ Numer: pp-10985 ⋅ Poprawnie: 217/329 [65%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Dana jest funkcja
g(x)=-\frac{1}{4}(x+6)x , gdzie
x\in\langle -4,-1\rangle .
Wyznacz f_{min} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10972 ⋅ Poprawnie: 711/882 [80%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Wiadomo, że
64x^2-16x+1=0 .
Oblicz x .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20930 ⋅ Poprawnie: 34/61 [55%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Funkcja kwadratowa
f określona wzorem
f(x)=a(x-p)^2+q dla argumentu
8 osiąga wartość największą równą
2 . Wiedząc, że do jej wykresu należy punkt
należy punkt
A=(6,-1) , wyznacz wzór tej funkcji.
Podaj współczynnik a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Odpowiedzi:
Zadanie 7. 2 pkt ⋅ Numer: pp-20357 ⋅ Poprawnie: 15/53 [28%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Dana jest funkcja
f(x)=ax^2+bx+c .
Oblicz najmniejszą i największą wartość tej funkcji w przedziale
\langle p,q\rangle .
Podaj wartośc najmniejszą.
Dane
a=1
b=-\frac{2}{5}=-0.40000000000000
c=\frac{64}{21}=3.04000000000000
p=-3
q=3
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Podaj wartośc największą.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20419 ⋅ Poprawnie: 366/862 [42%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Rozwiąż nierówność
7x+2+14a-16a^2\geqslant 4x^2+16ax
.
Podaj najmniejszą liczbę spełniającą tę nierówność.
Dane
a=4
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Podaj największą liczbę spełniającą tę nierówność.
Odpowiedź:
x_{max}=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-21059 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
Rozwiąż równanie
2x^2+28x+98-5\sqrt{x^2+14x+48}=0
.
Podaj najmniejsze z rozwiązań tego równania.
Odpowiedź:
x_{min}=
+
\cdot
√
(wpisz trzy liczby całkowite)
Podpunkt 9.2 (1 pkt)
Podaj największe z rozwiązań tego równania.
Odpowiedź:
x_{max}=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 10. 4 pkt ⋅ Numer: pr-30841 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Dla jakich wartości parametru
m równanie
x^2-x-4-m=0 ma dwa różne
pierwiastki spełniające warunek
\left|x_1\right|+\left|x_2\right| > 2 ?
Rozwiązaniem jest zbiór postaci:
Odpowiedzi:
A. (-\infty, +\infty)
B. (-\infty, p)
C. (p, +\infty)
D. (-\infty, p\rangle
E. (-\infty, p)\cup(q, +\infty)
F. \langle p, q)
G. \langle p, +\infty)
H. (p, q)
Podpunkt 10.2 (1.5 pkt)
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych
tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.3 (1.5 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż