Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11060 ⋅ Poprawnie: 133/184 [72%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wierzchołek paraboli o równaniu y=(x+7)^2+2m+15 należy do prostej o równaniu y=4.

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11041 ⋅ Poprawnie: 365/693 [52%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wyznacz największa wartość funkcji określonej wzorem y=-2(x-3)(x+3).
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11534 ⋅ Poprawnie: 214/313 [68%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 (1 pkt) Jeden z poniższych wzorów opisuje funkcję postaci y=ax^2+bx+c, której wykres pokazano na rysunku:

Wskaż ten wzór:

Odpowiedzi:
A. y=a(x-1)^2-2 B. y=a(x+1)^2-2
C. y=a(x-2)^2+1 D. y=a(x-1)^2+2
E. y=a(x+1)^2+2 F. y=a(x-2)^2-1
Zadanie 4.  1 pkt ⋅ Numer: pp-10988 ⋅ Poprawnie: 67/90 [74%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
» Wyznacz najmniejszą wartość funkcji kwadratowej określonej wzorem f(x)=x^2+12x.
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Zadanie 5.  1.2 pkt ⋅ Numer: pr-10109 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 Funkcja g określona jest wzorem g(x)=\frac{10}{\sqrt{100-x^2}} . Zapisz dziedzinę funkcji określonej wzorem h(x)=g(x+2) w postaci sumy przedziałów.

Suma ta ma postać:

Odpowiedzi:
A. (-\infty,p\rangle\cup\langle q, +\infty) B. (-\infty,p)
C. (p,q) D. (p,q\rangle
E. (p,+\infty) F. \langle p,q\rangle
Podpunkt 5.2 (1 pkt)
 Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20337 ⋅ Poprawnie: 176/295 [59%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Dana jest funkcja f(x)=a(x+1)^2-4, do wykresu której nalezy punkt P=(-2,-5).

Wyznacz a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20359 ⋅ Poprawnie: 51/109 [46%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Wyznacz największą wartość funkcji f(x)=bx+ax^2.
Dane
a=-1=-1.00000000000000
b=3=3.00000000000000
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20408 ⋅ Poprawnie: 53/169 [31%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Rozwiąż nierówność 2x^2+x > 15.

Ile liczb całkowitych nie należy do rozwiązania?

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj najmniejszą z tych liczb.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20457 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Oblicz sumę czwartych potęg rozwiązań równania x^2+bx+c=0.
Dane
b=5
c=2
Odpowiedź:
x_1^4+x_2^4= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30072 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Wyznacz te wartości parametru m\in\mathbb{R}, dla których suma kwadratów dwóch różnych pierwiastków równania x^2+(m-2-a)x+2=0 jest większa od 2m^2+(16-4a)m+2a^2-16a+19.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Dane
a=5
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj sumę całkowitych końców tych przedziałów.
Odpowiedź:
suma_Z= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm