Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11008 ⋅ Poprawnie: 400/563 [71%]
Rozwiąż
Podpunkt 1.1 (0.8 pkt)
« Zbiorem wartości funkcji kwadratowej
f(x)=-x^2-\sqrt{23} jest pewnien przedział liczbowy.
Podaj ten koniec tego przedziału, który jest liczbą niewymierną.
Odpowiedź:
m\sqrt{n}=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.2 pkt)
Odpowiedzi:
A. \left(p, q\right)
B. \left\langle p, q \right\rangle
C. \left\langle p,+\infty\right)
D. \left(-\infty,p\right\rangle
Zadanie 2. 1 pkt ⋅ Numer: pp-10982 ⋅ Poprawnie: 57/129 [44%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Wyznacz sumę miejsc zerowych funkcji określonej wzorem
f(x)=\frac{-x^2+4x+21}{\sqrt{-3-x}}
.
Odpowiedź:
x_1+x_2=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-10998 ⋅ Poprawnie: 80/171 [46%]
Rozwiąż
Podpunkt 3.1 (0.2 pkt)
«« Funkcja określona wzorem
f(x)=(-4m+8)x^2+3x-14 osiąga
wartość największą wtedy i tylko wtedy, gdy parametr
m należy do
pewnego przedziału liczbowego.
Przedział ten ma postać:
Odpowiedzi:
A. \langle p,q\rangle
B. \langle p,+\infty)
C. (-\infty,p)
D. (p,q)
E. (p,+\infty)
F. (-\infty,p\rangle
Podpunkt 3.2 (0.8 pkt)
Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-11645 ⋅ Poprawnie: 40/72 [55%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Rzucono pionowo do góry kamień z prędkością początkową
10\ m/s .
Wysokość
s\ [m] , jaką osiągnie ten kamień po
t
sekundach czasu opisuje wzór
s(t)=18t-3t^2 .
Podaj maksymalną wysokość jaką osiągnie ten kamień.
Odpowiedź:
s_{max}(t)=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10961 ⋅ Poprawnie: 398/725 [54%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Suma wszystkich rozwiązań całkowitych nierówności
(-4-9x)(x+6)\geqslant 0
jest równa
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pr-20061 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (2 pkt)
Wyznacz te wartości parametru
m , dla których
równanie
|ax^2+bx+c|=m ma dokładnie trzy rozwiązania.
Podaj najmniejsze możliwe m .
Dane
a=1
b=6
c=-2
Odpowiedź:
m_{min}=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20941 ⋅ Poprawnie: 130/223 [58%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Wiadomo, że
x-y=36 , a także, że suma
x^2+y^2
jest najmniejsza możliwa.
Podaj liczbę x .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Odpowiedź:
y=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20369 ⋅ Poprawnie: 113/147 [76%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Wyznacz większe z rozwiązań równania
2x^2-48x+272=0 .
Odpowiedź:
Zadanie 9. 2 pkt ⋅ Numer: pr-20083 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Dla jakich wartości parametru
m równanie
x^2+8x+m-a=0 ma dwa różne pierwiastki jednakowych
znaków?
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich
końców liczbowych tych przedziałów.
Dane
a=3
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30089 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Dla jakich wartości parametru
m\in\mathbb{R} równanie
2x^2-(m+2-a)|x|+m-a=0
ma dwa różne rozwiązania?
Podaj największe możliwe m .
Dane
a=-2
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Dla ilu całkowitych wartości
m\in\langle -10,10 \rangle warunki zadania są
spełnione?
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Rozwiąż