» Dana jest nierówność x^2-4(m-2)x-32m^2+128m-128 \lessdot 0 z
parametrem m\in\mathbb{N_+} i m\geqslant 10.
Funkcja g określona jest dla liczb naturalnych
m\geqslant 10 i jej wartością dla liczby
m jest największe z całkowitych rozwiązań podanej
nierówności.
Funkcja g jest funkcją liniową określoną wzorem
g(x)=ax+b.
Podaj a.
Odpowiedź:
a=(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj b.
Odpowiedź:
b=(wpisz liczbę całkowitą)
Zadanie 10.4 pkt ⋅ Numer: pr-30065 ⋅ Poprawnie: 33/33 [100%]
«« Dana jest funkcja
f(x)=(m+a+1)x^2+2(m+a-2)x-m+4-a
.
Wyznacz wszystkie wartości parametru m, dla których
funkcja f ma dwa różne miejsca zerowe
x_1,x_2 spełniające warunek
x_1^2+x_2^4=x_1^4+x_2^2.
Podaj najmniejsze możliwe m spełniające warunki
zadania.
Dane
a=-2
Odpowiedź:
m_{min}=
+\cdot√
(wpisz cztery liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat