Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11040 ⋅ Poprawnie: 241/404 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt P=(-3,5) należy do wykresu funkcji g(x)=x^2-mx+1.

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11068 ⋅ Poprawnie: 164/293 [55%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Prosta o równaniu x=mjest osią symetrii wykresu funkcji kwadratowej określonej wzorem f(x)=(1+2x)(x+4).

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11050 ⋅ Poprawnie: 82/195 [42%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wykres funkcji kwadratowej y=-5(x-3)^2+4 nie ma punktów wspólnych z prostą o równaniu:
Odpowiedzi:
A. y=3 B. x=-1
C. y=7 D. x=3
Zadanie 4.  1 pkt ⋅ Numer: pp-10985 ⋅ Poprawnie: 217/329 [65%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dana jest funkcja g(x)=-\frac{1}{4}(x+6)x, gdzie x\in\langle -4,-1\rangle.

Wyznacz f_{min}.

Odpowiedź:
f_{min}=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10972 ⋅ Poprawnie: 711/882 [80%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wiadomo, że 64x^2-16x+1=0.

Oblicz x.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20930 ⋅ Poprawnie: 34/61 [55%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja kwadratowa f określona wzorem f(x)=a(x-p)^2+q dla argumentu 8 osiąga wartość największą równą 2. Wiedząc, że do jej wykresu należy punkt należy punkt A=(6,-1), wyznacz wzór tej funkcji.

Podaj współczynnik a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj liczby p i q.
Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20357 ⋅ Poprawnie: 15/53 [28%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Dana jest funkcja f(x)=ax^2+bx+c. Oblicz najmniejszą i największą wartość tej funkcji w przedziale \langle p,q\rangle.

Podaj wartośc najmniejszą.

Dane
a=1
b=-\frac{2}{5}=-0.40000000000000
c=\frac{64}{21}=3.04000000000000
p=-3
q=3
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj wartośc największą.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20419 ⋅ Poprawnie: 366/862 [42%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Rozwiąż nierówność 7x+2+14a-16a^2\geqslant 4x^2+16ax .

Podaj najmniejszą liczbę spełniającą tę nierówność.

Dane
a=4
Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj największą liczbę spełniającą tę nierówność.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-21059 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Rozwiąż równanie 2x^2+28x+98-5\sqrt{x^2+14x+48}=0 .

Podaj najmniejsze z rozwiązań tego równania.

Odpowiedź:
x_{min}= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj największe z rozwiązań tego równania.
Odpowiedź:
x_{max}= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pr-30841 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Dla jakich wartości parametru m równanie x^2-x-4-m=0 ma dwa różne pierwiastki spełniające warunek \left|x_1\right|+\left|x_2\right| > 2?

Rozwiązaniem jest zbiór postaci:

Odpowiedzi:
A. (-\infty, +\infty) B. (-\infty, p)
C. (p, +\infty) D. (-\infty, p\rangle
E. (-\infty, p)\cup(q, +\infty) F. \langle p, q)
G. \langle p, +\infty) H. (p, q)
Podpunkt 10.2 (1.5 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 10.3 (1.5 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm