Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11003 ⋅ Poprawnie: 533/896 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Wskaż funkcję kwadratową rosnąca w przedziale (-\infty,7\rangle:
Odpowiedzi:
A. y=-(x-2)^2-7 B. y=-(x-2)^2+7
C. y=-(x-7)^2-2 D. y=-(x+2)^2+1
E. y=(x-7)^2-2 F. y=(x+7)^2-2
Zadanie 2.  1 pkt ⋅ Numer: pp-11042 ⋅ Poprawnie: 369/567 [65%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Miejscami zerowymi funkcji kwadratowej są liczby 4 oraz -6. Do wykresu tej funkcji należy punkt A=(2,32). Zapisz wzór tej funkcji w postaci iloczynowej y=a(x-x_1)(x-x_2).

Podaj współczynnik a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11047 ⋅ Poprawnie: 118/159 [74%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ile punktów wspólnych z osią Ox ma wykres funkcji kwadratowej f(x)=9-2(x-3)^2:
Odpowiedzi:
A. 2 B. 0
C. 1 D. 3
Zadanie 4.  1 pkt ⋅ Numer: pp-11466 ⋅ Poprawnie: 202/334 [60%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Dana jest funkcja kwadratowa f(x)=-0,5(x+5m)^2+15m, gdzie m > 0.

Wówczas:

Odpowiedzi:
A. dla pewnego m funkcja ma jedno miejsce zerowe B. wierzchołek paraboli, która jest wykresem tej funkcji należy do prostej y=-3x
C. dla m=-\frac{1}{2} funkcja jest rosnąca D. największą wartością funkcji jest -15m
Zadanie 5.  1 pkt ⋅ Numer: pp-10964 ⋅ Poprawnie: 68/113 [60%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Ile liczb całkowitych spełnia nierówność 9\pi\cdot x > 5x^2:
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20336 ⋅ Poprawnie: 80/233 [34%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Punkt P=(5,0) jest wierzchołkiem paraboli określonej równaniem y=2x^2+4px+q-2. Oblicz wartości współczynników p i q.

Podaj wartość p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj wartość q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 7.  3 pkt ⋅ Numer: pr-20839 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Dana jest funkcja f(x)=x^2-(m+1)x+\frac{5}{2}m+\frac{1}{4}. Funkcja h liczbie m przyporządkowuje najmniejszą wartość funkcji f w przedziale \langle -1,1\rangle. Wyznacz wzór tej funkcji.

Podaj h(a\sqrt{5}).

Dane
a=-5
b=4
Odpowiedź:
h(a\sqrt{5})= + \cdot
(wpisz cztery liczby całkowite)
Podpunkt 7.2 (1 pkt)
Podaj długość przedziału, w którym funkcja ta określona jest wzorem h(m)=-\frac{1}{4}m^2+2m.
Odpowiedź:
d= (wpisz liczbę całkowitą)
Podpunkt 7.3 (1 pkt)
 Podaj h\left(\frac{b}{2}\right).
Odpowiedź:
h\left(\frac{b}{2}\right)=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20390 ⋅ Poprawnie: 77/179 [43%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 » Dla jakich wartości parametru m funkcja y=-x^2+12x+m-a nie ma miejsc zerowych?

Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.

Dane
a=41
Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20998 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dla jakich wartości parametru m\in\mathbb{R} równanie x^2-2x+m+7=0 ma dwa rozwiązania spełniające warunek 8x_1-3x_2=49?

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30062 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Dla jakich wartości parametru m równanie (m-2-a)x^2+4|x|+m-5-a=0 ma dokładnie dwa rozwiązania?

Podaj najmniejsze możliwe m spełniające warunki zadania.

Dane
a=5
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów. Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
 Podaj długość rozwiązania, czyli długość wszystkich przedziałów tworzących rozwiązanie.
Odpowiedź:
d= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm