Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10993 ⋅ Poprawnie: 570/824 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=x^2-8x+c. Jeżeli f(-2)=13, to f(1)=..........

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11506 ⋅ Poprawnie: 461/803 [57%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Osią symetrii paraboli będącej wykresem funkcji kwadratowej określonej równaniem f(x)=-\frac{1}{2}(x+78)(x-234), jest prosta określona: równaniem x-......=0.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11451 ⋅ Poprawnie: 160/257 [62%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wykres funkcji określonej wzorem f(x)=x^2-2 przesunięto o k=6 jednostek w prawo. W wyniku tego przesunięcia otrzymano wykres funkcji określonej wzorem y=x^2+bx+c.

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10988 ⋅ Poprawnie: 71/94 [75%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
» Wyznacz najmniejszą wartość funkcji kwadratowej określonej wzorem f(x)=x^2+12x.
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10970 ⋅ Poprawnie: 189/261 [72%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « W turnieju szachowym, w którym uczestniczy ......... szachistów, każdy uczestnik rozgrywa jedną partię z każdym innym uczestnikiem. Łącznie rozegrano w tym turnieju 406 partii szachów.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20936 ⋅ Poprawnie: 51/143 [35%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja kwadratowa określona wzorem f(x)=-5x^2+bx+c jest malejąca wtedy i tylko wtedy, gdy x\in\langle -1,+\infty). Wiedząc, że f(-1)=-2, oblicz współczynniki b i c.

Podaj liczbę b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj liczbę c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20363 ⋅ Poprawnie: 175/370 [47%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Dana jest funkcja f(x)=x^2+bx+c, gdzie x\in\langle p, q\rangle.

Oblicz najmniejszą wartość funkcji f.

Dane
b=4
c=3
p=-5
q=-1
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Oblicz największą wartość funkcji f.
Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20386 ⋅ Poprawnie: 30/47 [63%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Dana jest funkcja f(x)=a(x+1)^2-14400, której jednym z miejsc zerowych jest liczba 7.

Wyznacz a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20461 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Liczba p jest równa kwadratowi różnicy pierwiastków równania x^2+bx+c=0.

Oblicz p.

Dane
b=7
c=\frac{7}{4}=1.75000000000000
Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30066 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 «« Dana jest funkcja f(x)=x^2+2(m-a)x+6m-5-6a . Dla jakich wartości parametru m funkcja ma dwa różne miejsca zerowe o takich samych znakach?

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę tych końców przedziałów, które są liczbami całkowitymi.

Dane
a=-2
Odpowiedź:
suma_Z= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Dla jakich wartości parametru m te miejsca zerowe spełniają warunek |x_2-x_1| \lessdot 3?

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj największy z końców liczbowych tych przedziałów.

Odpowiedź:
max=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm