Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11505 ⋅ Poprawnie: 439/842 [52%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 (1 pkt) Zbiorem wartości funkcji określonej wzorem f(x)=-4(x+1971)^2+m-50 jest przedział (-\infty, 2021\rangle.

Wówczas liczba m jest równa:

Odpowiedzi:
A. 2171 B. 1921
C. 1971 D. 2071
Zadanie 2.  1 pkt ⋅ Numer: pp-11019 ⋅ Poprawnie: 560/777 [72%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Zbiorem wartości funkcji kwadratowej określonej wzorem f(x)=(x-2)(x+6) jest przedział liczbowy \langle ......,+\infty).

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11076 ⋅ Poprawnie: 82/119 [68%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Do wykresu której funkcji należy punkt o współrzędnych A=(128, 0):
Odpowiedzi:
A. y=x^2+256 B. y=(x+128)^2
C. y=x^2-2048 D. y=(x+256)(2x-256)
Zadanie 4.  1 pkt ⋅ Numer: pp-11645 ⋅ Poprawnie: 37/67 [55%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Rzucono pionowo do góry kamień z prędkością początkową 10\ m/s. Wysokość s\ [m], jaką osiągnie ten kamień po t sekundach czasu opisuje wzór s(t)=12t-t^2.

Podaj maksymalną wysokość jaką osiągnie ten kamień.

Odpowiedź:
s_{max}(t)= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10961 ⋅ Poprawnie: 398/724 [54%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Suma wszystkich rozwiązań całkowitych nierówności (-5-6x)(x+3)\geqslant 0 jest równa ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20935 ⋅ Poprawnie: 13/22 [59%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Średnia arytmetyczna miejsc zerowych funkcji kwadratowej określonej wzorem f(x)=ax^2+bx jest równa 1. Rzędna wierzchołka paraboli będącej wykresem tej funkcji jest równa -2.

Wyznacz współczynnik a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Wyznacz współczynnik b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20361 ⋅ Poprawnie: 166/428 [38%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Dana jest funkcja f(x)=ax^2+bx+c, gdzie x\in\langle p,q\rangle.

Oblicz najmniejszą wartość funkcji f.

Dane
a=1
b=2
c=9
p=-3
q=4
Odpowiedź:
y_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Oblicz największą wartość funkcji f.
Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20402 ⋅ Poprawnie: 14/96 [14%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 » Rozwiąż nierówność -x^2+bx+c \lessdot 0.

Ile liczb całkowitych z przedziału \langle 0,100\rangle spełnia tę nierówność?

Dane
b=12
c=-20
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-21061 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Rozwiąż równanie \sqrt{x^2+10x+22}+x^2+10x=-20 .

Podaj najmniejsze z rozwiązań tego równania.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj największe z rozwiązań tego równania.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30070 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Dla jakich wartości parametru m\in\mathbb{R} suma i iloczyn dwóch różnych pierwiastków równania x^2+(2m+8)x+2m^2+9m+14=0 są liczbami przeciwnymi?

Podaj najmniejsze takie m.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Podaj największe takie m.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm