« Rzucono pionowo do góry kamień z prędkością początkową 10\ m/s.
Wysokość s\ [m], jaką osiągnie ten kamień po t
sekundach czasu opisuje wzór s(t)=16t-4t^2.
Podaj maksymalną wysokość jaką osiągnie ten kamień.
Odpowiedź:
s_{max}(t)=(wpisz liczbę całkowitą)
Zadanie 5.1 pkt ⋅ Numer: pp-10974 ⋅ Poprawnie: 178/276 [64%]
» Wyznacz wzór funkcji jaką otrzymamy po przesunięciu wykresu funkcji
f(x)=-2x^2+4x+1 o wektor
\vec{u}=[p,q]. Zapisz wzór w postaci ogólnej y=ax^2+bx+c.
Podaj b.
Dane
p=3
q=-5
Odpowiedź:
b=(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj c.
Odpowiedź:
c=(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pr-20978 ⋅ Poprawnie: 0/0
Drut o długości 80 podzielono na dwie części:
z jednej zbudowano kwadrat, a z drugiej okrąg. Jaka powinna być długość każdej części, aby
suma pól powierzchni obu figur była jak największa.?
Podaj długość mniejszego z tych dwóch kawałków.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8.2 pkt ⋅ Numer: pp-20369 ⋅ Poprawnie: 113/147 [76%]
« Wyznacz te wartości parametru m, dla których
równanie x^2+(m-a)x+m-2-a=0 ma dwa różne pierwiastki
rzeczywiste takie, że ich suma kwadratów jest minimalna możliwa.
Podaj najmniejsze możliwe m, które spełnia warunki
zadania.
Dane
a=-3
Odpowiedź:
m_{min}=(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Ile rozwiązań ma to zadanie?
Odpowiedź:
ile=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat