Zbiór tych wszystkich wartości m, dla których funkcja kwadratowa
określona wzorem f(x)=x^2+6x+m nie ma ani
jednego miejsca zerowego jest przedziałem liczbowym.
Przedział ten ma postać:
Odpowiedzi:
A.\langle p, q\rangle
B.(-\infty, p)
C.\langle p, +\infty)
D.(-\infty, p\rangle
E.(p, +\infty)
F.(p, q)
Podpunkt 2.2 (0.8 pkt)
Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 3.1 pkt ⋅ Numer: pp-11451 ⋅ Poprawnie: 160/257 [62%]
Wykres funkcji określonej wzorem f(x)=x^2-3
przesunięto o k=4 jednostek w prawo. W wyniku
tego przesunięcia otrzymano wykres funkcji określonej wzorem
y=x^2+bx+c.
Wyznacz współczynniki b i c.
Odpowiedzi:
b
=
(wpisz liczbę całkowitą)
c
=
(wpisz liczbę całkowitą)
Zadanie 4.1 pkt ⋅ Numer: pp-11080 ⋅ Poprawnie: 264/397 [66%]
O funkcji kwadratowej określonej wzorem f(x)=ax^2+bx+c wiadomo, że
przyjmuje wartości ujemne wtedy i tylko wtedy, gdy
x\in(-\infty, -8)\cup(-3,+\infty), a do jej wykresu należy punkt
A=(-5,12).
Wyznacz współczynnik a.
Odpowiedź:
a=(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Wyznacz współczynniki b i c.
Odpowiedzi:
b
=
(wpisz liczbę całkowitą)
c
=
(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pp-20364 ⋅ Poprawnie: 113/259 [43%]
(2 pkt)
Dana jest funkcja określona wzorem y=\frac{16}{x^2},
dla każdego x\in\mathbb{R}-\{0\}, której wykres pokazano
na rysunku, oraz punkt A=(6, -1):
Pozioma prosta przecina wykres tej funkcji w punktach o współrzędych
B=(x_0, y_0) oraz C=(-x_0,y_0)
gdzie x_0 > 0 i y_0 > 0.
Znajdź najmniejsze x_0\in(5;+\infty), dla którego
P_{\triangle ABC}\geqslant 10.
Odpowiedź:
x_0=(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
(1 pkt)
Wyznacz największą liczbę nieujemną m o tej własności,
że dla dowolnego x_0\in(0,+\infty) prawdziwa jest nierówność
P_{\triangle ABC}\geqslant m.
Odpowiedź:
m=(wpisz liczbę całkowitą)
Zadanie 10.4 pkt ⋅ Numer: pr-30081 ⋅ Poprawnie: 0/0