Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11037 ⋅ Poprawnie: 209/334 [62%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Gdy przesuniemy wykres funkcji
f(x)=x^2+\frac{1}{2} o
p=3 jednostek w lewo i
q=8 jednostek w dół,
to otrzymamy wykres funkcji:
Odpowiedzi:
A. y=(x+8)^2+\frac{7}{2}
B. y=(x+3)^2-\frac{15}{2}
C. y=(x-3)^2+\frac{17}{2}
D. y=(x-3)^2-\frac{15}{2}
Zadanie 2. 1 pkt ⋅ Numer: pp-11041 ⋅ Poprawnie: 365/693 [52%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wyznacz największa wartość funkcji określonej wzorem
y=-2(x-2)(x-4) .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11034 ⋅ Poprawnie: 114/249 [45%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Przesuwając wykres funkcji określonej wzorem
h(x)=x^2-8
o
k=3 jednostek w lewo otrzymamy wykres funkcji
opisanej wzorem
y=x^2+bx+c .
Wyznacz współczynniki b i c .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-10988 ⋅ Poprawnie: 67/90 [74%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Wyznacz najmniejszą wartość funkcji kwadratowej określonej wzorem
f(x)=x^2+12x .
Odpowiedź:
f_{min}(x)=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10961 ⋅ Poprawnie: 398/724 [54%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Suma wszystkich rozwiązań całkowitych nierówności
(-5-6x)(x+5)\geqslant 0
jest równa
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20339 ⋅ Poprawnie: 74/170 [43%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Najmniejszą wartość równą
-5 trójmian
y=x^2+bx+c osiąga dla
x=1 .
Oblicz b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pr-20064 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Ze sznurka o długości
a [m] zrobiono dwie ramki,
jedną w kształcie kwadratu, drugą w kształcie prostokąta, którego stosunek
długości boków wynosi
1:3 . Wówczas okazało się,
że suma pól powierzchni obu figur jest najmniejsza możliwa.
Podaj obwód ramki w kształcie kwadratu.
Dane
a=28
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Podaj pole powierzchni prostokąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20422 ⋅ Poprawnie: 67/143 [46%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Rozwiąż nierówność
(2x-1-2a)x >
6\left(x-\frac{1+2a}{2}\right)\left(x+\frac{1-3a}{3}\right)
.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Dane
a=6
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pr-20990 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (2 pkt)
Liczby
x_1 i
x_2 są różnymi
miejscami zerowymi funkcji określonej wzorem
f(x)=-\frac{2}{3}x^2-2x+3 .
Oblicz sumę x_1^4+x_2^4 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 4 pkt ⋅ Numer: pr-30060 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Dla jakich wartości parametru
m\in\mathbb{R} równanie
(m+3-a)x^2+(m-a)x-m-1+a=0 ma co najmniej jedno
rozwiązanie dodatnie?
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj największy z końców
tych przedziałów, który jest liczbą.
Dane
a=4
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Przedział
(a, b) jest zbiorem tych wszystkich
wartości parametru
m , które nie spełniają warunków
zadania.
Podaj środek tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż