Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10997 ⋅ Poprawnie: 193/262 [73%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wskaż funkcję, która nie przyjmuje wartości ujemnych:
Odpowiedzi:
A. y=-1(x+6)^2-3 B. y=(x+5)^2-1
C. y=6(x-3)^2-2 D. y=(6-x)^2+13
Zadanie 2.  1 pkt ⋅ Numer: pp-11042 ⋅ Poprawnie: 369/560 [65%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Miejscami zerowymi funkcji kwadratowej są liczby -1 oraz -3. Do wykresu tej funkcji należy punkt A=(3,48). Zapisz wzór tej funkcji w postaci iloczynowej y=a(x-x_1)(x-x_2).

Podaj współczynnik a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11055 ⋅ Poprawnie: 46/98 [46%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wykresy funkcji określonych wzorami f(x)=3x^2+6x+3 i g(x)=3x^2-12x+12 są symetryczne względem prostej o równaniu x=m.

Podaj m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11646 ⋅ Poprawnie: 57/103 [55%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Mniejsza część zawodników klubu sportowego liczącego 57 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10112 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Funkcja h(x)=x^2+4x+c ma dwa miejsca zerowe, gdy:
Odpowiedzi:
A. c=9 B. c=6
C. c=7 D. c=1
E. c=12 F. c=10
Zadanie 6.  2 pkt ⋅ Numer: pp-20342 ⋅ Poprawnie: 72/119 [60%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Wykres funkcji f(x)=x^2-2x+c-15 jest styczny do osi Ox.

Wyznacz c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20358 ⋅ Poprawnie: 32/66 [48%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Dana jest funkcja f(x)=ax^2+bx+c. Oblicz najmniejszą i największą wartość tej funkcji w przedziale \langle p,q\rangle.

Podaj wartośc najmniejszą.

Dane
a=2
b=-\frac{4}{5}=-0.80000000000000
c=\frac{40}{13}=3.08000000000000
p=-2
q=4
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj wartośc największą.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20391 ⋅ Poprawnie: 23/60 [38%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Dla jakich wartości parametru b funkcja y=x^2+bx+c nie ma miejsc zerowych?

Rozwiązanie zapisz w postaci przedziału. Podaj długość tego przedziału.

Dane
c=49
Odpowiedź:
d= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20461 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Liczba p jest równa kwadratowi różnicy pierwiastków równania x^2+bx+c=0.

Oblicz p.

Dane
b=8
c=\frac{5}{2}=2.50000000000000
Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30843 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Dla jakich wartości parametru m\in\mathbb{R} równanie x^2-(2m-1)x+m^2-1m-2=0 ma dwa rozwiązania, z których jedno należy do przedziału (0,2), a drugie do przedziału (3,5)?

Rozwiązaniem jest zbiór postaci:

Odpowiedzi:
A. (-\infty, p\rangle B. (-\infty, p\rangle \cup \langle q, +\infty)
C. (p, q) D. (-\infty, p)
E. (-\infty, +\infty) F. \langle p, +\infty)
G. (p, q\rangle H. (p, +\infty)
Podpunkt 10.2 (1.5 pkt)
 Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 10.3 (1.5 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm