Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11727 ⋅ Poprawnie: 28/45 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=x^2+bx+c należą punkty o współrzędnych (-6,9) i (-1,-1).

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11042 ⋅ Poprawnie: 369/567 [65%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Miejscami zerowymi funkcji kwadratowej są liczby 1 oraz 5. Do wykresu tej funkcji należy punkt A=(0,10). Zapisz wzór tej funkcji w postaci iloczynowej y=a(x-x_1)(x-x_2).

Podaj współczynnik a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11064 ⋅ Poprawnie: 289/479 [60%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Wykres funkcji kwadratowej określonej wzorem y=ax^2+bx+c pokazano na rysunku:

Podaj współczynnik a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11466 ⋅ Poprawnie: 202/334 [60%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Dana jest funkcja kwadratowa f(x)=-0,5(x+4m)^2+8m, gdzie m > 0.

Wówczas:

Odpowiedzi:
A. dla pewnego m funkcja ma jedno miejsce zerowe B. dla m=-\frac{1}{2} funkcja jest rosnąca
C. wierzchołek paraboli, która jest wykresem tej funkcji należy do prostej y=-2x D. największą wartością funkcji jest -8m
Zadanie 5.  1 pkt ⋅ Numer: pp-10971 ⋅ Poprawnie: 130/195 [66%] Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 Równanie x^2-(k-2)x+4=0 z niewiadomą x ma dwa różne rozwiązania wtedy i tylko wtedy, gdy parametr k należy do zbioru A. Zapisz zbiór Aw postaci sumy przedziałów.

Zbiór A jest postaci:

Odpowiedzi:
A. (-\infty,p)\cup(q,+\infty) B. (p,q)
C. \langle p,q\rangle D. (p,+\infty)
E. (-\infty,p)\cap(q,+\infty) F. (-\infty,p)
Podpunkt 5.2 (0.8 pkt)
 Liczba p jest najmniejszym, a liczba q największym z końców liczbowych tych przedziałów.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20340 ⋅ Poprawnie: 81/204 [39%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Współrzędna y wierzchołka wykresu funkcji f(x)=ax^2+2x-1 jest równa -3.

Wyznacz a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20367 ⋅ Poprawnie: 7/33 [21%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Do wykresu paraboli y=2x^2-3x-1 należy punkt Q=(2am, y) taki, że różnica 2am-y jest największa z możliwych.

Podaj m.

Dane
a=4
Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20377 ⋅ Poprawnie: 66/112 [58%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wyznacz punkty przecięcia paraboli określonej wzorem y=2x^2+37x+16 z prostą o równaniu y=-2.

Podaj najmniejszą możliwą współrzędną punktu przecięcia się obu wykresów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj największą możliwą współrzędną punktu przecięcia się obu wykresów.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20101 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Rozwiąż równanie x^2+4x+2ax+a^2+4a+7=4|x+4+a| .

Podaj najmniejsze z rozwiązań tego równania.

Dane
a=2
Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj średnią arytmetyczną wszystkich rozwiązań tego równania.
Odpowiedź:
x_s= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30089 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Dla jakich wartości parametru m\in\mathbb{R} równanie 2x^2-(m+2-a)|x|+m-a=0 ma dwa różne rozwiązania?

Podaj największe możliwe m.

Dane
a=2
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Dla ilu całkowitych wartości m\in\langle -10,10 \rangle warunki zadania są spełnione?
Odpowiedź:
ile= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm