Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11008 ⋅ Poprawnie: 400/562 [71%] Rozwiąż 
Podpunkt 1.1 (0.8 pkt)
 « Zbiorem wartości funkcji kwadratowej f(x)=-x^2-\sqrt{23} jest pewnien przedział liczbowy.

Podaj ten koniec tego przedziału, który jest liczbą niewymierną.

Odpowiedź:
m\sqrt{n}= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.2 pkt)
 Przedział ten ma postać:
Odpowiedzi:
A. \left\langle p, q \right\rangle B. \left(-\infty,p\right\rangle
C. \left\langle p,+\infty\right) D. \left(p, q\right)
Zadanie 2.  1 pkt ⋅ Numer: pp-10987 ⋅ Poprawnie: 50/92 [54%] Rozwiąż 
Podpunkt 2.1 (0.2 pkt)
 Wykres funkcji g(x)=5(m+2)+2x+x^2 nie przecina osi Ox, wtedy i tylko wtedy, gdy m należy do pewnego przedziału.

Przedział ten ma postać:

Odpowiedzi:
A. \langle p,+\infty) B. (p,q)
C. (p,+\infty) D. (-\infty,p)
E. (-\infty,p\rangle F. \langle p,q\rangle
Podpunkt 2.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11534 ⋅ Poprawnie: 208/306 [67%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 (1 pkt) Jeden z poniższych wzorów opisuje funkcję postaci y=ax^2+bx+c, której wykres pokazano na rysunku:

Wskaż ten wzór:

Odpowiedzi:
A. y=a(x+1)^2+2 B. y=a(x+1)^2-2
C. y=a(x-1)^2+2 D. y=a(x-2)^2+1
E. y=a(x-1)^2-2 F. y=a(x-2)^2-1
Zadanie 4.  1 pkt ⋅ Numer: pp-10978 ⋅ Poprawnie: 474/743 [63%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Najmniejszą wartość w przedziale \langle -14, -10\rangle funkcja kwadratowa określona wzorem f(x)=-\left(x+11\right)^{2}+5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10960 ⋅ Poprawnie: 252/530 [47%] Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 Wyznacz dziedzinę funkcji określonej wzorem f(x)=\sqrt{1-49x^2} .

Zbiór ten jest postaci:

Odpowiedzi:
A. (-\infty,p\rangle B. (p,q)
C. \langle p,q\rangle D. \langle p,+\infty)
E. (-\infty,p\rangle\cup\langle q,+\infty) F. (p,+\infty)
Podpunkt 5.2 (0.8 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20898 ⋅ Poprawnie: 25/32 [78%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wyznacz współczynniki b i c trójmianu kwadratowego y=f(x)=2x^2+bx+c wiedząc, że funkcja f przyjmuje wartości niedodatnie tylko dla x\in\langle -8,3\rangle.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  3 pkt ⋅ Numer: pr-20839 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Dana jest funkcja f(x)=x^2-(m+1)x+\frac{5}{2}m+\frac{1}{4}. Funkcja h liczbie m przyporządkowuje najmniejszą wartość funkcji f w przedziale \langle -1,1\rangle. Wyznacz wzór tej funkcji.

Podaj h(a\sqrt{5}).

Dane
a=-2
b=5
Odpowiedź:
h(a\sqrt{5})= + \cdot
(wpisz cztery liczby całkowite)
Podpunkt 7.2 (1 pkt)
Podaj długość przedziału, w którym funkcja ta określona jest wzorem h(m)=-\frac{1}{4}m^2+2m.
Odpowiedź:
d= (wpisz liczbę całkowitą)
Podpunkt 7.3 (1 pkt)
 Podaj h\left(\frac{b}{2}\right).
Odpowiedź:
h\left(\frac{b}{2}\right)=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20369 ⋅ Poprawnie: 111/144 [77%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Wyznacz większe z rozwiązań równania 2x^2-20x+36=0.
Odpowiedź:
x_{max}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20093 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 «« Wyznacz te wartości parametru m\in\mathbb{R}, dla których równanie (m+5)x^2-(m+7)x+3=0 ma dokładnie jedno rozwiązanie.

Podaj największe możliwe m spełniające warunki zadania.

Odpowiedź:
m_{max}= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj sumę wszystkich wyznaczonych wartości parametru m.
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30081 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Rozwiąż nierówność |x^2-2ax| \lessdot b .

Rozwiązanie zapisz w postaci sumy predziałów. Podaj sumę wszystkich końców tych przedziałów, które są liczbami całkowitymi.

Dane
a=2
b=4
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj najmniejszy z końców liczbowych tych przedziałów, który nie jest liczbą całkowitą.
Odpowiedź:
min= + \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm