« Zbiorem wartości funkcji
y=-(x-3)(x+3)
określonej dla x\in(1,4\rangle jest pewien przedział liczbowy,
którego lewy koniec jest równy p, a prawy koniec jest równy
q.
Podaj liczby p i q.
Odpowiedzi:
p
=
(wpisz liczbę całkowitą)
q
=
(wpisz liczbę całkowitą)
Zadanie 4.1 pkt ⋅ Numer: pp-11645 ⋅ Poprawnie: 37/67 [55%]
« Rzucono pionowo do góry kamień z prędkością początkową 10\ m/s.
Wysokość s\ [m], jaką osiągnie ten kamień po t
sekundach czasu opisuje wzór s(t)=12t-t^2.
Podaj maksymalną wysokość jaką osiągnie ten kamień.
Odpowiedź:
s_{max}(t)=(wpisz liczbę całkowitą)
Zadanie 5.1 pkt ⋅ Numer: pp-10970 ⋅ Poprawnie: 187/259 [72%]
« W turnieju szachowym, w którym uczestniczy ......... szachistów, każdy uczestnik rozgrywa jedną partię z każdym
innym uczestnikiem. Łącznie rozegrano w tym turnieju 210
partii szachów.
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 6.2 pkt ⋅ Numer: pp-20928 ⋅ Poprawnie: 66/116 [56%]
Funkcja kwadratowa f określona wzorem
f(x)=a(x-p)^2+q jest rosnąca wtedy i tylko wtedy,
gdy x\in\langle2,+\infty), zbiorem jej wartości
jest przedział \langle-5, +\infty), a do jej wykresu
należy punkt A=(3,-3). Wyznacz wzór tej funkcji.
Podaj współczynnik a.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
Podaj liczby p i q.
Odpowiedzi:
p
=
(wpisz liczbę całkowitą)
q
=
(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pr-20064 ⋅ Poprawnie: 0/0
« Ze sznurka o długości a [m] zrobiono dwie ramki,
jedną w kształcie kwadratu, drugą w kształcie prostokąta, którego stosunek
długości boków wynosi 1:3. Wówczas okazało się,
że suma pól powierzchni obu figur jest najmniejsza możliwa.
Podaj obwód ramki w kształcie kwadratu.
Dane
a=4
Odpowiedź:
L=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Podaj pole powierzchni prostokąta.
Odpowiedź:
P=
(wpisz dwie liczby całkowite)
Zadanie 8.2 pkt ⋅ Numer: pp-20385 ⋅ Poprawnie: 37/79 [46%]