Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-10979 ⋅ Poprawnie: 172/316 [54%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Dana jest funkcja
f określona wzorem
f(x)=-7(x+4)^2-1 .
Wyznacz największą wartość funkcji określonej wzorem h(x)=f(x-3)+6 .
Odpowiedź:
h_{max}(x)=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11013 ⋅ Poprawnie: 1044/1519 [68%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Trójmian kwadratowy
y=4x^2-4x-48 można zapisać w postaci
y=a(x+3)(x-m) .
Wyznacz wartości parametrów a i m .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-11410 ⋅ Poprawnie: 268/393 [68%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej
f :
Osią symetrii wykresu funkcji f
jest prosta o równaniu:
Odpowiedzi:
A. x-2=0
B. x=-4
C. y=-4
D. y-2=0
Zadanie 4. 1 pkt ⋅ Numer: pp-11466 ⋅ Poprawnie: 202/334 [60%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Dana jest funkcja kwadratowa
f(x)=-0,5(x+5m)^2+15m , gdzie
m > 0 .
Wówczas:
Odpowiedzi:
A. dla m=-\frac{1}{2} funkcja jest rosnąca
B. największą wartością funkcji jest -15m
C. wierzchołek paraboli, która jest wykresem tej funkcji należy do prostej y=-3x
D. dla pewnego m funkcja ma jedno miejsce zerowe
Zadanie 5. 1 pkt ⋅ Numer: pp-10963 ⋅ Poprawnie: 110/233 [47%]
Rozwiąż
Podpunkt 5.1 (0.2 pkt)
Funkcja opisana jest wzorem
f(x)=3x^2+5x-3 .
Zbiorem rozwiązań nierówności
f(x) > f(-x)
jest pewien przedział liczbowy.
Przedział ten ma postać:
Odpowiedzi:
A. (p,q\rangle
B. \langle p,+\infty)
C. (p,+\infty)
D. (-\infty,p\rangle
E. (p, q)
F. (-\infty,p)
Podpunkt 5.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pr-20460 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (2 pkt)
Liczby
\frac{9-\sqrt{5}}{2} i
x_2 są miejscami zerowymi funkcji kwadratowej,
której wykres ma wierzchołek w punkcie
(2,2) .
Wyznacz x_2 .
Odpowiedź:
Zadanie 7. 2 pkt ⋅ Numer: pr-20976 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (2 pkt)
Na bokach o długości
a i
b (
a\leqslant b ) prostokąta
ABCD o obwodzie długości
100 zbudowano półkola o średnicach
AB ,
BC ,
CD i
DA . Utworzona w ten sposób figura geometryczna ma największe możliwe
pole powierzchni.
Podaj długości boków tego prostokąta.
Odpowiedzi:
Zadanie 8. 2 pkt ⋅ Numer: pp-20371 ⋅ Poprawnie: 333/695 [47%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Rozwiąż równanie
x^2-3\sqrt{5}x-90=0 .
Podaj najmniejszą z liczb spełniających to równanie.
Odpowiedź:
x_{min}=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Podaj największą z liczb spełniających to równanie.
Odpowiedź:
x_{max}=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pr-20099 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
Rozwiąż równanie
|x^2-16|+|x^2-36|=4x+a .
Podaj najmniejsze rozwiązanie tego równania.
Dane
a=4
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
Podaj największe rozwiązanie tego równania.
Odpowiedź:
Zadanie 10. 4 pkt ⋅ Numer: pr-30065 ⋅ Poprawnie: 33/33 [100%]
Rozwiąż
Podpunkt 10.1 (4 pkt)
«« Dana jest funkcja
f(x)=(m+a+1)x^2+2(m+a-2)x-m+4-a
.
Wyznacz wszystkie wartości parametru
m , dla których
funkcja
f ma dwa różne miejsca zerowe
x_1,x_2 spełniające warunek
x_1^2+x_2^4=x_1^4+x_2^2 .
Podaj najmniejsze możliwe m spełniające warunki
zadania.
Dane
a=5
Odpowiedź:
Rozwiąż