Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11056 ⋅ Poprawnie: 610/800 [76%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Parabola o wierzchołku
P=(-2,-8) i ramionach
skierowanych w dół może być wykresem funkcji określonej wzorem:
Odpowiedzi:
A. y=(x+2)^2+8
B. y=-2(x-2)^2-8
C. y=3(x+8)^2-8
D. y=-2(x+2)^2-8
Zadanie 2. 1 pkt ⋅ Numer: pp-11079 ⋅ Poprawnie: 268/362 [74%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Dana jest funkcja kwadratowa opisana wzorem
h(x)=-3(x-7)(x-6) . Wyznacz maksymalny przedział, w którym funkcja ta
jest malejąca.
Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11026 ⋅ Poprawnie: 240/317 [75%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Dana jest funkcja
g:\mathbb{R}\to\mathbb{R} określona wzorem
g(x)=x^2-3+2x .
Wykres funkcji g przedstawia rysunek:
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-10988 ⋅ Poprawnie: 67/90 [74%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Wyznacz najmniejszą wartość funkcji kwadratowej określonej wzorem
f(x)=x^2+12x .
Odpowiedź:
f_{min}(x)=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10965 ⋅ Poprawnie: 537/880 [61%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Wskaż te nierówności, których rozwiązaniem jest zbiór
\mathbb{R} :
Odpowiedzi:
T/N : x^2+x-5 \geqslant 0
T/N : x^2-4x+8\geqslant 0
Zadanie 6. 2 pkt ⋅ Numer: pp-20340 ⋅ Poprawnie: 81/204 [39%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Współrzędna
y wierzchołka wykresu funkcji
f(x)=ax^2+2x-1 jest równa
0 .
Wyznacz a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20362 ⋅ Poprawnie: 16/47 [34%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Dana jest funkcja
f(x)=ax^2+bx+c .
Wyznacz zbiór wartości funkcji
g(x)=f(x-p)+q .
Podaj najmniejszą liczbę w zbiorze wartości. Jeśli taka wartość nie istnieje
wpisz 0 .
Dane
a=-1
b=-8
c=-7
p=1
q=-4
Odpowiedź:
f_{min}(x)=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj największą liczbę w zbiorze wartości. Jeśli taka wartość nie istnieje
wpisz
0 .
Odpowiedź:
f_{max}(x)=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20390 ⋅ Poprawnie: 77/179 [43%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
» Dla jakich wartości parametru
m funkcja
y=-x^2+12x+m-a nie ma miejsc zerowych?
Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.
Dane
a=16
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20990 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Liczby
x_1 i
x_2 są różnymi
miejscami zerowymi funkcji określonej wzorem
f(x)=-\frac{2}{3}x^2-5x-1 .
Oblicz sumę x_1^4+x_2^4 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 4 pkt ⋅ Numer: pr-30855 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
Równanie
x^2+(m-10)x+4m-48=0 ma dwa rozwiązania gdy parametr
m
należy do zbioru postaci
(-\infty, p)\cup(a+b\sqrt{c}, +\infty) , gdzie
a,b,c\in\mathbb{Z} i
c jest liczbą pierwszą.
Podaj liczby a , b i c .
Odpowiedzi:
Podpunkt 10.2 (1 pkt)
Wyznacz te wartości parametru
m , dla których równanie to ma dwa rozwiązania
x_1 i
x_2 takie, które spełniają warunek
x_1^2+x_2^2=400 .
Podaj najmniejsze możliwe m .
Odpowiedź:
m_{min}=
(wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
Podaj największe możliwe
m .
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Rozwiąż