« Rzucono pionowo do góry kamień z prędkością początkową 10\ m/s.
Wysokość s\ [m], jaką osiągnie ten kamień po t
sekundach czasu opisuje wzór s(t)=8t-4t^2.
Podaj maksymalną wysokość jaką osiągnie ten kamień.
Odpowiedź:
s_{max}(t)=(wpisz liczbę całkowitą)
Zadanie 5.1 pkt ⋅ Numer: pp-11077 ⋅ Poprawnie: 140/228 [61%]
» Funkcja kwadratowa opisana wzorem
g(x)=mx^2-2x-4 ma dokładnie dwa miejsca zerowe wtedy
i tylko wtedy, gdy parametr m należy do pewnego przedziału liczbowego.
Przedział ten ma postać:
Odpowiedzi:
A.(p,+\infty)
B.\langle p,+\infty)
C.\langle p, q\rangle
D.(-\infty,p\rangle
E.(p,q)
F.(-\infty,p)
Podpunkt 5.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 6.2 pkt ⋅ Numer: pp-20349 ⋅ Poprawnie: 7/37 [18%]
« Liczby x_1 i x_2
są miejscami zerowymi funkcji kwadratowej. Liczby te są względem siebie
odwrotne i spełniają warunek x_1+x_2=m, przy czym
x_1 \lessdot x_2.
Podaj x_1.
Dane
m=8
Odpowiedź:
x_{1}=
+\cdot√
(wpisz cztery liczby całkowite)
Zadanie 10.4 pkt ⋅ Numer: pr-30867 ⋅ Poprawnie: 0/0
Równanie kwadratowe x^2+(m+8)(m+8-x)=3m+27
ma dwa różne rozwiązania x_1 i x_2 gdy parametr
m należy do zbioru postaci
(-\infty, p)\cup(q, +\infty). Zapisz liczbę q
w najprostszej postaci a+b\sqrt{c}, gdzie
a,b,c\in\mathbb{Z}.
Podaj liczby a, b i c.
Odpowiedź:
q=+\cdot√
(wpisz trzy liczby całkowite)
Podpunkt 10.2 (2 pkt)
Funkcja f określona wzorem
f(m)=x_1^2+x_2^2
przyjmuje wartość największą dla argumentu m_0.
Podaj liczbę m_0.
Odpowiedź:
m_0=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat