Funkcja kwadratowa określona wzorem f(x)=ax^2+bx+c spełnia warunek
f(12)=-4, a jej najmniejszą wartością jest liczba
-\frac{297}{2}. Maksymalnym przedziałem, w którym funkcja ta jest rosnąca
jest [-5,+\infty).
Wyznacz współczynniki a i b.
Odpowiedzi:
a
=
(dwie liczby całkowite)
b
=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Wyznacz współczynnik c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 7.3 pkt ⋅ Numer: pr-20839 ⋅ Poprawnie: 0/0
» Dana jest funkcja
f(x)=x^2-(m+1)x+\frac{5}{2}m+\frac{1}{4}. Funkcja
h liczbie m
przyporządkowuje najmniejszą wartość funkcji f w
przedziale \langle -1,1\rangle. Wyznacz
wzór tej funkcji.
Podaj h(a\sqrt{5}).
Dane
a=-2 b=6
Odpowiedź:
h(a\sqrt{5})=
+\cdot√
(wpisz cztery liczby całkowite)
Podpunkt 7.2 (1 pkt)
Podaj długość przedziału, w którym funkcja ta określona jest wzorem
h(m)=-\frac{1}{4}m^2+2m.
Odpowiedź:
d=(wpisz liczbę całkowitą)
Podpunkt 7.3 (1 pkt)
Podaj h\left(\frac{b}{2}\right).
Odpowiedź:
h\left(\frac{b}{2}\right)=
(wpisz dwie liczby całkowite)
Zadanie 8.2 pkt ⋅ Numer: pp-20397 ⋅ Poprawnie: 42/119 [35%]
» Dana jest nierówność x^2-4(m-4)x-32m^2+256m-512 \lessdot 0 z
parametrem m\in\mathbb{N_+} i m\geqslant 10.
Funkcja g określona jest dla liczb naturalnych
m\geqslant 10 i jej wartością dla liczby
m jest największe z całkowitych rozwiązań podanej
nierówności.
Funkcja g jest funkcją liniową określoną wzorem
g(x)=ax+b.
Podaj a.
Odpowiedź:
a=(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj b.
Odpowiedź:
b=(wpisz liczbę całkowitą)
Zadanie 10.4 pkt ⋅ Numer: pr-30080 ⋅ Poprawnie: 0/0