Funkcja kwadratowa jest określona wzorem
f(x)=-(2x-4)(x+4). Liczby
x_1 i x_2 są różnymi
miejscami zerowymi funkcji f spełniającymi warunek
x_1+x_2=..........
Podaj brakującą liczbę.
Odpowiedzi:
A.x_1+x_2=2
B.x_1+x_2=4
C.x_1+x_2=-2
D.x_1+x_2=-4
Zadanie 3.1 pkt ⋅ Numer: pp-11000 ⋅ Poprawnie: 63/91 [69%]
Jeśli wykres funkcji kwadratowej określonej wzorem f(x)=x^2+4x+m-11
przecina prostą o równaniu y=-3, to parametr
m należy do pewnego przedziału liczbowego nieograniczonego.
Podaj najmniejszą lub największą liczbę całkowitą z tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 4.1 pkt ⋅ Numer: pp-11645 ⋅ Poprawnie: 20/49 [40%]
« Rzucono pionowo do góry kamień z prędkością początkową 10\ m/s.
Wysokość s\ [m], jaką osiągnie ten kamień po t
sekundach czasu opisuje wzór s(t)=10t-5t^2.
Podaj maksymalną wysokość jaką osiągnie ten kamień.
Odpowiedź:
s_{max}(t)=(wpisz liczbę całkowitą)
Zadanie 5.1 pkt ⋅ Numer: pp-10958 ⋅ Poprawnie: 250/427 [58%]
Funkcja kwadratowa określona wzorem f(x)=ax^2+bx+c przyjmuje wartości
nie większe od 26 wtedy i tylko wtedy, gdy
x\in(-\infty,-4\rangle\cup\langle 2,+\infty), a wierzchołek jej wykresu
należy do prostej o równaniu y=32.
Wyznacz współczynniki a i b.
Odpowiedzi:
a
=
(dwie liczby całkowite)
b
=
(dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Wyznacz współczynnik c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 7.3 pkt ⋅ Numer: pr-20839 ⋅ Poprawnie: 0/0
» Dana jest funkcja
f(x)=x^2-(m+1)x+\frac{5}{2}m+\frac{1}{4}. Funkcja
h liczbie m
przyporządkowuje najmniejszą wartość funkcji f w
przedziale \langle -1,1\rangle. Wyznacz
wzór tej funkcji.
Podaj h(a\sqrt{5}).
Dane
a=-2 b=4
Odpowiedź:
h(a\sqrt{5})=
+\cdot√
(wpisz cztery liczby całkowite)
Podpunkt 7.2 (1 pkt)
Podaj długość przedziału, w którym funkcja ta określona jest wzorem
h(m)=-\frac{1}{4}m^2+2m.
Odpowiedź:
d=(wpisz liczbę całkowitą)
Podpunkt 7.3 (1 pkt)
Podaj h\left(\frac{b}{2}\right).
Odpowiedź:
h\left(\frac{b}{2}\right)=
(wpisz dwie liczby całkowite)
Zadanie 8.2 pkt ⋅ Numer: pp-20379 ⋅ Poprawnie: 142/257 [55%]
« Równanie kwadratowe x^2+(m-6)x+m+2=0
ma dwa różne rozwiązania x_1 i x_2, wtedy i tylko wtedy,
gdy parametr m należy do zbioru postaci
(-\infty, p)\cup(q, +\infty).
Podaj liczby p i q.
Odpowiedzi:
p
=
(wpisz liczbę całkowitą)
q
=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Wyznacz wszystkie wartości parametru m, dla których prawdziwa jest nierówność
(x_1-x_2)^2\leqslant 2m^2-16m+24. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
min
=
(wpisz liczbę całkowitą)
max
=
(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat