« Liczba -3 jest miejscem zerowym funkcji kwadratowej
h. Maksymalny przedział, w którym ta funkcja
jest malejąca jest równy \langle 4,+\infty).
W przedziale \langle -6,-5\rangle największą
wartością funkcji h jest
-32. Wyznacz wzór funkcji h(x)=ax^2+bx+c.
Podaj a.
Odpowiedź:
a=(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj b.
Odpowiedź:
b=(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pr-20976 ⋅ Poprawnie: 0/0
Na bokach o długości a i b (a\leqslant b) prostokąta
ABCD o obwodzie długości 52 zbudowano półkola o średnicach
AB, BC, CD i
DA. Utworzona w ten sposób figura geometryczna ma największe możliwe
pole powierzchni.
Podaj długości boków tego prostokąta.
Odpowiedzi:
a
=
(wpisz liczbę całkowitą)
b
=
(wpisz liczbę całkowitą)
Zadanie 8.2 pkt ⋅ Numer: pr-20065 ⋅ Poprawnie: 0/0
«« Wyznacz te wartości parametru m, dla których
równanie 4x^2-(m+a)x+1=0 ma dwa różne pierwiastki
takie, że ich różnica jest liczbą z przedziału (0,4).
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Dane
a=-1
Odpowiedź:
min=+\cdot√
(wpisz trzy liczby całkowite)
Podpunkt 10.2 (1 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=+\cdot√
(wpisz trzy liczby całkowite)
Podpunkt 10.3 (1 pkt)
Podaj najmniejszy z końców liczbowych, który jest liczbą całkowitą.
Odpowiedź:
min_Z=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat