Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11038 ⋅ Poprawnie: 134/227 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Gdy przesuniemy wykres funkcji f(x)=6(x-1)^2+\frac{1}{2} o p=4 jednostek w lewo i q=9 jednostek w górę, to otrzymamy wykres funkcji:
Odpowiedzi:
A. y=6(x+3)^2-\frac{17}{2} B. y=6(x+8)^2+\frac{9}{2}
C. y=6(x+3)^2+\frac{19}{2} D. y=6(x-5)^2+\frac{19}{2}
Zadanie 2.  1 pkt ⋅ Numer: pp-11057 ⋅ Poprawnie: 399/626 [63%] Rozwiąż 
Podpunkt 2.1 (0.5 pkt)
 » Wierzchołek paraboli o równaniu y=(1+4x)(x+2) ma współrzędne (x_w,y_w).

Wyznacz współrzędną x_w.

Odpowiedź:
x_w=
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (0.5 pkt)
 Wyznacz współrzędną y_w.
Odpowiedź:
y_w=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11064 ⋅ Poprawnie: 289/479 [60%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Wykres funkcji kwadratowej określonej wzorem y=ax^2+bx+c pokazano na rysunku:

Podaj współczynnik a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11465 ⋅ Poprawnie: 479/942 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Najmniejszą wartość w przedziale \langle -12, -8\rangle funkcja kwadratowa f(x)=-\left(x+11\right)^{2}-5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10960 ⋅ Poprawnie: 252/530 [47%] Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 Wyznacz dziedzinę funkcji określonej wzorem f(x)=\sqrt{100-36x^2} .

Zbiór ten jest postaci:

Odpowiedzi:
A. (p,+\infty) B. (-\infty,p\rangle
C. (-\infty,p\rangle\cup\langle q,+\infty) D. \langle p,q\rangle
E. \langle p,+\infty) F. (p,q)
Podpunkt 5.2 (0.8 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20351 ⋅ Poprawnie: 38/72 [52%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Parabola ma wierzchołek w punkcie C=(4,450) i przecina oś Ox w punktach A i B.

Wiedząc, że P_{\triangle ABC}=3375. Wyznacz wzór tej paraboli w postaci kanonicznej f(x)=a(x-p)^2+q.

Podaj liczbę p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj liczbę q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20064 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Ze sznurka o długości a [m] zrobiono dwie ramki, jedną w kształcie kwadratu, drugą w kształcie prostokąta, którego stosunek długości boków wynosi 1:3. Wówczas okazało się, że suma pól powierzchni obu figur jest najmniejsza możliwa.

Podaj obwód ramki w kształcie kwadratu.

Dane
a=32
Odpowiedź:
L=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj pole powierzchni prostokąta.
Odpowiedź:
P=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20418 ⋅ Poprawnie: 88/226 [38%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Rozwiąż nierówność x^2+2ax-2(x+a)+a^2 \geqslant \frac{1}{3}(a+x-2)(a+x-8) .

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj średnią arytmetyczną wszystkich końców liczbowych tych przedziałów.

Dane
a=4
Odpowiedź:
s=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj sumę wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20076 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
 «« Przyprostokątne trójkąta są pierwiastkami trójmianu y=2x^2+(b+a)x+144. Pole kwadratu zbudowanego na przeciwprostokątnej tego trójkąta wynosi 340.

Wyznacz b.

Dane
a=5
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30862 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Równanie kwadratowe x^2-(m+9)x+m+8=0 ma dwa różne rozwiązania x_1 i x_2, wtedy i tylko wtedy, gdy parametr m należy do zbioru postaci (-\infty, p)\cup(q, +\infty).

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Wyznacz wszystkie wartości parametru m, dla których prawdziwa jest równość (x_1+3x_2)(x_2+3x_1)=16.

Podaj najmniejsze rozwiązanie tego równania.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm