Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11040 ⋅ Poprawnie: 241/405 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt P=(10,-12) należy do wykresu funkcji g(x)=x^2-mx+1.

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10980 ⋅ Poprawnie: 202/343 [58%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Liczby -5 i \frac{13}{2} są miejscami zerowymi funkcji określonej wzorem g(x)=ax^2-6x-130.

Wyznacz wartość współczynnika a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11469 ⋅ Poprawnie: 90/139 [64%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Układ równań \begin{cases} y=m \\ y=-3x^2-6x-10 \end{cases} ma dokładnie jedno rozwiązanie.

Wyznacz wartość parametru m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11730 ⋅ Poprawnie: 27/45 [60%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Większa część zawodników klubu sportowego liczącego 87 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10967 ⋅ Poprawnie: 119/170 [70%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Pole powierzchni trójkąta prostokątnego jest równe 384, a jedna z jego przyprostokątnych jest o 8 dłuższa od drugiej.

Oblicz kwadrat długości przeciwprostokątnej tego trójkąta.

Odpowiedź:
c^2= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20929 ⋅ Poprawnie: 39/58 [67%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja kwadratowa f określona wzorem f(x)=a(x-p)^2+q dla argumentu -9 osiąga wartość najmniejszą równą 11. Wiedząc, że do jej wykresu należy punkt należy punkt A=(-8,16), wyznacz wzór tej funkcji.

Podaj współczynnik a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj liczby p i q.
Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20357 ⋅ Poprawnie: 15/54 [27%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Dana jest funkcja f(x)=ax^2+bx+c. Oblicz najmniejszą i największą wartość tej funkcji w przedziale \langle p,q\rangle.

Podaj wartośc najmniejszą.

Dane
a=1
b=1=1.00000000000000
c=\frac{9}{4}=2.25000000000000
p=-3
q=5
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj wartośc największą.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20369 ⋅ Poprawnie: 113/147 [76%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Wyznacz większe z rozwiązań równania 2x^2-60x+446=0.
Odpowiedź:
x_{max}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20461 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Liczba p jest równa kwadratowi różnicy pierwiastków równania x^2+bx+c=0.

Oblicz p.

Dane
b=12
c=\frac{5}{4}=1.25000000000000
Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 10.  5 pkt ⋅ Numer: pr-30357 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 «« Wyznacz te wartości parametru m, dla których równanie 4x^2+(-4m+4a+2)x+m^2-(2a+1)m+a^2+a-2=0 ma dwa rozwiązania.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Dane
a=3
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Wyznacz zbiór tych wartości parametru m, dla których równanie to ma dwa rozwiązania dodatnie.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 10.3 (2 pkt)
 Wyznacz zbiór tych wartości parametru m, dla których równanie to ma dwa rozwiązania dodatnie spełniające nierówność x_1^2+x_2^2\leqslant \frac{17}{4}.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
suma= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm