Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11640 ⋅ Poprawnie: 84/117 [71%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wykres funkcji kwadratowej określonej wzorem y=-\frac{1}{2}(x+5)^2+6 otrzymano przesuwając wykres funkcji y=-\frac{1}{2}x^2 o p jednostek wzdłuż osi Ox i o q jednostek wzdłuż osi Oy, przy czym liczby p i q mogą być ujemne.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11079 ⋅ Poprawnie: 268/362 [74%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dana jest funkcja kwadratowa opisana wzorem h(x)=-2(x+7)(x-8). Wyznacz maksymalny przedział, w którym funkcja ta jest malejąca.

Podaj najmniejszy z końców liczbowych tego przedziału.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11000 ⋅ Poprawnie: 63/92 [68%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Jeśli wykres funkcji kwadratowej określonej wzorem f(x)=x^2+4x+m-8 przecina prostą o równaniu y=-3, to parametr m należy do pewnego przedziału liczbowego nieograniczonego.

Podaj najmniejszą lub największą liczbę całkowitą z tego przedziału.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11730 ⋅ Poprawnie: 25/43 [58%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Większa część zawodników klubu sportowego liczącego 79 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10961 ⋅ Poprawnie: 398/724 [54%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Suma wszystkich rozwiązań całkowitych nierówności (-5-2x)(x+8)\geqslant 0 jest równa ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20927 ⋅ Poprawnie: 31/72 [43%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja kwadratowa f określona wzorem f(x)=a(x-p)^2+q spełnia warunek f(-6)=f(4)=3, a jej zbiorem wartości jest przedział (-\infty, 8\rangle.

Wyznacz współczynnik a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Wyznacz liczby p i q.
Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20356 ⋅ Poprawnie: 25/92 [27%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Dana jest funkcja f(x)=ax^2+bx+c. Oblicz najmniejszą i największą wartość tej funkcji w przedziale \langle p,q\rangle.

Podaj wartośc najmniejszą.

Dane
a=-1
b=-4
c=-\frac{11}{3}=-3.66666666666667
p=-3
q=1
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj wartośc największą.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20406 ⋅ Poprawnie: 14/38 [36%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Rozwiąż nierówność f(x)-x\cdot g(x)\geqslant 0, gdzie f(x)=x^2+bx+c i g(x)=x-3.

Rozwiązanie zapisz w postaci przedziału. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Dane
b=-4
c=-5
Odpowiedź:
suma=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20094 ⋅ Poprawnie: 5/17 [29%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Dla jakich wartości parametru m równanie x^2+(4m+48)x+4m+48+1\frac{1}{4}=0 ma dwa różne pierwiastki ujemne?

Podaj największą liczbę, która nie spełnia warunków zadania.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pr-30043 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
» Dane jest równanie x^2+mx-2x+1=0. Funkcja g przyporządkowuje liczbie m liczbę \frac{x_1+x_2}{\sqrt{x_1x_2}}, gdzie x_1,x_2 są pierwiastkami tego równania. Wyznacz D_g.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Oblicz g(-2-\sqrt{2}).
Odpowiedź:
g(-2-\sqrt{2})= + \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm