Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11031 ⋅ Poprawnie: 394/568 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Wierzchołkiem paraboli, która jest wykresem funkcji f jest punkt W=(12,9). Wówczas:
Odpowiedzi:
T/N : f(4)=f(19) T/N : f(6)=f(17)
T/N : f(7)=f(18)  
Zadanie 2.  1 pkt ⋅ Numer: pp-10987 ⋅ Poprawnie: 50/92 [54%] Rozwiąż 
Podpunkt 2.1 (0.2 pkt)
 Wykres funkcji g(x)=5(m+4)+2x+x^2 nie przecina osi Ox, wtedy i tylko wtedy, gdy m należy do pewnego przedziału.

Przedział ten ma postać:

Odpowiedzi:
A. \langle p,+\infty) B. \langle p,q\rangle
C. (p,+\infty) D. (p,q)
E. (-\infty,p\rangle F. (-\infty,p)
Podpunkt 2.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11014 ⋅ Poprawnie: 32/77 [41%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Niech A=(-2,4). Wiadomo, że A\cap ZW_g=\emptyset.

Wykres funkcji g pokazano na rysunku:

Odpowiedzi:
A. D B. C
C. A D. B
Zadanie 4.  1 pkt ⋅ Numer: pp-11645 ⋅ Poprawnie: 16/43 [37%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Rzucono pionowo do góry kamień z prędkością początkową 10\ m/s. Wysokość s\ [m], jaką osiągnie ten kamień po t sekundach czasu opisuje wzór s(t)=8t-4t^2.

Podaj maksymalną wysokość jaką osiągnie ten kamień.

Odpowiedź:
s_{max}(t)= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11077 ⋅ Poprawnie: 140/228 [61%] Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 » Funkcja kwadratowa opisana wzorem g(x)=mx^2-2x-4 ma dokładnie dwa miejsca zerowe wtedy i tylko wtedy, gdy parametr m należy do pewnego przedziału liczbowego.

Przedział ten ma postać:

Odpowiedzi:
A. (p,+\infty) B. \langle p,+\infty)
C. \langle p, q\rangle D. (-\infty,p\rangle
E. (p,q) F. (-\infty,p)
Podpunkt 5.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20349 ⋅ Poprawnie: 7/37 [18%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 «« Dana jest funkcja f(x)= \begin{cases} (x+8)^2-8 \text{, dla } x\leqslant 0 \\ -(x+8)^2+120 \text{, dla }x > 0 \end{cases} .

Wyznacz zbiór tych wartości, które funkcja f przyjmuje trzy razy, dla trzech różnych argumentów.

Zbiór ten zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Odpowiedź:
x_l= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
x_p= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20361 ⋅ Poprawnie: 166/428 [38%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Dana jest funkcja f(x)=ax^2+bx+c, gdzie x\in\langle p,q\rangle.

Oblicz najmniejszą wartość funkcji f.

Dane
a=1
b=4
c=-1
p=-3
q=3
Odpowiedź:
y_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Oblicz największą wartość funkcji f.
Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20404 ⋅ Poprawnie: 61/147 [41%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Rozwiąż nierówność 6x^2 > b+cx.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Dane
b=-10=-10.00000000000000
c=17=17.00000000000000
Odpowiedź:
suma=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20458 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Liczby x_1 i x_2 są miejscami zerowymi funkcji kwadratowej. Liczby te są względem siebie odwrotne i spełniają warunek x_1+x_2=m, przy czym x_1 \lessdot x_2.

Podaj x_1.

Dane
m=8
Odpowiedź:
x_{1}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pr-30867 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Równanie kwadratowe x^2+(m+8)(m+8-x)=3m+27 ma dwa różne rozwiązania x_1 i x_2 gdy parametr m należy do zbioru postaci (-\infty, p)\cup(q, +\infty). Zapisz liczbę q w najprostszej postaci a+b\sqrt{c}, gdzie a,b,c\in\mathbb{Z}.

Podaj liczby a, b i c.

Odpowiedź:
q= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Funkcja f określona wzorem f(m)=x_1^2+x_2^2 przyjmuje wartość największą dla argumentu m_0.

Podaj liczbę m_0.

Odpowiedź:
m_0= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm