Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11009 ⋅ Poprawnie: 212/393 [53%]
Rozwiąż
Podpunkt 1.1 (0.2 pkt)
« Maksymalny zbiór, w którym funkcja kwadratowa
f(x)=-2(x-7)^2-4 jest rosnąca jest pewnym przedziałem liczbowym.
Przedział ten ma postać:
Odpowiedzi:
A. \langle p,q\rangle
B. \langle p,+\infty)
C. (-\infty,p\rangle
D. (p,q)
E. (-\infty,p)
F. (p,+\infty)
Podpunkt 1.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11041 ⋅ Poprawnie: 365/693 [52%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wyznacz największa wartość funkcji określonej wzorem
y=-3(x+8)(x-1) .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11048 ⋅ Poprawnie: 71/143 [49%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
» Prosta o równaniu
y+......=0 ma dokładnie jeden
punkt wspólny z parabolą określoną równaniem
y=2(x+2)^2-10 .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11409 ⋅ Poprawnie: 216/332 [65%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej
f :
Podaj największą wartość funkcji f w przedziale
\langle 1,4\rangle .
Odpowiedź:
f_{max}(x)=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10962 ⋅ Poprawnie: 383/585 [65%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Iloczyn
(x+2)(-9-x) jest nieujemny, wtedy i tylko wtedy, gdy liczba
x
należy do zbioru
A . Zapisz zbiór
A
w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pp-20340 ⋅ Poprawnie: 81/204 [39%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Współrzędna
y wierzchołka wykresu funkcji
f(x)=ax^2+2x-1 jest równa
0 .
Wyznacz a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20353 ⋅ Poprawnie: 221/686 [32%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Funkcja kwadratowa jest określona wzorem
f(x)=ax^2+bx+c .
Oblicz najmniejszą wartość funkcji f
w przedziale \langle p,q\rangle .
Dane
a=-1
b=-3
c=-10
p=-4
q=6
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Oblicz największą wartość funkcji
f
w tym przedziale.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20392 ⋅ Poprawnie: 15/131 [11%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Rozwiąż nierówność
ax^2+bx+c \geqslant 0
.
Ile liczb całkowitych z przedziału
\langle -10,10\rangle spełnia tę nierówność?
Dane
a=-1
b=-\frac{20}{3}=-6.66666666666667
c=\frac{7}{3}=2.33333333333333
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Zbiór rozwiązań zapisz w postaci sumy przedziałów. Podaj współrzędną punktu,
względem którego zbiór ten jest symetryczny.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pr-20088 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (2 pkt)
Przyprostokątne trójkąta są pierwiastkami trójmianu
y=2x^2+(b+a)x+144 . Pole kwadratu zbudowanego na
przeciwprostokątnej tego trójkąta wynosi
340 .
Wyznacz b .
Dane
a=-1
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30029 ⋅ Poprawnie: 9/15 [60%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
«« Wyznacz te wartości parametru
m , dla których
dwa różne pierwiastki
x_1 i
x_2 równania
(2-a-m)x^2+(m+a-2)x+2=0 spełniają nierówność
\frac{1}{x_1}+\frac{1}{x_2} > 1 .
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy koniec
liczbowy tych przedziałów.
Dane
a=-1
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj największy koniec liczbowy tych przedziałów.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
Ile jest tych przedziałów?
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Rozwiąż