Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-10989 ⋅ Poprawnie: 706/1015 [69%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Największą wartością funkcji kwadratowej
f(x)=-4(x+3)^2-6 jest
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11010 ⋅ Poprawnie: 114/226 [50%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Funkcja kwadratowa określona jest wzorem
f(x)=-(x+1)(x+5) . Wyznacz maksymalny przedział, w którym funkcja
ta jest rosnąca.
Podaj najmniejszy koniec liczbowy tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11017 ⋅ Poprawnie: 336/557 [60%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Dana jest funkcja określona wzorem
g(x)=ax^2+bx+c . Postać iloczynowa
funkcji
g opisana jest wzorem
g(x)=a(x+3)(x-1) .
Wyznacz współczynnik c .
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11080 ⋅ Poprawnie: 264/397 [66%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Suma dwóch liczb jest równa
6\sqrt{2} , a ich
iloczyn ma największą możliwą wartość.
Oblicz mniejszą z tych liczb.
Odpowiedź:
min=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10957 ⋅ Poprawnie: 641/967 [66%]
Rozwiąż
Podpunkt 5.1 (0.2 pkt)
» Wyznacz dziedzinę funkcji określonej wzorem
f(x)=\frac{x-1}{\sqrt{x^2+2x-48}}
.
Zbiór ten ma postać:
Odpowiedzi:
A. \langle p,q\rangle
B. \mathbb{R}-(p,q)
C. (p,q)
D. \mathbb{R}-\{p\}
E. (-\infty,p)\cup(q,+\infty)
F. \mathbb{R}-\{p, q\}
Podpunkt 5.2 (0.8 pkt)
Zbiór
A jest zbiorem wszystkich liczb nie należących do dziedziny
tej funkcji.
Wyznacz najmniejszą i największą liczbę w zbiorze A .
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pp-20895 ⋅ Poprawnie: 18/34 [52%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Funkcja kwadratowa określona jest wzorem
f(x)=ax^2+bx+c . Funkcja ta przyjmuje wartości
dodatnie tylko w przedziale
(0, k) , a jej największa
wartość wartość wynosi
q .
Wyznacz a .
Dane
k=48
q=1152
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pr-20064 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Ze sznurka o długości
a [m] zrobiono dwie ramki,
jedną w kształcie kwadratu, drugą w kształcie prostokąta, którego stosunek
długości boków wynosi
1:3 . Wówczas okazało się,
że suma pól powierzchni obu figur jest najmniejsza możliwa.
Podaj obwód ramki w kształcie kwadratu.
Dane
a=8
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Podaj pole powierzchni prostokąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20406 ⋅ Poprawnie: 14/38 [36%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Rozwiąż nierówność
f(x)-x\cdot g(x)\geqslant 0 , gdzie
f(x)=x^2+bx+c i
g(x)=x-3 .
Rozwiązanie zapisz w postaci przedziału. Podaj sumę wszystkich końców
liczbowych tych przedziałów.
Dane
b=-6
c=5
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pr-20069 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Rozwiąż równanie
\sqrt{x}+\sqrt{a-x}=\sqrt{x+1}
.
Podaj największe z rozwiązań tego równania.
Dane
a=2
Odpowiedź:
Zadanie 10. 4 pkt ⋅ Numer: pr-30048 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Dla jakich wartości parametru
p równanie
x^2-2(p+a-5)x+p+7+a=0 ma dwa różne pierwiastki
o tych samych znakach.
Rowiązanie zapisz w postaci sumy przedziałów. Podaj największy z wszystkich
końców liczbowych tych przedziałów.
Dane
a=-4
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Podaj najmniejszy z wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Rozwiąż