Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11044 ⋅ Poprawnie: 141/222 [63%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wykres funkcji kwadratowej
g przecina oś
Ox w dwóch punktach.
Funkcja g opisana jest wzorem:
Odpowiedzi:
A. g(x)=-7(x+10)^2+\sqrt{12}
B. g(x)=4(x+4)^2+6
C. g(x)=-12(x+9)^2-3
D. g(x)=3(x-3)^2+11
Zadanie 2. 1 pkt ⋅ Numer: pp-11079 ⋅ Poprawnie: 268/362 [74%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Dana jest funkcja kwadratowa opisana wzorem
h(x)=-3(x-4)(x-3) . Wyznacz maksymalny przedział, w którym funkcja ta
jest malejąca.
Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11534 ⋅ Poprawnie: 191/287 [66%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
(1 pkt)
Jeden z poniższych wzorów opisuje funkcję postaci
y=ax^2+bx+c , której wykres pokazano na rysunku:
Wskaż ten wzór:
Odpowiedzi:
A. y=a(x+1)^2+2
B. y=a(x+1)^2-2
C. y=a(x-1)^2-2
D. y=a(x-1)^2+2
E. y=a(x-2)^2+1
F. y=a(x-2)^2-1
Zadanie 4. 1 pkt ⋅ Numer: pp-11646 ⋅ Poprawnie: 57/103 [55%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Mniejsza część zawodników klubu sportowego liczącego
51 osób,
zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z
pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.
Ilu zawodników było chorych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10967 ⋅ Poprawnie: 118/168 [70%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
» Pole powierzchni trójkąta prostokątnego jest równe
30 , a jedna z jego przyprostokątnych jest o
7 dłuższa od drugiej.
Oblicz kwadrat długości przeciwprostokątnej tego trójkąta.
Odpowiedź:
c^2=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pr-20459 ⋅ Poprawnie: 155/320 [48%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
« Dla jakiej wartości parametru
m zbiorem wartości
funkcji liczbowej
g(x)=x^2+3x+m-1 jest przedział
\langle -2,+\infty) .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20364 ⋅ Poprawnie: 88/221 [39%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Wyznacz najmniejszą wartość funkcji
h(x)=ax^2+bx+c w przedziale
\langle p,q\rangle .
Dane
a=1
b=-6
c=13
p=2
q=6
Odpowiedź:
f_{min}(x)=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Wyznacz największą wartość tej funkcji w podanym przedziale.
Odpowiedź:
f_{max}(x)=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20417 ⋅ Poprawnie: 104/203 [51%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Rozwiąż nierówność
x^2+bx+c \leqslant 0 .
Ile liczb całkowitych dodatnich spełnia tę nierówność?
Dane
b=0
c=-16
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Ile liczb całkowitych ujemnych spełnia tę nierówność?
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-21061 ⋅ Poprawnie: 2/3 [66%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Rozwiąż równanie
\sqrt{x^2+4x+1}+x^2+4x=1
.
Podaj najmniejsze z rozwiązań tego równania.
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj największe z rozwiązań tego równania.
Odpowiedź:
x_{max}=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30052 ⋅ Poprawnie: 6/15 [40%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Liczba
m\in\mathbb{R} w równaniu
(x+3)\cdot\left[x^2+(m+4+a)x+(m+1+a)^2\right]=0 jest
parametrem. Rozwiąż to równanie dla
m=1-a .
Podaj sumę wszystkich rozwiązań.
Dane
a=-2
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Dla jakich wartości parametru
m równanie to ma
dokładnie jedno rozwiązanie?
Podaj najmniejszą liczbę, która nie spełnia warunków zadania.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich
końców liczbowych tych przedziałów.
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Rozwiąż