« Rzucono pionowo do góry kamień z prędkością początkową 10\ m/s.
Wysokość s\ [m], jaką osiągnie ten kamień po t
sekundach czasu opisuje wzór s(t)=4t-t^2.
Podaj maksymalną wysokość jaką osiągnie ten kamień.
Odpowiedź:
s_{max}(t)=(wpisz liczbę całkowitą)
Zadanie 5.1 pkt ⋅ Numer: pp-10963 ⋅ Poprawnie: 111/235 [47%]
Funkcja kwadratowa określona wzorem f(x)=ax^2+bx+c spełnia warunek
f(0)=-1, a jej najmniejszą wartością jest liczba
-\frac{291}{2}. Maksymalnym przedziałem, w którym funkcja ta jest rosnąca
jest [-17,+\infty).
Wyznacz współczynniki a i b.
Odpowiedzi:
a
=
(dwie liczby całkowite)
b
=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Wyznacz współczynnik c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 7.1 pkt ⋅ Numer: pp-20943 ⋅ Poprawnie: 22/48 [45%]
Sprzedawca miesięcznie sprzedaje k=56 laptopów w cenie 3600
złotych sztuka. Zauważył, że każda obniżka ceny laptopa o 25
złotych zwiększa sprzedaż o jedną sztukę miesięcznie.
Ile powinien kosztować jeden laptop, aby osiągnięty dochód był maksymalny?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 8.2 pkt ⋅ Numer: pp-20400 ⋅ Poprawnie: 216/421 [51%]
Funkcja kwadratowa określona wzorem f(x)=ax^2+bx+c ma dwa miejsca zerowe x_1
i x_2 takie, że \frac{1}{x_1^2}+\frac{1}{x_2^2}=18
oraz x_1\cdot x_2=-1. Wiedząc, że
f(2)=22 i a\in\mathbb{N_+}, wyznacz
wzór tej funkcji w postaci ogólnej.
Podaj liczbę a.
Odpowiedź:
a=(wpisz liczbę całkowitą)
Podpunkt 9.2 (1.4 pkt)
Podaj liczby b i c.
Odpowiedzi:
b
=
(wpisz liczbę całkowitą)
c
=
(wpisz liczbę całkowitą)
Zadanie 10.4 pkt ⋅ Numer: pr-30054 ⋅ Poprawnie: 0/0
» Dla jakich wartości parametru m\in\mathbb{R}
iloczyn różnych pierwiastków równania
x^2-(m-a)x+m^2-(2+2a)m+(a+1)^2=0
jest o jeden mniejszy od sumy tych pierwiastków?
Podaj najmniejsze możliwe m, które spełnia warunki
zadania.
Dane
a=5
Odpowiedź:
m_{min}=(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Podaj największe możliwe m, które spełnia warunki
zadania.
Odpowiedź:
m_{max}=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat