Na bokach o długości a i b (a\leqslant b) prostokąta
ABCD o obwodzie długości 40 zbudowano półkola o średnicach
AB, BC, CD i
DA. Utworzona w ten sposób figura geometryczna ma największe możliwe
pole powierzchni.
Podaj długości boków tego prostokąta.
Odpowiedzi:
a
=
(wpisz liczbę całkowitą)
b
=
(wpisz liczbę całkowitą)
Zadanie 8.2 pkt ⋅ Numer: pp-20422 ⋅ Poprawnie: 67/143 [46%]
(2 pkt)
Dana jest funkcja określona wzorem y=\frac{9}{x^2},
dla każdego x\in\mathbb{R}-\{0\}, której wykres pokazano
na rysunku, oraz punkt A=(5, -1):
Pozioma prosta przecina wykres tej funkcji w punktach o współrzędych
B=(x_0, y_0) oraz C=(-x_0,y_0)
gdzie x_0 > 0 i y_0 > 0.
Znajdź najmniejsze x_0\in(5;+\infty), dla którego
P_{\triangle ABC}\geqslant 10.
Odpowiedź:
x_0=(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
(1 pkt)
Wyznacz największą liczbę nieujemną m o tej własności,
że dla dowolnego x_0\in(0,+\infty) prawdziwa jest nierówność
P_{\triangle ABC}\geqslant m.
Odpowiedź:
m=(wpisz liczbę całkowitą)
Zadanie 10.4 pkt ⋅ Numer: pr-30068 ⋅ Poprawnie: 2/2 [100%]