Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11039 ⋅ Poprawnie: 241/289 [83%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Punkt
(7,-6) jest wierzchołkiem paraboli.
Punkt o współrzędnych
P=(0,9) należy do tej
paraboli.
Zatem zbiorem wartości funkcji, której wykresem jest ta parabola jest:
Odpowiedzi:
A. \langle -6,+\infty)
B. (-\infty,6\rangle
C. \langle 6,+\infty)
D. (-\infty,-6\rangle
Zadanie 2. 1 pkt ⋅ Numer: pp-11041 ⋅ Poprawnie: 365/693 [52%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wyznacz największa wartość funkcji określonej wzorem
y=-2(x+4)(x-6) .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11017 ⋅ Poprawnie: 336/557 [60%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Dana jest funkcja określona wzorem
g(x)=ax^2+bx+c . Postać iloczynowa
funkcji
g opisana jest wzorem
g(x)=a(x+3)(x-1) .
Wyznacz współczynnik c .
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-10988 ⋅ Poprawnie: 67/90 [74%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Wyznacz najmniejszą wartość funkcji kwadratowej określonej wzorem
f(x)=x^2+12x .
Odpowiedź:
f_{min}(x)=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11077 ⋅ Poprawnie: 140/228 [61%]
Rozwiąż
Podpunkt 5.1 (0.2 pkt)
» Funkcja kwadratowa opisana wzorem
g(x)=mx^2-2x-5 ma dokładnie dwa miejsca zerowe wtedy
i tylko wtedy, gdy parametr
m należy do pewnego przedziału liczbowego.
Przedział ten ma postać:
Odpowiedzi:
A. (-\infty,p\rangle
B. (p,q)
C. \langle p,+\infty)
D. (-\infty,p)
E. \langle p, q\rangle
F. (p,+\infty)
Podpunkt 5.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20342 ⋅ Poprawnie: 72/119 [60%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
» Wykres funkcji
f(x)=x^2+12x+c-15 jest styczny do osi
Ox .
Wyznacz c .
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20364 ⋅ Poprawnie: 113/259 [43%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Wyznacz najmniejszą wartość funkcji
h(x)=ax^2+bx+c w przedziale
\langle p,q\rangle .
Dane
a=1
b=4
c=8
p=-4
q=1
Odpowiedź:
f_{min}(x)=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Wyznacz największą wartość tej funkcji w podanym przedziale.
Odpowiedź:
f_{max}(x)=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20415 ⋅ Poprawnie: 34/96 [35%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Wyznacz dziedzinę funkcji:
f(x)=\frac{x^2-6x+5}{\sqrt{x^2+bx+c}}
.
Ile liczb całkowitych nie należy do rozwiązania?
Dane
b=-1
c=-20
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj najmniejszą z tych liczb.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20079 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
» Dla jakich wartości parametru
m rozwiązaniem
nierówności
(2m+9)x^2+2x+1\geqslant 0 jest zbiór
\mathbb{R} ?
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych
tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 4 pkt ⋅ Numer: pr-30060 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Dla jakich wartości parametru
m\in\mathbb{R} równanie
(m+3-a)x^2+(m-a)x-m-1+a=0 ma co najmniej jedno
rozwiązanie dodatnie?
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj największy z końców
tych przedziałów, który jest liczbą.
Dane
a=3
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Przedział
(a, b) jest zbiorem tych wszystkich
wartości parametru
m , które nie spełniają warunków
zadania.
Podaj środek tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż