Równanie x^2-(k+3)x+25=0 z niewiadomą
x ma dwa różne rozwiązania wtedy i tylko wtedy, gdy parametr
k należy do zbioru A. Zapisz zbiór
Aw postaci sumy przedziałów.
Zbiór A jest postaci:
Odpowiedzi:
A.(-\infty,p)\cap(q,+\infty)
B.\langle p,q\rangle
C.(-\infty,p)
D.(p,+\infty)
E.(p,q)
F.(-\infty,p)\cup(q,+\infty)
Podpunkt 5.2 (0.8 pkt)
Liczba p jest najmniejszym, a liczba q
największym z końców liczbowych tych przedziałów.
Podaj liczby p i q.
Odpowiedzi:
p
=
(wpisz liczbę całkowitą)
q
=
(wpisz liczbę całkowitą)
Zadanie 6.2 pkt ⋅ Numer: pp-20351 ⋅ Poprawnie: 38/72 [52%]
(2 pkt)
Dana jest funkcja określona wzorem y=\frac{36}{x^2},
dla każdego x\in\mathbb{R}-\{0\}, której wykres pokazano
na rysunku, oraz punkt A=(7, -1):
Pozioma prosta przecina wykres tej funkcji w punktach o współrzędych
B=(x_0, y_0) oraz C=(-x_0,y_0)
gdzie x_0 > 0 i y_0 > 0.
Znajdź najmniejsze x_0\in(10;+\infty), dla którego
P_{\triangle ABC}\geqslant 20.
Odpowiedź:
x_0=(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
(1 pkt)
Wyznacz największą liczbę nieujemną m o tej własności,
że dla dowolnego x_0\in(0,+\infty) prawdziwa jest nierówność
P_{\triangle ABC}\geqslant m.
Odpowiedź:
m=(wpisz liczbę całkowitą)
Zadanie 10.4 pkt ⋅ Numer: pr-30055 ⋅ Poprawnie: 33/33 [100%]