Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11006 ⋅ Poprawnie: 342/636 [53%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Wskaż funkcję, która w przedziale
(-\infty,5) jest malejąca:
Odpowiedzi:
A. y=-(x-5)^2+4
B. y=(x-4)^2+5
C. y=(x+4)^2+5
D. y=(x+5)^2-4
E. y=-(x+5)^2+5
F. y=(x-5)^2-4
Zadanie 2. 1 pkt ⋅ Numer: pp-11013 ⋅ Poprawnie: 1052/1528 [68%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Trójmian kwadratowy
y=2x^2-8x-42 można zapisać w postaci
y=a(x+3)(x-m) .
Wyznacz wartości parametrów a i m .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-11035 ⋅ Poprawnie: 23/28 [82%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Daja jest funkcja kwadratowa g określona jest wzorem
g(x)=x^2+3 . Jej wykres ma dokładnie jeden punkt
wspólny z prostą y=-9 , gdy przesuniemy go o:
Odpowiedzi:
A. 12 jednostek w dół wzdłuż osi Oy
B. 3 jednostki w lewo wzdłuż osi Ox
C. 12 jednostek w prawo wzdłuż osi Ox
D. 12 jednostek w górę wzdłuż osi Oy
Zadanie 4. 1 pkt ⋅ Numer: pp-10988 ⋅ Poprawnie: 67/90 [74%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Wyznacz najmniejszą wartość funkcji kwadratowej określonej wzorem
f(x)=x^2+12x .
Odpowiedź:
f_{min}(x)=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10971 ⋅ Poprawnie: 130/195 [66%]
Rozwiąż
Podpunkt 5.1 (0.2 pkt)
Równanie
x^2-(k-4)x+9=0 z niewiadomą
x ma dwa różne rozwiązania wtedy i tylko wtedy, gdy parametr
k należy do zbioru
A . Zapisz zbiór
A w postaci sumy przedziałów.
Zbiór A jest postaci:
Odpowiedzi:
A. (-\infty,p)\cup(q,+\infty)
B. (-\infty,p)\cap(q,+\infty)
C. (p,+\infty)
D. (-\infty,p)
E. \langle p,q\rangle
F. (p,q)
Podpunkt 5.2 (0.8 pkt)
Liczba
p jest najmniejszym, a liczba
q
największym z końców liczbowych tych przedziałów.
Podaj liczby p i q .
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pr-20459 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (2 pkt)
« Dla jakiej wartości parametru
m zbiorem wartości
funkcji liczbowej
g(x)=x^2+3x+m-7 jest przedział
\langle -2,+\infty) .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20358 ⋅ Poprawnie: 32/66 [48%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Dana jest funkcja
f(x)=ax^2+bx+c .
Oblicz najmniejszą i największą wartość tej funkcji w przedziale
\langle p,q\rangle .
Podaj wartośc najmniejszą.
Dane
a=2
b=\frac{4}{3}=1.33333333333333
c=\frac{20}{9}=2.22222222222222
p=-3
q=2
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Podaj wartośc największą.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20394 ⋅ Poprawnie: 14/175 [8%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Rozwiąż nierówność
x^2+bx+c \lessdot 0 .
Ile liczb całkowitych z przedziału
\langle -10, 10\rangle spełnia tę nierówność?
Dane
b=-\frac{9}{2}=-4.50000000000000
c=2=2.00000000000000
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Zbiór rozwiązań zapisz w postaci sumy przedziałów. Podaj współrzędną punktu,
względem którego zbiór ten jest symetryczny.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pr-20081 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Dla jakich wartości parametru
m funkcja
f(x)=(-4-m)x^2+(m+7)x-m-7 przyjmuje wartości ujemne
dla każdego
x\in\mathbb{R} .
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy
z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30083 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Zbadaj liczbę rozwiązań równania
x^2-4|x|=2m-a w
zależności od wartości parametru
m\in\mathbb{R} .
Podaj najmniejsze możliwe m , dla którego równanie
ma dwa rozwiązania.
Dane
a=3
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Podaj najmniejsze możliwe
m , dla którego równanie
ma trzy rozwiązania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.3 (1 pkt)
Podaj długość przedziału tych wartości
m , dla
których równanie ma cztery rozwiązania.
Odpowiedź:
d_4=
(wpisz liczbę całkowitą)
Rozwiąż