Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-10993 ⋅ Poprawnie: 570/824 [69%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Funkcja kwadratowa określona jest wzorem
f(x)=x^2-8x+c .
Jeżeli
f(-3)=17 , to
f(1)=......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-10982 ⋅ Poprawnie: 56/126 [44%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Wyznacz sumę miejsc zerowych funkcji określonej wzorem
f(x)=\frac{-x^2-11x-28}{\sqrt{-7-x}}
.
Odpowiedź:
x_1+x_2=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11035 ⋅ Poprawnie: 23/28 [82%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Daja jest funkcja kwadratowa g określona jest wzorem
g(x)=x^2+3 . Jej wykres ma dokładnie jeden punkt
wspólny z prostą y=-9 , gdy przesuniemy go o:
Odpowiedzi:
A. 12 jednostek w górę wzdłuż osi Oy
B. 12 jednostek w dół wzdłuż osi Oy
C. 3 jednostki w lewo wzdłuż osi Ox
D. 12 jednostek w prawo wzdłuż osi Ox
Zadanie 4. 1 pkt ⋅ Numer: pp-10978 ⋅ Poprawnie: 474/743 [63%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Najmniejszą wartość w przedziale
\langle -15, -11\rangle funkcja kwadratowa
określona wzorem
f(x)=-\left(x+12\right)^{2}+5
przyjmuje dla argumentu
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10957 ⋅ Poprawnie: 641/967 [66%]
Rozwiąż
Podpunkt 5.1 (0.2 pkt)
» Wyznacz dziedzinę funkcji określonej wzorem
f(x)=\frac{x-1}{\sqrt{x^2+15x+50}}
.
Zbiór ten ma postać:
Odpowiedzi:
A. \mathbb{R}-(p,q)
B. (-\infty,p)\cup(q,+\infty)
C. (p,q)
D. \mathbb{R}-\{p\}
E. \langle p,q\rangle
F. \mathbb{R}-\{p, q\}
Podpunkt 5.2 (0.8 pkt)
Zbiór
A jest zbiorem wszystkich liczb nie należących do dziedziny
tej funkcji.
Wyznacz najmniejszą i największą liczbę w zbiorze A .
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pp-20351 ⋅ Poprawnie: 38/72 [52%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Parabola ma wierzchołek w punkcie
C=(1,25) i przecina
oś
Ox w punktach
A i
B .
Wiedząc, że P_{\triangle ABC}=\frac{125}{2} . Wyznacz wzór tej
paraboli w postaci kanonicznej f(x)=a(x-p)^2+q .
Podaj liczbę p .
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
q=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20940 ⋅ Poprawnie: 4/37 [10%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Pewne ciało w czasie
t\ [s] przebyło drogę
s [m] ,
którą opisuje wzór
s(t)=t^2+2t+4 , gdzie
t\in\langle 2,6\rangle .
Oblicz długość drogi przebytej przez to ciało w ciągu 4 sekund ruchu.
Odpowiedź:
s(t)=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Wyznacz średnią prędkość w metrach na sekundę tego ciała.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20419 ⋅ Poprawnie: 366/862 [42%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Rozwiąż nierówność
7x+2+14a-16a^2\geqslant 4x^2+16ax
.
Podaj najmniejszą liczbę spełniającą tę nierówność.
Dane
a=-4
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Podaj największą liczbę spełniającą tę nierówność.
Odpowiedź:
x_{max}=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20102 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
Rozwiąż nierówność
|x^2+3x+2|-|x-a|\leqslant 3 .
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejsze z rozwiązań
tej nierówności.
Dane
a=1
Odpowiedź:
x_{min}=
+
\cdot
√
(wpisz trzy liczby całkowite)
Podpunkt 9.2 (1 pkt)
Podaj największą liczbę spełniającą tę nierówność.
Odpowiedź:
x_{max}=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 10. 4 pkt ⋅ Numer: pr-30866 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
Równanie kwadratowe
x^2-(m-9)x+1=0
ma dwa różne rozwiązania
x_1 i
x_2 , wtedy i tylko wtedy,
gdy parametr
m należy do zbioru postaci
(-\infty, p)\cup(q, +\infty) .
Podaj liczby p i q .
Odpowiedzi:
Podpunkt 10.2 (2 pkt)
Wyznacz te wszystkie wartości parametru
m , dla których spełniona jest nierówność
\frac{1}{x_1^2}+\frac{1}{x_2^2} \geqslant 2m^2-33m+115 .
Podaj najmniejsze i największe rozwiązanie tej nierówności.
Odpowiedzi:
Rozwiąż