Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10979 ⋅ Poprawnie: 172/316 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dana jest funkcja f określona wzorem f(x)=-7(x+4)^2-1.

Wyznacz największą wartość funkcji określonej wzorem h(x)=f(x-3)+6.

Odpowiedź:
h_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11013 ⋅ Poprawnie: 1044/1519 [68%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Trójmian kwadratowy y=4x^2-4x-48 można zapisać w postaci y=a(x+3)(x-m).

Wyznacz wartości parametrów a i m.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
m= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11410 ⋅ Poprawnie: 268/393 [68%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej f:

Osią symetrii wykresu funkcji f jest prosta o równaniu:

Odpowiedzi:
A. x-2=0 B. x=-4
C. y=-4 D. y-2=0
Zadanie 4.  1 pkt ⋅ Numer: pp-11466 ⋅ Poprawnie: 202/334 [60%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Dana jest funkcja kwadratowa f(x)=-0,5(x+5m)^2+15m, gdzie m > 0.

Wówczas:

Odpowiedzi:
A. dla m=-\frac{1}{2} funkcja jest rosnąca B. największą wartością funkcji jest -15m
C. wierzchołek paraboli, która jest wykresem tej funkcji należy do prostej y=-3x D. dla pewnego m funkcja ma jedno miejsce zerowe
Zadanie 5.  1 pkt ⋅ Numer: pp-10963 ⋅ Poprawnie: 110/233 [47%] Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 Funkcja opisana jest wzorem f(x)=3x^2+5x-3. Zbiorem rozwiązań nierówności f(x) > f(-x) jest pewien przedział liczbowy.

Przedział ten ma postać:

Odpowiedzi:
A. (p,q\rangle B. \langle p,+\infty)
C. (p,+\infty) D. (-\infty,p\rangle
E. (p, q) F. (-\infty,p)
Podpunkt 5.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pr-20460 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Liczby \frac{9-\sqrt{5}}{2} i x_2 są miejscami zerowymi funkcji kwadratowej, której wykres ma wierzchołek w punkcie (2,2).

Wyznacz x_2.

Odpowiedź:
x_2= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20976 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Na bokach o długości a i b (a\leqslant b) prostokąta ABCD o obwodzie długości 100 zbudowano półkola o średnicach AB, BC, CD i DA. Utworzona w ten sposób figura geometryczna ma największe możliwe pole powierzchni.

Podaj długości boków tego prostokąta.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20371 ⋅ Poprawnie: 333/695 [47%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Rozwiąż równanie x^2-3\sqrt{5}x-90=0.

Podaj najmniejszą z liczb spełniających to równanie.

Odpowiedź:
x_{min}= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj największą z liczb spełniających to równanie.
Odpowiedź:
x_{max}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20099 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Rozwiąż równanie |x^2-16|+|x^2-36|=4x+a.

Podaj najmniejsze rozwiązanie tego równania.

Dane
a=4
Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj największe rozwiązanie tego równania.
Odpowiedź:
x_{max}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pr-30065 ⋅ Poprawnie: 33/33 [100%] Rozwiąż 
Podpunkt 10.1 (4 pkt)
 «« Dana jest funkcja f(x)=(m+a+1)x^2+2(m+a-2)x-m+4-a . Wyznacz wszystkie wartości parametru m, dla których funkcja f ma dwa różne miejsca zerowe x_1,x_2 spełniające warunek x_1^2+x_2^4=x_1^4+x_2^2.

Podaj najmniejsze możliwe m spełniające warunki zadania.

Dane
a=5
Odpowiedź:
m_{min}= + \cdot
(wpisz cztery liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm