Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11008 ⋅ Poprawnie: 400/563 [71%]
Rozwiąż
Podpunkt 1.1 (0.8 pkt)
« Zbiorem wartości funkcji kwadratowej
f(x)=-x^2-\sqrt{19} jest pewnien przedział liczbowy.
Podaj ten koniec tego przedziału, który jest liczbą niewymierną.
Odpowiedź:
m\sqrt{n}=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.2 pkt)
Odpowiedzi:
A. \left\langle p,+\infty\right)
B. \left\langle p, q \right\rangle
C. \left(p, q\right)
D. \left(-\infty,p\right\rangle
Zadanie 2. 1 pkt ⋅ Numer: pp-11013 ⋅ Poprawnie: 1054/1531 [68%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Trójmian kwadratowy
y=-2x^2+20x-42 można zapisać w postaci
y=a(x-3)(x-m) .
Wyznacz wartości parametrów a i m .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-11026 ⋅ Poprawnie: 241/318 [75%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Dana jest funkcja
g:\mathbb{R}\to\mathbb{R} określona wzorem
g(x)=x^2-3+2x .
Wykres funkcji g przedstawia rysunek:
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-11409 ⋅ Poprawnie: 223/340 [65%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej
f :
Podaj największą wartość funkcji f w przedziale
\langle 1,4\rangle .
Odpowiedź:
f_{max}(x)=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11065 ⋅ Poprawnie: 60/108 [55%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Funkcja
f określona jest wzorem
f(x)=\frac{x^2-11x-12}{x+10} .
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : f przyjmuje wartości dodatnie
T/N : f ma zbiór \mathbb{R} za dziedzinę
T/N : f ma jedno miejsce zerowe
Zadanie 6. 2 pkt ⋅ Numer: pp-20931 ⋅ Poprawnie: 38/61 [62%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Zbiorem wartości funkcji kwadratowej określonej wzorem
f(x)=ax^2+bx+c
jest przedział
\left[-2, +\infty\right) . Funkcja ta spełnia warunek
f(5)=-\frac{3}{2} , a suma
jej miejsc zerowych jest równa
8 .
Wyznacz współczynniki a i b .
Odpowiedzi:
Podpunkt 6.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20941 ⋅ Poprawnie: 130/223 [58%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Wiadomo, że
x-y=36 , a także, że suma
x^2+y^2
jest najmniejsza możliwa.
Podaj liczbę x .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Odpowiedź:
y=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20371 ⋅ Poprawnie: 337/702 [48%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Rozwiąż równanie
x^2+\sqrt{5}x-30=0 .
Podaj najmniejszą z liczb spełniających to równanie.
Odpowiedź:
x_{min}=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Podaj największą z liczb spełniających to równanie.
Odpowiedź:
x_{max}=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pr-20107 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Wyznacz te wartości parametru
m\in\mathbb{R} ,
dla których równanie
x^2-(m+a)|x|+1=0 ma cztery
różne rozwiązania.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich
końców liczbowych tych przedziałów.
Dane
a=-3
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30839 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
Rozwiąż równanie
\sqrt{1+x-4\sqrt{x-3}}+\sqrt{6+x-6\sqrt{x-3}}=1
.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Podaj największy z końców
liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Rozwiąż