Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11505 ⋅ Poprawnie: 439/842 [52%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 (1 pkt) Zbiorem wartości funkcji określonej wzorem f(x)=-3(x+1971)^2+m-50 jest przedział (-\infty, 2021\rangle.

Wówczas liczba m jest równa:

Odpowiedzi:
A. 2071 B. 2171
C. 1921 D. 2121
Zadanie 2.  1 pkt ⋅ Numer: pp-11075 ⋅ Poprawnie: 96/167 [57%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Dana jest funkcja kwadratowa określona wzorem f(x)=(-2-x)(3x+6). Wierzchołek wykresu tej funkcji należy do prostej określonej równaniem x=m.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11022 ⋅ Poprawnie: 73/224 [32%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
« Rysunek przedstawia wykres funkcji kwadratowej h(x)=a(x+b)^2+c.

Zatem:

Odpowiedzi:
A. c=-5 B. c=5
C. b=-5 D. b=5
Zadanie 4.  1 pkt ⋅ Numer: pp-10988 ⋅ Poprawnie: 67/90 [74%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
» Wyznacz najmniejszą wartość funkcji kwadratowej określonej wzorem f(x)=x^2+12x.
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10957 ⋅ Poprawnie: 641/967 [66%] Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 » Wyznacz dziedzinę funkcji określonej wzorem f(x)=\frac{x-1}{\sqrt{x^2+14x+40}} .

Zbiór ten ma postać:

Odpowiedzi:
A. (-\infty,p)\cup(q,+\infty) B. \mathbb{R}-(p,q)
C. \mathbb{R}-\{p, q\} D. \mathbb{R}-\{p\}
E. (p,q) F. \langle p,q\rangle
Podpunkt 5.2 (0.8 pkt)
 Zbiór A jest zbiorem wszystkich liczb nie należących do dziedziny tej funkcji.

Wyznacz najmniejszą i największą liczbę w zbiorze A.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pr-20460 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Liczby \frac{-8-2\sqrt{3}}{2} i x_2 są miejscami zerowymi funkcji kwadratowej, której wykres ma wierzchołek w punkcie (3,3).

Wyznacz x_2.

Odpowiedź:
x_2= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20361 ⋅ Poprawnie: 166/428 [38%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Dana jest funkcja f(x)=ax^2+bx+c, gdzie x\in\langle p,q\rangle.

Oblicz najmniejszą wartość funkcji f.

Dane
a=2
b=-4
c=-15
p=-2
q=3
Odpowiedź:
y_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Oblicz największą wartość funkcji f.
Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20416 ⋅ Poprawnie: 16/78 [20%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Rozwiąż nierówność x^2+bx+c > 0.

Ile liczb całkowitych dodatnich, co najwyżej dwucyfrowych spełnia tę nierówność?

Dane
b=-1
c=-132
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Ile liczb całkowitych ujemnych nie spełnia tej nierówności?
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20071 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Rozwiąż nierówność \sqrt{-x^2-4ax} > x+4a.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę kwadratów wszystkich końców liczbowych tych przedziałów.

Dane
a=2
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30051 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Dane jest równanie (x+3)\left[x^2+(p-a+1)x+(p-a-2)^2\right]=0 o niewiadomej x. Rozwiąż je dla p=a+4.

Podaj najmniejsze z rozwiązań.

Dane
a=-4
Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Wyznacz te wartości parametru p, dla których równanie to ma tylko jedno rozwiązanie.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
 Dla ilu wartości całkowitych p z przedziału \langle -20, 20\rangle równanie to ma dokładnie jedno rozwiązanie?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm