Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11039 ⋅ Poprawnie: 241/289 [83%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt (5,4) jest wierzchołkiem paraboli. Punkt o współrzędnych P=(0,-8) należy do tej paraboli.

Zatem zbiorem wartości funkcji, której wykresem jest ta parabola jest:

Odpowiedzi:
A. \langle -8,+\infty) B. \langle 8,+\infty)
C. (-\infty,8\rangle D. (-\infty,4\rangle
Zadanie 2.  1 pkt ⋅ Numer: pp-10987 ⋅ Poprawnie: 50/92 [54%] Rozwiąż 
Podpunkt 2.1 (0.2 pkt)
 Wykres funkcji g(x)=5(m+3)+2x+x^2 nie przecina osi Ox, wtedy i tylko wtedy, gdy m należy do pewnego przedziału.

Przedział ten ma postać:

Odpowiedzi:
A. (-\infty,p\rangle B. (p,q)
C. (p,+\infty) D. \langle p,q\rangle
E. (-\infty,p) F. \langle p,+\infty)
Podpunkt 2.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11053 ⋅ Poprawnie: 57/109 [52%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Prosta o równaniu y+2m=0 ma dokładnie jeden punkt wspólny z wykresem funkcji kwadratowej określonej wzorem f(x)=-\frac{1}{2}x^2+6x+4.

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11466 ⋅ Poprawnie: 202/334 [60%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Dana jest funkcja kwadratowa f(x)=-0,5(x+4m)^2+12m, gdzie m > 0.

Wówczas:

Odpowiedzi:
A. dla m=-\frac{1}{2} funkcja jest rosnąca B. wierzchołek paraboli, która jest wykresem tej funkcji należy do prostej y=-3x
C. dla pewnego m funkcja ma jedno miejsce zerowe D. największą wartością funkcji jest -12m
Zadanie 5.  1 pkt ⋅ Numer: pp-10959 ⋅ Poprawnie: 224/427 [52%] Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 » Wyznacz zbiór wszystkich rozwiązań nierówności -1 \lessdot x^2+\frac{4}{5}x \lessdot 0 .

Zbiór ten ma postać:

Odpowiedzi:
A. \langle p,q\rangle B. (-\infty,p)\cup\langle q,+\infty)
C. (p,q) D. (-\infty,p)
E. (-\infty,p\rangle F. (p,+\infty)
Podpunkt 5.2 (0.8 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20341 ⋅ Poprawnie: 247/510 [48%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Największa wartość funkcji f(x)=a(x-3)(x+1) jest równa 16.

Podaj a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20361 ⋅ Poprawnie: 166/428 [38%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Dana jest funkcja f(x)=ax^2+bx+c, gdzie x\in\langle p,q\rangle.

Oblicz najmniejszą wartość funkcji f.

Dane
a=1
b=-4
c=-1
p=1
q=5
Odpowiedź:
y_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Oblicz największą wartość funkcji f.
Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20065 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Wyznacz te wartości parametru m, dla których funkcja h(x)=(2+a-m)x^2+(m-a)x+m-4-a ma największą wartość równą 2.

Podaj najmniejsze takie m.

Dane
a=2
Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj największe takie m.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pr-20094 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Dla jakich wartości parametru m równanie x^2+(4m-48)x+4m-48+1\frac{1}{4}=0 ma dwa różne pierwiastki ujemne?

Podaj największą liczbę, która nie spełnia warunków zadania.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pr-30037 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 «« Funkcja f(x)=x^2+(m^2+8m-n^2+13)x+n^2+3m+8, gdzie m,n\in\mathbb{C}, ma dwa miejsca zerowe x_1=4-\sqrt{5} oraz x_2=4+\sqrt{5}.

Ile rozwiązań ma to zadanie?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj najmniejsze możliwe m.
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm