Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11727 ⋅ Poprawnie: 28/45 [62%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=x^2+bx+c
należą punkty o współrzędnych
(-6,7) i
(-1,-3) .
Wyznacz współczynniki b i c .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-10986 ⋅ Poprawnie: 417/622 [67%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wyznacz przedział o maksymalnej długości, w którym funkcja określona wzorem
h(x)=\frac{1}{2}(x-6)(x+8) jest rosnąca.
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11004 ⋅ Poprawnie: 127/373 [34%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Funkcja kwadratowa określona jest wzorem
f(x)=-3(x+2018)(x-666) .
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : f(600) < f(670)
T/N : f(-666) > f(-667)
Zadanie 4. 1 pkt ⋅ Numer: pp-11067 ⋅ Poprawnie: 143/276 [51%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Rozpatrujemy prostokąty o obwodzie
108 . Na takim
prostokącie o największym polu powierzchni opisano okrąg.
Oblicz długość promienia tego okręgu.
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-10969 ⋅ Poprawnie: 79/138 [57%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Punkt
M=(a,7\cdot a) należy do wykresu funkcji
f(x)=(1-a)x-a .
Wyznacz najmniejsze możliwe i największe możliwe a .
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pp-20939 ⋅ Poprawnie: 6/35 [17%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Funkcja kwadratowa określona wzorem
f(x)=ax^2+bx+c dla argumentu
5 przyjmuje wartość najmniejszą, równą
5 ,
a jeden z punktów przecięcia jej wykresu z prostą o równaniu
y=7
ma odciętą
3 .
Wyznacz współczynnik b .
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-20943 ⋅ Poprawnie: 21/46 [45%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Sprzedawca miesięcznie sprzedaje
k=62 laptopów w cenie 3600
złotych sztuka. Zauważył, że każda obniżka ceny laptopa o
45
złotych zwiększa sprzedaż o jedną sztukę miesięcznie.
Ile powinien kosztować jeden laptop, aby osiągnięty dochód był maksymalny?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20411 ⋅ Poprawnie: 50/185 [27%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Rozwiąż nierówność
2x^2+b+cx\leqslant 0 .
Ile liczb całkowitych spełnia tę nierówność?
Dane
b=3=3.00000000000000
c=-5=-5.00000000000000
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj największą liczbę spełniającą tę nierówność.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pr-20070 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Rozwiąż nierówność
\sqrt{x^2-4ax+7+4a^2} > \sqrt{2}x+\sqrt{2}\left(3-2a\right)
.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę kwadratów
wszystkich końców liczbowych tych przedziałów.
Dane
a=4
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30842 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
Dla jakich wartości parametru
m\in\mathbb{R} równanie
5x^2-(m+6)x+1=0 ma dwa
rozwiązania spełniające warunek
\left|x_1-x_2\right|\geqslant 1 ?
Rozwiązaniem jest zbiór postaci:
Odpowiedzi:
A. (-\infty, p)\cup(q, +\infty)
B. (-\infty, +\infty)
C. (-\infty, p)
D. (p, +\infty)
E. \langle p, q)
F. (-\infty, p\rangle \cup \langle q, +\infty)
G. \langle p, +\infty)
H. (-\infty, p\rangle
Podpunkt 10.2 (1.5 pkt)
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych
tych przedziałów.
Odpowiedź:
min=
+
\cdot
√
(wpisz trzy liczby całkowite)
Podpunkt 10.3 (1.5 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
+
\cdot
√
(wpisz trzy liczby całkowite)
Rozwiąż