Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10983 ⋅ Poprawnie: 300/532 [56%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wierzchołek paraboli y=x^2+4x leży na prostej o równaniu:
Odpowiedzi:
A. y=4x B. y=-4x
C. y=2x D. y=1x
E. y=-2x F. y=-1x
Zadanie 2.  1 pkt ⋅ Numer: pp-10980 ⋅ Poprawnie: 201/342 [58%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Liczby 1 i -\frac{5}{2} są miejscami zerowymi funkcji określonej wzorem g(x)=ax^2+3x-5.

Wyznacz wartość współczynnika a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10966 ⋅ Poprawnie: 34/58 [58%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
« Zbiorem wartości funkcji y=-(x-3)(x+3) określonej dla x\in(1,4\rangle jest pewien przedział liczbowy, którego lewy koniec jest równy p, a prawy koniec jest równy q.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11645 ⋅ Poprawnie: 37/67 [55%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Rzucono pionowo do góry kamień z prędkością początkową 10\ m/s. Wysokość s\ [m], jaką osiągnie ten kamień po t sekundach czasu opisuje wzór s(t)=18t-t^2.

Podaj maksymalną wysokość jaką osiągnie ten kamień.

Odpowiedź:
s_{max}(t)= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10960 ⋅ Poprawnie: 252/530 [47%] Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 Wyznacz dziedzinę funkcji określonej wzorem f(x)=\sqrt{16-4x^2} .

Zbiór ten jest postaci:

Odpowiedzi:
A. (p,q) B. (p,+\infty)
C. \langle p,+\infty) D. (-\infty,p\rangle
E. (-\infty,p\rangle\cup\langle q,+\infty) F. \langle p,q\rangle
Podpunkt 5.2 (0.8 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-20459 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Dla jakiej wartości parametru m zbiorem wartości funkcji liczbowej g(x)=x^2+3x+m-6 jest przedział \langle -2,+\infty).
Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20979 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Na przeciwprostokątnej BC trójkąta prostokątnego równoramiennego ABC zbudowano prostokąt BMNC. Obwód powstałego pięciokąta ABMNC ma długość 32, a jego powierzchnia jest największa możliwa.

Podaj długość boku MN tego pięciokąta.

Odpowiedź:
|MN|= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20370 ⋅ Poprawnie: 30/58 [51%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Funkcja kwadratowa f(x)=32x^2+bx+\frac{49}{2} ma tylko jedno miejsce zerowe. Oblicz b.

Podaj najmniejszą możliwą wartość b.

Odpowiedź:
b_{min}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 8.2 (1 pkt)
 
Odpowiedź:
b_{max}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20992 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Liczby \frac{1}{4-\sqrt{3}} i \frac{1}{4+\sqrt{3}} są miejscami zerowymi funkcji określonej wzorem f(x)=x^2-(p+q)x+q-p.

Wyznacz liczbę p.

Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Wyznacz liczbę q.
Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pr-30039 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Wyznacz te wartości parametru m, dla których równanie (m-5)x^2+(m-2)x+4=0 ma dwa różne pierwiastki rzeczywiste, których suma odwrotności jest mniejsza od 2.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
 Podaj sumę wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm