Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-1

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11074  
Podpunkt 1.1 (1 pkt)
 « Różnica iloczynu liczby 2 oraz liczby x i kwadratu liczby xjest największa dla liczby x równej:
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10986  
Podpunkt 2.1 (1 pkt)
 Wyznacz przedział o maksymalnej długości, w którym funkcja określona wzorem h(x)=\frac{1}{2}(x-3)(x+7) jest rosnąca.

Podaj mniejszy z końców liczbowych tego przedziału.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11064  
Podpunkt 3.1 (1 pkt)
Wykres funkcji kwadratowej określonej wzorem y=ax^2+bx+c pokazano na rysunku:

Podaj współczynnik a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11645  
Podpunkt 4.1 (1 pkt)
 « Rzucono pionowo do góry kamień z prędkością początkową 10\ m/s. Wysokość s\ [m], jaką osiągnie ten kamień po t sekundach czasu opisuje wzór s(t)=2t-t^2.

Podaj maksymalną wysokość jaką osiągnie ten kamień.

Odpowiedź:
s_{max}(t)= (wpisz liczbę całkowitą)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10975  
Podpunkt 5.1 (1 pkt)
 Liczba ujemna spełnia równanie x^2-2x-2=0.

Oblicz kwadrat tej liczby.

Odpowiedź:
x^2= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20934  
Podpunkt 6.1 (1 pkt)
 Funkcja kwadratowa określona wzorem f(x)=ax^2+bx+c przyjmuje wartości nie większe od 14 wtedy i tylko wtedy, gdy x\in(-\infty,6\rangle\cup\langle 12,+\infty), a wierzchołek jej wykresu należy do prostej o równaniu y=20.

Wyznacz współczynniki a i b.

Odpowiedzi:
a= (dwie liczby całkowite)

b= (dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Wyznacz współczynnik c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20355  
Podpunkt 7.1 (1 pkt)
 Dana jest funkcja f(x)=ax^2+bx+c. Oblicz najmniejszą i największą wartość tej funkcji w przedziale \langle p,q\rangle.

Podaj wartośc najmniejszą.

Dane
a=-1
b=\frac{2}{3}=0.66666666666667
c=-\frac{28}{9}=-3.11111111111111
p=-2
q=3
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj wartośc największą.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20408  
Podpunkt 8.1 (1 pkt)
 « Rozwiąż nierówność 2x^2+3x > 104.

Ile liczb całkowitych nie należy do rozwiązania?

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj najmniejszą z tych liczb.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-21060  
Podpunkt 9.1 (1 pkt)
 Rozwiąż równanie \sqrt{x^2+10x+21}=x+7 .

Podaj najmniejsze z rozwiązań tego równania.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj największe z rozwiązań tego równania.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 10.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30066  
Podpunkt 10.1 (2 pkt)
 «« Dana jest funkcja f(x)=x^2+2(m-a)x+6m-5-6a . Dla jakich wartości parametru m funkcja ma dwa różne miejsca zerowe o takich samych znakach?

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę tych końców przedziałów, które są liczbami całkowitymi.

Dane
a=-5
Odpowiedź:
suma_Z= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Dla jakich wartości parametru m te miejsca zerowe spełniają warunek |x_2-x_1| \lessdot 3?

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj największy z końców liczbowych tych przedziałów.

Odpowiedź:
max=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm