Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11083 ⋅ Poprawnie: 83/187 [44%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Dla x=-2 funkcja f(x)=x^2+bx+c przyjmuje wartość najmniejszą równą -1.

Wyznacz wartość współczynnika c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11041 ⋅ Poprawnie: 367/696 [52%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wyznacz największa wartość funkcji określonej wzorem y=-3(x+3)(x+1).
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11027 ⋅ Poprawnie: 42/94 [44%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Prosta o równaniu x=-4 jest osią symetrii wykresu funkcji kwadratowej, której część wykresu pokazano na poniższym rysunku. Zbiór A zawiera wszystkie te wartości rzeczywiste x, dla których f(x)\leqslant 0.

Podaj najmniejszą liczbę należącą do zbioru A.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11409 ⋅ Poprawnie: 221/338 [65%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej f:

Podaj największą wartość funkcji f w przedziale \langle 1,4\rangle.

Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11065 ⋅ Poprawnie: 60/108 [55%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Funkcja f określona jest wzorem f(x)=\frac{x^2+x-2}{x-2}.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : f ma dwa miejsca zerowe T/N : f ma jedno miejsce zerowe
T/N : f nie ma miejsc zerowych  
Zadanie 6.  2 pkt ⋅ Numer: pp-20936 ⋅ Poprawnie: 51/143 [35%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja kwadratowa określona wzorem f(x)=-x^2+bx+c jest malejąca wtedy i tylko wtedy, gdy x\in\langle -1,+\infty). Wiedząc, że f(1)=-2, oblicz współczynniki b i c.

Podaj liczbę b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj liczbę c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20367 ⋅ Poprawnie: 9/36 [25%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Do wykresu paraboli y=2x^2-3x-1 należy punkt Q=(2am, y) taki, że różnica 2am-y jest największa z możliwych.

Podaj m.

Dane
a=3
Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20407 ⋅ Poprawnie: 25/46 [54%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Rozwiąż nierówność -1\cdot f(x)+2\cdot g(x) > -7, gdzie f(x)=x^2-4x+1 i g(x)=x-3.

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Odpowiedź:
x_L=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
x_P=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20996 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (0.6 pkt)
 Funkcja kwadratowa określona wzorem f(x)=ax^2+bx+c ma dwa miejsca zerowe x_1 i x_2 takie, że \frac{1}{x_1^2}+\frac{1}{x_2^2}=15 oraz x_1\cdot x_2=2. Wiedząc, że f(2)=22 i a\in\mathbb{N_+}, wyznacz wzór tej funkcji w postaci ogólnej.

Podaj liczbę a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1.4 pkt)
 Podaj liczby b i c.
Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30067 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 «« Prosta o równaniu 2x+amy-4=0 ma dokładnie dwa punkty wspólne z parabolą o równaniu y=-x^2+4x-4. Wyznacz możliwe wartości parametru m.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Dane
a=-2
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj ilość tych przedziałów.
Odpowiedź:
ile= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm