Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11072 ⋅ Poprawnie: 315/529 [59%]
Rozwiąż
Podpunkt 1.1 (0.5 pkt)
« O funkcji kwadratowej opisanej wzorem
f(x)=a(x-p)^2+q wiadomo, że ma dwa
miejsca zerowe
1 i
9 oraz
że najmniejszą jej wartością jest liczba
-2 .
Wyznacz wartość parametru a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
Wyznacz wartość parametru
p .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11079 ⋅ Poprawnie: 269/363 [74%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Dana jest funkcja kwadratowa opisana wzorem
h(x)=-4(x-9)(x+8) . Wyznacz maksymalny przedział, w którym funkcja ta
jest malejąca.
Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11004 ⋅ Poprawnie: 128/374 [34%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Funkcja kwadratowa określona jest wzorem
f(x)=-3(x+2018)(x-666) .
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : f(-666) > f(-667)
T/N : f(-701) \lessdot f(-801)
Zadanie 4. 1 pkt ⋅ Numer: pp-11067 ⋅ Poprawnie: 144/278 [51%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Rozpatrujemy prostokąty o obwodzie
76 . Na takim
prostokącie o największym polu powierzchni opisano okrąg.
Oblicz długość promienia tego okręgu.
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-10965 ⋅ Poprawnie: 538/882 [60%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Wskaż te nierówności, których rozwiązaniem jest zbiór
\mathbb{R} :
Odpowiedzi:
T/N : x^2+4x+8\geqslant 0
T/N : x^2+6x-5 \geqslant 0
Zadanie 6. 2 pkt ⋅ Numer: pp-20930 ⋅ Poprawnie: 35/62 [56%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Funkcja kwadratowa
f określona wzorem
f(x)=a(x-p)^2+q dla argumentu
8 osiąga wartość największą równą
9 . Wiedząc, że do jej wykresu należy punkt
należy punkt
A=(6,6) , wyznacz wzór tej funkcji.
Podaj współczynnik a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Odpowiedzi:
Zadanie 7. 2 pkt ⋅ Numer: pp-20367 ⋅ Poprawnie: 9/36 [25%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Do wykresu paraboli
y=2x^2-3x-1 należy punkt
Q=(2am, y) taki, że różnica
2am-y jest największa z możliwych.
Podaj m .
Dane
a=\frac{1}{4}=0.25000000000000
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20407 ⋅ Poprawnie: 25/46 [54%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Rozwiąż nierówność
-5\cdot f(x)+8\cdot g(x) > 7 ,
gdzie
f(x)=x^2-4x+1 i
g(x)=x-3 .
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pr-20074 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
Rozwiąż równanie
(x-a)^4-5(x-a)^2+4=0
.
Podaj sumę wszystkich rozwiązań tego równania.
Dane
a=1
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Podaj najmniejsze rozwiązanie tego równania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 4 pkt ⋅ Numer: pr-30058 ⋅ Poprawnie: 45/33 [136%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Wyznacz wszystkie wartości parametru
m ,
dla których równanie
x^2-6x+2m^2+8am+8a^2=0 ma dwa
różne rozwiązania, z których jedno jest kwadratem drugiego.
Podaj najmniejsze możliwe m .
Dane
a=1
Odpowiedź:
m_{min}=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Podaj największe możliwe
m .
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Rozwiąż