Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11061 ⋅ Poprawnie: 96/143 [67%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
» Oblicz odległość wierzchołka paraboli o równaniu
y=x^2-9x+\frac{73}{4} od osi
Ox .
Odpowiedź:
d=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11427 ⋅ Poprawnie: 672/822 [81%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Funkcja kwadratowa jest określona wzorem
f(x)=-(-8x-8)(x-5) . Liczby
x_1 i
x_2 są różnymi
miejscami zerowymi funkcji
f spełniającymi warunek
x_1+x_2=......... .
Podaj brakującą liczbę.
Odpowiedzi:
A. x_1+x_2=8
B. x_1+x_2=4
C. x_1+x_2=-8
D. x_1+x_2=-4
Zadanie 3. 1 pkt ⋅ Numer: pp-11043 ⋅ Poprawnie: 148/269 [55%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Liczba punktów wspólnych wykresu funkcji
h(x)=2x^2+\frac{7}{3}x+\frac{1}{3} z osiami układu
współrzędnych jest równa:
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-10985 ⋅ Poprawnie: 230/342 [67%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Dana jest funkcja
g(x)=-\frac{1}{3}(x+6)x , gdzie
x\in\langle -12,-9\rangle .
Wyznacz f_{min} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10973 ⋅ Poprawnie: 61/114 [53%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
» Dana jest funkcja
f(x)=
\begin{cases}
-\frac{1}{3}x-1,\qquad x\in(-\infty,-15) \\
x^2-220,\qquad x\in\langle -15,+\infty)
\end{cases}
.
Liczba rozwiązań równania
f(x)=8 jest równa:
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pp-20351 ⋅ Poprawnie: 38/72 [52%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Parabola ma wierzchołek w punkcie
C=(4,169) i przecina
oś
Ox w punktach
A i
B .
Wiedząc, że P_{\triangle ABC}=\frac{2197}{2} . Wyznacz wzór tej
paraboli w postaci kanonicznej f(x)=a(x-p)^2+q .
Podaj liczbę p .
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
q=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20354 ⋅ Poprawnie: 75/128 [58%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
«« Dana jest funkcja
f(x)=ax^2+bx+c .
Oblicz najmniejszą i największą wartość tej funkcji w przedziale
\langle p,q\rangle .
Podaj wartośc najmniejszą.
Dane
a=2
b=8
c=7
p=-7
q=-3
Odpowiedź:
f_{min}(x)=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj wartośc największą.
Odpowiedź:
f_{max}(x)=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20377 ⋅ Poprawnie: 66/112 [58%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Wyznacz punkty przecięcia paraboli określonej wzorem
y=2x^2+45x+20
z prostą o równaniu
y=-2 .
Podaj najmniejszą możliwą współrzędną punktu przecięcia się obu wykresów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj największą możliwą współrzędną punktu przecięcia się obu wykresów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pr-20096 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Dla jakich wartości parametru
m rozwiązaniem
nierówności
(m^2+16m+60)x^2+2(m+8)x-1 \lessdot 0 jest zbiór
\mathbb{R} ?
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych
tych przedziałów.
Odpowiedź:
min=
+
\cdot
√
(wpisz trzy liczby całkowite)
Podpunkt 9.2 (1 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 10. 4 pkt ⋅ Numer: pr-30079 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Rozwiąż nierówność
x^2-2ax+a^2+c \leqslant -b|x-a|
.
Podaj najmniejsze rozwiązanie tej nierówności.
Dane
b=2
c=-24
a=-1
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Podaj największe rozwiązanie tej nierówności.
Odpowiedź:
x_{max}=
(wpisz liczbę całkowitą)
Rozwiąż