Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11595 ⋅ Poprawnie: 119/162 [73%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=ax^2
należy punkt o współrzędnych
(4\sqrt{2},288\sqrt{5}) .
Wyznacz współczynnik a .
Odpowiedź:
a=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11427 ⋅ Poprawnie: 672/822 [81%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Funkcja kwadratowa jest określona wzorem
f(x)=-(2x+10)(x+6) . Liczby
x_1 i
x_2 są różnymi
miejscami zerowymi funkcji
f spełniającymi warunek
x_1+x_2=......... .
Podaj brakującą liczbę.
Odpowiedzi:
A. x_1+x_2=-22
B. x_1+x_2=11
C. x_1+x_2=-11
D. x_1+x_2=22
Zadanie 3. 1 pkt ⋅ Numer: pp-11410 ⋅ Poprawnie: 269/400 [67%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej
f :
Osią symetrii wykresu funkcji f
jest prosta o równaniu:
Odpowiedzi:
A. x-2=0
B. y-2=0
C. y=-4
D. x=-4
Zadanie 4. 1 pkt ⋅ Numer: pp-11646 ⋅ Poprawnie: 57/103 [55%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Mniejsza część zawodników klubu sportowego liczącego
85 osób,
zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z
pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.
Ilu zawodników było chorych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pr-10110 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (0.2 pkt)
Zapisz dziedzinę funkcji określonej wzorem
f(x)=
\sqrt{\frac{x^3}{x^2+7x-8}}
-
\frac{x\sqrt{x}}{\sqrt{x^2+7x-8}}
w postaci sumy przedziałów.
Suma ta ma postać:
Odpowiedzi:
A. (-\infty,p)
B. \langle p,q\rangle
C. (-\infty,p\rangle\cup\langle q, +\infty)
D. (p,q)
E. (p,+\infty)
F. \langle p,+\infty)
Podpunkt 5.2 (0.8 pkt)
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pr-20062 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (1 pkt)
Naszkicuj wykres funkcji
f(x)=x^2-a|x| . Na podstawie
wykresu ustal liczbę rozwiązań równania
f(x)=m w
zalezności od wartości parametru
m .
Podaj najmniejsze takie m , dla którego równanie to
ma dokładnie dwa rozwiązania.
Dane
a=12
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj najmniejsze takie
m , dla którego równanie to
ma dokładnie trzy rozwiązania.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20368 ⋅ Poprawnie: 45/102 [44%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
» Wyznacz najmniejszą wartość funkcji
g(x)=ax^2+bx+c w przedziale
\langle p,q\rangle .
Dane
a=1
b=-6
c=13
p=4
q=8
Odpowiedź:
f_{min}(x)=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Wyznacz największą wartość tej funkcji w podanym przedziale.
Odpowiedź:
f_{max}(x)=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20411 ⋅ Poprawnie: 50/185 [27%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Rozwiąż nierówność
2x^2+b+cx\leqslant 0 .
Ile liczb całkowitych spełnia tę nierówność?
Dane
b=42=42.00000000000000
c=19=19.00000000000000
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj największą liczbę spełniającą tę nierówność.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pr-20463 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Równanie
|-x^2+2|x|+5|=2p-a ma cztery
rozwiązania. Wyznacz zbiór możliwych wartości parametru
p .
Oblicz sumę kwadratów liczb całkowitych należących do tego zbioru.
Dane
a=9
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30069 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Zbadaj liczbę pierwiastków równania
(m^2-2m-2am+a^2+2a)x^2-(m-a)x-\frac{1}{2}=0 w
zależności od wartości parametru
m\in\mathbb{R} .
Podaj sumę tych wartości m , dla których równanie ma
dokładnie jedno rozwiązanie.
Dane
a=6
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Podaj najmniejsze możliwe
m , dla którego równanie
nie ma rozwiązania.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
Wyznacz te wartości
m , dla których równanie ma dwa
rozwiązania.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich
końców liczbowych tych przedziałów, które są liczbami całkowitymi.
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Rozwiąż