Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11595 ⋅ Poprawnie: 119/162 [73%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=ax^2
należy punkt o współrzędnych
(3\sqrt{2},54\sqrt{5}) .
Wyznacz współczynnik a .
Odpowiedź:
a=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11078 ⋅ Poprawnie: 195/345 [56%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Dana jest funkcja
f(x)=-2(x-4)(x-7) .
Wyznacz maksymalny przedział, w którym funkcja
f jest
rosnąca.
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11470 ⋅ Poprawnie: 93/154 [60%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
» Przesuwając wykres funkcji określonej wzorem
h(x)=x^2-2 o
k=3 jednostek
w prawo otrzymamy wykres funkcji opisanej wzorem
y=x^2+bx+c .
Wyznacz współczynniki b i c .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-11730 ⋅ Poprawnie: 21/39 [53%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Większa część zawodników klubu sportowego liczącego
77 osób,
zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z
pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.
Ilu zawodników było chorych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10963 ⋅ Poprawnie: 110/233 [47%]
Rozwiąż
Podpunkt 5.1 (0.2 pkt)
Funkcja opisana jest wzorem
f(x)=x^2+5x+1 .
Zbiorem rozwiązań nierówności
f(x) > f(-x)
jest pewien przedział liczbowy.
Przedział ten ma postać:
Odpowiedzi:
A. (-\infty,p\rangle
B. (-\infty,p)
C. \langle p,+\infty)
D. (p, q)
E. (p,q\rangle
F. (p,+\infty)
Podpunkt 5.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20931 ⋅ Poprawnie: 36/59 [61%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Zbiorem wartości funkcji kwadratowej określonej wzorem
f(x)=ax^2+bx+c
jest przedział
\left[-8, +\infty\right) . Funkcja ta spełnia warunek
f(0)=-\frac{15}{2} , a suma
jej miejsc zerowych jest równa
-2 .
Wyznacz współczynniki a i b .
Odpowiedzi:
Podpunkt 6.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20366 ⋅ Poprawnie: 62/112 [55%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Funkcja kwadratowa jest określona wzorem
f(x)=ax^2+bx+c .
Oblicz najmniejszą wartość funkcji f
w przedziale \langle p,q\rangle .
Dane
a=1
b=-2
c=6
p=-1
q=4
Odpowiedź:
f_{min}(x)=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Dla jakiego
x funkcja
f
osiąga minimum?
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20380 ⋅ Poprawnie: 78/197 [39%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Suma kwadratów dwóch kolejnych liczb naturalnych nieparzystych jest równa
5410 .
Podaj mniejszą z tych liczb.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20087 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
» Wyznacz te wartości parametru
m , dla których
równanie
(m+1-a)x^2+(2m+3-2a)x+m-a=0 ma dwa różne
pierwiastki dodatnie?
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=-4
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30027 ⋅ Poprawnie: 34/35 [97%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
«« Suma
\frac{1}{x_1^2}+\frac{1}{x_2^2} , gdzie
x_1 i
x_2 są różnymi
rozwiązaniami równania
\frac{x^2+(m-5)x-1}{m-b}=0 , jest równa
a ?
Podaj największą możliwą wartość parametru m\in\mathbb{R} .
Dane
a=11
b=2
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Podaj sumę wszystkich możliwych wartości parametru
m\in\mathbb{R} .
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Rozwiąż