Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11084 ⋅ Poprawnie: 115/172 [66%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dana jest funkcja y=x^2-7.

Do zbioru ZW_f nie należy liczba:

Odpowiedzi:
A. 6-4\sqrt{10} B. 2-6\sqrt{2}
C. 1-4\sqrt{6} D. 1-3\sqrt{5}
Zadanie 2.  1 pkt ⋅ Numer: pp-11068 ⋅ Poprawnie: 164/293 [55%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Prosta o równaniu x=mjest osią symetrii wykresu funkcji kwadratowej określonej wzorem f(x)=(1-3x)(x-3).

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11023 ⋅ Poprawnie: 294/453 [64%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Na podstawie wykresu funkcji określonej wzorem y=ax^2+bx+c wskaż jej wzór:
Odpowiedzi:
A. y=x^2+2x+4 B. y=x^2-2x+4
C. y=-x^2-2x+2 D. y=-x^2+2x+2
Zadanie 4.  1 pkt ⋅ Numer: pp-11730 ⋅ Poprawnie: 21/39 [53%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Większa część zawodników klubu sportowego liczącego 73 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10111 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 « Zbiór A jest zbiorem tych wartości parametru m, dla których dziedziną funkcji określonej wzorem f(x)=\frac{2}{-3mx^2+mx+1} jest zbiór \mathbb{R}. Zapisz zbiór A w postaci sumy przedziałów.

Zbiór A ma postać:

Odpowiedzi:
A. (-\infty,p)\cup(q, +\infty) B. (p,q\rangle
C. \langle p,q\rangle D. \langle p,+\infty)
E. (-\infty,p\rangle\cup\langle q, +\infty) F. (-\infty,p)
Podpunkt 5.2 (0.8 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20935 ⋅ Poprawnie: 13/22 [59%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Średnia arytmetyczna miejsc zerowych funkcji kwadratowej określonej wzorem f(x)=ax^2+bx jest równa -3. Rzędna wierzchołka paraboli będącej wykresem tej funkcji jest równa -18.

Wyznacz współczynnik a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Wyznacz współczynnik b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20366 ⋅ Poprawnie: 62/112 [55%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Funkcja kwadratowa jest określona wzorem f(x)=ax^2+bx+c.

Oblicz najmniejszą wartość funkcji f w przedziale \langle p,q\rangle.

Dane
a=3
b=18
c=30
p=-4
q=1
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Dla jakiego x funkcja f osiąga minimum?
Odpowiedź:
x= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20401 ⋅ Poprawnie: 57/167 [34%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 » Rozwiąż nierówność ax^2+bx > x(cx+d).

Ile liczb całkowitych z przedziału \langle 0,100\rangle spełnia tę nierówność?

Dane
a=3
b=5
c=2
d=6
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20077 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 «« Funkcja f(x)=2x^2+\frac{b-a}{2}x+c+2 jest malejąca wtedy i tylko wtedy, gdy x\in(-\infty,4\rangle. Iloczyn miejsc zerowych tej funkcji jest równy 12.

Oblicz b+c.

Dane
a=-4
Odpowiedź:
b+c= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Oblicz sumę kwadratów miejsc zerowych tej funkcji.
Odpowiedź:
x_1^2+x_2^2= (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pr-30041 ⋅ Poprawnie: 1/2 [50%] Rozwiąż 
Podpunkt 10.1 (3 pkt)
 « Wyznacz te wartości parametru m, dla których równanie x^2+(m-a)x+m-2-a=0 ma dwa różne pierwiastki rzeczywiste takie, że ich suma kwadratów jest minimalna możliwa.

Podaj najmniejsze możliwe m, które spełnia warunki zadania.

Dane
a=-4
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Ile rozwiązań ma to zadanie?
Odpowiedź:
ile= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm