Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11726 ⋅ Poprawnie: 19/34 [55%]
Rozwiąż
Podpunkt 1.1 (0.5 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=ax^2+bx+c
należą punkty o współrzędnych
(4,6) ,
(6,1) i
(10,3) .
Wyznacz współczynnik b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11079 ⋅ Poprawnie: 269/363 [74%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Dana jest funkcja kwadratowa opisana wzorem
h(x)=-4(x-1)(x+6) . Wyznacz maksymalny przedział, w którym funkcja ta
jest malejąca.
Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11035 ⋅ Poprawnie: 24/29 [82%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Daja jest funkcja kwadratowa g określona jest wzorem
g(x)=x^2+3 . Jej wykres ma dokładnie jeden punkt
wspólny z prostą y=-9 , gdy przesuniemy go o:
Odpowiedzi:
A. 3 jednostki w lewo wzdłuż osi Ox
B. 12 jednostek w dół wzdłuż osi Oy
C. 12 jednostek w prawo wzdłuż osi Ox
D. 12 jednostek w górę wzdłuż osi Oy
Zadanie 4. 1 pkt ⋅ Numer: pp-11067 ⋅ Poprawnie: 144/278 [51%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Rozpatrujemy prostokąty o obwodzie
52 . Na takim
prostokącie o największym polu powierzchni opisano okrąg.
Oblicz długość promienia tego okręgu.
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-10964 ⋅ Poprawnie: 70/115 [60%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Ile liczb całkowitych spełnia nierówność
9\pi\cdot x > 4x^2 :
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pr-20459 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (2 pkt)
« Dla jakiej wartości parametru
m zbiorem wartości
funkcji liczbowej
g(x)=x^2+3x+m-9 jest przedział
\langle -2,+\infty) .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pr-20977 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (2 pkt)
Na bokach o długości
a i
b (
a\leqslant b ) prostokąta
ABCD o obwodzie długości
80 zbudowano trójkąty równoboczne o podstawach
AB ,
BC ,
CD i
DA . Utworzona w ten sposób figura geometryczna ma największe możliwe
pole powierzchni.
Podaj długości boków tego prostokąta.
Odpowiedzi:
Zadanie 8. 2 pkt ⋅ Numer: pp-20398 ⋅ Poprawnie: 193/403 [47%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Rozwiąż nierówność
(x-a)(a-x-2) > 3(x-a-2) .
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców
liczbowych tych przedziałów.
Dane
a=4
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20088 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (2 pkt)
Przyprostokątne trójkąta są pierwiastkami trójmianu
y=2x^2+(b+a)x+144 . Pole kwadratu zbudowanego na
przeciwprostokątnej tego trójkąta wynosi
340 .
Wyznacz b .
Dane
a=5
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 10. 3 pkt ⋅ Numer: pr-30063 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
«« Dla jakich wartości parametru
m równanie
(m-4)x^2-(m-1)x-(m-2)=0
ma tylko rozwiązania ujemne?
Podaj największe możliwe m , które spełnia
warunki zadania.
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę tych wszystkich
końców przedziałów, które są liczbami całkowitymi.
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę tych wszystkich
końców przedziałów, które są liczbami niecałkowitymi.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż