Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11038 ⋅ Poprawnie: 134/227 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Gdy przesuniemy wykres funkcji f(x)=3(x+1)^2-\frac{1}{2} o p=2 jednostek w lewo i q=7 jednostek w górę, to otrzymamy wykres funkcji:
Odpowiedzi:
A. y=3(x+8)^2+\frac{3}{2} B. y=3(x+3)^2-\frac{15}{2}
C. y=3(x+3)^2+\frac{13}{2} D. y=3(x-1)^2+\frac{13}{2}
Zadanie 2.  1 pkt ⋅ Numer: pp-10987 ⋅ Poprawnie: 50/92 [54%] Rozwiąż 
Podpunkt 2.1 (0.2 pkt)
 Wykres funkcji g(x)=5(m-1)+2x+x^2 nie przecina osi Ox, wtedy i tylko wtedy, gdy m należy do pewnego przedziału.

Przedział ten ma postać:

Odpowiedzi:
A. (p,q) B. \langle p,+\infty)
C. (-\infty,p) D. (p,+\infty)
E. \langle p,q\rangle F. (-\infty,p\rangle
Podpunkt 2.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11468 ⋅ Poprawnie: 197/293 [67%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Funkcja określona wzorem f(x)=2x^2+......\cdot x+18 jest malejąca w przedziale (-\infty,2) i rosnąca w przedziale (2,+\infty).

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10988 ⋅ Poprawnie: 67/90 [74%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
» Wyznacz najmniejszą wartość funkcji kwadratowej określonej wzorem f(x)=x^2+12x.
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10964 ⋅ Poprawnie: 68/113 [60%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Ile liczb całkowitych spełnia nierówność 7\pi\cdot x > 5x^2:
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20898 ⋅ Poprawnie: 25/32 [78%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wyznacz współczynniki b i c trójmianu kwadratowego y=f(x)=3x^2+bx+c wiedząc, że funkcja f przyjmuje wartości niedodatnie tylko dla x\in\langle -8,-1\rangle.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20357 ⋅ Poprawnie: 15/53 [28%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Dana jest funkcja f(x)=ax^2+bx+c. Oblicz najmniejszą i największą wartość tej funkcji w przedziale \langle p,q\rangle.

Podaj wartośc najmniejszą.

Dane
a=1
b=-\frac{2}{3}=-0.66666666666667
c=\frac{19}{9}=2.11111111111111
p=-2
q=5
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj wartośc największą.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20371 ⋅ Poprawnie: 333/695 [47%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Rozwiąż równanie x^2-2\sqrt{5}x-15=0.

Podaj najmniejszą z liczb spełniających to równanie.

Odpowiedź:
x_{min}= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj największą z liczb spełniających to równanie.
Odpowiedź:
x_{max}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-21059 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Rozwiąż równanie 2x^2-4x+2-5\sqrt{x^2-2x}=0 .

Podaj najmniejsze z rozwiązań tego równania.

Odpowiedź:
x_{min}= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj największe z rozwiązań tego równania.
Odpowiedź:
x_{max}= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pr-30048 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Dla jakich wartości parametru p równanie x^2-2(p+a-5)x+p+7+a=0 ma dwa różne pierwiastki o tych samych znakach.

Rowiązanie zapisz w postaci sumy przedziałów. Podaj największy z wszystkich końców liczbowych tych przedziałów.

Dane
a=3
Odpowiedź:
max= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj najmniejszy z wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm