Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11039 ⋅ Poprawnie: 241/289 [83%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt (12,1) jest wierzchołkiem paraboli. Punkt o współrzędnych P=(0,4) należy do tej paraboli.

Zatem zbiorem wartości funkcji, której wykresem jest ta parabola jest:

Odpowiedzi:
A. \langle -1,+\infty) B. \langle 1,+\infty)
C. (-\infty,1\rangle D. (-\infty,-1\rangle
Zadanie 2.  1 pkt ⋅ Numer: pp-10999 ⋅ Poprawnie: 101/166 [60%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Zbiorem wartości funkcji kwadratowej f określonej wzorem f(x)=m(x-1)(x-3) jest przedział liczbowy \langle -4,+\infty), a rozwiązaniem nierówności f(x) \lessdot 0 przedział (1,3).

Wyznacz współczynnik m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10998 ⋅ Poprawnie: 80/169 [47%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 «« Funkcja określona wzorem f(x)=(8m+1)x^2+3x-14 osiąga wartość największą wtedy i tylko wtedy, gdy parametr m należy do pewnego przedziału liczbowego.

Przedział ten ma postać:

Odpowiedzi:
A. (p,+\infty) B. (p,q)
C. \langle p,+\infty) D. (-\infty,p)
E. \langle p,q\rangle F. (-\infty,p\rangle
Podpunkt 3.2 (0.8 pkt)
 Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11409 ⋅ Poprawnie: 216/332 [65%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej f:

Podaj największą wartość funkcji f w przedziale \langle 1,4\rangle.

Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10957 ⋅ Poprawnie: 641/967 [66%] Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 » Wyznacz dziedzinę funkcji określonej wzorem f(x)=\frac{x-1}{\sqrt{x^2-11x+10}} .

Zbiór ten ma postać:

Odpowiedzi:
A. \mathbb{R}-\{p\} B. \langle p,q\rangle
C. (-\infty,p)\cup(q,+\infty) D. \mathbb{R}-(p,q)
E. (p,q) F. \mathbb{R}-\{p, q\}
Podpunkt 5.2 (0.8 pkt)
 Zbiór A jest zbiorem wszystkich liczb nie należących do dziedziny tej funkcji.

Wyznacz najmniejszą i największą liczbę w zbiorze A.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20934 ⋅ Poprawnie: 9/36 [25%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja kwadratowa określona wzorem f(x)=ax^2+bx+c przyjmuje wartości nie większe od 21 wtedy i tylko wtedy, gdy x\in(-\infty,1\rangle\cup\langle 7,+\infty), a wierzchołek jej wykresu należy do prostej o równaniu y=27.

Wyznacz współczynniki a i b.

Odpowiedzi:
a= (dwie liczby całkowite)

b= (dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Wyznacz współczynnik c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20359 ⋅ Poprawnie: 51/109 [46%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Wyznacz największą wartość funkcji f(x)=bx+ax^2.
Dane
a=-\frac{1}{2}=-0.50000000000000
b=1=1.00000000000000
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20855 ⋅ Poprawnie: 321/849 [37%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 «Wyznacz największą liczbę całkowitą, która spełnia nierówność (22+x)^2\leqslant \left(x-\sqrt{22}\right)\left(x+\sqrt{22}\right).
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20072 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Rozwiąż równanie ax^6+bx^3+c=0.

Podaj najmniejsze z rozwiązań tego równania.

Dane
a=0.50
b=13.00
c=-13.50
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj największe z rozwiązań tego równania.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pr-30088 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Zbadaj liczbę rozwiązań równania \left|x^2+x-30\right|=\left(m-\frac{a}{2}\right)|x-5| w zależności od wartości parametru m\in\mathbb{R}.

Podaj najmniejsze możliwe m, dla którego równanie ma dwa rozwiązania.

Dane
a=5
Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Podaj największe możliwe m, dla którego równanie ma dwa rozwiązania.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)
Podpunkt 10.3 (1 pkt)
 Wyznacz zbiór tych wartości parametru m, dla których równanie to ma trzy rozwiązania.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
suma=
(wpisz dwie liczby całkowite)
Podpunkt 10.4 (1 pkt)
 Podaj największe możliwe m, dla którego ilość rozwiązań dodatnich tego równania jest równa ilości rozwiązań ujemnych.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm