Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11644 ⋅ Poprawnie: 33/93 [35%] Rozwiąż 
Podpunkt 1.1 (0.5 pkt)
 » Do wykresu funkcji kwadratowej określonej wzorem y=ax^2+bx+c należą punkty o współrzędnych (-2,5), (2,7) i (4,32).

Wyznacz współczynnik b.

Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
 Wyznacz współczynnik c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11506 ⋅ Poprawnie: 459/800 [57%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Osią symetrii paraboli będącej wykresem funkcji kwadratowej określonej równaniem f(x)=-\frac{1}{2}(x-102)(x+714), jest prosta określona: równaniem x-......=0.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11081 ⋅ Poprawnie: 40/74 [54%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Wykres funkcji kwadratowej opisanej wzorem g(x)=-x^2-10x-15 przecięto prostą o równaniu y=9. Niech P i Q będą punktami przecięcia tych wykresów.

Oblicz |PQ|.

Odpowiedź:
|PQ|= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11080 ⋅ Poprawnie: 264/397 [66%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Suma dwóch liczb jest równa 18\sqrt{2}, a ich iloczyn ma największą możliwą wartość.

Oblicz mniejszą z tych liczb.

Odpowiedź:
min= \cdot
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10968 ⋅ Poprawnie: 352/569 [61%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Ile rozwiązań całkowitych ma równanie \left(x^2+4\right)\left(x^2-3x-8\right)=0.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20934 ⋅ Poprawnie: 9/36 [25%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja kwadratowa określona wzorem f(x)=ax^2+bx+c przyjmuje wartości nie większe od 14 wtedy i tylko wtedy, gdy x\in(-\infty,3\rangle\cup\langle 9,+\infty), a wierzchołek jej wykresu należy do prostej o równaniu y=20.

Wyznacz współczynniki a i b.

Odpowiedzi:
a= (dwie liczby całkowite)

b= (dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Wyznacz współczynnik c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20063 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wyznacz najmniejszą i największą wartość funkcji f(x)=ax^2+bx+c w przedziale \langle -1,5\rangle.

Podaj wartość najmniejszą w tym przedziale.

Dane
a=-6
b=18
c=60
Odpowiedź:
f_{min}(x)=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj wartość największą w tym przedziale.
Odpowiedź:
f_{max}(x)=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20380 ⋅ Poprawnie: 78/197 [39%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Suma kwadratów dwóch kolejnych liczb naturalnych nieparzystych jest równa 4610.

Podaj mniejszą z tych liczb.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20072 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Rozwiąż równanie ax^6+bx^3+c=0.

Podaj najmniejsze z rozwiązań tego równania.

Dane
a=0.50
b=17.50
c=108.00
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj największe z rozwiązań tego równania.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pr-30841 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Dla jakich wartości parametru m równanie x^2-x+3-m=0 ma dwa różne pierwiastki spełniające warunek \left|x_1\right|+\left|x_2\right| > 2?

Rozwiązaniem jest zbiór postaci:

Odpowiedzi:
A. \langle p, q) B. (p, q)
C. (-\infty, p) D. (p, +\infty)
E. (-\infty, p\rangle F. (-\infty, p\rangle\cup\langle q, +\infty)
G. (-\infty, p)\cup(q, +\infty) H. (-\infty, +\infty)
Podpunkt 10.2 (1.5 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 10.3 (1.5 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm