Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11003 ⋅ Poprawnie: 533/897 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Wskaż funkcję kwadratową rosnąca w przedziale (-\infty,-1\rangle:
Odpowiedzi:
A. y=-(x+1)^2-2 B. y=(x+1)^2-2
C. y=-(x-2)^2-1 D. y=-(x+2)^2+1
E. y=(x-1)^2-2 F. y=-(x-2)^2+1
Zadanie 2.  1 pkt ⋅ Numer: pp-11013 ⋅ Poprawnie: 1052/1528 [68%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Trójmian kwadratowy y=2x^2+6x+4 można zapisać w postaci y=a(x+1)(x-m).

Wyznacz wartości parametrów a i m.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
m= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11050 ⋅ Poprawnie: 82/195 [42%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wykres funkcji kwadratowej y=-5(x-1)^2-2 nie ma punktów wspólnych z prostą o równaniu:
Odpowiedzi:
A. x=1 B. x=1
C. y=-3 D. y=1
Zadanie 4.  1 pkt ⋅ Numer: pp-11080 ⋅ Poprawnie: 264/397 [66%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Suma dwóch liczb jest równa 16\sqrt{2}, a ich iloczyn ma największą możliwą wartość.

Oblicz mniejszą z tych liczb.

Odpowiedź:
min= \cdot
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10972 ⋅ Poprawnie: 711/882 [80%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wiadomo, że 36x^2+12x+1=0.

Oblicz x.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20339 ⋅ Poprawnie: 74/170 [43%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Najmniejszą wartość równą -18 trójmian y=x^2+bx+c osiąga dla x=3.

Oblicz b.

Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Oblicz c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-20943 ⋅ Poprawnie: 21/46 [45%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Sprzedawca miesięcznie sprzedaje k=52 laptopów w cenie 3600 złotych sztuka. Zauważył, że każda obniżka ceny laptopa o 25 złotych zwiększa sprzedaż o jedną sztukę miesięcznie.

Ile powinien kosztować jeden laptop, aby osiągnięty dochód był maksymalny?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20421 ⋅ Poprawnie: 15/48 [31%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 » Rozwiąż nierówność 5(2x+3-4a)-2x^2+8ax-8a^2\geqslant 3(x-2a)^2 .

Rozwiązanie zapisz w postaci przedziału i podaj jego środek.

Dane
a=-3
Odpowiedź:
s=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20070 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Rozwiąż nierówność \sqrt{x^2-4ax+7+4a^2} > \sqrt{2}x+\sqrt{2}\left(3-2a\right) .

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę kwadratów wszystkich końców liczbowych tych przedziałów.

Dane
a=-4
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30086 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Zbadaj liczbę rozwiązań równania (x+2)^2-4|x+1|=2m-a w zależności od wartości parametru m\in\mathbb{R}.

Podaj najmniejsze możliwe m, dla którego równanie ma trzy rozwiązania.

Dane
a=-4
Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Podaj największe możliwe m, dla którego równanie ma trzy rozwiązania.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)
Podpunkt 10.3 (1 pkt)
 Podaj największe możliwe m, dla którego równanie ma dokładnie jedno rozwiązanie.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)
Podpunkt 10.4 (1 pkt)
 Wyznacz zbiór tych wartości parametru m, dla których ilość rozwiązań dodatnich tego równania jest równa ilości rozwiązań ujemnych.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
suma=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm