Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11072 ⋅ Poprawnie: 315/529 [59%]
Rozwiąż
Podpunkt 1.1 (0.5 pkt)
« O funkcji kwadratowej opisanej wzorem
f(x)=a(x-p)^2+q wiadomo, że ma dwa
miejsca zerowe
4 i
8 oraz
że najmniejszą jej wartością jest liczba
-3 .
Wyznacz wartość parametru a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
Wyznacz wartość parametru
p .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11057 ⋅ Poprawnie: 399/627 [63%]
Rozwiąż
Podpunkt 2.1 (0.5 pkt)
» Wierzchołek paraboli o równaniu
y=(1+2x)(x+2) ma współrzędne
(x_w,y_w) .
Wyznacz współrzędną x_w .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11076 ⋅ Poprawnie: 83/120 [69%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Do wykresu której funkcji należy punkt o współrzędnych
A=(4096, 0) :
Odpowiedzi:
A. y=(x+4096)^2
B. y=x^2+8192
C. y=x^2-65536
D. y=(x+8192)(2x-8192)
Zadanie 4. 1 pkt ⋅ Numer: pp-10978 ⋅ Poprawnie: 475/746 [63%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Najmniejszą wartość w przedziale
\langle 5, 9\rangle funkcja kwadratowa
określona wzorem
f(x)=-\left(x-8\right)^{2}+5
przyjmuje dla argumentu
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pr-10112 ⋅ Poprawnie: 1/1 [100%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Funkcja
h(x)=x^2+6x+c ma dwa miejsca zerowe, gdy:
Odpowiedzi:
A. c=11
B. c=16
C. c=15
D. c=17
E. c=13
F. c=8
Zadanie 6. 2 pkt ⋅ Numer: pp-20929 ⋅ Poprawnie: 39/58 [67%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Funkcja kwadratowa
f określona wzorem
f(x)=a(x-p)^2+q dla argumentu
-8 osiąga wartość najmniejszą równą
8 . Wiedząc, że do jej wykresu należy punkt
należy punkt
A=(-7,13) , wyznacz wzór tej funkcji.
Podaj współczynnik a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Odpowiedzi:
Zadanie 7. 2 pkt ⋅ Numer: pp-20365 ⋅ Poprawnie: 84/186 [45%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Dana jest funkcja
f(x)=ax^2+bx+c .
Oblicz najmniejszą wartość funkcji f w
przedziale \langle p, q\rangle .
Dane
a=1
b=6
c=11
p=-4
q=1
Odpowiedź:
f_{min}(x)=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20402 ⋅ Poprawnie: 15/99 [15%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
» Rozwiąż nierówność
-x^2+bx+c \lessdot 0 .
Ile liczb całkowitych z przedziału
\langle 0,100\rangle spełnia tę nierówność?
Dane
b=15
c=-54
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20071 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Rozwiąż nierówność
\sqrt{-x^2-4ax} > x+4a .
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę kwadratów
wszystkich końców liczbowych tych przedziałów.
Dane
a=6
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30839 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
Rozwiąż równanie
\sqrt{10+x-4\sqrt{x+6}}+\sqrt{15+x-6\sqrt{x+6}}=1
.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Podaj największy z końców
liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Rozwiąż