Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11031 ⋅ Poprawnie: 419/591 [70%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Wierzchołkiem paraboli, która jest wykresem funkcji f jest punkt W=(-5,9). Wówczas:
Odpowiedzi:
T/N : f(-10)=f(-1) T/N : f(-12)=f(2)
T/N : f(-11)=f(0)  
Zadanie 2.  1 pkt ⋅ Numer: pp-11013 ⋅ Poprawnie: 1052/1528 [68%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Trójmian kwadratowy y=3x^2+9x-30 można zapisać w postaci y=a(x-2)(x-m).

Wyznacz wartości parametrów a i m.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
m= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11035 ⋅ Poprawnie: 23/28 [82%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Daja jest funkcja kwadratowa g określona jest wzorem g(x)=x^2+3. Jej wykres ma dokładnie jeden punkt wspólny z prostą y=-9, gdy przesuniemy go o:
Odpowiedzi:
A. 3 jednostki w lewo wzdłuż osi Ox B. 12 jednostek w prawo wzdłuż osi Ox
C. 12 jednostek w górę wzdłuż osi Oy D. 12 jednostek w dół wzdłuż osi Oy
Zadanie 4.  1 pkt ⋅ Numer: pp-10988 ⋅ Poprawnie: 67/90 [74%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
» Wyznacz najmniejszą wartość funkcji kwadratowej określonej wzorem f(x)=x^2+12x.
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10112 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Funkcja h(x)=x^2-4x+c ma dwa miejsca zerowe, gdy:
Odpowiedzi:
A. c=6 B. c=3
C. c=9 D. c=11
E. c=12 F. c=8
Zadanie 6.  2 pkt ⋅ Numer: pp-20927 ⋅ Poprawnie: 30/71 [42%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja kwadratowa f określona wzorem f(x)=a(x-p)^2+q spełnia warunek f(3)=f(13)=1, a jej zbiorem wartości jest przedział (-\infty, 6\rangle.

Wyznacz współczynnik a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Wyznacz liczby p i q.
Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20368 ⋅ Poprawnie: 45/102 [44%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Wyznacz najmniejszą wartość funkcji g(x)=ax^2+bx+c w przedziale \langle p,q\rangle.
Dane
a=-1
b=-2
c=2
p=0
q=4
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Wyznacz największą wartość tej funkcji w podanym przedziale.
Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20405 ⋅ Poprawnie: 26/128 [20%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wyznacz wszystkie liczby całkowite spełniające nierówność x(x+a) \lessdot b.

Ile jest tych liczb?

Dane
a=\frac{7}{2}=3.50000000000000
b=0=0.00000000000000
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Ile z tych liczb jest ujemnych?
Odpowiedź:
ile_{<0}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20991 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Liczby -2-2\sqrt{3} i -2+2\sqrt{3} są miejscami zerowymi funkcji określonej wzorem f(x)=x^2+(p+q)x+p^2-q^2.

Wyznacz liczbę p.

Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Wyznacz liczbę q.
Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pr-30062 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Dla jakich wartości parametru m równanie (m-2-a)x^2+4|x|+m-5-a=0 ma dokładnie dwa rozwiązania?

Podaj najmniejsze możliwe m spełniające warunki zadania.

Dane
a=-3
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów. Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
 Podaj długość rozwiązania, czyli długość wszystkich przedziałów tworzących rozwiązanie.
Odpowiedź:
d= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm