Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11040 ⋅ Poprawnie: 241/404 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt P=(-1,2) należy do wykresu funkcji g(x)=x^2-mx+1.

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11506 ⋅ Poprawnie: 459/800 [57%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Osią symetrii paraboli będącej wykresem funkcji kwadratowej określonej równaniem f(x)=-\frac{1}{2}(x-138)(x+966), jest prosta określona: równaniem x-......=0.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11024 ⋅ Poprawnie: 121/338 [35%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Na rysunku pokazano tylko część wykresu funkcji f(x)=ax^2+bx+c, dla której D_f=\mathbb{R}.

Wówczas:

Odpowiedzi:
T/N : funkcja f nie jest różnowartościowa T/N : f(-5)=h(8)
T/N : funkcja przyjmuje wartości większe od zera dla x \lessdot 1  
Zadanie 4.  1 pkt ⋅ Numer: pp-11409 ⋅ Poprawnie: 216/332 [65%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej f:

Podaj największą wartość funkcji f w przedziale \langle 1,4\rangle.

Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10962 ⋅ Poprawnie: 383/585 [65%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Iloczyn (x+1)(2-x) jest nieujemny, wtedy i tylko wtedy, gdy liczba x należy do zbioru A. Zapisz zbiór A w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pr-20061 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Wyznacz te wartości parametru m, dla których równanie |ax^2+bx+c|=m ma dokładnie trzy rozwiązania.

Podaj najmniejsze możliwe m.

Dane
a=1
b=-10
c=19
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20380 ⋅ Poprawnie: 78/197 [39%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Suma kwadratów dwóch kolejnych liczb naturalnych nieparzystych jest równa 4234.

Podaj mniejszą z tych liczb.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20075 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
« Liczby całkowite a, b, c i d spełniają warunki: a \lessdot b < c < d, d-a=3 oraz a^2+b^2+c^2=d.

Podaj najmniejszą z tych liczb.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pr-20095 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wyznacz wartości parametru m, dla których dziedziną funkcji f(x)=\sqrt{(m-2)x^2+x(m-2)+1} jest zbiór \mathbb{R}.

Podaj najmniejsze takie m.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj największe takie m.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pr-30037 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 «« Funkcja f(x)=x^2+(m^2-2m-n^2-2)x+n^2+3m-7, gdzie m,n\in\mathbb{C}, ma dwa miejsca zerowe x_1=4-\sqrt{5} oraz x_2=4+\sqrt{5}.

Ile rozwiązań ma to zadanie?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj najmniejsze możliwe m.
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30036 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 «« Wyznacz te wartości parametru m, dla których równanie 4x^2-(m+a)x+1=0 ma dwa różne pierwiastki takie, że ich różnica jest liczbą z przedziału (0,4).

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Dane
a=1
Odpowiedź:
min= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 11.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 11.3 (1 pkt)
 Podaj najmniejszy z końców liczbowych, który jest liczbą całkowitą.
Odpowiedź:
min_Z= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm