Zbiorem wartości funkcji kwadratowej f
określonej wzorem f(x)=m(x+8)(x-4)
jest przedział liczbowy \langle -108,+\infty), a rozwiązaniem
nierówności f(x) \lessdot 0 przedział
(-8,4).
Wyznacz współczynnik m.
Odpowiedź:
m=(wpisz liczbę całkowitą)
Zadanie 3.1 pkt ⋅ Numer: pp-11410 ⋅ Poprawnie: 269/400 [67%]
« Na przeciwprostokątnej BC trójkąta prostokątnego równoramiennego
ABC zbudowano prostokąt BMNC. Obwód powstałego
pięciokąta ABMNC ma długość 28, a jego
powierzchnia jest największa możliwa.
Podaj długość boku MN tego pięciokąta.
Odpowiedź:
|MN|=
+\cdot√
(wpisz cztery liczby całkowite)
Zadanie 8.2 pkt ⋅ Numer: pr-20462 ⋅ Poprawnie: 0/1 [0%]
« Wyznacz te wartości parametru m, dla których
równanie (m+a)x^2-(3m+3a-3)x+m+a=0
ma dwa różne pierwiastki rzeczywiste.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj ten koniec tych wszystkich
przedziałów, który nie jest liczbą całkowitą.
Dane
a=1
Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (1 pkt)
Podaj sumę wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma=(wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
Wyznacz zbiór tych wszystkich wartości parametru m\in\mathbb{R},
dla których suma dwóch różnych pierwiastków tego równania jest nie większa
od \frac{5}{2}.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj największy koniec
liczbowy tych przedziałów.
Odpowiedź:
max=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat