» Wyznacz współczynniki b i c
funkcji określonej wzorem f(x)=2x^2+bx+c wiedząc, że zbiorem jej wartości
jest przedział \langle -5,+\infty), a osią symetrii jej
wykresu jest prosta x=-1.
Podaj b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Podaj c.
Odpowiedź:
c=(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pp-20406 ⋅ Poprawnie: 14/38 [36%]
« Suma dwóch różnych miejsc zerowych funkcji
f(x)=(a-m)x^2+(2b+n)x+c jest równa
4, a suma ich odwrotności jest równa
-\frac{1}{3}. Wiedząc, że
f(0)=-12 wyznacz a i
b.
Podaj a.
Dane
m=-2 n=-1
Odpowiedź:
a=(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Podaj b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Zadanie 11.4 pkt ⋅ Numer: pr-30862 ⋅ Poprawnie: 0/0
Równanie kwadratowe x^2-(m-3)x+m-4=0
ma dwa różne rozwiązania x_1 i x_2, wtedy i tylko wtedy,
gdy parametr m należy do zbioru postaci
(-\infty, p)\cup(q, +\infty).
Podaj liczby p i q.
Odpowiedzi:
p
=
(wpisz liczbę całkowitą)
q
=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Wyznacz wszystkie wartości parametru m, dla których prawdziwa jest równość
(x_1+3x_2)(x_2+3x_1)=16.
Podaj najmniejsze rozwiązanie tego równania.
Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat