Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11726 ⋅ Poprawnie: 19/33 [57%] Rozwiąż 
Podpunkt 1.1 (0.5 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=ax^2+bx+c należą punkty o współrzędnych (0,8), (2,3) i (6,5).

Wyznacz współczynnik b.

Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
 Wyznacz współczynnik c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10980 ⋅ Poprawnie: 202/343 [58%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Liczby -1 i \frac{3}{2} są miejscami zerowymi funkcji określonej wzorem g(x)=ax^2-x-3.

Wyznacz wartość współczynnika a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11469 ⋅ Poprawnie: 90/139 [64%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Układ równań \begin{cases} y=m \\ y=3x^2+6x-10 \end{cases} ma dokładnie jedno rozwiązanie.

Wyznacz wartość parametru m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10988 ⋅ Poprawnie: 71/94 [75%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
» Wyznacz najmniejszą wartość funkcji kwadratowej określonej wzorem f(x)=x^2+12x.
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Zadanie 5.  1.2 pkt ⋅ Numer: pr-10109 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 Funkcja g określona jest wzorem g(x)=\frac{8}{\sqrt{64-x^2}} . Zapisz dziedzinę funkcji określonej wzorem h(x)=g(x-1) w postaci sumy przedziałów.

Suma ta ma postać:

Odpowiedzi:
A. (-\infty,p) B. (p,q\rangle
C. \langle p,q\rangle D. (-\infty,p)\cup(q, +\infty)
E. \langlep,+\infty) F. (p,q)
Podpunkt 5.2 (1 pkt)
 Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20936 ⋅ Poprawnie: 51/143 [35%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja kwadratowa określona wzorem f(x)=-x^2+bx+c jest malejąca wtedy i tylko wtedy, gdy x\in\langle -1,+\infty). Wiedząc, że f(-3)=-10, oblicz współczynniki b i c.

Podaj liczbę b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj liczbę c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20414 ⋅ Poprawnie: 40/120 [33%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Rozwiąż nierówność \left(2x^2+a\right)^2 \lessdot \left(b-2x^2\right)^2.

Podaj najmniejszą dodatnią liczbę, która nie spełnia tej nierówności.

Dane
a=1
b=7
Odpowiedź:
min= \cdot
(wpisz trzy liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20458 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Liczby x_1 i x_2 są miejscami zerowymi funkcji kwadratowej. Liczby te są względem siebie odwrotne i spełniają warunek x_1+x_2=m, przy czym x_1 \lessdot x_2.

Podaj x_1.

Dane
m=3
Odpowiedź:
x_{1}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20081 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dla jakich wartości parametru m funkcja f(x)=(-2-m)x^2+(m+5)x-m-5 przyjmuje wartości ujemne dla każdego x\in\mathbb{R}.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30025 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Z punktu A odległego o 70 km od punktu B wyjechał tramwaj. Po godzinie z punktu B wyjechał inny tramwaj i poruszał się w kierunku punktu A, po tej samej trasie. Po pewnym czasie oba tramwaje wyminęły się. Od tego momentu tramwaj jadący z miejscowości A jechał jeszcze 180 minut do miejscowości B, a tramwaj drugi jechał jeszcze przez 240 minut do miasta A.

Z jaką średnią prędkością poruszał się na trasie tramwaj jadący z miejscowości A?

Odpowiedź:
v_A= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Z jaką średnią prędkością poruszał się na trasie tramwaj jadący z miejscowości B?
Odpowiedź:
v_B= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30055 ⋅ Poprawnie: 33/33 [100%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Dla jakich wartości parametru m\in\mathbb{R} równanie x^2+3x-\frac{m-a}{m-1-a}=0 ma dwa różne pierwiastki rzeczywiste?

Podaj najmniejsze m, które nie spełnia warunku zadania.

Dane
a=2
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Wyznacz te wartości m, dla których różne pierwiastki tego równania spełniają warunek x_1^3+x_2^3=-9.

Podaj najmniejsze możliwe m, które spełnia warunki zadania.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm