Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10979 ⋅ Poprawnie: 172/316 [54%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Dana jest funkcja
f określona wzorem
f(x)=-4(x-4)^2+2 .
Wyznacz największą wartość funkcji określonej wzorem h(x)=f(x-3)+5 .
Odpowiedź:
h_{max}(x)=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11079 ⋅ Poprawnie: 268/362 [74%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Dana jest funkcja kwadratowa opisana wzorem
h(x)=-3(x-6)(x-3) . Wyznacz maksymalny przedział, w którym funkcja ta
jest malejąca.
Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11050 ⋅ Poprawnie: 82/195 [42%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wykres funkcji kwadratowej
y=-5(x+3)^2-4 nie ma
punktów wspólnych z prostą o równaniu:
Odpowiedzi:
A. y=-5
B. x=5
C. y=-1
D. x=-3
Zadanie 4. 1 pkt ⋅ Numer: pp-11409 ⋅ Poprawnie: 216/332 [65%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej
f :
Podaj największą wartość funkcji f w przedziale
\langle 1,4\rangle .
Odpowiedź:
f_{max}(x)=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10975 ⋅ Poprawnie: 325/496 [65%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Liczba ujemna spełnia równanie
x^2-2x-72=0 .
Oblicz kwadrat tej liczby.
Odpowiedź:
x^2=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pr-20460 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (2 pkt)
Liczby
\frac{3-\sqrt{5}}{2} i
x_2 są miejscami zerowymi funkcji kwadratowej,
której wykres ma wierzchołek w punkcie
(3,3) .
Wyznacz x_2 .
Odpowiedź:
Zadanie 7. 2 pkt ⋅ Numer: pp-20782 ⋅ Poprawnie: 61/81 [75%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Dane jest równanie
(x^3+125)(x^2-4x-32)=0 .
Wyznacz najmniejsze rozwiązanie tego równania.
Odpowiedź:
Podpunkt 7.2 (1 pkt)
Wyznacz największe rozwiązanie tego równania.
Odpowiedź:
Zadanie 8. 2 pkt ⋅ Numer: pr-20982 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (1 pkt)
Rozwiąż równanie
\sqrt{3x+16}-\sqrt{x+4}=2
.
Podaj najmniejsze z rozwiązań tego równania.
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj największe z rozwiązań tego równania.
Odpowiedź:
x_{max}=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20095 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
Wyznacz wartości parametru
m , dla których dziedziną
funkcji
f(x)=\sqrt{(m+2)x^2+x(m+2)+1} jest
zbiór
\mathbb{R} .
Podaj najmniejsze takie m .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Podaj największe takie
m .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 4 pkt ⋅ Numer: pr-30075 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Rozwiąż równanie
x^2-(a+6)x+\left|x-3-\frac{a}{2}\right|+\frac{1}{4}a^2+3a-3=0
.
Podaj najmniejsze rozwiązanie tego równania.
Dane
a=3
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Podaj największe rozwiązanie tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30860 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Równanie kwadratowe
x^2+(m+3)x+m+11=0
ma dwa różne rozwiązania
x_1 i
x_2 , wtedy i tylko wtedy,
gdy parametr
m należy do zbioru postaci
(-\infty, p)\cup(q, +\infty) .
Podaj liczby p i q .
Odpowiedzi:
Podpunkt 11.2 (2 pkt)
Wyznacz wszystkie wartości parametru
m , dla których prawdziwa jest nierówność
(x_1-x_2)^2\leqslant 2m^2+20m+42 . Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Rozwiąż