Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11595 ⋅ Poprawnie: 119/162 [73%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=ax^2 należy punkt o współrzędnych (3\sqrt{2},162\sqrt{5}).

Wyznacz współczynnik a.

Odpowiedź:
a= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11057 ⋅ Poprawnie: 399/627 [63%] Rozwiąż 
Podpunkt 2.1 (0.5 pkt)
 » Wierzchołek paraboli o równaniu y=(2+3x)(x+3) ma współrzędne (x_w,y_w).

Wyznacz współrzędną x_w.

Odpowiedź:
x_w=
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (0.5 pkt)
 Wyznacz współrzędną y_w.
Odpowiedź:
y_w=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11470 ⋅ Poprawnie: 95/157 [60%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Przesuwając wykres funkcji określonej wzorem h(x)=x^2-8 o k=3 jednostek w prawo otrzymamy wykres funkcji opisanej wzorem y=x^2+bx+c.

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11730 ⋅ Poprawnie: 27/45 [60%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Większa część zawodników klubu sportowego liczącego 79 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10958 ⋅ Poprawnie: 251/430 [58%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 «« Najmniejszą liczbą całkowitą należącą do dziedziny funkcji f(x)=\sqrt{-x^2+\frac{13}{2}x-\frac{15}{2}} jest ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20351 ⋅ Poprawnie: 41/76 [53%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Parabola ma wierzchołek w punkcie C=(4,578) i przecina oś Ox w punktach A i B.

Wiedząc, że P_{\triangle ABC}=4913. Wyznacz wzór tej paraboli w postaci kanonicznej f(x)=a(x-p)^2+q.

Podaj liczbę p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj liczbę q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20357 ⋅ Poprawnie: 15/54 [27%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Dana jest funkcja f(x)=ax^2+bx+c. Oblicz najmniejszą i największą wartość tej funkcji w przedziale \langle p,q\rangle.

Podaj wartośc najmniejszą.

Dane
a=1
b=\frac{2}{5}=0.40000000000000
c=\frac{64}{21}=3.04000000000000
p=-3
q=4
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj wartośc największą.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20100 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Rozwiąż równanie x^2+2ax+2x+|x+1+a|=11-2a-a^2 .

Podaj największe z rozwiązań tego równania.

Dane
a=5
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj średnią arytmetyczną wszystkich rozwiązań tego równania.
Odpowiedź:
x_s= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20107 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Wyznacz te wartości parametru m\in\mathbb{R}, dla których równanie x^2-(m+a)|x|+1=0 ma cztery różne rozwiązania.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Dane
a=5
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30044 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
« Wyznacz wszystkie pary liczb (p,q) o tej własności, że pierwiastkami równania x^2+px+q=0 są liczby p i q.

Ile jest takich par?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Podaj najmniejszą możliwą wartość p.
Odpowiedź:
p_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 10.3 (1 pkt)
Podaj najmniejszą możliwą wartość q.
Odpowiedź:
q_{min}= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30073 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Wyznacz wszystkie wartości parametru m\in\mathbb{R}, dla których równanie -ax^2+4ax=m ma dwa różne pierwiastki rzeczywiste, oba większe od 1.

Rozwiązanie zapisz w postaci sumy przedziałów. Spośród wszystkich końców tych przedziałów, które są liczbami, podaj ten, który jest najmniejszy.

Dane
a=6
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Spośród wszystkich końców tych przedziałów, które są liczbami, podaj ten, który jest największy.
Odpowiedź:
max= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm