Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11059 ⋅ Poprawnie: 233/411 [56%] Rozwiąż 
Podpunkt 1.1 (0.5 pkt)
 Parabola y=(-12-4x)^2+4 ma wierzchołek w punkcie o współrzędnych \left(x_w,y_w\right).

Wyznacz współrzędną x_w.

Odpowiedź:
x_w=
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
 Wyznacz współrzędną y_w.
Odpowiedź:
y_w=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10987 ⋅ Poprawnie: 50/92 [54%] Rozwiąż 
Podpunkt 2.1 (0.2 pkt)
 Wykres funkcji g(x)=5(m-5)+2x+x^2 nie przecina osi Ox, wtedy i tylko wtedy, gdy m należy do pewnego przedziału.

Przedział ten ma postać:

Odpowiedzi:
A. \langle p,+\infty) B. \langle p,q\rangle
C. (p,+\infty) D. (-\infty,p)
E. (p,q) F. (-\infty,p\rangle
Podpunkt 2.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10994 ⋅ Poprawnie: 87/175 [49%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 « Zbiorem wartości funkcji f(x)=2x^2-12x+m-2 jest przedział liczbowy zawarty w przedziale \langle 0,+\infty), wtedy i tylko wtedy, gdy parametr m należy do pewnego przedziału.

Przedział, do którego należy parametr m ma postać:

Odpowiedzi:
A. (-\infty,p\rangle B. (-\infty,p)
C. \langle p,q\rangle D. (p,+\infty)
E. \langle p,+\infty) F. (p,q)
Podpunkt 3.2 (0.8 pkt)
 Podaj najmiejszy z końców liczbowych tego przedziału.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11646 ⋅ Poprawnie: 57/103 [55%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Mniejsza część zawodników klubu sportowego liczącego 71 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10971 ⋅ Poprawnie: 130/195 [66%] Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 Równanie x^2-(k-2)x+4=0 z niewiadomą x ma dwa różne rozwiązania wtedy i tylko wtedy, gdy parametr k należy do zbioru A. Zapisz zbiór Aw postaci sumy przedziałów.

Zbiór A jest postaci:

Odpowiedzi:
A. (-\infty,p)\cap(q,+\infty) B. (p,+\infty)
C. \langle p,q\rangle D. (-\infty,p)
E. (-\infty,p)\cup(q,+\infty) F. (p,q)
Podpunkt 5.2 (0.8 pkt)
 Liczba p jest najmniejszym, a liczba q największym z końców liczbowych tych przedziałów.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20927 ⋅ Poprawnie: 30/71 [42%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja kwadratowa f określona wzorem f(x)=a(x-p)^2+q spełnia warunek f(-8)=f(2)=1, a jej zbiorem wartości jest przedział (-\infty, 6\rangle.

Wyznacz współczynnik a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Wyznacz liczby p i q.
Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20411 ⋅ Poprawnie: 50/185 [27%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Rozwiąż nierówność 2x^2+b+cx\leqslant 0.

Ile liczb całkowitych spełnia tę nierówność?

Dane
b=18=18.00000000000000
c=-13=-13.00000000000000
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj największą liczbę spełniającą tę nierówność.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20995 ⋅ Poprawnie: 9/14 [64%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Funkcja kwadratowa f ma dwa miejsca zerowe x_1 i x_2 takie, że x_1\cdot x_2=-20. Wiedząc, że dla argumentu \frac{1}{2} funkcja ta przyjmuje wartość największą równą \frac{81}{8}, wyznacz wzór funkcji w postaci f(x)=a(x-x_1)(x-x_2).

Podaj liczbę a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj miejsca zerowe tej funkcji.
Odpowiedzi:
x_{min}= (wpisz liczbę całkowitą)
x_{max}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20092 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Dane jest równanie (m-8)x^2-4(m-3)x+m-5=0. Zbadaj liczbę rozwiązań tego równania w zależności od wartości parametru m\in\mathbb{R}.

Podaj największe m, dla którego równanie to ma dokładnie jedno rozwiązanie.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Wyznacz te wartości m, dla których równanie to nie ma rozwiązania.

Rozwiązanie zapisz w postaci przedziału. Podaj środek tego przedziału.

Odpowiedź:
m_{sr}=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pr-30074 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Rozwiąż nierówność \sqrt{(2+a-x)^2(6+a-x)^2}-3x+6+3a > 0 .

Podaj największą liczbę, która nie spełnia tej nierówności.

Dane
a=2
Odpowiedź:
max= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Rozwiązanie nierówności zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30084 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Zbadaj liczbę rozwiązań równania -2|x-1|\cdot|3-x|=m+1+a w zależności od wartości parametru m\in\mathbb{R}.

Podaj największe możliwe m, dla którego równanie ma dwa rozwiązania.

Dane
a=2
Odpowiedź:
max_2= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Podaj najmniejsze możliwe m, dla którego równanie ma trzy rozwiązania.
Odpowiedź:
min_3= (wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
 Podaj długość przedziału tych wartości m, dla których równanie ma cztery rozwiązania.
Odpowiedź:
d_4= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm