Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10979 ⋅ Poprawnie: 173/317 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dana jest funkcja f określona wzorem f(x)=-8(x-3)^2+5.

Wyznacz największą wartość funkcji określonej wzorem h(x)=f(x+4)+5.

Odpowiedź:
h_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11079 ⋅ Poprawnie: 269/363 [74%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dana jest funkcja kwadratowa opisana wzorem h(x)=-5(x+3)(x-4). Wyznacz maksymalny przedział, w którym funkcja ta jest malejąca.

Podaj najmniejszy z końców liczbowych tego przedziału.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11034 ⋅ Poprawnie: 114/249 [45%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Przesuwając wykres funkcji określonej wzorem h(x)=x^2-8 o k=3 jednostek w lewo otrzymamy wykres funkcji opisanej wzorem y=x^2+bx+c.

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11067 ⋅ Poprawnie: 144/278 [51%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Rozpatrujemy prostokąty o obwodzie 52. Na takim prostokącie o największym polu powierzchni opisano okrąg.

Oblicz długość promienia tego okręgu.

Odpowiedź:
R= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10969 ⋅ Poprawnie: 80/139 [57%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt M=(a,8\cdot a) należy do wykresu funkcji f(x)=(1-a)x-a.

Wyznacz najmniejsze możliwe i największe możliwe a.

Odpowiedzi:
a_{min}= (wpisz liczbę całkowitą)
a_{max}= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20897 ⋅ Poprawnie: 10/19 [52%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Funkcja kwadratowa f(x)=ax^2+bx+c przyjmuje wartości ujemne tylko wtedy, gdy x\in\left(d, e\right). Wiadomo, że wykres funkcji f przechodzi przez punkt A=(p,q).

Zapisz wzór tej funkcji w postaci ogólnej. Podaj sumę współczynników a+b+c.

Dane
d=-3
e=4.5
p=0
q=-54
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Zapisz wzór tej funkcji w postaci kanonicznej f(x)=a(x-p)^2+q. Podaj wartość współczynnika p.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20418 ⋅ Poprawnie: 88/226 [38%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Rozwiąż nierówność x^2+2ax-2(x+a)+a^2 \geqslant \frac{1}{3}(a+x-2)(a+x-8) .

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj średnią arytmetyczną wszystkich końców liczbowych tych przedziałów.

Dane
a=3
Odpowiedź:
s=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj sumę wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20994 ⋅ Poprawnie: 13/16 [81%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Funkcja kwadratowa f określona wzorem f(x)=-(x-p)^2+q jest rosnąca w przedziale (-\infty,-2\rangle i malejąca, w przedziale \langle -2,+\infty), a jej miejsca zerowe x_1 i x_2 spełniają warunek x_1\cdot x_2=-96. Wiedząc, że do wykresu funkcji f należy punkt o współrzędnych (0,96), wyznacz liczby p i q.

Podaj liczbę p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj liczbę q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20080 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Dana jest nierówność x^2-4(m+3)x-32m^2-192m-288 \lessdot 0 z parametrem m\in\mathbb{N_+} i m\geqslant 10. Funkcja g określona jest dla liczb naturalnych m\geqslant 10 i jej wartością dla liczby m jest największe z całkowitych rozwiązań podanej nierówności.
Funkcja g jest funkcją liniową określoną wzorem g(x)=ax+b.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30078 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Rozwiąż nierówność ax^2+b|x|+c \lessdot 0 .

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów, które są liczbami ujemnymi.

Dane
a=1
b=-23.5
c=135.0
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Podaj sumę wszystkich końców liczbowych tych przedziałów, które są liczbami dodatnimi.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30027 ⋅ Poprawnie: 34/35 [97%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 «« Suma \frac{1}{x_1^2}+\frac{1}{x_2^2}, gdzie x_1 i x_2 są różnymi rozwiązaniami równania \frac{x^2+(m-5)x-1}{m-b}=0, jest równa a?

Podaj największą możliwą wartość parametru m\in\mathbb{R}.

Dane
a=66
b=-3
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj sumę wszystkich możliwych wartości parametru m\in\mathbb{R}.
Odpowiedź:
suma= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm