Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11596 ⋅ Poprawnie: 98/143 [68%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=ax^2 należy punkt o współrzędnych \left(4,4\sqrt{2}\right).

Wyznacz współczynnik a.

Odpowiedź:
a= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11079 ⋅ Poprawnie: 269/363 [74%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dana jest funkcja kwadratowa opisana wzorem h(x)=-4(x-7)(x+8). Wyznacz maksymalny przedział, w którym funkcja ta jest malejąca.

Podaj najmniejszy z końców liczbowych tego przedziału.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11050 ⋅ Poprawnie: 82/195 [42%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wykres funkcji kwadratowej y=-5(x-9)^2-2 nie ma punktów wspólnych z prostą o równaniu:
Odpowiedzi:
A. x=9 B. y=-4
C. y=1 D. x=-7
Zadanie 4.  1 pkt ⋅ Numer: pp-11646 ⋅ Poprawnie: 61/107 [57%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Mniejsza część zawodników klubu sportowego liczącego 33 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1.2 pkt ⋅ Numer: pr-10109 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 Funkcja g określona jest wzorem g(x)=\frac{2}{\sqrt{4-x^2}} . Zapisz dziedzinę funkcji określonej wzorem h(x)=g(x-1) w postaci sumy przedziałów.

Suma ta ma postać:

Odpowiedzi:
A. (p,q) B. (p,q\rangle
C. \langlep,+\infty) D. (-\infty,p\rangle\cup\langle q, +\infty)
E. (-\infty,p) F. (p,+\infty)
Podpunkt 5.2 (1 pkt)
 Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20351 ⋅ Poprawnie: 41/76 [53%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Parabola ma wierzchołek w punkcie C=(1,121) i przecina oś Ox w punktach A i B.

Wiedząc, że P_{\triangle ABC}=\frac{1331}{2}. Wyznacz wzór tej paraboli w postaci kanonicznej f(x)=a(x-p)^2+q.

Podaj liczbę p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj liczbę q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20412 ⋅ Poprawnie: 112/230 [48%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Rozwiąż nierówność 3x^2+bx+c\leqslant 0.

Podaj najmniejszą liczbę całkowitą spełniającą tę nierówność.

Dane
b=\frac{39}{2}=19.50000000000000
c=9=9.00000000000000
Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj największą liczbę spełniającą tę nierówność.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20457 ⋅ Poprawnie: 1/2 [50%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Oblicz sumę czwartych potęg rozwiązań równania x^2+bx+c=0.
Dane
b=-6
c=-1
Odpowiedź:
x_1^4+x_2^4= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20085 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Wyznacz te wartości parametru m, dla których równanie x^2+(m-a)x+m-1-a=0 ma dwa różne pierwiastki, które są sinusem i cosinusem tego samego kąta ostrego?

Podaj największe takie m.

Dane
a=-5
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30079 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Rozwiąż nierówność x^2-2ax+a^2+c \leqslant -b|x-a| .

Podaj najmniejsze rozwiązanie tej nierówności.

Dane
b=-3
c=-10
a=3
Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj największe rozwiązanie tej nierówności.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30052 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Liczba m\in\mathbb{R} w równaniu (x+3)\cdot\left[x^2+(m+4+a)x+(m+1+a)^2\right]=0 jest parametrem. Rozwiąż to równanie dla m=1-a.

Podaj sumę wszystkich rozwiązań.

Dane
a=-5
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Dla jakich wartości parametru m równanie to ma dokładnie jedno rozwiązanie?

Podaj najmniejszą liczbę, która nie spełnia warunków zadania.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm