Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10990 ⋅ Poprawnie: 263/409 [64%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Funkcja
f(x)=x^2-16x+64
dla argumentu
2\sqrt{2} przyjmuje wartość
\left(......\cdot\sqrt{8}-8\right)^2 .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11079 ⋅ Poprawnie: 269/363 [74%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Dana jest funkcja kwadratowa opisana wzorem
h(x)=-3(x+12)(x+3) . Wyznacz maksymalny przedział, w którym funkcja ta
jest malejąca.
Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11043 ⋅ Poprawnie: 148/269 [55%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Liczba punktów wspólnych wykresu funkcji
h(x)=2x^2+\frac{5}{3}x+\frac{2}{9} z osiami układu
współrzędnych jest równa:
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-10985 ⋅ Poprawnie: 233/345 [67%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Dana jest funkcja
g(x)=-\frac{1}{3}(x+6)x , gdzie
x\in\langle -6,-3\rangle .
Wyznacz f_{min} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10976 ⋅ Poprawnie: 666/873 [76%]
Rozwiąż
Podpunkt 5.1 (0.5 pkt)
» Równanie
(2x-5)(x+2)=(2x-5)(2x-1) ma dwa
rozwiązania.
Wyznacz najmniejsze rozwiązanie tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.5 pkt)
Wyznacz największe rozwiązanie tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20350 ⋅ Poprawnie: 28/60 [46%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Liczba
-4 jest miejscem zerowym funkcji kwadratowej
h . Maksymalny przedział, w którym ta funkcja
jest malejąca jest równy
\langle 0,+\infty) .
W przedziale
\langle -7,-6\rangle największą
wartością funkcji
h jest
-20 . Wyznacz wzór funkcji
h(x)=ax^2+bx+c .
Podaj a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20362 ⋅ Poprawnie: 18/49 [36%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Dana jest funkcja
f(x)=ax^2+bx+c .
Wyznacz zbiór wartości funkcji
g(x)=f(x-p)+q .
Podaj najmniejszą liczbę w zbiorze wartości. Jeśli taka wartość nie istnieje
wpisz 0 .
Dane
a=-1
b=-12
c=-3
p=2
q=3
Odpowiedź:
f_{min}(x)=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj największą liczbę w zbiorze wartości. Jeśli taka wartość nie istnieje
wpisz
0 .
Odpowiedź:
f_{max}(x)=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pr-20991 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (1 pkt)
Liczby
-4-2\sqrt{3} i
-4+2\sqrt{3}
są miejscami zerowymi funkcji określonej wzorem
f(x)=x^2+(p+q)x+p^2-q^2 .
Wyznacz liczbę p .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pr-20081 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Dla jakich wartości parametru
m funkcja
f(x)=(1-m)x^2+(m+2)x-m-2 przyjmuje wartości ujemne
dla każdego
x\in\mathbb{R} .
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy
z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30076 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
Rozwiąż równanie
x^2+(4-2a)x-4|x+4-a|+a^2-4a+7=0
.
Podaj sumę wszystkich rozwiązań tego równania.
Dane
a=-5
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Podaj sumę kwadratów wszystkich rozwiązań tego równania.
Odpowiedź:
s=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30055 ⋅ Poprawnie: 33/33 [100%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Dla jakich wartości parametru
m\in\mathbb{R}
równanie
x^2+3x-\frac{m-a}{m-1-a}=0 ma dwa różne
pierwiastki rzeczywiste?
Podaj najmniejsze m , które nie spełnia warunku
zadania.
Dane
a=-6
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Wyznacz te wartości
m , dla których różne
pierwiastki tego równania spełniają warunek
x_1^3+x_2^3=-9 .
Podaj najmniejsze możliwe m , które spełnia warunki
zadania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż