Zbiór tych wszystkich wartości m, dla których funkcja kwadratowa
określona wzorem f(x)=x^2+4x+m nie ma ani
jednego miejsca zerowego jest przedziałem liczbowym.
Przedział ten ma postać:
Odpowiedzi:
A.\langle p, +\infty)
B.(-\infty, p)
C.\langle p, q\rangle
D.(p, +\infty)
E.(p, q)
F.(-\infty, p\rangle
Podpunkt 2.2 (0.8 pkt)
Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 3.1 pkt ⋅ Numer: pp-11728 ⋅ Poprawnie: 4/13 [30%]
Większa część zawodników klubu sportowego liczącego 31 osób,
zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z
pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.
Ilu zawodników było chorych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5.1 pkt ⋅ Numer: pp-10957 ⋅ Poprawnie: 641/969 [66%]
Funkcja kwadratowa f określona wzorem
f(x)=a(x-p)^2+q jest rosnąca wtedy i tylko wtedy,
gdy x\in\langle5,+\infty), zbiorem jej wartości
jest przedział \langle-8, +\infty), a do jej wykresu
należy punkt A=(6,-6). Wyznacz wzór tej funkcji.
Podaj współczynnik a.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
Podaj liczby p i q.
Odpowiedzi:
p
=
(wpisz liczbę całkowitą)
q
=
(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pp-20384 ⋅ Poprawnie: 91/213 [42%]
« Z punktu A odległego o 100
km od punktu B wyjechał tramwaj. Po godzinie z punktu
B wyjechał inny tramwaj i poruszał się w kierunku
punktu A, po tej samej trasie. Po pewnym
czasie oba tramwaje wyminęły się. Od tego momentu tramwaj jadący z miejscowości
A jechał jeszcze 90 minut
do miejscowości B, a tramwaj drugi jechał jeszcze
przez 150 minut do miasta
A.
Z jaką średnią prędkością poruszał się na trasie tramwaj jadący z miejscowości
A?
Odpowiedź:
v_A=(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Z jaką średnią prędkością poruszał się na trasie tramwaj jadący z miejscowości
B?
Odpowiedź:
v_B=(wpisz liczbę całkowitą)
Zadanie 11.4 pkt ⋅ Numer: pr-30033 ⋅ Poprawnie: 0/1 [0%]