Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11408 ⋅ Poprawnie: 170/221 [76%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej
f :
Zbiór wartości funkcji określonej wzorem y=-f(x)+1 jest równy:
Odpowiedzi:
A. \langle 5,+\infty)
B. (-\infty, 5\rangle
C. (-\infty,3\rangle
D. \langle -3,+\infty)
Zadanie 2. 1 pkt ⋅ Numer: pp-10986 ⋅ Poprawnie: 417/622 [67%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wyznacz przedział o maksymalnej długości, w którym funkcja określona wzorem
h(x)=\frac{1}{2}(x-5)(x+3) jest rosnąca.
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11015 ⋅ Poprawnie: 79/132 [59%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Na rysunku przedstawiony jest fragment paraboli będącej wykresem funkcji
kwadratowej
y=f(x) .
Funkcja g określona jest wzorem
g(x)=8\cdot f(x)-3 . Wówczas zbiór
ZW_g jest pewnym przedziałem liczbowym.
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-10985 ⋅ Poprawnie: 217/329 [65%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Dana jest funkcja
g(x)=-\frac{1}{4}(x+6)x , gdzie
x\in\langle -10,-7\rangle .
Wyznacz f_{min} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10957 ⋅ Poprawnie: 641/967 [66%]
Rozwiąż
Podpunkt 5.1 (0.2 pkt)
» Wyznacz dziedzinę funkcji określonej wzorem
f(x)=\frac{x-1}{\sqrt{x^2-3x-18}}
.
Zbiór ten ma postać:
Odpowiedzi:
A. \mathbb{R}-\{p, q\}
B. \langle p,q\rangle
C. \mathbb{R}-\{p\}
D. \mathbb{R}-(p,q)
E. (-\infty,p)\cup(q,+\infty)
F. (p,q)
Podpunkt 5.2 (0.8 pkt)
Zbiór
A jest zbiorem wszystkich liczb nie należących do dziedziny
tej funkcji.
Wyznacz najmniejszą i największą liczbę w zbiorze A .
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pp-20343 ⋅ Poprawnie: 33/105 [31%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Dane jest funkcja
f(x)=-x^2+6x+16 , gdzie
x\in\langle -2,5\rangle . Wyznacz
ZW_f .
Zapisz ZW_f w postaci przedziału. Podaj lewy koniec
tego przedziału.
Odpowiedź:
y_l=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
y_p=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20391 ⋅ Poprawnie: 23/60 [38%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Dla jakich wartości parametru
b funkcja
y=x^2+bx+c nie ma miejsc zerowych?
Rozwiązanie zapisz w postaci przedziału. Podaj długość tego przedziału.
Dane
c=144
Odpowiedź:
d=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pr-21060 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (1 pkt)
Rozwiąż równanie
\sqrt{x^2-8x+12}=x-2
.
Podaj najmniejsze z rozwiązań tego równania.
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj największe z rozwiązań tego równania.
Odpowiedź:
x_{max}=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20094 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Dla jakich wartości parametru
m równanie
x^2+(4m-64)x+4m-64+1\frac{1}{4}=0 ma dwa różne
pierwiastki ujemne?
Podaj największą liczbę, która nie spełnia warunków zadania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 4 pkt ⋅ Numer: pr-30082 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
Rozwiąż nierówność
\left|x^2+(a+6)x+\frac{a^2}{4}+3a-1\right| \leqslant 6
.
Rozwiązaniem tej nierówności jest zbiór
\langle x_1, x_2\rangle\cup\langle x_3, x_4\rangle\ ,
gdzie x_2\lessdot x_3 .
Podaj x_1+x_2 .
Dane
a=7
Odpowiedź:
x_1+x_2=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30861 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
Równanie kwadratowe
x^2+(2m+12)x+4=0
ma dwa różne rozwiązania
x_1 i
x_2 , wtedy i tylko wtedy,
gdy parametr
m należy do zbioru postaci
(-\infty, p)\cup(q, +\infty) .
Podaj liczby p i q .
Odpowiedzi:
Podpunkt 11.2 (2 pkt)
Wyznacz wszystkie wartości parametru
m , dla których prawdziwa jest nierówność
(x_1-x_2)^2\leqslant 84 . Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Rozwiąż