Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11640 ⋅ Poprawnie: 85/118 [72%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wykres funkcji kwadratowej określonej wzorem y=\frac{4}{5}(x+1)^2+5 otrzymano przesuwając wykres funkcji y=\frac{4}{5}x^2 o p jednostek wzdłuż osi Ox i o q jednostek wzdłuż osi Oy, przy czym liczby p i q mogą być ujemne.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11506 ⋅ Poprawnie: 461/803 [57%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Osią symetrii paraboli będącej wykresem funkcji kwadratowej określonej równaniem f(x)=-\frac{1}{2}(x-108)(x+756), jest prosta określona: równaniem x-......=0.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11017 ⋅ Poprawnie: 336/557 [60%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Dana jest funkcja określona wzorem g(x)=ax^2+bx+c. Postać iloczynowa funkcji g opisana jest wzorem g(x)=a(x+3)(x-1).

Wyznacz współczynnik c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11646 ⋅ Poprawnie: 61/107 [57%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Mniejsza część zawodników klubu sportowego liczącego 49 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10970 ⋅ Poprawnie: 190/262 [72%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « W turnieju szachowym, w którym uczestniczy ......... szachistów, każdy uczestnik rozgrywa jedną partię z każdym innym uczestnikiem. Łącznie rozegrano w tym turnieju 435 partii szachów.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20928 ⋅ Poprawnie: 67/118 [56%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja kwadratowa f określona wzorem f(x)=a(x-p)^2+q jest rosnąca wtedy i tylko wtedy, gdy x\in\langle5,+\infty), zbiorem jej wartości jest przedział \langle-5, +\infty), a do jej wykresu należy punkt A=(6,-3). Wyznacz wzór tej funkcji.

Podaj współczynnik a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj liczby p i q.
Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20405 ⋅ Poprawnie: 26/129 [20%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wyznacz wszystkie liczby całkowite spełniające nierówność x(x+a) \lessdot b.

Ile jest tych liczb?

Dane
a=-\frac{9}{2}=-4.50000000000000
b=\frac{45}{2}=22.50000000000000
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Ile z tych liczb jest ujemnych?
Odpowiedź:
ile_{<0}= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20101 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Rozwiąż równanie x^2+4x+2ax+a^2+4a+7=4|x+4+a| .

Podaj najmniejsze z rozwiązań tego równania.

Dane
a=-2
Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj średnią arytmetyczną wszystkich rozwiązań tego równania.
Odpowiedź:
x_s= (wpisz liczbę całkowitą)
Zadanie 9.  3 pkt ⋅ Numer: pr-20106 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Wyznacz te wartości parametru m\in\mathbb{R}, dla których równanie |16-x^2|=(m-a)^2-9 ma dwa różne rozwiązania.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj wszystkie liczbowe końce tych przedziałów, w kolejności od najmiejszego do największego.

Dane
a=-2
Odpowiedzi:
m_1= (wpisz liczbę całkowitą)
m_2= (wpisz liczbę całkowitą)
m_3= (wpisz liczbę całkowitą)
m_4= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj najmniejsze możliwe m, dla którego równanie to ma dokładnie trzy rozwiązania.
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 9.3 (1 pkt)
 Podaj największe możliwe m, dla którego równanie to ma dokładnie trzy rozwiązania.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30076 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Rozwiąż równanie x^2+(4-2a)x-4|x+4-a|+a^2-4a+7=0 .

Podaj sumę wszystkich rozwiązań tego równania.

Dane
a=-2
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj sumę kwadratów wszystkich rozwiązań tego równania.
Odpowiedź:
s= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30088 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Zbadaj liczbę rozwiązań równania \left|x^2+x-30\right|=\left(m-\frac{a}{2}\right)|x-5| w zależności od wartości parametru m\in\mathbb{R}.

Podaj najmniejsze możliwe m, dla którego równanie ma dwa rozwiązania.

Dane
a=-2
Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (1 pkt)
 Podaj największe możliwe m, dla którego równanie ma dwa rozwiązania.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)
Podpunkt 11.3 (1 pkt)
 Wyznacz zbiór tych wartości parametru m, dla których równanie to ma trzy rozwiązania.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
suma=
(wpisz dwie liczby całkowite)
Podpunkt 11.4 (1 pkt)
 Podaj największe możliwe m, dla którego ilość rozwiązań dodatnich tego równania jest równa ilości rozwiązań ujemnych.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm