Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11643 ⋅ Poprawnie: 93/191 [48%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=x^2+bx+c należą punkty o współrzędnych (7,10) i (0,-11).

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10982 ⋅ Poprawnie: 56/126 [44%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wyznacz sumę miejsc zerowych funkcji określonej wzorem f(x)=\frac{-x^2+5x-4}{\sqrt{4-x}} .
Odpowiedź:
x_1+x_2= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11023 ⋅ Poprawnie: 294/453 [64%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Na podstawie wykresu funkcji określonej wzorem y=ax^2+bx+c wskaż jej wzór:
Odpowiedzi:
A. y=x^2-2x+4 B. y=x^2+2x+4
C. y=-x^2+2x+2 D. y=-x^2-2x+2
Zadanie 4.  1 pkt ⋅ Numer: pp-11466 ⋅ Poprawnie: 202/334 [60%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Dana jest funkcja kwadratowa f(x)=-0,5(x+5m)^2+20m, gdzie m > 0.

Wówczas:

Odpowiedzi:
A. dla pewnego m funkcja ma jedno miejsce zerowe B. dla m=-\frac{1}{2} funkcja jest rosnąca
C. największą wartością funkcji jest -20m D. wierzchołek paraboli, która jest wykresem tej funkcji należy do prostej y=-4x
Zadanie 5.  1 pkt ⋅ Numer: pp-10968 ⋅ Poprawnie: 352/569 [61%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Ile rozwiązań całkowitych ma równanie \left(x^2-4\right)\left(x^2-3x-4\right)=0.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20336 ⋅ Poprawnie: 80/233 [34%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Punkt P=(3,0) jest wierzchołkiem paraboli określonej równaniem y=2x^2+4px+q-2. Oblicz wartości współczynników p i q.

Podaj wartość p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj wartość q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20418 ⋅ Poprawnie: 88/226 [38%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Rozwiąż nierówność x^2+2ax-2(x+a)+a^2 \geqslant \frac{1}{3}(a+x-2)(a+x-8) .

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj średnią arytmetyczną wszystkich końców liczbowych tych przedziałów.

Dane
a=2
Odpowiedź:
s=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj sumę wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20099 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Rozwiąż równanie |x^2-16|+|x^2-36|=4x+a.

Podaj najmniejsze rozwiązanie tego równania.

Dane
a=2
Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj największe rozwiązanie tego równania.
Odpowiedź:
x_{max}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20081 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dla jakich wartości parametru m funkcja f(x)=(-3-m)x^2+(m+6)x-m-6 przyjmuje wartości ujemne dla każdego x\in\mathbb{R}.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30025 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Z punktu A odległego o 40 km od punktu B wyjechał tramwaj. Po godzinie z punktu B wyjechał inny tramwaj i poruszał się w kierunku punktu A, po tej samej trasie. Po pewnym czasie oba tramwaje wyminęły się. Od tego momentu tramwaj jadący z miejscowości A jechał jeszcze 80 minut do miejscowości B, a tramwaj drugi jechał jeszcze przez 90 minut do miasta A.

Z jaką średnią prędkością poruszał się na trasie tramwaj jadący z miejscowości A?

Odpowiedź:
v_A= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Z jaką średnią prędkością poruszał się na trasie tramwaj jadący z miejscowości B?
Odpowiedź:
v_B= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30843 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Dla jakich wartości parametru m\in\mathbb{R} równanie x^2-(2m+9)x+m^2+9m+18=0 ma dwa rozwiązania, z których jedno należy do przedziału (0,2), a drugie do przedziału (3,5)?

Rozwiązaniem jest zbiór postaci:

Odpowiedzi:
A. (p, q\rangle B. (p, +\infty)
C. (-\infty, p\rangle D. (-\infty, p)
E. \langle p, q) F. (p, q)
G. (-\infty, p)\cup(q, +\infty) H. (-\infty, p\rangle \cup \langle q, +\infty)
Podpunkt 11.2 (1.5 pkt)
 Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 11.3 (1.5 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm