Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11596 ⋅ Poprawnie: 98/143 [68%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=ax^2 należy punkt o współrzędnych \left(2,\frac{2\sqrt{5}}{3}\right).

Wyznacz współczynnik a.

Odpowiedź:
a= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11075 ⋅ Poprawnie: 99/170 [58%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Dana jest funkcja kwadratowa określona wzorem f(x)=(1-x)(3x+3). Wierzchołek wykresu tej funkcji należy do prostej określonej równaniem x=m.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11049 ⋅ Poprawnie: 70/112 [62%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wykres funkcji kwadratowej f(x)=-4(x+1)^2+4 ma dwa punkty wspólne z prostą:
Odpowiedzi:
A. x=-1 B. y=6
C. y=1 D. x=1
Zadanie 4.  1 pkt ⋅ Numer: pp-11409 ⋅ Poprawnie: 222/339 [65%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej f:

Podaj największą wartość funkcji f w przedziale \langle 1,4\rangle.

Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10971 ⋅ Poprawnie: 131/196 [66%] Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 Równanie x^2-(k+1)x+36=0 z niewiadomą x ma dwa różne rozwiązania wtedy i tylko wtedy, gdy parametr k należy do zbioru A. Zapisz zbiór Aw postaci sumy przedziałów.

Zbiór A jest postaci:

Odpowiedzi:
A. (-\infty,p) B. (-\infty,p)\cup(q,+\infty)
C. (p,+\infty) D. (-\infty,p)\cap(q,+\infty)
E. \langle p,q\rangle F. (p,q)
Podpunkt 5.2 (0.8 pkt)
 Liczba p jest najmniejszym, a liczba q największym z końców liczbowych tych przedziałów.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20344 ⋅ Poprawnie: 26/68 [38%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Zbiorem wartości funkcji kwadratowej f jest przedział (-\infty,12\rangle oraz f(x) > 0\iff x\in(-1,3).

Wyznacz wzór funkcji f(x)=ax^2+bx+c i podaj wartość współczynnika a tej funkcji.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj sumę obu współrzędnych wierzchołka tej paraboli.
Odpowiedź:
x_w+y_w=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20417 ⋅ Poprawnie: 109/211 [51%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Rozwiąż nierówność x^2+bx+c \leqslant 0.

Ile liczb całkowitych dodatnich spełnia tę nierówność?

Dane
b=-4
c=-5
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Ile liczb całkowitych ujemnych spełnia tę nierówność?
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20072 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Rozwiąż równanie ax^6+bx^3+c=0.

Podaj najmniejsze z rozwiązań tego równania.

Dane
a=0.50
b=-4.50
c=4.00
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj największe z rozwiązań tego równania.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pr-20084 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Dla jakich wartości parametru m stosunek pierwiastków równania 2x^2+(m+a)x+4=0 jest równy 2?

Podaj największą możliwą wartość parametru m.

Dane
a=-1
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30037 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 «« Funkcja f(x)=x^2+(m^2-2m-n^2-2)x+n^2+3m-7, gdzie m,n\in\mathbb{C}, ma dwa miejsca zerowe x_1=4-\sqrt{5} oraz x_2=4+\sqrt{5}.

Ile rozwiązań ma to zadanie?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj najmniejsze możliwe m.
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30041 ⋅ Poprawnie: 12/17 [70%] Rozwiąż 
Podpunkt 11.1 (3 pkt)
 « Wyznacz te wartości parametru m, dla których równanie x^2+(m-a)x+m-2-a=0 ma dwa różne pierwiastki rzeczywiste takie, że ich suma kwadratów jest minimalna możliwa.

Podaj najmniejsze możliwe m, które spełnia warunki zadania.

Dane
a=-1
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Ile rozwiązań ma to zadanie?
Odpowiedź:
ile= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm