Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11640 ⋅ Poprawnie: 85/118 [72%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wykres funkcji kwadratowej określonej wzorem y=-\frac{1}{3}(x+1)^2+4 otrzymano przesuwając wykres funkcji y=-\frac{1}{3}x^2 o p jednostek wzdłuż osi Ox i o q jednostek wzdłuż osi Oy, przy czym liczby p i q mogą być ujemne.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11042 ⋅ Poprawnie: 372/570 [65%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Miejscami zerowymi funkcji kwadratowej są liczby -7 oraz 5. Do wykresu tej funkcji należy punkt A=(2,54). Zapisz wzór tej funkcji w postaci iloczynowej y=a(x-x_1)(x-x_2).

Podaj współczynnik a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11015 ⋅ Poprawnie: 81/134 [60%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Na rysunku przedstawiony jest fragment paraboli będącej wykresem funkcji kwadratowej y=f(x).

Funkcja g określona jest wzorem g(x)=6\cdot f(x)-3. Wówczas zbiór ZW_g jest pewnym przedziałem liczbowym.

Podaj mniejszy z końców liczbowych tego przedziału.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11645 ⋅ Poprawnie: 40/72 [55%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Rzucono pionowo do góry kamień z prędkością początkową 10\ m/s. Wysokość s\ [m], jaką osiągnie ten kamień po t sekundach czasu opisuje wzór s(t)=2t-t^2.

Podaj maksymalną wysokość jaką osiągnie ten kamień.

Odpowiedź:
s_{max}(t)= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10971 ⋅ Poprawnie: 132/197 [67%] Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 Równanie x^2-(k-1)x+9=0 z niewiadomą x ma dwa różne rozwiązania wtedy i tylko wtedy, gdy parametr k należy do zbioru A. Zapisz zbiór Aw postaci sumy przedziałów.

Zbiór A jest postaci:

Odpowiedzi:
A. (-\infty,p) B. (-\infty,p)\cap(q,+\infty)
C. (p,+\infty) D. \langle p,q\rangle
E. (p,q) F. (-\infty,p)\cup(q,+\infty)
Podpunkt 5.2 (0.8 pkt)
 Liczba p jest najmniejszym, a liczba q największym z końców liczbowych tych przedziałów.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20931 ⋅ Poprawnie: 38/61 [62%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Zbiorem wartości funkcji kwadratowej określonej wzorem f(x)=ax^2+bx+c jest przedział \left[-2, +\infty\right). Funkcja ta spełnia warunek f(-2)=-\frac{3}{2}, a suma jej miejsc zerowych jest równa -6.

Wyznacz współczynniki a i b.

Odpowiedzi:
a= (dwie liczby całkowite)

b= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Wyznacz współczynnik c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20391 ⋅ Poprawnie: 23/62 [37%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Dla jakich wartości parametru b funkcja y=x^2+bx+c nie ma miejsc zerowych?

Rozwiązanie zapisz w postaci przedziału. Podaj długość tego przedziału.

Dane
c=81
Odpowiedź:
d= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20996 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (0.6 pkt)
 Funkcja kwadratowa określona wzorem f(x)=ax^2+bx+c ma dwa miejsca zerowe x_1 i x_2 takie, że \frac{1}{x_1^2}+\frac{1}{x_2^2}=62 oraz x_1\cdot x_2=1. Wiedząc, że f(2)=-11 i a\in\mathbb{N_+}, wyznacz wzór tej funkcji w postaci ogólnej.

Podaj liczbę a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1.4 pkt)
 Podaj liczby b i c.
Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20997 ⋅ Poprawnie: 11/20 [55%] Rozwiąż 
Podpunkt 9.1 (0.4 pkt)
 «« Dla jakich wartości parametru m\in\mathbb{R} równanie 2x^2-4(m+3)x+(m+4)(m+3)=0 ma dwa rozwiązania spełniające warunek x_1 \lessdot m-3 \lessdot x_2?

Rozwiązaniem jest zbiór postaci:

Odpowiedzi:
A. (p, +\infty) B. (p, q\rangle
C. \langle p, +\infty) D. \langle p, q)
E. (-\infty, p\rangle \cup \langle q, +\infty) F. (-\infty, p)\cup(q, +\infty)
G. (-\infty, +\infty) H. (-\infty, p)
Podpunkt 9.2 (0.8 pkt)
 Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 9.3 (0.8 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30081 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Rozwiąż nierówność |x^2-2ax| \lessdot b .

Rozwiązanie zapisz w postaci sumy predziałów. Podaj sumę wszystkich końców tych przedziałów, które są liczbami całkowitymi.

Dane
a=7
b=49
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj najmniejszy z końców liczbowych tych przedziałów, który nie jest liczbą całkowitą.
Odpowiedź:
min= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30039 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Wyznacz te wartości parametru m, dla których równanie (m+1)x^2+(m+4)x+4=0 ma dwa różne pierwiastki rzeczywiste, których suma odwrotności jest mniejsza od 2.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
 Podaj sumę wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm