Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11029 ⋅ Poprawnie: 232/353 [65%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
» Prosta o równaniu
-5x+6=0 jest osią symetrii
paraboli:
Odpowiedzi:
A. y=-5x^2-4x-4
B. y=-7x^2+\frac{72}{5}x-4
C. y=-5x^2+12x-4
D. y=-5x^2+6x-4
E. y=-5x^2+4x-4
F. y=-7x^2-\frac{72}{5}x-4
Zadanie 2. 1 pkt ⋅ Numer: pp-11019 ⋅ Poprawnie: 560/777 [72%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Zbiorem wartości funkcji kwadratowej określonej wzorem
f(x)=(x-6)(x+2) jest przedział liczbowy
\langle ......,+\infty) .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11026 ⋅ Poprawnie: 240/317 [75%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Dana jest funkcja
g:\mathbb{R}\to\mathbb{R} określona wzorem
g(x)=x^2-3+2x .
Wykres funkcji g przedstawia rysunek:
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-10985 ⋅ Poprawnie: 230/342 [67%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Dana jest funkcja
g(x)=-\frac{1}{3}(x+6)x , gdzie
x\in\langle -9,-6\rangle .
Wyznacz f_{min} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10970 ⋅ Poprawnie: 187/259 [72%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« W turnieju szachowym, w którym uczestniczy
......... szachistów, każdy uczestnik rozgrywa jedną partię z każdym
innym uczestnikiem. Łącznie rozegrano w tym turnieju
820
partii szachów.
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pr-20460 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (2 pkt)
Liczby
\frac{3-\sqrt{2}}{2} i
x_2 są miejscami zerowymi funkcji kwadratowej,
której wykres ma wierzchołek w punkcie
(-4,2) .
Wyznacz x_2 .
Odpowiedź:
Zadanie 7. 2 pkt ⋅ Numer: pp-20860 ⋅ Poprawnie: 109/219 [49%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Rozwiąż nierówność
2(x+3)(x+1)+3x+9 > 3(x+2)+1 .
Podaj najmniejszą liczbę, która nie spełnia tej nierówności.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj największą liczbę, która nie spełnia tej nierówności.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pr-20990 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Liczby
x_1 i
x_2 są różnymi
miejscami zerowymi funkcji określonej wzorem
f(x)=\frac{1}{3}x^2+4x-4 .
Oblicz sumę x_1^4+x_2^4 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pr-20098 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Dla jakich wartości parametru
m rozwiązaniem
nierówności
x^2+(m+4)x+3m+12 > 0 jest zbiór
\mathbb{R} ?
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30839 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
Rozwiąż równanie
\sqrt{8+x-4\sqrt{x+4}}+\sqrt{13+x-6\sqrt{x+4}}=1
.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Podaj największy z końców
liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30068 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (1 pkt)
« Zbadaj liczbę pierwiastków równania
(m^2+4m-5)x^2-2(1-m)x+1=0 w zależności od
wartości parametru
m .
Podaj największe możliwe m , dla którego
równanie ma dokładnie jedno rozwiązanie.
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Podaj sumę wszystkich wartości
m , dla których równanie
to ma dokładnie jedno rozwiązanie.
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
Wyznacz te wartości
m , dla których równanie to ma dwa
rozwiązania.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 11.4 (1 pkt)
Podaj największy z końców liczbowych
tych przedziałów.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Rozwiąż