Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10990 ⋅ Poprawnie: 262/408 [64%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja f(x)=x^2-16x+64 dla argumentu 2\sqrt{2} przyjmuje wartość \left(......\cdot\sqrt{8}-8\right)^2.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11427 ⋅ Poprawnie: 672/822 [81%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Funkcja kwadratowa jest określona wzorem f(x)=-(x-6)(x-3). Liczby x_1 i x_2 są różnymi miejscami zerowymi funkcji f spełniającymi warunek x_1+x_2=..........

Podaj brakującą liczbę.

Odpowiedzi:
A. x_1+x_2=9 B. x_1+x_2=-9
C. x_1+x_2=-18 D. x_1+x_2=18
Zadanie 3.  1 pkt ⋅ Numer: pp-11024 ⋅ Poprawnie: 121/338 [35%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Na rysunku pokazano tylko część wykresu funkcji f(x)=ax^2+bx+c, dla której D_f=\mathbb{R}.

Wówczas:

Odpowiedzi:
T/N : miejscami zerowymi tej funkcji są liczby -2 i 4 T/N : zbiorem wartości tej funkcji jest przedział (-\infty,9)
T/N : funkcja przyjmuje wartości większe od zera dla x \lessdot 1  
Zadanie 4.  1 pkt ⋅ Numer: pp-11466 ⋅ Poprawnie: 202/334 [60%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Dana jest funkcja kwadratowa f(x)=-0,5(x+4m)^2+12m, gdzie m > 0.

Wówczas:

Odpowiedzi:
A. największą wartością funkcji jest -12m B. dla m=-\frac{1}{2} funkcja jest rosnąca
C. dla pewnego m funkcja ma jedno miejsce zerowe D. wierzchołek paraboli, która jest wykresem tej funkcji należy do prostej y=-3x
Zadanie 5.  1 pkt ⋅ Numer: pp-10968 ⋅ Poprawnie: 352/569 [61%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Ile rozwiązań całkowitych ma równanie \left(x^2-3\right)\left(x^2+3x-8\right)=0.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20927 ⋅ Poprawnie: 30/71 [42%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja kwadratowa f określona wzorem f(x)=a(x-p)^2+q spełnia warunek f(-4)=f(6)=3, a jej zbiorem wartości jest przedział (-\infty, 8\rangle.

Wyznacz współczynnik a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Wyznacz liczby p i q.
Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20365 ⋅ Poprawnie: 83/185 [44%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Dana jest funkcja f(x)=ax^2+bx+c.

Oblicz najmniejszą wartość funkcji f w przedziale \langle p, q\rangle.

Dane
a=-1
b=-2
c=-5
p=-2
q=3
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20995 ⋅ Poprawnie: 9/14 [64%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Funkcja kwadratowa f ma dwa miejsca zerowe x_1 i x_2 takie, że x_1\cdot x_2=-18. Wiedząc, że dla argumentu \frac{3}{2} funkcja ta przyjmuje wartość największą równą \frac{81}{16}, wyznacz wzór funkcji w postaci f(x)=a(x-x_1)(x-x_2).

Podaj liczbę a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj miejsca zerowe tej funkcji.
Odpowiedzi:
x_{min}= (wpisz liczbę całkowitą)
x_{max}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20105 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 «« Wyznacz te wartości parametru m\in\mathbb{R}, dla których równanie (x-1)|x-2|=m+1+a ma dwa różne rozwiązania.

Podaj najmniejsze możliwe m.

Dane
a=-3
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pr-30078 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Rozwiąż nierówność ax^2+b|x|+c \lessdot 0 .

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów, które są liczbami ujemnymi.

Dane
a=1
b=-14.5
c=51.0
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Podaj sumę wszystkich końców liczbowych tych przedziałów, które są liczbami dodatnimi.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30064 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Dla jakich wartości parametru m równanie x^2+2(7-m+a)x+m^2-(13+2a)m+a^2+13a+42=0 ma dwa różne rozwiązania rzeczywiste x_1,x_2 spełniające warunek x_1\cdot x_2\leqslant 6m-6a-18\leqslant x_1^2+x_2^2?

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Dane
a=-2
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj sumę kwadratów wszystkich końców całkowitych tych przedziałów.
Odpowiedź:
suma= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm