Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11038 ⋅ Poprawnie: 134/227 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Gdy przesuniemy wykres funkcji f(x)=-5(x-6)^2-\frac{5}{2} o p=2 jednostek w lewo i q=9 jednostek w górę, to otrzymamy wykres funkcji:
Odpowiedzi:
A. y=-5(x-4)^2+\frac{13}{2} B. y=-5(x+3)^2-\frac{1}{2}
C. y=-5(x-8)^2+\frac{13}{2} D. y=-5(x-4)^2-\frac{23}{2}
Zadanie 2.  1 pkt ⋅ Numer: pp-10981 ⋅ Poprawnie: 97/205 [47%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wyznacz największą wartość funkcji określonej wzorem f(x)=-3(x+1)(x-5) w przedziale \left\langle \frac{3}{2},6\right\rangle.
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11017 ⋅ Poprawnie: 336/550 [61%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Dana jest funkcja określona wzorem g(x)=ax^2+bx+c. Postać iloczynowa funkcji g opisana jest wzorem g(x)=a(x+3)(x-1).

Wyznacz współczynnik c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11409 ⋅ Poprawnie: 216/325 [66%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej f:

Podaj największą wartość funkcji f w przedziale \langle 1,4\rangle.

Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10963 ⋅ Poprawnie: 110/233 [47%] Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 Funkcja opisana jest wzorem f(x)=-3x^2+6x+1. Zbiorem rozwiązań nierówności f(x) > f(-x) jest pewien przedział liczbowy.

Przedział ten ma postać:

Odpowiedzi:
A. (p,+\infty) B. (p, q)
C. (-\infty,p\rangle D. \langle p,+\infty)
E. (-\infty,p) F. (p,q\rangle
Podpunkt 5.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pr-20061 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Wyznacz te wartości parametru m, dla których równanie |ax^2+bx+c|=m ma dokładnie trzy rozwiązania.

Podaj najmniejsze możliwe m.

Dane
a=1
b=10
c=14
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20367 ⋅ Poprawnie: 7/33 [21%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Do wykresu paraboli y=2x^2-3x-1 należy punkt Q=(2am, y) taki, że różnica 2am-y jest największa z możliwych.

Podaj m.

Dane
a=\frac{1}{2}=0.50000000000000
Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20104 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Wyznacz zbiór liczb, które nie spełniają nierówności (x+1-a)^2-|x-a|\geqslant 2x-2a+1 .

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Dane
a=-7
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Jaka jest łączna długość tych przedziałów.
Odpowiedź:
d= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20079 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Dla jakich wartości parametru m rozwiązaniem nierówności (2m-3)x^2+2x+1\geqslant 0 jest zbiór \mathbb{R}?

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pr-30024 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Wyznacz wszystkie wartości parametru m, dla których funkcja f(x)=(m^2-a)x^2-2(b-m)x+2 przyjmuje wartości dodatnie dla każdego x rzeczywistego.

Podaj najmniejsze dodatnie m, które spełnia warunki zadania.

Dane
a=1
b=1
Odpowiedź:
min_{>0}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj najmniejsze ujemne m, które nie spełnia warunków zadania.
Odpowiedź:
min_{<0}= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30056 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 » Dla jakich wartości parametru m\in\mathbb{R} równanie x^2-x+2m+3-2a=0 ma dwa różne pierwiastki rzeczywiste x_1,x_2 spełniające warunek 3x_1^2x_2+3x_1x_2^2=m^2-2am+4m+a^2-4a-6 ?

Podaj najmniejsze możliwe m.

Dane
a=-3
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm