Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11038 ⋅ Poprawnie: 134/227 [59%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Gdy przesuniemy wykres funkcji
f(x)=2(x-1)^2-\frac{3}{2} o
p=5 jednostek w lewo i
q=11 jednostek w górę,
to otrzymamy wykres funkcji:
Odpowiedzi:
A. y=2(x+10)^2+\frac{7}{2}
B. y=2(x-6)^2+\frac{19}{2}
C. y=2(x+4)^2-\frac{25}{2}
D. y=2(x+4)^2+\frac{19}{2}
Zadanie 2. 1 pkt ⋅ Numer: pp-11057 ⋅ Poprawnie: 399/626 [63%]
Rozwiąż
Podpunkt 2.1 (0.5 pkt)
» Wierzchołek paraboli o równaniu
y=(1+3x)(x-3) ma współrzędne
(x_w,y_w) .
Wyznacz współrzędną x_w .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11046 ⋅ Poprawnie: 282/415 [67%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wskaż wykres mający
3 punkty wspólne z osiami
układu współrzędnych:
Odpowiedzi:
A. y=-5x^2+6x-4
B. y=2x^2-3x+4
C. y=-3(x-4)^2+7
D. y=5x^2+3x+8
Zadanie 4. 1 pkt ⋅ Numer: pp-11730 ⋅ Poprawnie: 21/39 [53%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Większa część zawodników klubu sportowego liczącego
51 osób,
zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z
pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.
Ilu zawodników było chorych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11066 ⋅ Poprawnie: 218/289 [75%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Wierzchołkiem paraboli będącej wykresem funkcji
f(x)=-x^2+bx+c jest punkt o współrzędnych
(3,-7) .
Wyznacz współczynniki b i c .
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pp-20349 ⋅ Poprawnie: 7/37 [18%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
«« Dana jest funkcja
f(x)=
\begin{cases}
(x+6)^2-3 \text{, dla } x\leqslant 0 \\
-(x+6)^2+69 \text{, dla }x > 0
\end{cases}
.
Wyznacz zbiór tych wartości, które funkcja f
przyjmuje trzy razy, dla trzech różnych argumentów.
Zbiór ten zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Odpowiedź:
x_l=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
x_p=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20359 ⋅ Poprawnie: 51/109 [46%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Wyznacz największą wartość funkcji
f(x)=bx+ax^2 .
Dane
a=-2=-2.00000000000000
b=\frac{3}{2}=1.50000000000000
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pr-21060 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (1 pkt)
Rozwiąż równanie
\sqrt{x^2-14x+45}=x-5
.
Podaj najmniejsze z rozwiązań tego równania.
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj największe z rozwiązań tego równania.
Odpowiedź:
x_{max}=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20107 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Wyznacz te wartości parametru
m\in\mathbb{R} ,
dla których równanie
x^2-(m+a)|x|+1=0 ma cztery
różne rozwiązania.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich
końców liczbowych tych przedziałów.
Dane
a=2
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30075 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Rozwiąż równanie
x^2-(a+6)x+\left|x-3-\frac{a}{2}\right|+\frac{1}{4}a^2+3a-3=0
.
Podaj najmniejsze rozwiązanie tego równania.
Dane
a=3
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Podaj największe rozwiązanie tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30086 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (1 pkt)
« Zbadaj liczbę rozwiązań równania
(x+2)^2-4|x+1|=2m-a
w zależności od wartości parametru
m\in\mathbb{R} .
Podaj najmniejsze możliwe m , dla którego równanie
ma trzy rozwiązania.
Dane
a=2
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (1 pkt)
Podaj największe możliwe
m , dla którego równanie
ma trzy rozwiązania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.3 (1 pkt)
Podaj największe możliwe
m , dla którego równanie
ma dokładnie jedno rozwiązanie.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.4 (1 pkt)
Wyznacz zbiór tych wartości parametru
m , dla których
ilość rozwiązań dodatnich tego równania jest równa ilości rozwiązań ujemnych.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich
końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż