Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11071 ⋅ Poprawnie: 118/136 [86%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 W zbiorze wartości funkcji f(x)=-3(x-3)^2-4 zawarty jest przedział:
Odpowiedzi:
A. (-4,-3) B. (-4,+\infty)
C. (-5,-3) D. (-\infty,-4)
Zadanie 2.  1 pkt ⋅ Numer: pp-10981 ⋅ Poprawnie: 97/212 [45%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wyznacz największą wartość funkcji określonej wzorem f(x)=-2(x+3)(x-3) w przedziale \left\langle -\frac{1}{2},4\right\rangle.
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11036 ⋅ Poprawnie: 53/70 [75%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Funkcja g określona jest wzorem g(x)=x^2-49. Funkcja f określona jest wzorem f(x)=(7-x)(7+x). Wykres funkcji f można otrzymać z wykresu funkcji g:
Odpowiedzi:
A. przesuwając go w lewo wzdłuż osi Ox B. poprzez symetrię względem osi Oy
C. poprzez symetrię względem osi Ox D. przesuwając go w górę wzdłuż osi Oy
E. przesuwając go w prawo wzdłuż osi Ox F. przesuwając go w dół wzdłuż osi Oy
Zadanie 4.  1 pkt ⋅ Numer: pp-11067 ⋅ Poprawnie: 143/276 [51%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Rozpatrujemy prostokąty o obwodzie 92. Na takim prostokącie o największym polu powierzchni opisano okrąg.

Oblicz długość promienia tego okręgu.

Odpowiedź:
R= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10962 ⋅ Poprawnie: 383/585 [65%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Iloczyn (x+7)(-8-x) jest nieujemny, wtedy i tylko wtedy, gdy liczba x należy do zbioru A. Zapisz zbiór A w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20898 ⋅ Poprawnie: 25/32 [78%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wyznacz współczynniki b i c trójmianu kwadratowego y=f(x)=3x^2+bx+c wiedząc, że funkcja f przyjmuje wartości niedodatnie tylko dla x\in\langle -7,-6\rangle.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20370 ⋅ Poprawnie: 30/58 [51%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Funkcja kwadratowa f(x)=8x^2+bx+\frac{9}{2} ma tylko jedno miejsce zerowe. Oblicz b.

Podaj najmniejszą możliwą wartość b.

Odpowiedź:
b_{min}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 7.2 (1 pkt)
 
Odpowiedź:
b_{max}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20069 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Rozwiąż równanie \sqrt{x}+\sqrt{a-x}=\sqrt{x+1} .

Podaj największe z rozwiązań tego równania.

Dane
a=4
Odpowiedź:
x_{max}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 9.  4 pkt ⋅ Numer: pr-20086 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 «« Wyznacz te wartości parametru m, dla których równanie (m-a-2)x^2+(m-a-3)x-1=0 ma dwa różne pierwiastki ujemne?

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Dane
a=7
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 9.2 (2 pkt)
 Podaj sumę tych wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30077 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Rozwiąż nierówność x^2+2ax-3|x+6+a|+a^2 > 0 .

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Dane
a=3
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Przedział \langle p, q\rangle jest zbiorem tych wszystkich wartości x, które nie spełniają podanej nierówności.

Podaj środek tego przedziału.

Odpowiedź:
x_s=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30861 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Równanie kwadratowe x^2+(2m+10)x+4=0 ma dwa różne rozwiązania x_1 i x_2, wtedy i tylko wtedy, gdy parametr m należy do zbioru postaci (-\infty, p)\cup(q, +\infty).

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Wyznacz wszystkie wartości parametru m, dla których prawdziwa jest nierówność (x_1-x_2)^2\leqslant 84. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm