Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11005 ⋅ Poprawnie: 357/561 [63%] Rozwiąż 
Podpunkt 1.1 (0.2 pkt)
 « Funkcja y=-(x+6)^2+1 jest rosnąca w pewnym przedziale liczbowym.

Przedział ten ma postać:

Odpowiedzi:
A. \langle p,+\infty) B. (-\infty,p\rangle
C. \langle p,q\rangle D. (p,+\infty)
E. (p,q) F. (-\infty,p)
Podpunkt 1.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11079 ⋅ Poprawnie: 268/362 [74%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dana jest funkcja kwadratowa opisana wzorem h(x)=-4(x-8)(x+5). Wyznacz maksymalny przedział, w którym funkcja ta jest malejąca.

Podaj najmniejszy z końców liczbowych tego przedziału.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11064 ⋅ Poprawnie: 289/479 [60%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Wykres funkcji kwadratowej określonej wzorem y=ax^2+bx+c pokazano na rysunku:

Podaj współczynnik a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11067 ⋅ Poprawnie: 143/276 [51%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Rozpatrujemy prostokąty o obwodzie 28. Na takim prostokącie o największym polu powierzchni opisano okrąg.

Oblicz długość promienia tego okręgu.

Odpowiedź:
R= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11058 ⋅ Poprawnie: 92/184 [50%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Wierzchołek paraboli będącej wykresem funkcji kwadratowej określonej wzorem y=(2x-7)^2+\frac{13}{2} należy do prostej o równaniu y=......\cdot x.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20899 ⋅ Poprawnie: 6/16 [37%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Miejscem zerowym funkcji kwadratowej f jest liczba 2. Funkcja f rośnie wtedy i tylko wtedy gdy x\in(-\infty, 0\rangle. Najmniejsza wartość funkcji f w przedziale \langle 1,8\rangle jest równa -120. Zapisz wzór funkcji f w postaci ogólnej f(x)=ax^2+bx+c

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20411 ⋅ Poprawnie: 50/185 [27%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Rozwiąż nierówność 2x^2+b+cx\leqslant 0.

Ile liczb całkowitych spełnia tę nierówność?

Dane
b=-4=-4.00000000000000
c=7=7.00000000000000
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj największą liczbę spełniającą tę nierówność.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20076 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 «« Przyprostokątne trójkąta są pierwiastkami trójmianu y=2x^2+(b+a)x+144. Pole kwadratu zbudowanego na przeciwprostokątnej tego trójkąta wynosi 340.

Wyznacz b.

Dane
a=-4
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20105 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 «« Wyznacz te wartości parametru m\in\mathbb{R}, dla których równanie (x-1)|x-2|=m+1+a ma dwa różne rozwiązania.

Podaj najmniejsze możliwe m.

Dane
a=-4
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pr-30025 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Z punktu A odległego o 85 km od punktu B wyjechał tramwaj. Po godzinie z punktu B wyjechał inny tramwaj i poruszał się w kierunku punktu A, po tej samej trasie. Po pewnym czasie oba tramwaje wyminęły się. Od tego momentu tramwaj jadący z miejscowości A jechał jeszcze 120 minut do miejscowości B, a tramwaj drugi jechał jeszcze przez 180 minut do miasta A.

Z jaką średnią prędkością poruszał się na trasie tramwaj jadący z miejscowości A?

Odpowiedź:
v_A= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Z jaką średnią prędkością poruszał się na trasie tramwaj jadący z miejscowości B?
Odpowiedź:
v_B= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30069 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Zbadaj liczbę pierwiastków równania (m^2-2m-2am+a^2+2a)x^2-(m-a)x-\frac{1}{2}=0 w zależności od wartości parametru m\in\mathbb{R}.

Podaj sumę tych wartości m, dla których równanie ma dokładnie jedno rozwiązanie.

Dane
a=-4
Odpowiedź:
suma=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (1 pkt)
 Podaj najmniejsze możliwe m, dla którego równanie nie ma rozwiązania.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
 Wyznacz te wartości m, dla których równanie ma dwa rozwiązania.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów, które są liczbami całkowitymi.

Odpowiedź:
suma= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm