Mniejsza część zawodników klubu sportowego liczącego 47 osób,
zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z
pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.
Ilu zawodników było chorych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5.1 pkt ⋅ Numer: pp-10962 ⋅ Poprawnie: 385/588 [65%]
» Funkcja kwadratowa f(x)=ax^2+bx+c przyjmuje
wartości ujemne tylko wtedy, gdy
x\in\left(d, e\right). Wiadomo, że wykres
funkcji f przechodzi przez punkt
A=(p,q).
Zapisz wzór tej funkcji w postaci ogólnej. Podaj sumę współczynników
a+b+c.
Dane
d=-5
e=0.5
p=2
q=42
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
Zapisz wzór tej funkcji w postaci kanonicznej
f(x)=a(x-p)^2+q. Podaj wartość współczynnika
p.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7.2 pkt ⋅ Numer: pr-20978 ⋅ Poprawnie: 0/0
Drut o długości 90 podzielono na dwie części:
z jednej zbudowano kwadrat, a z drugiej okrąg. Jaka powinna być długość każdej części, aby
suma pól powierzchni obu figur była jak największa.?
Podaj długość mniejszego z tych dwóch kawałków.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8.2 pkt ⋅ Numer: pr-20996 ⋅ Poprawnie: 0/0
Funkcja kwadratowa określona wzorem f(x)=ax^2+bx+c ma dwa miejsca zerowe x_1
i x_2 takie, że \frac{1}{x_1^2}+\frac{1}{x_2^2}=2
oraz x_1\cdot x_2=-2. Wiedząc, że
f(-2)=6 i a\in\mathbb{N_+}, wyznacz
wzór tej funkcji w postaci ogólnej.
Podaj liczbę a.
Odpowiedź:
a=(wpisz liczbę całkowitą)
Podpunkt 8.2 (1.4 pkt)
Podaj liczby b i c.
Odpowiedzi:
b
=
(wpisz liczbę całkowitą)
c
=
(wpisz liczbę całkowitą)
Zadanie 9.2 pkt ⋅ Numer: pr-20105 ⋅ Poprawnie: 0/1 [0%]