Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11596 ⋅ Poprawnie: 98/143 [68%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=ax^2 należy punkt o współrzędnych \left(2,\frac{4\sqrt{2}}{3}\right).

Wyznacz współczynnik a.

Odpowiedź:
a= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11001 ⋅ Poprawnie: 534/743 [71%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Jeżeli miejscami zerowymi funkcji kwadratowej są liczby -6 oraz 2, a wierzchołek paraboli będącej jej wykresem ma współrzędne (-2,-32), to wzór tej funkcji można zapisać w postaci:
Odpowiedzi:
A. f(x)=\frac{3}{2}(x-6)(x-2) B. f(x)=2(x-6)(x-2)
C. f(x)=2(x+6)(x-2) D. f(x)=2(x+6)(x+2)
Zadanie 3.  1 pkt ⋅ Numer: pp-11728 ⋅ Poprawnie: 4/13 [30%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 Zbiorem wartości funkcji y=-(x-6)(x+6) określonej dla x\in(2,7\rangle jest pewien przedział liczbowy.

Przedział ten ma postać:

Odpowiedzi:
A. \langle p,q\rangle B. \langle p,q)
C. (p,q\rangle D. (p,q)
E. (p,+\infty) F. (-\infty,p\rangle
Podpunkt 3.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10988 ⋅ Poprawnie: 72/95 [75%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
» Wyznacz najmniejszą wartość funkcji kwadratowej określonej wzorem f(x)=x^2+12x.
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10111 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 « Zbiór A jest zbiorem tych wartości parametru m, dla których dziedziną funkcji określonej wzorem f(x)=\frac{2}{mx^2+mx+1} jest zbiór \mathbb{R}. Zapisz zbiór A w postaci sumy przedziałów.

Zbiór A ma postać:

Odpowiedzi:
A. (-\infty,p\rangle\cup\langle q, +\infty) B. (-\infty,p)
C. \langle p,q\rangle D. (p,q)
E. \langle p,q) F. (p,+\infty)
Podpunkt 5.2 (0.8 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20350 ⋅ Poprawnie: 28/60 [46%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Liczba -4 jest miejscem zerowym funkcji kwadratowej h. Maksymalny przedział, w którym ta funkcja jest malejąca jest równy \langle 2,+\infty). W przedziale \langle -7,-6\rangle największą wartością funkcji h jest -56. Wyznacz wzór funkcji h(x)=ax^2+bx+c.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20413 ⋅ Poprawnie: 4/25 [16%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « O funkcji kwadratowej f wiadomo, że: f(a)=-\frac{5}{2}, f(b)=0 oraz f(c)=-2\frac{1}{2}. Rozwiąż nierówość f(x)\geqslant 0.

Podaj największą liczbę całkowitą spełniającą tą nierówność.

Dane
a=-9
b=-3
c=8
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20993 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Funkcja kwadratowa określona wzorem f(x)=ax^2+bx+c ma dwa miejsca zerowe, których suma jest równa -\frac{3}{2}, a ich iloczyn jest równy \frac{1}{2}. Wyznacz współczynniki b i c wiedząc, że do wykresu funkcji f należy punkt A=\left(4,45\right).

Podaj współczynnik b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj współczynnik c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20080 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Dana jest nierówność x^2-4(m+1)x-32m^2-64m-32 \lessdot 0 z parametrem m\in\mathbb{N_+} i m\geqslant 10. Funkcja g określona jest dla liczb naturalnych m\geqslant 10 i jej wartością dla liczby m jest największe z całkowitych rozwiązań podanej nierówności.
Funkcja g jest funkcją liniową określoną wzorem g(x)=ax+b.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30028 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Suma dwóch różnych miejsc zerowych funkcji f(x)=(a-m)x^2+(2b+n)x+c jest równa 4, a suma ich odwrotności jest równa -\frac{1}{3}. Wiedząc, że f(0)=-12 wyznacz a i b.

Podaj a.

Dane
m=-1
n=3
Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30085 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Zbadaj liczbę rozwiązań równania -\frac{1}{3}x^2+2|x|-3=3m-3a w zależności od wartości parametru m\in\mathbb{R}.

Podaj największe możliwe m, dla którego równanie ma dwa rozwiązania.

Dane
a=1
Odpowiedź:
max= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Podaj najmniejsze możliwe m, dla którego równanie ma trzy rozwiązania.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
 Przedział (m_1,m_2) zawiera wszystkie te wartości parametru m, dla których równanie to ma więcej niż trzy rozwiązania.

Podaj m_1^2+m_2^2.

Odpowiedź:
m_1^2+m_2^2= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm