Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11059 ⋅ Poprawnie: 233/411 [56%] Rozwiąż 
Podpunkt 1.1 (0.5 pkt)
 Parabola y=(8-2x)^2+6 ma wierzchołek w punkcie o współrzędnych \left(x_w,y_w\right).

Wyznacz współrzędną x_w.

Odpowiedź:
x_w=
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
 Wyznacz współrzędną y_w.
Odpowiedź:
y_w=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11041 ⋅ Poprawnie: 365/693 [52%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wyznacz największa wartość funkcji określonej wzorem y=-2(x-6)(x-4).
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11011 ⋅ Poprawnie: 67/91 [73%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Dane są funkcje: f(x)=x^2+\frac{\sqrt{10}}{2} i g(x)=\frac{\sqrt{10}}{3}.

Wówczas, zachodzi warunek:

Odpowiedzi:
A. f(x)=g(x) B. f(x) > g(x)
C. f(x) \lessdot g(x) D. f(x)-g(x)=x^2
Zadanie 4.  1 pkt ⋅ Numer: pp-11466 ⋅ Poprawnie: 202/334 [60%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Dana jest funkcja kwadratowa f(x)=-0,5(x+4m)^2+20m, gdzie m > 0.

Wówczas:

Odpowiedzi:
A. dla pewnego m funkcja ma jedno miejsce zerowe B. wierzchołek paraboli, która jest wykresem tej funkcji należy do prostej y=-5x
C. największą wartością funkcji jest -20m D. dla m=-\frac{1}{2} funkcja jest rosnąca
Zadanie 5.  1 pkt ⋅ Numer: pp-10971 ⋅ Poprawnie: 130/195 [66%] Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 Równanie x^2-(k-1)x+36=0 z niewiadomą x ma dwa różne rozwiązania wtedy i tylko wtedy, gdy parametr k należy do zbioru A. Zapisz zbiór Aw postaci sumy przedziałów.

Zbiór A jest postaci:

Odpowiedzi:
A. (-\infty,p)\cap(q,+\infty) B. (-\infty,p)
C. (p,q) D. \langle p,q\rangle
E. (p,+\infty) F. (-\infty,p)\cup(q,+\infty)
Podpunkt 5.2 (0.8 pkt)
 Liczba p jest najmniejszym, a liczba q największym z końców liczbowych tych przedziałów.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20936 ⋅ Poprawnie: 50/142 [35%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja kwadratowa określona wzorem f(x)=-3x^2+bx+c jest malejąca wtedy i tylko wtedy, gdy x\in\langle -1,+\infty). Wiedząc, że f(2)=-19, oblicz współczynniki b i c.

Podaj liczbę b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj liczbę c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20353 ⋅ Poprawnie: 213/684 [31%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Funkcja kwadratowa jest określona wzorem f(x)=ax^2+bx+c.

Oblicz najmniejszą wartość funkcji f w przedziale \langle p,q\rangle.

Dane
a=-1
b=-1
c=7
p=-4
q=7
Odpowiedź:
y_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Oblicz największą wartość funkcji f w tym przedziale.
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-21060 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Rozwiąż równanie \sqrt{x^2+10x+21}=x+7 .

Podaj najmniejsze z rozwiązań tego równania.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj największe z rozwiązań tego równania.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20084 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Dla jakich wartości parametru m stosunek pierwiastków równania 2x^2+(m+a)x+4=0 jest równy 2?

Podaj największą możliwą wartość parametru m.

Dane
a=1
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30024 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Wyznacz wszystkie wartości parametru m, dla których funkcja f(x)=(m^2-a)x^2-2(b-m)x+2 przyjmuje wartości dodatnie dla każdego x rzeczywistego.

Podaj najmniejsze dodatnie m, które spełnia warunki zadania.

Dane
a=25
b=5
Odpowiedź:
min_{>0}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj najmniejsze ujemne m, które nie spełnia warunków zadania.
Odpowiedź:
min_{<0}= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30026 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Dane jest równanie px^2-(p+a)x+p+a=0 z parametrem p. Funkcja f liczbie p przypisuje sumę różnych pierwiastków tego równnia, czyli f(p)=x_1+x_2. Wyznacz dziedzinę tej funkcji.

Zapisz rozwiązanie w postaci sumy przedziałów. Ile jest tych przedziałów?

Dane
a=6
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj sumę wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma=
(wpisz dwie liczby całkowite)
Podpunkt 11.3 (1 pkt)
 Zapisz wzór funkcji f i naszkicuj jej wykres.

Podaj największą liczbę, która nie należy do zbioru wartosci funkcji f.

Odpowiedź:
max= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm