Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10979 ⋅ Poprawnie: 172/316 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dana jest funkcja f określona wzorem f(x)=-4(x-4)^2+2.

Wyznacz największą wartość funkcji określonej wzorem h(x)=f(x-3)+5.

Odpowiedź:
h_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11079 ⋅ Poprawnie: 268/362 [74%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dana jest funkcja kwadratowa opisana wzorem h(x)=-3(x-6)(x-3). Wyznacz maksymalny przedział, w którym funkcja ta jest malejąca.

Podaj najmniejszy z końców liczbowych tego przedziału.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11050 ⋅ Poprawnie: 82/195 [42%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wykres funkcji kwadratowej y=-5(x+3)^2-4 nie ma punktów wspólnych z prostą o równaniu:
Odpowiedzi:
A. y=-5 B. x=5
C. y=-1 D. x=-3
Zadanie 4.  1 pkt ⋅ Numer: pp-11409 ⋅ Poprawnie: 216/332 [65%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej f:

Podaj największą wartość funkcji f w przedziale \langle 1,4\rangle.

Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10975 ⋅ Poprawnie: 325/496 [65%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Liczba ujemna spełnia równanie x^2-2x-72=0.

Oblicz kwadrat tej liczby.

Odpowiedź:
x^2= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-20460 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Liczby \frac{3-\sqrt{5}}{2} i x_2 są miejscami zerowymi funkcji kwadratowej, której wykres ma wierzchołek w punkcie (3,3).

Wyznacz x_2.

Odpowiedź:
x_2= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20782 ⋅ Poprawnie: 61/81 [75%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Dane jest równanie (x^3+125)(x^2-4x-32)=0.

Wyznacz najmniejsze rozwiązanie tego równania.

Odpowiedź:
x_{min}= + \cdot
(wpisz cztery liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Wyznacz największe rozwiązanie tego równania.
Odpowiedź:
x_{max}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20982 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Rozwiąż równanie \sqrt{3x+16}-\sqrt{x+4}=2 .

Podaj najmniejsze z rozwiązań tego równania.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj największe z rozwiązań tego równania.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20095 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wyznacz wartości parametru m, dla których dziedziną funkcji f(x)=\sqrt{(m+2)x^2+x(m+2)+1} jest zbiór \mathbb{R}.

Podaj najmniejsze takie m.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj największe takie m.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pr-30075 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Rozwiąż równanie x^2-(a+6)x+\left|x-3-\frac{a}{2}\right|+\frac{1}{4}a^2+3a-3=0 .

Podaj najmniejsze rozwiązanie tego równania.

Dane
a=3
Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Podaj największe rozwiązanie tego równania.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30860 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Równanie kwadratowe x^2+(m+3)x+m+11=0 ma dwa różne rozwiązania x_1 i x_2, wtedy i tylko wtedy, gdy parametr m należy do zbioru postaci (-\infty, p)\cup(q, +\infty).

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Wyznacz wszystkie wartości parametru m, dla których prawdziwa jest nierówność (x_1-x_2)^2\leqslant 2m^2+20m+42. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm