Wykres funkcji kwadratowej określonej wzorem
y=\frac{4}{5}(x+1)^2+5 otrzymano przesuwając wykres funkcji
y=\frac{4}{5}x^2 o p jednostek
wzdłuż osi Ox i o q jednostek
wzdłuż osi Oy, przy czym liczby p i
q mogą być ujemne.
Podaj liczby p i q.
Odpowiedzi:
p
=
(wpisz liczbę całkowitą)
q
=
(wpisz liczbę całkowitą)
Zadanie 2.1 pkt ⋅ Numer: pp-11506 ⋅ Poprawnie: 461/803 [57%]
Mniejsza część zawodników klubu sportowego liczącego 49 osób,
zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z
pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.
Ilu zawodników było chorych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5.1 pkt ⋅ Numer: pp-10970 ⋅ Poprawnie: 190/262 [72%]
« W turnieju szachowym, w którym uczestniczy ......... szachistów, każdy uczestnik rozgrywa jedną partię z każdym
innym uczestnikiem. Łącznie rozegrano w tym turnieju 435
partii szachów.
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 6.2 pkt ⋅ Numer: pp-20928 ⋅ Poprawnie: 67/118 [56%]
Funkcja kwadratowa f określona wzorem
f(x)=a(x-p)^2+q jest rosnąca wtedy i tylko wtedy,
gdy x\in\langle5,+\infty), zbiorem jej wartości
jest przedział \langle-5, +\infty), a do jej wykresu
należy punkt A=(6,-3). Wyznacz wzór tej funkcji.
Podaj współczynnik a.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
Podaj liczby p i q.
Odpowiedzi:
p
=
(wpisz liczbę całkowitą)
q
=
(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pp-20405 ⋅ Poprawnie: 26/129 [20%]