Zbiór tych wszystkich wartości m, dla których funkcja kwadratowa
określona wzorem f(x)=x^2+7x+m nie ma ani
jednego miejsca zerowego jest przedziałem liczbowym.
Przedział ten ma postać:
Odpowiedzi:
A.(-\infty, p\rangle
B.(p, +\infty)
C.\langle p, q\rangle
D.(-\infty, p)
E.\langle p, +\infty)
F.(p, q)
Podpunkt 2.2 (0.8 pkt)
Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 3.1 pkt ⋅ Numer: pp-11043 ⋅ Poprawnie: 148/269 [55%]
« Rzucono pionowo do góry kamień z prędkością początkową 10\ m/s.
Wysokość s\ [m], jaką osiągnie ten kamień po t
sekundach czasu opisuje wzór s(t)=8t-2t^2.
Podaj maksymalną wysokość jaką osiągnie ten kamień.
Odpowiedź:
s_{max}(t)=(wpisz liczbę całkowitą)
Zadanie 5.1 pkt ⋅ Numer: pp-10957 ⋅ Poprawnie: 641/969 [66%]
Wyznacz współczynniki b i c
trójmianu kwadratowego y=f(x)=3x^2+bx+c wiedząc, że
funkcja f przyjmuje wartości niedodatnie tylko dla
x\in\langle -6,3\rangle.
Podaj b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
Podaj c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7.2 pkt ⋅ Numer: pp-20405 ⋅ Poprawnie: 26/129 [20%]
» Dla jakich wartości parametru m\in\mathbb{R}
równanie
x^2-x+2m+3-2a=0
ma dwa różne pierwiastki rzeczywiste x_1,x_2
spełniające warunek
3x_1^2x_2+3x_1x_2^2=m^2-2am+4m+a^2-4a-6
?
Podaj najmniejsze możliwe m.
Dane
a=3
Odpowiedź:
m_{min}=(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj największe możliwe m.
Odpowiedź:
m_{max}=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat