Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11052 ⋅ Poprawnie: 813/1144 [71%]
Rozwiąż
Podpunkt 1.1 (0.8 pkt)
Zbiorem wartości funkcji kwadratowej
y=-x^2+6 x-11 jest pewien przedział liczbowy.
Podaj ten koniec tego przedziału, który jest liczbą całkowitą.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 1.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -\infty
B. -\frac{1}{2}
C. +\infty
D. -\frac{3}{4}
E. \frac{3}{4}
F. \frac{1}{2}
Zadanie 2. 1 pkt ⋅ Numer: pp-11427 ⋅ Poprawnie: 672/822 [81%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Funkcja kwadratowa jest określona wzorem
f(x)=-(x-12)(x-6) . Liczby
x_1 i
x_2 są różnymi
miejscami zerowymi funkcji
f spełniającymi warunek
x_1+x_2=......... .
Podaj brakującą liczbę.
Odpowiedzi:
A. x_1+x_2=36
B. x_1+x_2=-18
C. x_1+x_2=18
D. x_1+x_2=-36
Zadanie 3. 1 pkt ⋅ Numer: pp-11728 ⋅ Poprawnie: 4/12 [33%]
Rozwiąż
Podpunkt 3.1 (0.2 pkt)
Zbiorem wartości funkcji
y=-(x-5)(x+5)
określonej dla
x\in(3,6\rangle jest pewien przedział liczbowy.
Przedział ten ma postać:
Odpowiedzi:
A. (p,q\rangle
B. (p,q)
C. \langle p,q\rangle
D. \langle p,q)
E. (p,+\infty)
F. (-\infty,p\rangle
Podpunkt 3.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11465 ⋅ Poprawnie: 479/942 [50%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Najmniejszą wartość w przedziale
\langle -7, -3\rangle funkcja kwadratowa
f(x)=-\left(x+6\right)^{2}-5
przyjmuje dla argumentu
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10960 ⋅ Poprawnie: 252/530 [47%]
Rozwiąż
Podpunkt 5.1 (0.2 pkt)
Wyznacz dziedzinę funkcji określonej wzorem
f(x)=\sqrt{64-16x^2}
.
Zbiór ten jest postaci:
Odpowiedzi:
A. (-\infty,p\rangle\cup\langle q,+\infty)
B. (p,q)
C. \langle p,+\infty)
D. \langle p,q\rangle
E. (p,+\infty)
F. (-\infty,p\rangle
Podpunkt 5.2 (0.8 pkt)
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Zadanie 6. 2 pkt ⋅ Numer: pp-20346 ⋅ Poprawnie: 46/76 [60%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Wyznacz wszystkie wartości parametru
m , dla których
prosta
y=m ma dwa punkty wspólne z wykresem
funkcji
f(x)=-4x^2-12x .
Odpowiedź zapisz w postaci przedziału. Podaj sumę wszystkich końców
liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20363 ⋅ Poprawnie: 173/368 [47%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Dana jest funkcja
f(x)=x^2+bx+c , gdzie
x\in\langle p, q\rangle .
Oblicz najmniejszą wartość funkcji f .
Dane
b=-4
c=3
p=-1
q=3
Odpowiedź:
f_{min}(x)=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Oblicz największą wartość funkcji
f .
Odpowiedź:
f_{max}(x)=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pr-20982 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (1 pkt)
Rozwiąż równanie
\sqrt{3x+19}-\sqrt{x+5}=2
.
Podaj najmniejsze z rozwiązań tego równania.
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj największe z rozwiązań tego równania.
Odpowiedź:
x_{max}=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20463 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Równanie
|-x^2+2|x|+5|=2p-a ma cztery
rozwiązania. Wyznacz zbiór możliwych wartości parametru
p .
Oblicz sumę kwadratów liczb całkowitych należących do tego zbioru.
Dane
a=7
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30079 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Rozwiąż nierówność
x^2-2ax+a^2+c \leqslant -b|x-a|
.
Podaj najmniejsze rozwiązanie tej nierówności.
Dane
b=-4
c=-12
a=3
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Podaj największe rozwiązanie tej nierówności.
Odpowiedź:
x_{max}=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30842 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (1 pkt)
Dla jakich wartości parametru
m\in\mathbb{R} równanie
5x^2-(m+4)x+1=0 ma dwa
rozwiązania spełniające warunek
\left|x_1-x_2\right|\geqslant 1 ?
Rozwiązaniem jest zbiór postaci:
Odpowiedzi:
A. (-\infty, p)
B. (p, q)
C. (p, +\infty)
D. (-\infty, p\rangle
E. (p, q\rangle
F. \langle p, +\infty)
G. (-\infty, p\rangle \cup \langle q, +\infty)
H. \langle p, q)
Podpunkt 11.2 (1.5 pkt)
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych
tych przedziałów.
Odpowiedź:
min=
+
\cdot
√
(wpisz trzy liczby całkowite)
Podpunkt 11.3 (1.5 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
+
\cdot
√
(wpisz trzy liczby całkowite)
Rozwiąż