Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11726 ⋅ Poprawnie: 19/33 [57%]
Rozwiąż
Podpunkt 1.1 (0.5 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=ax^2+bx+c
należą punkty o współrzędnych
(3,6) ,
(5,1) i
(9,3) .
Wyznacz współczynnik b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-10987 ⋅ Poprawnie: 50/92 [54%]
Rozwiąż
Podpunkt 2.1 (0.2 pkt)
Wykres funkcji
g(x)=5(m-3)+2x+x^2 nie przecina osi
Ox , wtedy i tylko wtedy, gdy
m
należy do pewnego przedziału.
Przedział ten ma postać:
Odpowiedzi:
A. \langle p,q\rangle
B. \langle p,+\infty)
C. (p,q)
D. (-\infty,p)
E. (-\infty,p\rangle
F. (p,+\infty)
Podpunkt 2.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11534 ⋅ Poprawnie: 215/313 [68%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
(1 pkt)
Jeden z poniższych wzorów opisuje funkcję postaci
y=ax^2+bx+c , której wykres pokazano na rysunku:
Wskaż ten wzór:
Odpowiedzi:
A. y=a(x-2)^2+1
B. y=a(x+1)^2-2
C. y=a(x-2)^2-1
D. y=a(x+1)^2+2
E. y=a(x-1)^2+2
F. y=a(x-1)^2-2
Zadanie 4. 1 pkt ⋅ Numer: pp-10985 ⋅ Poprawnie: 230/342 [67%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Dana jest funkcja
g(x)=-\frac{1}{3}(x+6)x , gdzie
x\in\langle -12,-9\rangle .
Wyznacz f_{min} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11077 ⋅ Poprawnie: 140/228 [61%]
Rozwiąż
Podpunkt 5.1 (0.2 pkt)
» Funkcja kwadratowa opisana wzorem
g(x)=mx^2-2x-\frac{4}{5} ma dokładnie dwa miejsca zerowe wtedy
i tylko wtedy, gdy parametr
m należy do pewnego przedziału liczbowego.
Przedział ten ma postać:
Odpowiedzi:
A. \langle p,+\infty)
B. (p,+\infty)
C. \langle p, q\rangle
D. (-\infty,p)
E. (p,q)
F. (-\infty,p\rangle
Podpunkt 5.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20351 ⋅ Poprawnie: 38/72 [52%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Parabola ma wierzchołek w punkcie
C=(4,169) i przecina
oś
Ox w punktach
A i
B .
Wiedząc, że P_{\triangle ABC}=\frac{2197}{2} . Wyznacz wzór tej
paraboli w postaci kanonicznej f(x)=a(x-p)^2+q .
Podaj liczbę p .
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
q=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20394 ⋅ Poprawnie: 14/175 [8%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Rozwiąż nierówność
x^2+bx+c \lessdot 0 .
Ile liczb całkowitych z przedziału
\langle -10, 10\rangle spełnia tę nierówność?
Dane
b=-\frac{11}{2}=-5.50000000000000
c=\frac{5}{2}=2.50000000000000
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Zbiór rozwiązań zapisz w postaci sumy przedziałów. Podaj współrzędną punktu,
względem którego zbiór ten jest symetryczny.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pr-20104 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Wyznacz zbiór liczb, które
nie spełniają nierówności
(x+1-a)^2-|x-a|\geqslant 2x-2a+1
.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich
końców liczbowych tych przedziałów.
Dane
a=6
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Jaka jest łączna długość tych przedziałów.
Odpowiedź:
d=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20107 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Wyznacz te wartości parametru
m\in\mathbb{R} ,
dla których równanie
x^2-(m+a)|x|+1=0 ma cztery
różne rozwiązania.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich
końców liczbowych tych przedziałów.
Dane
a=5
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30037 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
«« Funkcja
f(x)=x^2+(m^2+12m-n^2+33)x+n^2+3m+14 ,
gdzie
m,n\in\mathbb{C} , ma dwa miejsca zerowe
x_1=4-\sqrt{5} oraz
x_2=4+\sqrt{5} .
Ile rozwiązań ma to zadanie?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Podaj najmniejsze możliwe
m .
Odpowiedź:
m_{min}=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30062 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Dla jakich wartości parametru
m równanie
(m-2-a)x^2+4|x|+m-5-a=0 ma dokładnie dwa rozwiązania?
Podaj najmniejsze możliwe m spełniające warunki
zadania.
Dane
a=5
Odpowiedź:
m_{min}=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj największy z końców liczbowych
tych przedziałów.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
Podaj długość rozwiązania, czyli długość wszystkich przedziałów tworzących rozwiązanie.
Odpowiedź:
d=
(wpisz liczbę całkowitą)
Rozwiąż