Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11009 ⋅ Poprawnie: 212/393 [53%]
Rozwiąż
Podpunkt 1.1 (0.2 pkt)
« Maksymalny zbiór, w którym funkcja kwadratowa
f(x)=-4(x+3)^2-2 jest rosnąca jest pewnym przedziałem liczbowym.
Przedział ten ma postać:
Odpowiedzi:
A. (p,q)
B. (-\infty,p)
C. \langle p,q\rangle
D. (p,+\infty)
E. \langle p,+\infty)
F. (-\infty,p\rangle
Podpunkt 1.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-10980 ⋅ Poprawnie: 201/342 [58%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Liczby
-5 i
-\frac{11}{2} są miejscami
zerowymi funkcji określonej wzorem
g(x)=ax^2-42x-110 .
Wyznacz wartość współczynnika a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11022 ⋅ Poprawnie: 73/224 [32%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Rysunek przedstawia wykres funkcji kwadratowej
h(x)=a(x+b)^2+c .
Zatem:
Odpowiedzi:
A. c=5
B. c=-5
C. b=-5
D. b=5
Zadanie 4. 1 pkt ⋅ Numer: pp-11409 ⋅ Poprawnie: 216/332 [65%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej
f :
Podaj największą wartość funkcji f w przedziale
\langle 1,4\rangle .
Odpowiedź:
f_{max}(x)=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11066 ⋅ Poprawnie: 218/289 [75%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Wierzchołkiem paraboli będącej wykresem funkcji
f(x)=-x^2+bx+c jest punkt o współrzędnych
(-8,-9) .
Wyznacz współczynniki b i c .
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pr-20460 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (2 pkt)
Liczby
\frac{-8-\sqrt{2}}{2} i
x_2 są miejscami zerowymi funkcji kwadratowej,
której wykres ma wierzchołek w punkcie
(-4,4) .
Wyznacz x_2 .
Odpowiedź:
Zadanie 7. 2 pkt ⋅ Numer: pp-20355 ⋅ Poprawnie: 21/82 [25%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Dana jest funkcja
f(x)=ax^2+bx+c .
Oblicz najmniejszą i największą wartość tej funkcji w przedziale
\langle p,q\rangle .
Podaj wartośc najmniejszą.
Dane
a=-1
b=1=1.00000000000000
c=\frac{3}{4}=0.75000000000000
p=-2
q=4
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Podaj wartośc największą.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pr-20077 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (1 pkt)
«« Funkcja
f(x)=2x^2+\frac{b-a}{2}x+c+2 jest malejąca
wtedy i tylko wtedy, gdy
x\in(-\infty,4\rangle .
Iloczyn miejsc zerowych tej funkcji jest równy
12 .
Oblicz b+c .
Dane
a=-5
Odpowiedź:
b+c=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Oblicz sumę kwadratów miejsc zerowych tej funkcji.
Odpowiedź:
x_1^2+x_2^2=
(liczba zapisana dziesiętnie)
Zadanie 9. 3 pkt ⋅ Numer: pr-20106 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Wyznacz te wartości parametru
m\in\mathbb{R} ,
dla których równanie
|16-x^2|=(m-a)^2-9 ma dwa różne
rozwiązania.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj wszystkie liczbowe końce tych
przedziałów, w kolejności od najmiejszego do największego.
Dane
a=-5
Odpowiedzi:
Podpunkt 9.2 (1 pkt)
Podaj najmniejsze możliwe
m , dla którego równanie
to ma dokładnie trzy rozwiązania.
Odpowiedź:
m_{min}=
(wpisz liczbę całkowitą)
Podpunkt 9.3 (1 pkt)
Podaj największe możliwe
m , dla którego równanie
to ma dokładnie trzy rozwiązania.
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30081 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Rozwiąż nierówność
|x^2-2ax| \lessdot b
.
Rozwiązanie zapisz w postaci sumy predziałów. Podaj sumę wszystkich
końców tych przedziałów, które są liczbami całkowitymi.
Dane
a=3
b=9
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Podaj najmniejszy z końców liczbowych tych przedziałów, który nie jest liczbą całkowitą.
Odpowiedź:
min=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30840 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (1 pkt)
Dla jakich wartości parametru
m równanie
x^2+2x+m-8=0 ma dwa różne
pierwiastki spełniające warunek
\left|x_1\right|+\left|x_2\right|\leqslant 3 ?
Rozwiązaniem jest przedział postaci:
Odpowiedzi:
A. (-\infty, +\infty)
B. \langle p, q)
C. (p, q)
D. (-\infty, p)\cup(q, +\infty)
E. \langle p, +\infty)
F. (-\infty, p)
G. (-\infty, p\rangle\cup\langle q, +\infty)
H. (p, +\infty)
Podpunkt 11.2 (1.5 pkt)
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych
tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.3 (1.5 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Rozwiąż