Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11009 ⋅ Poprawnie: 212/393 [53%] Rozwiąż 
Podpunkt 1.1 (0.2 pkt)
 « Maksymalny zbiór, w którym funkcja kwadratowa f(x)=-2(x+6)^2-7 jest rosnąca jest pewnym przedziałem liczbowym.

Przedział ten ma postać:

Odpowiedzi:
A. (p,q) B. \langle p,q\rangle
C. (p,+\infty) D. (-\infty,p)
E. \langle p,+\infty) F. (-\infty,p\rangle
Podpunkt 1.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10986 ⋅ Poprawnie: 417/622 [67%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wyznacz przedział o maksymalnej długości, w którym funkcja określona wzorem h(x)=\frac{1}{2}(x+8)(x+6) jest rosnąca.

Podaj mniejszy z końców liczbowych tego przedziału.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11026 ⋅ Poprawnie: 241/318 [75%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Dana jest funkcja g:\mathbb{R}\to\mathbb{R} określona wzorem g(x)=x^2-3+2x.

Wykres funkcji g przedstawia rysunek:

Odpowiedzi:
A. D B. C
C. B D. A
Zadanie 4.  1 pkt ⋅ Numer: pp-11466 ⋅ Poprawnie: 204/339 [60%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Dana jest funkcja kwadratowa f(x)=-0,5(x+5m)^2+10m, gdzie m > 0.

Wówczas:

Odpowiedzi:
A. dla pewnego m funkcja ma jedno miejsce zerowe B. największą wartością funkcji jest -10m
C. dla m=-\frac{1}{2} funkcja jest rosnąca D. wierzchołek paraboli, która jest wykresem tej funkcji należy do prostej y=-2x
Zadanie 5.  1 pkt ⋅ Numer: pp-11077 ⋅ Poprawnie: 143/231 [61%] Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 » Funkcja kwadratowa opisana wzorem g(x)=mx^2-2x-8 ma dokładnie dwa miejsca zerowe wtedy i tylko wtedy, gdy parametr m należy do pewnego przedziału liczbowego.

Przedział ten ma postać:

Odpowiedzi:
A. (p,q) B. \langle p, q\rangle
C. (-\infty,p) D. (p,+\infty)
E. (-\infty,p\rangle F. \langle p,+\infty)
Podpunkt 5.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-20062 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Naszkicuj wykres funkcji f(x)=x^2-a|x|. Na podstawie wykresu ustal liczbę rozwiązań równania f(x)=m w zalezności od wartości parametru m.

Podaj najmniejsze takie m, dla którego równanie to ma dokładnie dwa rozwiązania.

Dane
a=12
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj najmniejsze takie m, dla którego równanie to ma dokładnie trzy rozwiązania.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20398 ⋅ Poprawnie: 193/403 [47%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Rozwiąż nierówność (x-a)(a-x-2) > 3(x-a-2).

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Dane
a=4
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20100 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Rozwiąż równanie x^2+2ax+2x+|x+1+a|=11-2a-a^2 .

Podaj największe z rozwiązań tego równania.

Dane
a=5
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj średnią arytmetyczną wszystkich rozwiązań tego równania.
Odpowiedź:
x_s= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20081 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dla jakich wartości parametru m funkcja f(x)=(-7-m)x^2+(m+10)x-m-10 przyjmuje wartości ujemne dla każdego x\in\mathbb{R}.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30839 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Rozwiąż równanie \sqrt{13+x-4\sqrt{x+9}}+\sqrt{18+x-6\sqrt{x+9}}=1 .

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30035 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 » Wyznacz te wartości parametru m, dla których równanie (2m+a)x^2+x-2=0 ma dwa różne pierwiastki takie, że ich różnica jest równa 3.

Podaj najmniejsze możliwe m spełniające warunki zadania.

Dane
a=6
Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Podaj największe możliwe m spełniające warunki zadania.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm