Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11038 ⋅ Poprawnie: 134/227 [59%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Gdy przesuniemy wykres funkcji
f(x)=-5(x-6)^2-\frac{5}{2} o
p=2 jednostek w lewo i
q=9 jednostek w górę,
to otrzymamy wykres funkcji:
Odpowiedzi:
A. y=-5(x-4)^2+\frac{13}{2}
B. y=-5(x+3)^2-\frac{1}{2}
C. y=-5(x-8)^2+\frac{13}{2}
D. y=-5(x-4)^2-\frac{23}{2}
Zadanie 2. 1 pkt ⋅ Numer: pp-10981 ⋅ Poprawnie: 97/205 [47%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Wyznacz największą wartość funkcji określonej wzorem
f(x)=-3(x+1)(x-5) w przedziale
\left\langle \frac{3}{2},6\right\rangle .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11017 ⋅ Poprawnie: 336/550 [61%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Dana jest funkcja określona wzorem
g(x)=ax^2+bx+c . Postać iloczynowa
funkcji
g opisana jest wzorem
g(x)=a(x+3)(x-1) .
Wyznacz współczynnik c .
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11409 ⋅ Poprawnie: 216/325 [66%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej
f :
Podaj największą wartość funkcji f w przedziale
\langle 1,4\rangle .
Odpowiedź:
f_{max}(x)=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10963 ⋅ Poprawnie: 110/233 [47%]
Rozwiąż
Podpunkt 5.1 (0.2 pkt)
Funkcja opisana jest wzorem
f(x)=-3x^2+6x+1 .
Zbiorem rozwiązań nierówności
f(x) > f(-x)
jest pewien przedział liczbowy.
Przedział ten ma postać:
Odpowiedzi:
A. (p,+\infty)
B. (p, q)
C. (-\infty,p\rangle
D. \langle p,+\infty)
E. (-\infty,p)
F. (p,q\rangle
Podpunkt 5.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pr-20061 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (2 pkt)
Wyznacz te wartości parametru
m , dla których
równanie
|ax^2+bx+c|=m ma dokładnie trzy rozwiązania.
Podaj najmniejsze możliwe m .
Dane
a=1
b=10
c=14
Odpowiedź:
m_{min}=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20367 ⋅ Poprawnie: 7/33 [21%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Do wykresu paraboli
y=2x^2-3x-1 należy punkt
Q=(2am, y) taki, że różnica
2am-y jest największa z możliwych.
Podaj m .
Dane
a=\frac{1}{2}=0.50000000000000
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pr-20104 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Wyznacz zbiór liczb, które
nie spełniają nierówności
(x+1-a)^2-|x-a|\geqslant 2x-2a+1
.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich
końców liczbowych tych przedziałów.
Dane
a=-7
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Jaka jest łączna długość tych przedziałów.
Odpowiedź:
d=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20079 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
» Dla jakich wartości parametru
m rozwiązaniem
nierówności
(2m-3)x^2+2x+1\geqslant 0 jest zbiór
\mathbb{R} ?
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych
tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 4 pkt ⋅ Numer: pr-30024 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Wyznacz wszystkie wartości parametru
m , dla których
funkcja
f(x)=(m^2-a)x^2-2(b-m)x+2 przyjmuje
wartości dodatnie dla każdego
x rzeczywistego.
Podaj najmniejsze dodatnie m , które spełnia
warunki zadania.
Dane
a=1
b=1
Odpowiedź:
min_{>0}=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Podaj najmniejsze ujemne
m , które nie spełnia
warunków zadania.
Odpowiedź:
min_{<0}=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30056 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
» Dla jakich wartości parametru
m\in\mathbb{R}
równanie
x^2-x+2m+3-2a=0
ma dwa różne pierwiastki rzeczywiste
x_1,x_2
spełniające warunek
3x_1^2x_2+3x_1x_2^2=m^2-2am+4m+a^2-4a-6
?
Podaj najmniejsze możliwe m .
Dane
a=-3
Odpowiedź:
m_{min}=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj największe możliwe
m .
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Rozwiąż