Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11059 ⋅ Poprawnie: 233/411 [56%] Rozwiąż 
Podpunkt 1.1 (0.5 pkt)
 Parabola y=(-10+3x)^2+7 ma wierzchołek w punkcie o współrzędnych \left(x_w,y_w\right).

Wyznacz współrzędną x_w.

Odpowiedź:
x_w=
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
 Wyznacz współrzędną y_w.
Odpowiedź:
y_w=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11506 ⋅ Poprawnie: 459/800 [57%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Osią symetrii paraboli będącej wykresem funkcji kwadratowej określonej równaniem f(x)=-\frac{1}{2}(x-252)(x+84), jest prosta określona: równaniem x-......=0.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11076 ⋅ Poprawnie: 82/119 [68%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Do wykresu której funkcji należy punkt o współrzędnych A=(512, 0):
Odpowiedzi:
A. y=(x+1024)(2x-1024) B. y=x^2+1024
C. y=x^2-8192 D. y=(x+512)^2
Zadanie 4.  1 pkt ⋅ Numer: pp-10988 ⋅ Poprawnie: 67/90 [74%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
» Wyznacz najmniejszą wartość funkcji kwadratowej określonej wzorem f(x)=x^2+12x.
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10965 ⋅ Poprawnie: 537/880 [61%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wskaż te nierówności, których rozwiązaniem jest zbiór \mathbb{R}:
Odpowiedzi:
T/N : x^2-6x+18\geqslant 0 T/N : 2x^2+x-5 \geqslant 0
Zadanie 6.  2 pkt ⋅ Numer: pp-20341 ⋅ Poprawnie: 229/490 [46%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Największa wartość funkcji f(x)=a(x-3)(x+1) jest równa 32.

Podaj a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20411 ⋅ Poprawnie: 50/185 [27%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Rozwiąż nierówność 2x^2+b+cx\leqslant 0.

Ile liczb całkowitych spełnia tę nierówność?

Dane
b=36=36.00000000000000
c=-17=-17.00000000000000
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj największą liczbę spełniającą tę nierówność.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20071 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Rozwiąż nierówność \sqrt{-x^2-4ax} > x+4a.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę kwadratów wszystkich końców liczbowych tych przedziałów.

Dane
a=4
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20081 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dla jakich wartości parametru m funkcja f(x)=(8-m)x^2+(m-5)x-m+5 przyjmuje wartości ujemne dla każdego x\in\mathbb{R}.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30082 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Rozwiąż nierówność \left|x^2+(a+6)x+\frac{a^2}{4}+3a-1\right| \leqslant 6 .

Rozwiązaniem tej nierówności jest zbiór \langle x_1, x_2\rangle\cup\langle x_3, x_4\rangle\, gdzie x_2\lessdot x_3. Podaj x_1+x_2.

Dane
a=3
Odpowiedź:
x_1+x_2= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj x_3.
Odpowiedź:
x_{3}=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30053 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Dla jakich wartości parametru m\in\mathbb{R} suma odwrotności pierwiastków równania 8x^2-4(m-a)x-5m^2+(10a+10)m-5a^2-10a-8=0 wynosi -\frac{12}{23}.

Podaj najmniejsze możliwe m, które spełnia warunki zadania.

Dane
a=-1
Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Podaj największe możliwe m, które spełnia warunki zadania.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm