Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11009 ⋅ Poprawnie: 212/393 [53%]
Rozwiąż
Podpunkt 1.1 (0.2 pkt)
« Maksymalny zbiór, w którym funkcja kwadratowa
f(x)=-3(x-6)^2+8 jest rosnąca jest pewnym przedziałem liczbowym.
Przedział ten ma postać:
Odpowiedzi:
A. (-\infty,p)
B. (p,+\infty)
C. (p,q)
D. (-\infty,p\rangle
E. \langle p,+\infty)
F. \langle p,q\rangle
Podpunkt 1.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11019 ⋅ Poprawnie: 563/780 [72%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Zbiorem wartości funkcji kwadratowej określonej wzorem
f(x)=(x-8)(x+4) jest przedział liczbowy
\langle ......,+\infty) .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11081 ⋅ Poprawnie: 41/75 [54%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
» Wykres funkcji kwadratowej opisanej wzorem
g(x)=-x^2+17x-65
przecięto prostą o równaniu
y=7 . Niech
P i
Q będą punktami
przecięcia tych wykresów.
Oblicz |PQ| .
Odpowiedź:
|PQ|=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11465 ⋅ Poprawnie: 481/946 [50%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Najmniejszą wartość w przedziale
\langle -10, -6\rangle funkcja kwadratowa
f(x)=-\left(x+9\right)^{2}-5
przyjmuje dla argumentu
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10962 ⋅ Poprawnie: 385/588 [65%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Iloczyn
(x-7)(9-x) jest nieujemny, wtedy i tylko wtedy, gdy liczba
x
należy do zbioru
A . Zapisz zbiór
A
w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pp-20352 ⋅ Poprawnie: 88/217 [40%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej. Wyznacz wzór tej funkcji
w postaci ogólnej.
Podaj współczynnik b występujący we wzorze.
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj liczbę a+c .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20405 ⋅ Poprawnie: 26/129 [20%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Wyznacz wszystkie liczby całkowite spełniające nierówność
x(x+a) \lessdot b .
Ile jest tych liczb?
Dane
a=-\frac{29}{2}=-14.50000000000000
b=-51=-51.00000000000000
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Ile z tych liczb jest ujemnych?
Odpowiedź:
ile_{<0}=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pr-20993 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (1 pkt)
Funkcja kwadratowa określona wzorem
f(x)=ax^2+bx+c
ma dwa miejsca zerowe, których suma jest równa
\frac{3}{2} ,
a ich iloczyn jest równy
-\frac{5}{2} . Wyznacz współczynniki
b i
c wiedząc, że do wykresu funkcji
f należy
punkt
A=\left(-1,0\right) .
Podaj współczynnik b .
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20084 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (2 pkt)
Dla jakich wartości parametru
m stosunek pierwiastków
równania
2x^2+(m+a)x+4=0 jest równy
2 ?
Podaj największą możliwą wartość parametru m .
Dane
a=4
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30078 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
Rozwiąż nierówność
ax^2+b|x|+c \lessdot 0
.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich
końców liczbowych tych przedziałów, które są liczbami ujemnymi.
Dane
a=1
b=-24.5
c=145.0
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Podaj sumę wszystkich końców liczbowych tych przedziałów, które są liczbami dodatnimi.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30089 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
Dla jakich wartości parametru
m\in\mathbb{R} równanie
2x^2-(m+2-a)|x|+m-a=0
ma dwa różne rozwiązania?
Podaj największe możliwe m .
Dane
a=4
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Dla ilu całkowitych wartości
m\in\langle -10,10 \rangle warunki zadania są
spełnione?
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Rozwiąż