Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11003 ⋅ Poprawnie: 533/897 [59%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
» Wskaż funkcję kwadratową rosnąca w przedziale
(-\infty,-3\rangle :
Odpowiedzi:
A. y=-(x+3)^2-6
B. y=-(x+6)^2+3
C. y=-(x-6)^2+3
D. y=(x+3)^2-6
E. y=-(x-6)^2-3
F. y=(x-3)^2-6
Zadanie 2. 1 pkt ⋅ Numer: pp-10980 ⋅ Poprawnie: 201/342 [58%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Liczby
-4 i
\frac{9}{2} są miejscami
zerowymi funkcji określonej wzorem
g(x)=ax^2+\frac{1}{2}x+18 .
Wyznacz wartość współczynnika a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11043 ⋅ Poprawnie: 148/269 [55%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Liczba punktów wspólnych wykresu funkcji
h(x)=2x^2+\frac{4}{3}x+\frac{2}{9} z osiami układu
współrzędnych jest równa:
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-11409 ⋅ Poprawnie: 216/332 [65%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej
f :
Podaj największą wartość funkcji f w przedziale
\langle 1,4\rangle .
Odpowiedź:
f_{max}(x)=
(wpisz liczbę całkowitą)
Zadanie 5. 1.2 pkt ⋅ Numer: pr-10109 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (0.2 pkt)
Funkcja
g określona jest wzorem
g(x)=\frac{5}{\sqrt{25-x^2}}
.
Zapisz dziedzinę funkcji określonej wzorem
h(x)=g(x-5)
w postaci sumy przedziałów.
Suma ta ma postać:
Odpowiedzi:
A. (p,q\rangle
B. (p,q)
C. (p,+\infty)
D. \langlep,+\infty)
E. (-\infty,p\rangle\cup\langle q, +\infty)
F. \langle p,q\rangle
Podpunkt 5.2 (1 pkt)
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20900 ⋅ Poprawnie: 51/89 [57%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Dana jest funkcja kwadratowa
g(x)=ax^2+bx+c , która
spełnia warunek
g(-5)=g(-3)=0 . Do wykresu funkcji
g należy punkt
\left(-12,\frac{63}{2}\right) .
Wyznacz współrzędne
(x_w,y_w) wierzchołka paraboli będącej
wykresem funkcji
g .
Podaj x_w .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pp-20394 ⋅ Poprawnie: 14/175 [8%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Rozwiąż nierówność
x^2+bx+c \lessdot 0 .
Ile liczb całkowitych z przedziału
\langle -10, 10\rangle spełnia tę nierówność?
Dane
b=\frac{3}{2}=1.50000000000000
c=-1=-1.00000000000000
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Zbiór rozwiązań zapisz w postaci sumy przedziałów. Podaj współrzędną punktu,
względem którego zbiór ten jest symetryczny.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pr-21061 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (1 pkt)
Rozwiąż równanie
\sqrt{x^2+10x+22}+x^2+10x=-20
.
Podaj najmniejsze z rozwiązań tego równania.
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj największe z rozwiązań tego równania.
Odpowiedź:
x_{max}=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20097 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Dla jakich wartości parametru
m rozwiązaniem
nierówności
-x^2+(-1+m)x-2m+5\leqslant 0 jest zbiór
\mathbb{R} ?
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30078 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
Rozwiąż nierówność
ax^2+b|x|+c \lessdot 0
.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich
końców liczbowych tych przedziałów, które są liczbami ujemnymi.
Dane
a=1
b=-10.5
c=26.0
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Podaj sumę wszystkich końców liczbowych tych przedziałów, które są liczbami dodatnimi.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30089 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
Dla jakich wartości parametru
m\in\mathbb{R} równanie
2x^2-(m+2-a)|x|+m-a=0
ma dwa różne rozwiązania?
Podaj największe możliwe m .
Dane
a=-2
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Dla ilu całkowitych wartości
m\in\langle -10,10 \rangle warunki zadania są
spełnione?
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Rozwiąż