Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11052 ⋅ Poprawnie: 813/1144 [71%] Rozwiąż 
Podpunkt 1.1 (0.8 pkt)
 Zbiorem wartości funkcji kwadratowej y=-x^2+6 x-11 jest pewien przedział liczbowy.

Podaj ten koniec tego przedziału, który jest liczbą całkowitą.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 1.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -\infty B. -\frac{1}{2}
C. +\infty D. -\frac{3}{4}
E. \frac{3}{4} F. \frac{1}{2}
Zadanie 2.  1 pkt ⋅ Numer: pp-11427 ⋅ Poprawnie: 672/822 [81%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Funkcja kwadratowa jest określona wzorem f(x)=-(x-12)(x-6). Liczby x_1 i x_2 są różnymi miejscami zerowymi funkcji f spełniającymi warunek x_1+x_2=..........

Podaj brakującą liczbę.

Odpowiedzi:
A. x_1+x_2=36 B. x_1+x_2=-18
C. x_1+x_2=18 D. x_1+x_2=-36
Zadanie 3.  1 pkt ⋅ Numer: pp-11728 ⋅ Poprawnie: 4/12 [33%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 Zbiorem wartości funkcji y=-(x-5)(x+5) określonej dla x\in(3,6\rangle jest pewien przedział liczbowy.

Przedział ten ma postać:

Odpowiedzi:
A. (p,q\rangle B. (p,q)
C. \langle p,q\rangle D. \langle p,q)
E. (p,+\infty) F. (-\infty,p\rangle
Podpunkt 3.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11465 ⋅ Poprawnie: 479/942 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Najmniejszą wartość w przedziale \langle -7, -3\rangle funkcja kwadratowa f(x)=-\left(x+6\right)^{2}-5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10960 ⋅ Poprawnie: 252/530 [47%] Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 Wyznacz dziedzinę funkcji określonej wzorem f(x)=\sqrt{64-16x^2} .

Zbiór ten jest postaci:

Odpowiedzi:
A. (-\infty,p\rangle\cup\langle q,+\infty) B. (p,q)
C. \langle p,+\infty) D. \langle p,q\rangle
E. (p,+\infty) F. (-\infty,p\rangle
Podpunkt 5.2 (0.8 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20346 ⋅ Poprawnie: 46/76 [60%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Wyznacz wszystkie wartości parametru m, dla których prosta y=m ma dwa punkty wspólne z wykresem funkcji f(x)=-4x^2-12x.

Odpowiedź zapisz w postaci przedziału. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
suma=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20363 ⋅ Poprawnie: 173/368 [47%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Dana jest funkcja f(x)=x^2+bx+c, gdzie x\in\langle p, q\rangle.

Oblicz najmniejszą wartość funkcji f.

Dane
b=-4
c=3
p=-1
q=3
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Oblicz największą wartość funkcji f.
Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20982 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Rozwiąż równanie \sqrt{3x+19}-\sqrt{x+5}=2 .

Podaj najmniejsze z rozwiązań tego równania.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj największe z rozwiązań tego równania.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20463 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Równanie |-x^2+2|x|+5|=2p-a ma cztery rozwiązania. Wyznacz zbiór możliwych wartości parametru p.

Oblicz sumę kwadratów liczb całkowitych należących do tego zbioru.

Dane
a=7
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30079 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Rozwiąż nierówność x^2-2ax+a^2+c \leqslant -b|x-a| .

Podaj najmniejsze rozwiązanie tej nierówności.

Dane
b=-4
c=-12
a=3
Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj największe rozwiązanie tej nierówności.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30842 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Dla jakich wartości parametru m\in\mathbb{R} równanie 5x^2-(m+4)x+1=0 ma dwa rozwiązania spełniające warunek \left|x_1-x_2\right|\geqslant 1?

Rozwiązaniem jest zbiór postaci:

Odpowiedzi:
A. (-\infty, p) B. (p, q)
C. (p, +\infty) D. (-\infty, p\rangle
E. (p, q\rangle F. \langle p, +\infty)
G. (-\infty, p\rangle \cup \langle q, +\infty) H. \langle p, q)
Podpunkt 11.2 (1.5 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 11.3 (1.5 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= + \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm