Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11044 ⋅ Poprawnie: 141/222 [63%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wykres funkcji kwadratowej g przecina oś Ox w dwóch punktach.

Funkcja g opisana jest wzorem:

Odpowiedzi:
A. g(x)=-9(x-12)^2-9 B. g(x)=-8(x+11)^2+\sqrt{6}
C. g(x)=7(x+7)^2+8 D. g(x)=3(x+7)^2+8
Zadanie 2.  1 pkt ⋅ Numer: pp-10996 ⋅ Poprawnie: 344/563 [61%] Rozwiąż 
Podpunkt 2.1 (0.2 pkt)
 Zbiór tych wszystkich wartości m, dla których funkcja kwadratowa określona wzorem f(x)=x^2+4x+m nie ma ani jednego miejsca zerowego jest przedziałem liczbowym.

Przedział ten ma postać:

Odpowiedzi:
A. (p, q) B. (-\infty, p\rangle
C. (p, +\infty) D. \langle p, q\rangle
E. (-\infty, p) F. \langle p, +\infty)
Podpunkt 2.2 (0.8 pkt)
 Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11021 ⋅ Poprawnie: 479/645 [74%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Wykres funkcji f(x)=-(x+3)^2-2 pokazany jest na rysunku:
Odpowiedzi:
A. C B. D
C. A D. B
Zadanie 4.  1 pkt ⋅ Numer: pp-11067 ⋅ Poprawnie: 143/276 [51%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Rozpatrujemy prostokąty o obwodzie 68. Na takim prostokącie o największym polu powierzchni opisano okrąg.

Oblicz długość promienia tego okręgu.

Odpowiedź:
R= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11065 ⋅ Poprawnie: 60/107 [56%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Funkcja f określona jest wzorem f(x)=\frac{x^2-13x+40}{x+12}.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : f przyjmuje tylko wartości ujemne T/N : f przyjmuje wartości dodatnie
T/N : f ma dwa miejsca zerowe  
Zadanie 6.  2 pkt ⋅ Numer: pp-20340 ⋅ Poprawnie: 81/204 [39%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Współrzędna y wierzchołka wykresu funkcji f(x)=ax^2+2x-1 jest równa 0.

Wyznacz a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20411 ⋅ Poprawnie: 50/185 [27%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Rozwiąż nierówność 2x^2+b+cx\leqslant 0.

Ile liczb całkowitych spełnia tę nierówność?

Dane
b=21=21.00000000000000
c=-13=-13.00000000000000
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj największą liczbę spełniającą tę nierówność.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20076 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
 «« Przyprostokątne trójkąta są pierwiastkami trójmianu y=2x^2+(b+a)x+144. Pole kwadratu zbudowanego na przeciwprostokątnej tego trójkąta wynosi 340.

Wyznacz b.

Dane
a=-1
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20098 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dla jakich wartości parametru m rozwiązaniem nierówności x^2+(m+1)x+3m+3 > 0 jest zbiór \mathbb{R}?

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30082 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Rozwiąż nierówność \left|x^2+(a+6)x+\frac{a^2}{4}+3a-1\right| \leqslant 6 .

Rozwiązaniem tej nierówności jest zbiór \langle x_1, x_2\rangle\cup\langle x_3, x_4\rangle\, gdzie x_2\lessdot x_3. Podaj x_1+x_2.

Dane
a=5
Odpowiedź:
x_1+x_2= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj x_3.
Odpowiedź:
x_{3}=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30047 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (4 pkt)
 » Pierwiastkami równania x^2-(m+a)x-\frac{(m+a)^2}{4}-m+4-a=0 są dwie różne liczby ujemne spełniające warunek |x_1-x_2|=4\sqrt{2}. Wyznacz możliwe wartości parametru m.

Podaj najmniejsze możliwe m.

Dane
a=1
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm