Miejscami zerowymi funkcji kwadratowej są liczby -2
oraz 1. Do wykresu tej funkcji należy punkt
A=(-1,-4). Zapisz wzór tej funkcji w postaci iloczynowej
y=a(x-x_1)(x-x_2).
Podaj współczynnik a.
Odpowiedź:
a=(wpisz liczbę całkowitą)
Zadanie 3.1 pkt ⋅ Numer: pp-11064 ⋅ Poprawnie: 289/479 [60%]
« Rzucono pionowo do góry kamień z prędkością początkową 10\ m/s.
Wysokość s\ [m], jaką osiągnie ten kamień po t
sekundach czasu opisuje wzór s(t)=18t-3t^2.
Podaj maksymalną wysokość jaką osiągnie ten kamień.
Odpowiedź:
s_{max}(t)=(wpisz liczbę całkowitą)
Zadanie 5.1 pkt ⋅ Numer: pp-10973 ⋅ Poprawnie: 61/114 [53%]
» Dana jest funkcja
f(x)=
\begin{cases}
-\frac{1}{3}x-1,\qquad x\in(-\infty,-15) \\
x^2-220,\qquad x\in\langle -15,+\infty)
\end{cases}
.
Liczba rozwiązań równania f(x)=6 jest równa:
Odpowiedzi:
A.2
B.1
C.3
D.0
Zadanie 6.2 pkt ⋅ Numer: pp-20930 ⋅ Poprawnie: 34/61 [55%]
Funkcja kwadratowa f określona wzorem
f(x)=a(x-p)^2+q dla argumentu
7 osiąga wartość największą równą
6. Wiedząc, że do jej wykresu należy punkt
należy punkt A=(5,3), wyznacz wzór tej funkcji.
Podaj współczynnik a.
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Podaj liczby p i q.
Odpowiedzi:
p
=
(wpisz liczbę całkowitą)
q
=
(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pp-20363 ⋅ Poprawnie: 173/368 [47%]
Wyznacz te wartości parametru m, dla których
równanie x^2-(2m+1+a)x+2m+a=0 ma dwa różne
pierwiastki rzeczywiste spełniające warunek
|x_1-x_2| > 2x_1x_2.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Dane
a=2
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Ile liczb całkowitych z przedziału
\langle -20,20\rangle spełnia warunki zadania.
Odpowiedź:
ile=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat