Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11037 ⋅ Poprawnie: 210/335 [62%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Gdy przesuniemy wykres funkcji
f(x)=x^2+\frac{5}{2} o
p=6 jednostek w lewo i
q=11 jednostek w dół,
to otrzymamy wykres funkcji:
Odpowiedzi:
A. y=(x+11)^2+\frac{17}{2}
B. y=(x-6)^2+\frac{27}{2}
C. y=(x+6)^2-\frac{17}{2}
D. y=(x-6)^2-\frac{17}{2}
Zadanie 2. 1 pkt ⋅ Numer: pp-11079 ⋅ Poprawnie: 269/363 [74%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Dana jest funkcja kwadratowa opisana wzorem
h(x)=-2(x+4)(x+7) . Wyznacz maksymalny przedział, w którym funkcja ta
jest malejąca.
Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11468 ⋅ Poprawnie: 198/294 [67%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Funkcja określona wzorem
f(x)=2x^2+......\cdot x+18 jest
malejąca w przedziale
(-\infty,1) i rosnąca w przedziale
(1,+\infty) .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11080 ⋅ Poprawnie: 265/399 [66%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Suma dwóch liczb jest równa
6\sqrt{2} , a ich
iloczyn ma największą możliwą wartość.
Oblicz mniejszą z tych liczb.
Odpowiedź:
min=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pr-10112 ⋅ Poprawnie: 1/1 [100%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Funkcja
h(x)=x^2-7x+c ma dwa miejsca zerowe, gdy:
Odpowiedzi:
A. c=16
B. c=17
C. c=18
D. c=10
E. c=19
F. c=20
Zadanie 6. 2 pkt ⋅ Numer: pp-20337 ⋅ Poprawnie: 179/299 [59%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Dana jest funkcja
f(x)=a(x+1)^2-4 , do wykresu której
nalezy punkt
P=(-2,-11) .
Wyznacz a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20358 ⋅ Poprawnie: 32/67 [47%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Dana jest funkcja
f(x)=ax^2+bx+c .
Oblicz najmniejszą i największą wartość tej funkcji w przedziale
\langle p,q\rangle .
Podaj wartośc najmniejszą.
Dane
a=-2
b=\frac{4}{3}=1.33333333333333
c=\frac{16}{9}=1.77777777777778
p=-2
q=2
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Podaj wartośc największą.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pr-20101 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Rozwiąż równanie
x^2+4x+2ax+a^2+4a+7=4|x+4+a|
.
Podaj najmniejsze z rozwiązań tego równania.
Dane
a=-4
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj średnią arytmetyczną wszystkich rozwiązań tego równania.
Odpowiedź:
x_s=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20085 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (2 pkt)
Wyznacz te wartości parametru
m , dla których równanie
x^2+(m-a)x+m-1-a=0 ma dwa różne pierwiastki, które są
sinusem i cosinusem tego samego kąta ostrego?
Podaj największe takie m .
Dane
a=-4
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30082 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
Rozwiąż nierówność
\left|x^2+(a+6)x+\frac{a^2}{4}+3a-1\right| \leqslant 6
.
Rozwiązaniem tej nierówności jest zbiór
\langle x_1, x_2\rangle\cup\langle x_3, x_4\rangle\ ,
gdzie x_2\lessdot x_3 .
Podaj x_1+x_2 .
Dane
a=1
Odpowiedź:
x_1+x_2=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30054 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
» Dla jakich wartości parametru
m\in\mathbb{R}
iloczyn różnych pierwiastków równania
x^2-(m-a)x+m^2-(2+2a)m+(a+1)^2=0
jest o jeden mniejszy od sumy tych pierwiastków?
Podaj najmniejsze możliwe m , które spełnia warunki
zadania.
Dane
a=-5
Odpowiedź:
m_{min}=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj największe możliwe
m , które spełnia warunki
zadania.
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Rozwiąż