Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11044 ⋅ Poprawnie: 141/222 [63%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wykres funkcji kwadratowej
g przecina oś
Ox w dwóch punktach.
Funkcja g opisana jest wzorem:
Odpowiedzi:
A. g(x)=-12(x-7)^2-5
B. g(x)=12(x+3)^2+12
C. g(x)=8(x-7)^2+6
D. g(x)=-11(x+3)^2+\sqrt{13}
Zadanie 2. 1 pkt ⋅ Numer: pp-11079 ⋅ Poprawnie: 268/362 [74%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Dana jest funkcja kwadratowa opisana wzorem
h(x)=-2(x+12)(x+7) . Wyznacz maksymalny przedział, w którym funkcja ta
jest malejąca.
Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11043 ⋅ Poprawnie: 148/269 [55%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Liczba punktów wspólnych wykresu funkcji
h(x)=2x^2+\frac{7}{3}x+\frac{5}{9} z osiami układu
współrzędnych jest równa:
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-11465 ⋅ Poprawnie: 479/942 [50%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Najmniejszą wartość w przedziale
\langle -12, -8\rangle funkcja kwadratowa
f(x)=-\left(x+11\right)^{2}-5
przyjmuje dla argumentu
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10968 ⋅ Poprawnie: 352/569 [61%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Ile rozwiązań całkowitych ma równanie
\left(x^2+5\right)\left(x^2+2x+6\right)=0 .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20337 ⋅ Poprawnie: 176/295 [59%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Dana jest funkcja
f(x)=a(x+1)^2-4 , do wykresu której
nalezy punkt
P=(-2,-5) .
Wyznacz a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20421 ⋅ Poprawnie: 15/48 [31%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Rozwiąż nierówność
5(2x+3-4a)-2x^2+8ax-8a^2\geqslant 3(x-2a)^2
.
Rozwiązanie zapisz w postaci przedziału i podaj jego środek.
Dane
a=4
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pr-20995 ⋅ Poprawnie: 9/14 [64%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Funkcja kwadratowa
f ma dwa miejsca zerowe
x_1
i
x_2 takie, że
x_1\cdot x_2=30 .
Wiedząc, że dla argumentu
\frac{11}{2} funkcja ta przyjmuje wartość
największą równą
\frac{1}{8} , wyznacz wzór funkcji
w postaci
f(x)=a(x-x_1)(x-x_2) .
Podaj liczbę a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Podaj miejsca zerowe tej funkcji.
Odpowiedzi:
Zadanie 9. 2 pkt ⋅ Numer: pr-20098 ⋅ Poprawnie: 14/15 [93%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Dla jakich wartości parametru
m rozwiązaniem
nierówności
x^2+(m+8)x+3m+24 > 0 jest zbiór
\mathbb{R} ?
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30075 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Rozwiąż równanie
x^2-(a+6)x+\left|x-3-\frac{a}{2}\right|+\frac{1}{4}a^2+3a-3=0
.
Podaj najmniejsze rozwiązanie tego równania.
Dane
a=9
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Podaj największe rozwiązanie tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30056 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
» Dla jakich wartości parametru
m\in\mathbb{R}
równanie
x^2-x+2m+3-2a=0
ma dwa różne pierwiastki rzeczywiste
x_1,x_2
spełniające warunek
3x_1^2x_2+3x_1x_2^2=m^2-2am+4m+a^2-4a-6
?
Podaj najmniejsze możliwe m .
Dane
a=4
Odpowiedź:
m_{min}=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj największe możliwe
m .
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Rozwiąż