Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10993 ⋅ Poprawnie: 570/824 [69%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Funkcja kwadratowa określona jest wzorem
f(x)=x^2-8x+c .
Jeżeli
f(4)=-1 , to
f(1)=......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11078 ⋅ Poprawnie: 195/345 [56%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Dana jest funkcja
f(x)=-5(x-11)(x-8) .
Wyznacz maksymalny przedział, w którym funkcja
f jest
rosnąca.
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11070 ⋅ Poprawnie: 76/122 [62%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wyznacz największą całkowitą wartość funkcji określonej wzorem
f(x)=-x^2+3x+8 .
Odpowiedź:
max_{\mathbb{Z}}=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11466 ⋅ Poprawnie: 202/334 [60%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Dana jest funkcja kwadratowa
f(x)=-0,5(x+5m)^2+25m , gdzie
m > 0 .
Wówczas:
Odpowiedzi:
A. największą wartością funkcji jest -25m
B. dla pewnego m funkcja ma jedno miejsce zerowe
C. wierzchołek paraboli, która jest wykresem tej funkcji należy do prostej y=-5x
D. dla m=-\frac{1}{2} funkcja jest rosnąca
Zadanie 5. 1 pkt ⋅ Numer: pp-10962 ⋅ Poprawnie: 383/585 [65%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Iloczyn
(x+8)(4-x) jest nieujemny, wtedy i tylko wtedy, gdy liczba
x
należy do zbioru
A . Zapisz zbiór
A
w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pp-20345 ⋅ Poprawnie: 34/57 [59%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Wyznacz wszystkie wartości parametru
m , dla których
prosta
y=m ma dwa punkty wspólne z wykresem
funkcji
f(x)=-\frac{x^2}{2}+2x+1 .
Odpowiedź zapisz w postaci przedziału. Podaj sumę wszystkich końców
liczbowych tych przedziałów.
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Zadanie 7. 3 pkt ⋅ Numer: pr-20068 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Dla jakich wartości parametru
m najmniejsza
wartość funkcji
h(x)=(m-a)x^2+3(m-1-a)x+2(m-1-a)
należy do przedziału
(-\infty,0) ?
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z
końców liczbowych tych przedziałów.
Dane
a=4
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Podpunkt 7.3 (1 pkt)
Podaj sumę wszystkich tych końców przedziałów, które są liczbami.
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pr-20991 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (1 pkt)
Liczby
4-2\sqrt{3} i
4+2\sqrt{3}
są miejscami zerowymi funkcji określonej wzorem
f(x)=x^2+(p+q)x+p^2-q^2 .
Wyznacz liczbę p .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pr-20463 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Równanie
|-x^2+2|x|+5|=2p-a ma cztery
rozwiązania. Wyznacz zbiór możliwych wartości parametru
p .
Oblicz sumę kwadratów liczb całkowitych należących do tego zbioru.
Dane
a=9
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30839 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
Rozwiąż równanie
\sqrt{12+x-4\sqrt{x+8}}+\sqrt{17+x-6\sqrt{x+8}}=1
.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Podaj największy z końców
liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30071 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (4 pkt)
Dla jakich wartości parametru
m\in\mathbb{R} suma
kwadratów dwóch różnych pierwiastków równania
x^2+(m-a)x-4m+4a-16=0 jest cztery razy większa od
sumy tych pierwiastków?
Podaj największe możliwe takie m .
Dane
a=5
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Rozwiąż