Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11052 ⋅ Poprawnie: 815/1146 [71%]
Rozwiąż
Podpunkt 1.1 (0.8 pkt)
Zbiorem wartości funkcji kwadratowej
y=-x^2-6 x-5 jest pewien przedział liczbowy.
Podaj ten koniec tego przedziału, który jest liczbą całkowitą.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 1.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A. \frac{1}{2}
B. -\infty
C. +\infty
D. \frac{3}{4}
E. -\frac{1}{2}
F. -\frac{3}{4}
Zadanie 2. 1 pkt ⋅ Numer: pp-11068 ⋅ Poprawnie: 166/295 [56%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Prosta o równaniu
x=m jest osią symetrii wykresu funkcji
kwadratowej określonej wzorem
f(x)=(-2+3x)(x-3) .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11014 ⋅ Poprawnie: 32/80 [40%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Niech
A=(-2,4) . Wiadomo, że
A\cap ZW_g=\emptyset .
Wykres funkcji g pokazano na rysunku:
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-10978 ⋅ Poprawnie: 475/746 [63%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Najmniejszą wartość w przedziale
\langle -9, -5\rangle funkcja kwadratowa
określona wzorem
f(x)=-\left(x+6\right)^{2}+5
przyjmuje dla argumentu
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10975 ⋅ Poprawnie: 326/498 [65%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Liczba ujemna spełnia równanie
x^2-2x-18=0 .
Oblicz kwadrat tej liczby.
Odpowiedź:
x^2=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20336 ⋅ Poprawnie: 85/239 [35%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Punkt
P=(-3,0) jest wierzchołkiem paraboli określonej
równaniem
y=2x^2+4px+q-2 .
Oblicz wartości współczynników
p i
q .
Podaj wartość p .
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
q=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20390 ⋅ Poprawnie: 78/181 [43%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Dla jakich wartości parametru
m funkcja
y=-x^2+12x+m-a nie ma miejsc zerowych?
Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.
Dane
a=8
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pr-20980 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (1 pkt)
Rozwiąż równanie
\sqrt{x-3}-\sqrt{13-x}=\sqrt{2x-20}
.
Podaj najmniejsze z rozwiązań tego równania.
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj największe z rozwiązań tego równania.
Odpowiedź:
x_{max}=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20083 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Dla jakich wartości parametru
m równanie
x^2+8x+m-a=0 ma dwa różne pierwiastki jednakowych
znaków?
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich
końców liczbowych tych przedziałów.
Dane
a=3
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30023 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Dla jakich wartości parametru
m zbiór wartości
funkcji
f(x)=\frac{1}{4}(m-4)x^2+(m-5)x+m-5
jest równy
\left\langle \frac{2}{3},+\infty\right) .
Podaj najmniejsze możliwe m .
Odpowiedź:
m_{min}=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Podaj największe możliwe
m .
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30040 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Wyznacz te wartości parametru
m , dla których
równanie
2x^2-13x+m+a=0 ma dwa pierwiastki
rzeczywiste, z których jeden jest dwa razy większy od drugiego.
Podaj najmniejsze możliwe m , które spełnia warunki
zadania.
Dane
a=-3
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Podaj największe możliwe
m , które spełnia warunki
zadania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż