Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10991 ⋅ Poprawnie: 197/342 [57%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Zbiorem wartości funkcji kwadratowej f(x)=-x^2+ax-\frac{a^2}{4}-a jest przedział (-\infty,-12\rangle.

Wyznacz wartość parametru a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11068 ⋅ Poprawnie: 164/293 [55%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Prosta o równaniu x=mjest osią symetrii wykresu funkcji kwadratowej określonej wzorem f(x)=(-1-4x)(x-2).

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11021 ⋅ Poprawnie: 479/645 [74%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Wykres funkcji f(x)=-(x+3)^2-2 pokazany jest na rysunku:
Odpowiedzi:
A. C B. A
C. B D. D
Zadanie 4.  1 pkt ⋅ Numer: pp-10985 ⋅ Poprawnie: 217/329 [65%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dana jest funkcja g(x)=-\frac{1}{4}(x+6)x, gdzie x\in\langle -4,-1\rangle.

Wyznacz f_{min}.

Odpowiedź:
f_{min}=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10972 ⋅ Poprawnie: 711/882 [80%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wiadomo, że 16x^2+8x+1=0.

Oblicz x.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20337 ⋅ Poprawnie: 175/294 [59%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Dana jest funkcja f(x)=a(x+1)^2-4, do wykresu której nalezy punkt P=(-3,-28).

Wyznacz a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20979 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Na przeciwprostokątnej BC trójkąta prostokątnego równoramiennego ABC zbudowano prostokąt BMNC. Obwód powstałego pięciokąta ABMNC ma długość 16, a jego powierzchnia jest największa możliwa.

Podaj długość boku MN tego pięciokąta.

Odpowiedź:
|MN|= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20461 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Liczba p jest równa kwadratowi różnicy pierwiastków równania x^2+bx+c=0.

Oblicz p.

Dane
b=7
c=\frac{5}{4}=1.25000000000000
Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20093 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 «« Wyznacz te wartości parametru m\in\mathbb{R}, dla których równanie (m+2)x^2-(m+4)x+3=0 ma dokładnie jedno rozwiązanie.

Podaj największe możliwe m spełniające warunki zadania.

Odpowiedź:
m_{max}= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj sumę wszystkich wyznaczonych wartości parametru m.
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30044 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
« Wyznacz wszystkie pary liczb (p,q) o tej własności, że pierwiastkami równania x^2+px+q=0 są liczby p i q.

Ile jest takich par?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Podaj najmniejszą możliwą wartość p.
Odpowiedź:
p_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 10.3 (1 pkt)
Podaj najmniejszą możliwą wartość q.
Odpowiedź:
q_{min}= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30860 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Równanie kwadratowe x^2+(m-4)x+m+4=0 ma dwa różne rozwiązania x_1 i x_2, wtedy i tylko wtedy, gdy parametr m należy do zbioru postaci (-\infty, p)\cup(q, +\infty).

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Wyznacz wszystkie wartości parametru m, dla których prawdziwa jest nierówność (x_1-x_2)^2\leqslant 2m^2-8m. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm