Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11074 ⋅ Poprawnie: 93/157 [59%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Różnica iloczynu liczby
2 oraz liczby
x i kwadratu liczby
x jest największa dla liczby
x równej:
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11010 ⋅ Poprawnie: 114/226 [50%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Funkcja kwadratowa określona jest wzorem
f(x)=-(x+4)(x+8) . Wyznacz maksymalny przedział, w którym funkcja
ta jest rosnąca.
Podaj najmniejszy koniec liczbowy tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11076 ⋅ Poprawnie: 82/119 [68%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Do wykresu której funkcji należy punkt o współrzędnych
A=(128, 0) :
Odpowiedzi:
A. y=(x+256)(2x-256)
B. y=x^2-2048
C. y=x^2+256
D. y=(x+128)^2
Zadanie 4. 1 pkt ⋅ Numer: pp-10985 ⋅ Poprawnie: 217/329 [65%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Dana jest funkcja
g(x)=-\frac{1}{4}(x+6)x , gdzie
x\in\langle -6,-3\rangle .
Wyznacz f_{min} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pr-10110 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (0.2 pkt)
Zapisz dziedzinę funkcji określonej wzorem
f(x)=
\sqrt{\frac{x^3}{x^2-x-42}}
-
\frac{x\sqrt{x}}{\sqrt{x^2-x-42}}
w postaci sumy przedziałów.
Suma ta ma postać:
Odpowiedzi:
A. \langle p,q\rangle
B. (-\infty,p)
C. (p,q)
D. \langle p,+\infty)
E. (-\infty,p\rangle\cup\langle q, +\infty)
F. (p,+\infty)
Podpunkt 5.2 (0.8 pkt)
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 6. 3 pkt ⋅ Numer: pp-20841 ⋅ Poprawnie: 50/82 [60%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
» Wyznacz współczynniki
b i
c
funkcji określonej wzorem
f(x)=x^2+bx+c wiedząc, że zbiorem jej wartości
jest przedział
\langle 6,+\infty) , a osią symetrii jej
wykresu jest prosta
x=-5 .
Podaj b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20384 ⋅ Poprawnie: 90/212 [42%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Rozwiąż układ równań:
\begin{cases}
y=x^2+10x-3 \\
y-10x=-2
\end{cases}
.
Podaj najmniejsze możliwe x .
Odpowiedź:
x_{min}=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Podaj najmniejsze możliwe
y .
Odpowiedź:
y_{min}=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pr-20994 ⋅ Poprawnie: 13/16 [81%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Funkcja kwadratowa
f określona wzorem
f(x)=-(x-p)^2+q
jest rosnąca w przedziale
(-\infty,-7\rangle i malejąca,
w przedziale
\langle -7,+\infty) , a jej miejsca zerowe
x_1 i
x_2 spełniają warunek
x_1\cdot x_2=-120 . Wiedząc, że do wykresu funkcji
f należy punkt o współrzędnych
(0,120) ,
wyznacz liczby
p i
q .
Podaj liczbę p .
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
q=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20094 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Dla jakich wartości parametru
m równanie
x^2+(4m+96)x+4m+96+1\frac{1}{4}=0 ma dwa różne
pierwiastki ujemne?
Podaj największą liczbę, która nie spełnia warunków zadania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 4 pkt ⋅ Numer: pr-30080 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Rozwiąż nierówność
x^2+(6+2a)x+|x+2+a|+a^2+6a+8\leqslant 0
.
Podaj najmniejsze rozwiązanie tej nierówności.
Dane
a=-5
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Podaj największe rozwiązanie tej nierówności.
Odpowiedź:
x_{max}=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30085 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Zbadaj liczbę rozwiązań równania
-\frac{1}{3}x^2+2|x|-3=3m-3a
w zależności od wartości parametru
m\in\mathbb{R} .
Podaj największe możliwe m , dla którego równanie
ma dwa rozwiązania.
Dane
a=-5
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Podaj najmniejsze możliwe
m , dla którego równanie
ma trzy rozwiązania.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
Przedział
(m_1,m_2) zawiera wszystkie te wartości
parametru
m , dla których równanie to ma
więcej niż trzy rozwiązania.
Podaj m_1^2+m_2^2 .
Odpowiedź:
m_1^2+m_2^2=
(wpisz liczbę całkowitą)
Rozwiąż