Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11083 ⋅ Poprawnie: 82/186 [44%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Dla x=-1 funkcja f(x)=x^2+bx+c przyjmuje wartość najmniejszą równą -4.

Wyznacz wartość współczynnika c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11019 ⋅ Poprawnie: 560/777 [72%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Zbiorem wartości funkcji kwadratowej określonej wzorem f(x)=(x-4)(x+2) jest przedział liczbowy \langle ......,+\infty).

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11451 ⋅ Poprawnie: 160/257 [62%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wykres funkcji określonej wzorem f(x)=x^2-4 przesunięto o k=3 jednostek w prawo. W wyniku tego przesunięcia otrzymano wykres funkcji określonej wzorem y=x^2+bx+c.

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11645 ⋅ Poprawnie: 37/67 [55%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Rzucono pionowo do góry kamień z prędkością początkową 10\ m/s. Wysokość s\ [m], jaką osiągnie ten kamień po t sekundach czasu opisuje wzór s(t)=12t-3t^2.

Podaj maksymalną wysokość jaką osiągnie ten kamień.

Odpowiedź:
s_{max}(t)= (wpisz liczbę całkowitą)
Zadanie 5.  1.2 pkt ⋅ Numer: pr-10109 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 Funkcja g określona jest wzorem g(x)=\frac{5}{\sqrt{25-x^2}} . Zapisz dziedzinę funkcji określonej wzorem h(x)=g(x-4) w postaci sumy przedziałów.

Suma ta ma postać:

Odpowiedzi:
A. \langlep,+\infty) B. (p,q)
C. \langle p,q\rangle D. (p,+\infty)
E. (p,q\rangle F. (-\infty,p\rangle\cup\langle q, +\infty)
Podpunkt 5.2 (1 pkt)
 Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20351 ⋅ Poprawnie: 38/72 [52%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Parabola ma wierzchołek w punkcie C=(2,121) i przecina oś Ox w punktach A i B.

Wiedząc, że P_{\triangle ABC}=\frac{1331}{2}. Wyznacz wzór tej paraboli w postaci kanonicznej f(x)=a(x-p)^2+q.

Podaj liczbę p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj liczbę q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20402 ⋅ Poprawnie: 14/96 [14%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Rozwiąż nierówność -x^2+bx+c \lessdot 0.

Ile liczb całkowitych z przedziału \langle 0,100\rangle spełnia tę nierówność?

Dane
b=12
c=-32
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20993 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Funkcja kwadratowa określona wzorem f(x)=ax^2+bx+c ma dwa miejsca zerowe, których suma jest równa -\frac{1}{2}, a ich iloczyn jest równy -5. Wyznacz współczynniki b i c wiedząc, że do wykresu funkcji f należy punkt A=\left(-1,-9\right).

Podaj współczynnik b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj współczynnik c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20997 ⋅ Poprawnie: 11/20 [55%] Rozwiąż 
Podpunkt 9.1 (0.4 pkt)
 «« Dla jakich wartości parametru m\in\mathbb{R} równanie 2x^2-4(m+1)x+(m+2)(m+1)=0 ma dwa rozwiązania spełniające warunek x_1 \lessdot m-5 \lessdot x_2?

Rozwiązaniem jest zbiór postaci:

Odpowiedzi:
A. (p, +\infty) B. (-\infty, p)
C. (-\infty, p\rangle \cup \langle q, +\infty) D. \langle p, +\infty)
E. (-\infty, +\infty) F. \langle p, q)
G. (-\infty, p)\cup(q, +\infty) H. (p, q)
Podpunkt 9.2 (0.8 pkt)
 Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 9.3 (0.8 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30044 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
« Wyznacz wszystkie pary liczb (p,q) o tej własności, że pierwiastkami równania x^2+px+q=0 są liczby p i q.

Ile jest takich par?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Podaj najmniejszą możliwą wartość p.
Odpowiedź:
p_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 10.3 (1 pkt)
Podaj najmniejszą możliwą wartość q.
Odpowiedź:
q_{min}= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30061 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Dla jakich wartości parametru m\in\mathbb{R} dwa różne pierwiastki równania x^2-2(m-a)x-m+a=0 należą do przedziału (-2,0).

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=-1
Odpowiedź:
m_L=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
m_P= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm