Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11072 ⋅ Poprawnie: 315/528 [59%]
Rozwiąż
Podpunkt 1.1 (0.5 pkt)
« O funkcji kwadratowej opisanej wzorem
f(x)=a(x-p)^2+q wiadomo, że ma dwa
miejsca zerowe
5 i
9 oraz
że najmniejszą jej wartością jest liczba
-2 .
Wyznacz wartość parametru a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
Wyznacz wartość parametru
p .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11078 ⋅ Poprawnie: 195/345 [56%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Dana jest funkcja
f(x)=-4(x-6)(x-7) .
Wyznacz maksymalny przedział, w którym funkcja
f jest
rosnąca.
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-10994 ⋅ Poprawnie: 87/175 [49%]
Rozwiąż
Podpunkt 3.1 (0.2 pkt)
« Zbiorem wartości funkcji
f(x)=2x^2+12x+m-2 jest przedział liczbowy zawarty w przedziale
\langle 0,+\infty) , wtedy i tylko wtedy, gdy parametr
m należy do pewnego przedziału.
Przedział, do którego należy parametr m ma postać:
Odpowiedzi:
A. (-\infty,p\rangle
B. \langle p,+\infty)
C. (-\infty,p)
D. \langle p,q\rangle
E. (p,q)
F. (p,+\infty)
Podpunkt 3.2 (0.8 pkt)
Podaj najmiejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11465 ⋅ Poprawnie: 479/942 [50%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Najmniejszą wartość w przedziale
\langle 11, 15\rangle funkcja kwadratowa
f(x)=-\left(x-12\right)^{2}-5
przyjmuje dla argumentu
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10957 ⋅ Poprawnie: 641/967 [66%]
Rozwiąż
Podpunkt 5.1 (0.2 pkt)
» Wyznacz dziedzinę funkcji określonej wzorem
f(x)=\frac{x-1}{\sqrt{x^2+x-90}}
.
Zbiór ten ma postać:
Odpowiedzi:
A. (-\infty,p)\cup(q,+\infty)
B. (p,q)
C. \mathbb{R}-\{p, q\}
D. \mathbb{R}-(p,q)
E. \langle p,q\rangle
F. \mathbb{R}-\{p\}
Podpunkt 5.2 (0.8 pkt)
Zbiór
A jest zbiorem wszystkich liczb nie należących do dziedziny
tej funkcji.
Wyznacz najmniejszą i największą liczbę w zbiorze A .
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pr-20061 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (2 pkt)
Wyznacz te wartości parametru
m , dla których
równanie
|ax^2+bx+c|=m ma dokładnie trzy rozwiązania.
Podaj najmniejsze możliwe m .
Dane
a=1
b=12
c=25
Odpowiedź:
m_{min}=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20383 ⋅ Poprawnie: 57/107 [53%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Kwadrat liczby jest o
2650 większy od potrojonej
wartości tej liczby. Znajdź tę liczbę.
Podaj najmniesze z rozwiązań.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pr-21059 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (1 pkt)
Rozwiąż równanie
2x^2+32x+128-5\sqrt{x^2+16x+63}=0
.
Podaj najmniejsze z rozwiązań tego równania.
Odpowiedź:
x_{min}=
+
\cdot
√
(wpisz trzy liczby całkowite)
Podpunkt 8.2 (1 pkt)
Podaj największe z rozwiązań tego równania.
Odpowiedź:
x_{max}=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pr-20085 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (2 pkt)
Wyznacz te wartości parametru
m , dla których równanie
x^2+(m-a)x+m-1-a=0 ma dwa różne pierwiastki, które są
sinusem i cosinusem tego samego kąta ostrego?
Podaj największe takie m .
Dane
a=-5
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30023 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Dla jakich wartości parametru
m zbiór wartości
funkcji
f(x)=\frac{1}{4}(m-6)x^2+(m-7)x+m-7
jest równy
\left\langle \frac{2}{3},+\infty\right) .
Podaj najmniejsze możliwe m .
Odpowiedź:
m_{min}=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Podaj największe możliwe
m .
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30085 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Zbadaj liczbę rozwiązań równania
-\frac{1}{3}x^2+2|x|-3=3m-3a
w zależności od wartości parametru
m\in\mathbb{R} .
Podaj największe możliwe m , dla którego równanie
ma dwa rozwiązania.
Dane
a=-5
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Podaj najmniejsze możliwe
m , dla którego równanie
ma trzy rozwiązania.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
Przedział
(m_1,m_2) zawiera wszystkie te wartości
parametru
m , dla których równanie to ma
więcej niż trzy rozwiązania.
Podaj m_1^2+m_2^2 .
Odpowiedź:
m_1^2+m_2^2=
(wpisz liczbę całkowitą)
Rozwiąż