Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10989 ⋅ Poprawnie: 705/1015 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Największą wartością funkcji kwadratowej f(x)=-4(x+6)^2-5 jest ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10980 ⋅ Poprawnie: 201/342 [58%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Liczby 1 i -\frac{1}{2} są miejscami zerowymi funkcji określonej wzorem g(x)=ax^2-x-1.

Wyznacz wartość współczynnika a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11014 ⋅ Poprawnie: 32/77 [41%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Niech A=(-2,4). Wiadomo, że A\cap ZW_g=\emptyset.

Wykres funkcji g pokazano na rysunku:

Odpowiedzi:
A. A B. C
C. D D. B
Zadanie 4.  1 pkt ⋅ Numer: pp-11465 ⋅ Poprawnie: 479/942 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Najmniejszą wartość w przedziale \langle 7, 11\rangle funkcja kwadratowa f(x)=-\left(x-8\right)^{2}-5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10110 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 Zapisz dziedzinę funkcji określonej wzorem f(x)= \sqrt{\frac{x^3}{x^2-x-2}} - \frac{x\sqrt{x}}{\sqrt{x^2-x-2}} w postaci sumy przedziałów.

Suma ta ma postać:

Odpowiedzi:
A. (-\infty,p) B. (-\infty,p)\cup(q, +\infty)
C. (p,+\infty) D. \langle p,q\rangle
E. (p,q) F. \langle p,+\infty)
Podpunkt 5.2 (0.8 pkt)
 Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20340 ⋅ Poprawnie: 81/204 [39%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Współrzędna y wierzchołka wykresu funkcji f(x)=ax^2+2x-1 jest równa 3.

Wyznacz a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20065 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Wyznacz te wartości parametru m, dla których funkcja h(x)=(2+a-m)x^2+(m-a)x+m-4-a ma największą wartość równą 2.

Podaj najmniejsze takie m.

Dane
a=-3
Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj największe takie m.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20075 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
« Liczby całkowite a, b, c i d spełniają warunki: a \lessdot b < c < d, d-a=3 oraz a^2+b^2+c^2=d.

Podaj najmniejszą z tych liczb.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pr-20463 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Równanie |-x^2+2|x|+5|=2p-a ma cztery rozwiązania. Wyznacz zbiór możliwych wartości parametru p.

Oblicz sumę kwadratów liczb całkowitych należących do tego zbioru.

Dane
a=3
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30839 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Rozwiąż równanie \sqrt{5+x-4\sqrt{x+1}}+\sqrt{10+x-6\sqrt{x+1}}=1 .

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30018 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 «« Rozwiązanie układu \begin{cases} x+amy=1 \\ 2x+y=am \end{cases} spełnia warunek |x-y|\leqslant 1. Wyznacz m.

Podaj najmniejsze możliwe m.

Dane
a=-2
Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm