Równanie x^2-(k+1)x+36=0 z niewiadomą
x ma dwa różne rozwiązania wtedy i tylko wtedy, gdy parametr
k należy do zbioru A. Zapisz zbiór
Aw postaci sumy przedziałów.
Zbiór A jest postaci:
Odpowiedzi:
A.(-\infty,p)
B.(-\infty,p)\cup(q,+\infty)
C.(p,+\infty)
D.(-\infty,p)\cap(q,+\infty)
E.\langle p,q\rangle
F.(p,q)
Podpunkt 5.2 (0.8 pkt)
Liczba p jest najmniejszym, a liczba q
największym z końców liczbowych tych przedziałów.
Podaj liczby p i q.
Odpowiedzi:
p
=
(wpisz liczbę całkowitą)
q
=
(wpisz liczbę całkowitą)
Zadanie 6.2 pkt ⋅ Numer: pp-20344 ⋅ Poprawnie: 26/68 [38%]
« Wyznacz te wartości parametru m, dla których
równanie x^2+(m-a)x+m-2-a=0 ma dwa różne pierwiastki
rzeczywiste takie, że ich suma kwadratów jest minimalna możliwa.
Podaj najmniejsze możliwe m, które spełnia warunki
zadania.
Dane
a=-1
Odpowiedź:
m_{min}=(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Ile rozwiązań ma to zadanie?
Odpowiedź:
ile=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat