Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11726 ⋅ Poprawnie: 19/33 [57%]
Rozwiąż
Podpunkt 1.1 (0.5 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=ax^2+bx+c
należą punkty o współrzędnych
(-3,14) ,
(-1,9) i
(3,11) .
Wyznacz współczynnik b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11019 ⋅ Poprawnie: 560/777 [72%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Zbiorem wartości funkcji kwadratowej określonej wzorem
f(x)=(x-4)(x+8) jest przedział liczbowy
\langle ......,+\infty) .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11468 ⋅ Poprawnie: 197/293 [67%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Funkcja określona wzorem
f(x)=5x^2+......\cdot x+18 jest
malejąca w przedziale
(-\infty,-1) i rosnąca w przedziale
(-1,+\infty) .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11409 ⋅ Poprawnie: 216/332 [65%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej
f :
Podaj największą wartość funkcji f w przedziale
\langle 1,4\rangle .
Odpowiedź:
f_{max}(x)=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11065 ⋅ Poprawnie: 60/107 [56%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Funkcja
f określona jest wzorem
f(x)=\frac{x^2-9x-10}{x+8} .
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : f ma zbiór \mathbb{R} za dziedzinę
T/N : f przyjmuje wartości dodatnie
T/N : f ma jedno miejsce zerowe
Zadanie 6. 2 pkt ⋅ Numer: pp-20348 ⋅ Poprawnie: 23/58 [39%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Dana jest funkcja kwadratowa o tej własnosci, że rozwiązaniem nierówności
f(x) \lessdot 0 jest przedział
(-1,7) . Rozwiąż nierówność
-f(x+3) \lessdot 0 .
Ile liczb całkowitych nie spełnia tej nierówności?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Rozwiązanie tej nierówności zapisz w postaci sumy przedziałów. Podaj sumę
wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20406 ⋅ Poprawnie: 14/38 [36%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Rozwiąż nierówność
f(x)-x\cdot g(x)\geqslant 0 , gdzie
f(x)=x^2+bx+c i
g(x)=x-3 .
Rozwiązanie zapisz w postaci przedziału. Podaj sumę wszystkich końców
liczbowych tych przedziałów.
Dane
b=8
c=8
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pr-20462 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (2 pkt)
Liczby
x_1 i
x_2 są
pierwiastkami równania
x^2+bx+c=0 . Liczba
\frac{1}{x_1^2}+\frac{1}{x_2^2} jest liczbą całkowitą.
Wyznacz tę liczbę.
Dane
b=-32
c=2
Odpowiedź:
\frac{1}{x_1^2}+\frac{1}{x_2^2}=
(wpisz liczbę całkowitą)
Zadanie 9. 4 pkt ⋅ Numer: pr-20086 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
«« Wyznacz te wartości parametru
m , dla których równanie
(m-a-2)x^2+(m-a-3)x-1=0 ma dwa różne pierwiastki
ujemne?
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Dane
a=9
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (2 pkt)
Podaj sumę tych wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30081 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Rozwiąż nierówność
|x^2-2ax| \lessdot b
.
Rozwiązanie zapisz w postaci sumy predziałów. Podaj sumę wszystkich
końców tych przedziałów, które są liczbami całkowitymi.
Dane
a=12
b=144
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Podaj najmniejszy z końców liczbowych tych przedziałów, który nie jest liczbą całkowitą.
Odpowiedź:
min=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30069 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Zbadaj liczbę pierwiastków równania
(m^2-2m-2am+a^2+2a)x^2-(m-a)x-\frac{1}{2}=0 w
zależności od wartości parametru
m\in\mathbb{R} .
Podaj sumę tych wartości m , dla których równanie ma
dokładnie jedno rozwiązanie.
Dane
a=6
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (1 pkt)
Podaj najmniejsze możliwe
m , dla którego równanie
nie ma rozwiązania.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
Wyznacz te wartości
m , dla których równanie ma dwa
rozwiązania.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich
końców liczbowych tych przedziałów, które są liczbami całkowitymi.
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Rozwiąż