Zbiór tych wszystkich wartości m, dla których funkcja kwadratowa
określona wzorem f(x)=x^2+5x+m nie ma ani
jednego miejsca zerowego jest przedziałem liczbowym.
Przedział ten ma postać:
Odpowiedzi:
A.(p, q)
B.\langle p, q\rangle
C.\langle p, +\infty)
D.(p, +\infty)
E.(-\infty, p)
F.(-\infty, p\rangle
Podpunkt 2.2 (0.8 pkt)
Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 3.1 pkt ⋅ Numer: pp-11728 ⋅ Poprawnie: 4/12 [33%]
Funkcja kwadratowa określona wzorem f(x)=ax^2+bx+c dla argumentu
11 przyjmuje wartość najmniejszą, równą 4,
a jeden z punktów przecięcia jej wykresu z prostą o równaniu y=6
ma odciętą 9.
Wyznacz współczynnik b.
Odpowiedź:
b=(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Wyznacz współczynnik c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
Zadanie 7.2 pkt ⋅ Numer: pp-20782 ⋅ Poprawnie: 61/81 [75%]
« Dane jest równanie px^2-(p+a)x+p+a=0 z
parametrem p. Funkcja f
liczbie p przypisuje sumę różnych pierwiastków tego
równnia, czyli f(p)=x_1+x_2. Wyznacz dziedzinę
tej funkcji.
Zapisz rozwiązanie w postaci sumy przedziałów. Ile jest tych przedziałów?
Dane
a=6
Odpowiedź:
ile=(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj sumę wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma=
(wpisz dwie liczby całkowite)
Podpunkt 11.3 (1 pkt)
Zapisz wzór funkcji f i naszkicuj jej wykres.
Podaj największą liczbę, która nie należy do zbioru wartosci funkcji
f.
Odpowiedź:
max=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat