Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11083 ⋅ Poprawnie: 82/186 [44%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Dla x=1 funkcja f(x)=x^2+bx+c przyjmuje wartość najmniejszą równą -3.

Wyznacz wartość współczynnika c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11001 ⋅ Poprawnie: 532/741 [71%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Jeżeli miejscami zerowymi funkcji kwadratowej są liczby -4 oraz 6, a wierzchołek paraboli będącej jej wykresem ma współrzędne (1,-75), to wzór tej funkcji można zapisać w postaci:
Odpowiedzi:
A. f(x)=3(x-4)(x-6) B. f(x)=3(x+4)(x-6)
C. f(x)=3(x+4)(x+6) D. f(x)=\frac{9}{4}(x-4)(x-6)
Zadanie 3.  1 pkt ⋅ Numer: pp-11470 ⋅ Poprawnie: 93/154 [60%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Przesuwając wykres funkcji określonej wzorem h(x)=x^2-5 o k=3 jednostek w prawo otrzymamy wykres funkcji opisanej wzorem y=x^2+bx+c.

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11730 ⋅ Poprawnie: 21/39 [53%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Większa część zawodników klubu sportowego liczącego 83 osób, zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.

Ilu zawodników było chorych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10112 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Funkcja h(x)=x^2-5x+c ma dwa miejsca zerowe, gdy:
Odpowiedzi:
A. c=3 B. c=9
C. c=10 D. c=12
E. c=13 F. c=8
Zadanie 6.  2 pkt ⋅ Numer: pp-20338 ⋅ Poprawnie: 93/226 [41%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Prosta x=1 jest osią symetrii paraboli f(x)=ax^2+bx+1, a najmniejsza wartość funkcji f jest równa -5. Wyznacz równanie tej funkcji w postaci ogólnej.

Podaj a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20379 ⋅ Poprawnie: 142/257 [55%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Równanie x^2+(m-2)x+81=0 ma dokładnie jedno rozwiązanie. Wyznacz m.

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20076 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
 «« Przyprostokątne trójkąta są pierwiastkami trójmianu y=2x^2+(b+a)x+144. Pole kwadratu zbudowanego na przeciwprostokątnej tego trójkąta wynosi 340.

Wyznacz b.

Dane
a=1
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 9.  3 pkt ⋅ Numer: pr-20873 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
 (2 pkt) Dana jest funkcja określona wzorem y=\frac{16}{x^2}, dla każdego x\in\mathbb{R}-\{0\}, której wykres pokazano na rysunku, oraz punkt A=(6, -1):

Pozioma prosta przecina wykres tej funkcji w punktach o współrzędych B=(x_0, y_0) oraz C=(-x_0,y_0) gdzie x_0 > 0 i y_0 > 0.

Znajdź najmniejsze x_0\in(5;+\infty), dla którego P_{\triangle ABC}\geqslant 10.

Odpowiedź:
x_0= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 (1 pkt) Wyznacz największą liczbę nieujemną m o tej własności, że dla dowolnego x_0\in(0,+\infty) prawdziwa jest nierówność P_{\triangle ABC}\geqslant m.
Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30077 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Rozwiąż nierówność x^2+2ax-3|x+6+a|+a^2 > 0 .

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Dane
a=1
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Przedział \langle p, q\rangle jest zbiorem tych wszystkich wartości x, które nie spełniają podanej nierówności.

Podaj środek tego przedziału.

Odpowiedź:
x_s=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30052 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Liczba m\in\mathbb{R} w równaniu (x+3)\cdot\left[x^2+(m+4+a)x+(m+1+a)^2\right]=0 jest parametrem. Rozwiąż to równanie dla m=1-a.

Podaj sumę wszystkich rozwiązań.

Dane
a=1
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Dla jakich wartości parametru m równanie to ma dokładnie jedno rozwiązanie?

Podaj najmniejszą liczbę, która nie spełnia warunków zadania.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm