Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10983 ⋅ Poprawnie: 303/535 [56%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wierzchołek paraboli y=x^2-12x leży na prostej o równaniu:
Odpowiedzi:
A. y=-12x B. y=6x
C. y=-6x D. y=3x
E. y=12x F. y=-3x
Zadanie 2.  1 pkt ⋅ Numer: pp-11075 ⋅ Poprawnie: 96/167 [57%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Dana jest funkcja kwadratowa określona wzorem f(x)=(-4-x)(3x-6). Wierzchołek wykresu tej funkcji należy do prostej określonej równaniem x=m.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11021 ⋅ Poprawnie: 479/645 [74%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Wykres funkcji f(x)=-(x+3)^2-2 pokazany jest na rysunku:
Odpowiedzi:
A. D B. B
C. C D. A
Zadanie 4.  1 pkt ⋅ Numer: pp-10978 ⋅ Poprawnie: 474/743 [63%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Najmniejszą wartość w przedziale \langle 8, 12\rangle funkcja kwadratowa określona wzorem f(x)=-\left(x-11\right)^{2}+5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11066 ⋅ Poprawnie: 218/289 [75%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Wierzchołkiem paraboli będącej wykresem funkcji f(x)=-x^2+bx+c jest punkt o współrzędnych (10,-8).

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20895 ⋅ Poprawnie: 18/34 [52%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=ax^2+bx+c. Funkcja ta przyjmuje wartości dodatnie tylko w przedziale (0, k), a jej największa wartość wartość wynosi q.

Wyznacz a.

Dane
k=20
q=1200
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Wyznacz b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20364 ⋅ Poprawnie: 113/259 [43%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Wyznacz najmniejszą wartość funkcji h(x)=ax^2+bx+c w przedziale \langle p,q\rangle.
Dane
a=1
b=6
c=4
p=-4
q=1
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Wyznacz największą wartość tej funkcji w podanym przedziale.
Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20103 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Rozwiąż nierówność (x+6-a)^2-3|x-a| > 0 .

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Dane
a=8
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj największą liczbę, która nie spełnia tej nierówności.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20083 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Dla jakich wartości parametru m równanie x^2+8x+m-a=0 ma dwa różne pierwiastki jednakowych znaków?

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Dane
a=9
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30023 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Dla jakich wartości parametru m zbiór wartości funkcji f(x)=\frac{1}{4}(m+2)x^2+(m+1)x+m+1 jest równy \left\langle \frac{2}{3},+\infty\right).

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30054 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 » Dla jakich wartości parametru m\in\mathbb{R} iloczyn różnych pierwiastków równania x^2-(m-a)x+m^2-(2+2a)m+(a+1)^2=0 jest o jeden mniejszy od sumy tych pierwiastków?

Podaj najmniejsze możliwe m, które spełnia warunki zadania.

Dane
a=6
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj największe możliwe m, które spełnia warunki zadania.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm