Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-2

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11072  
Podpunkt 1.1 (0.5 pkt)
 « O funkcji kwadratowej opisanej wzorem f(x)=a(x-p)^2+q wiadomo, że ma dwa miejsca zerowe 3 i 7 oraz że najmniejszą jej wartością jest liczba -2.

Wyznacz wartość parametru a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
 Wyznacz wartość parametru p.
Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11042  
Podpunkt 2.1 (1 pkt)
 Miejscami zerowymi funkcji kwadratowej są liczby 1 oraz 6. Do wykresu tej funkcji należy punkt A=(-2,48). Zapisz wzór tej funkcji w postaci iloczynowej y=a(x-x_1)(x-x_2).

Podaj współczynnik a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11051  
Podpunkt 3.1 (1 pkt)
 Wykres funkcji y=x^2-10 ma dokładnie jeden punkt wspólny z prostą:
Odpowiedzi:
A. y=10x B. y=-10x+1
C. x=2 D. y=10
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10988  
Podpunkt 4.1 (1 pkt)
» Wyznacz najmniejszą wartość funkcji kwadratowej określonej wzorem f(x)=x^2+12x.
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11066  
Podpunkt 5.1 (1 pkt)
 « Wierzchołkiem paraboli będącej wykresem funkcji f(x)=-x^2+bx+c jest punkt o współrzędnych (1,2).

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20928  
Podpunkt 6.1 (1 pkt)
 Funkcja kwadratowa f określona wzorem f(x)=a(x-p)^2+q jest rosnąca wtedy i tylko wtedy, gdy x\in\langle0,+\infty), zbiorem jej wartości jest przedział \langle-3, +\infty), a do jej wykresu należy punkt A=(1,-1). Wyznacz wzór tej funkcji.

Podaj współczynnik a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj liczby p i q.
Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20399  
Podpunkt 7.1 (1 pkt)
 « Rozwiąż nierówność ax^2+bx > cx^2+dx.

Podaj długość rozwiązania (długość przedziału).

Dane
a=-1
b=-5
c=2
d=3
Odpowiedź:
d=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj najmniejszą liczbę całkowitą dodatnią, która nie spełnia tej nierówności.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20993  
Podpunkt 8.1 (1 pkt)
 Funkcja kwadratowa określona wzorem f(x)=ax^2+bx+c ma dwa miejsca zerowe, których suma jest równa -\frac{1}{2}, a ich iloczyn jest równy -\frac{1}{2}. Wyznacz współczynniki b i c wiedząc, że do wykresu funkcji f należy punkt A=\left(4,35\right).

Podaj współczynnik b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj współczynnik c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20997  
Podpunkt 9.1 (0.4 pkt)
 «« Dla jakich wartości parametru m\in\mathbb{R} równanie 2x^2-4(m+3)x+(m+4)(m+3)=0 ma dwa rozwiązania spełniające warunek x_1 \lessdot m-3 \lessdot x_2?

Rozwiązaniem jest zbiór postaci:

Odpowiedzi:
A. (-\infty, p)\cup(q, +\infty) B. (-\infty, p\rangle \cup \langle q, +\infty)
C. (-\infty, p) D. (p, q)
E. \langle p, q) F. (p, q\rangle
G. (-\infty, +\infty) H. (-\infty, p\rangle
Podpunkt 9.2 (0.8 pkt)
 Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 9.3 (0.8 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 10.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30028  
Podpunkt 10.1 (2 pkt)
 « Suma dwóch różnych miejsc zerowych funkcji f(x)=(a-m)x^2+(2b+n)x+c jest równa 4, a suma ich odwrotności jest równa -\frac{1}{3}. Wiedząc, że f(0)=-12 wyznacz a i b.

Podaj a.

Dane
m=-1
n=3
Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Zadanie 11.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30041  
Podpunkt 11.1 (3 pkt)
 « Wyznacz te wartości parametru m, dla których równanie x^2+(m-a)x+m-2-a=0 ma dwa różne pierwiastki rzeczywiste takie, że ich suma kwadratów jest minimalna możliwa.

Podaj najmniejsze możliwe m, które spełnia warunki zadania.

Dane
a=1
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Ile rozwiązań ma to zadanie?
Odpowiedź:
ile= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm