Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11044 ⋅ Poprawnie: 141/222 [63%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wykres funkcji kwadratowej g przecina oś Ox w dwóch punktach.

Funkcja g opisana jest wzorem:

Odpowiedzi:
A. g(x)=7(x-12)^2-\sqrt{2} B. g(x)=-3(x+10)^2-5
C. g(x)=11(x-6)^2+10 D. g(x)=12(x+12)^2+6
Zadanie 2.  1 pkt ⋅ Numer: pp-11041 ⋅ Poprawnie: 365/693 [52%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wyznacz największa wartość funkcji określonej wzorem y=-2(x-8)(x+7).
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11023 ⋅ Poprawnie: 294/453 [64%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Na podstawie wykresu funkcji określonej wzorem y=ax^2+bx+c wskaż jej wzór:
Odpowiedzi:
A. y=x^2+2x+4 B. y=x^2-2x+4
C. y=-x^2+2x+2 D. y=-x^2-2x+2
Zadanie 4.  1 pkt ⋅ Numer: pp-11067 ⋅ Poprawnie: 143/276 [51%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Rozpatrujemy prostokąty o obwodzie 76. Na takim prostokącie o największym polu powierzchni opisano okrąg.

Oblicz długość promienia tego okręgu.

Odpowiedź:
R= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10959 ⋅ Poprawnie: 224/427 [52%] Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 » Wyznacz zbiór wszystkich rozwiązań nierówności -1 \lessdot x^2+\frac{1}{5}x \lessdot 0 .

Zbiór ten ma postać:

Odpowiedzi:
A. (-\infty,p) B. (-\infty,p\rangle
C. (p,q) D. (p,+\infty)
E. (-\infty,p)\cup\langle q,+\infty) F. \langle p,q\rangle
Podpunkt 5.2 (0.8 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20350 ⋅ Poprawnie: 26/58 [44%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Liczba -4 jest miejscem zerowym funkcji kwadratowej h. Maksymalny przedział, w którym ta funkcja jest malejąca jest równy \langle 2,+\infty). W przedziale \langle -7,-6\rangle największą wartością funkcji h jest -28. Wyznacz wzór funkcji h(x)=ax^2+bx+c.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20362 ⋅ Poprawnie: 16/47 [34%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Dana jest funkcja f(x)=ax^2+bx+c. Wyznacz zbiór wartości funkcji g(x)=f(x-p)+q.

Podaj najmniejszą liczbę w zbiorze wartości. Jeśli taka wartość nie istnieje wpisz 0.

Dane
a=-1
b=2
c=6
p=-1
q=-3
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj największą liczbę w zbiorze wartości. Jeśli taka wartość nie istnieje wpisz 0.
Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20072 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Rozwiąż równanie ax^6+bx^3+c=0.

Podaj najmniejsze z rozwiązań tego równania.

Dane
a=0.50
b=9.50
c=-108.00
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj największe z rozwiązań tego równania.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pr-20086 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 «« Wyznacz te wartości parametru m, dla których równanie (m-a-2)x^2+(m-a-3)x-1=0 ma dwa różne pierwiastki ujemne?

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Dane
a=5
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 9.2 (2 pkt)
 Podaj sumę tych wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30075 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Rozwiąż równanie x^2-(a+6)x+\left|x-3-\frac{a}{2}\right|+\frac{1}{4}a^2+3a-3=0 .

Podaj najmniejsze rozwiązanie tego równania.

Dane
a=1
Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Podaj największe rozwiązanie tego równania.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30842 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Dla jakich wartości parametru m\in\mathbb{R} równanie 5x^2-(m+1)x+1=0 ma dwa rozwiązania spełniające warunek \left|x_1-x_2\right|\geqslant 1?

Rozwiązaniem jest zbiór postaci:

Odpowiedzi:
A. (-\infty, p)\cup(q, +\infty) B. (-\infty, p\rangle
C. (-\infty, p\rangle \cup \langle q, +\infty) D. (p, +\infty)
E. (-\infty, p) F. \langle p, +\infty)
G. (p, q\rangle H. (p, q)
Podpunkt 11.2 (1.5 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 11.3 (1.5 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= + \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm