Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11040 ⋅ Poprawnie: 241/404 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt P=(-8,11) należy do wykresu funkcji g(x)=x^2-mx+1.

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11019 ⋅ Poprawnie: 560/777 [72%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Zbiorem wartości funkcji kwadratowej określonej wzorem f(x)=(x-2)(x+8) jest przedział liczbowy \langle ......,+\infty).

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11728 ⋅ Poprawnie: 4/12 [33%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 Zbiorem wartości funkcji y=-(x-10)(x+10) określonej dla x\in(3,8\rangle jest pewien przedział liczbowy.

Przedział ten ma postać:

Odpowiedzi:
A. (-\infty,p\rangle B. \langle p,q)
C. (p,+\infty) D. (p,q)
E. (p,q\rangle F. \langle p,q\rangle
Podpunkt 3.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11466 ⋅ Poprawnie: 202/334 [60%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Dana jest funkcja kwadratowa f(x)=-0,5(x+2m)^2+10m, gdzie m > 0.

Wówczas:

Odpowiedzi:
A. dla m=-\frac{1}{2} funkcja jest rosnąca B. największą wartością funkcji jest -10m
C. dla pewnego m funkcja ma jedno miejsce zerowe D. wierzchołek paraboli, która jest wykresem tej funkcji należy do prostej y=-5x
Zadanie 5.  1 pkt ⋅ Numer: pp-10969 ⋅ Poprawnie: 79/138 [57%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt M=(a,-7\cdot a) należy do wykresu funkcji f(x)=(1-a)x-a.

Wyznacz najmniejsze możliwe i największe możliwe a.

Odpowiedzi:
a_{min}= (wpisz liczbę całkowitą)
a_{max}= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20342 ⋅ Poprawnie: 72/119 [60%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Wykres funkcji f(x)=x^2-14x+c-15 jest styczny do osi Ox.

Wyznacz c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20940 ⋅ Poprawnie: 4/37 [10%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Pewne ciało w czasie t\ [s] przebyło drogę s [m], którą opisuje wzór s(t)=t^2+4t+13, gdzie t\in\langle 4,8\rangle.

Oblicz długość drogi przebytej przez to ciało w ciągu 4 sekund ruchu.

Odpowiedź:
s(t)= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Wyznacz średnią prędkość w metrach na sekundę tego ciała.
Odpowiedź:
v_{sr}=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20103 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Rozwiąż nierówność (x+6-a)^2-3|x-a| > 0 .

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Dane
a=-6
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj największą liczbę, która nie spełnia tej nierówności.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20097 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dla jakich wartości parametru m rozwiązaniem nierówności -x^2+(-4+m)x-2m+11\leqslant 0 jest zbiór \mathbb{R}?

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30037 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 «« Funkcja f(x)=x^2+(m^2-12m-n^2+33)x+n^2+3m-22, gdzie m,n\in\mathbb{C}, ma dwa miejsca zerowe x_1=4-\sqrt{5} oraz x_2=4+\sqrt{5}.

Ile rozwiązań ma to zadanie?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj najmniejsze możliwe m.
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30088 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Zbadaj liczbę rozwiązań równania \left|x^2+x-30\right|=\left(m-\frac{a}{2}\right)|x-5| w zależności od wartości parametru m\in\mathbb{R}.

Podaj najmniejsze możliwe m, dla którego równanie ma dwa rozwiązania.

Dane
a=-4
Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (1 pkt)
 Podaj największe możliwe m, dla którego równanie ma dwa rozwiązania.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)
Podpunkt 11.3 (1 pkt)
 Wyznacz zbiór tych wartości parametru m, dla których równanie to ma trzy rozwiązania.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
suma=
(wpisz dwie liczby całkowite)
Podpunkt 11.4 (1 pkt)
 Podaj największe możliwe m, dla którego ilość rozwiązań dodatnich tego równania jest równa ilości rozwiązań ujemnych.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm