Podgląd testu : lo2@sp-12-funkcja-kwadratowa-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11595 ⋅ Poprawnie: 119/162 [73%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=ax^2
należy punkt o współrzędnych
(3\sqrt{2},162\sqrt{5}) .
Wyznacz współczynnik a .
Odpowiedź:
a=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11057 ⋅ Poprawnie: 399/627 [63%]
Rozwiąż
Podpunkt 2.1 (0.5 pkt)
» Wierzchołek paraboli o równaniu
y=(2+3x)(x+3) ma współrzędne
(x_w,y_w) .
Wyznacz współrzędną x_w .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11470 ⋅ Poprawnie: 95/157 [60%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
» Przesuwając wykres funkcji określonej wzorem
h(x)=x^2-8 o
k=3 jednostek
w prawo otrzymamy wykres funkcji opisanej wzorem
y=x^2+bx+c .
Wyznacz współczynniki b i c .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-11730 ⋅ Poprawnie: 27/45 [60%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Większa część zawodników klubu sportowego liczącego
79 osób,
zachorowała na grypę. Każdy zdrowy zawodnik postanowił wysłać każdemu choremu kartkę z
pozdrowieniami. Liczba wszystkich wysłanych kartek była największa możliwa.
Ilu zawodników było chorych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10958 ⋅ Poprawnie: 251/430 [58%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
«« Najmniejszą liczbą całkowitą należącą do dziedziny funkcji
f(x)=\sqrt{-x^2+\frac{13}{2}x-\frac{15}{2}}
jest
......... .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20351 ⋅ Poprawnie: 41/76 [53%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Parabola ma wierzchołek w punkcie
C=(4,578) i przecina
oś
Ox w punktach
A i
B .
Wiedząc, że P_{\triangle ABC}=4913 . Wyznacz wzór tej
paraboli w postaci kanonicznej f(x)=a(x-p)^2+q .
Podaj liczbę p .
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
q=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20357 ⋅ Poprawnie: 15/54 [27%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Dana jest funkcja
f(x)=ax^2+bx+c .
Oblicz najmniejszą i największą wartość tej funkcji w przedziale
\langle p,q\rangle .
Podaj wartośc najmniejszą.
Dane
a=1
b=\frac{2}{5}=0.40000000000000
c=\frac{64}{21}=3.04000000000000
p=-3
q=4
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Podaj wartośc największą.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pr-20100 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (1 pkt)
» Rozwiąż równanie
x^2+2ax+2x+|x+1+a|=11-2a-a^2
.
Podaj największe z rozwiązań tego równania.
Dane
a=5
Odpowiedź:
x_{max}=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj średnią arytmetyczną wszystkich rozwiązań tego równania.
Odpowiedź:
x_s=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20107 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Wyznacz te wartości parametru
m\in\mathbb{R} ,
dla których równanie
x^2-(m+a)|x|+1=0 ma cztery
różne rozwiązania.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich
końców liczbowych tych przedziałów.
Dane
a=5
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pr-30044 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Wyznacz wszystkie pary liczb
(p,q) o tej
własności, że pierwiastkami równania
x^2+px+q=0 są
liczby
p i
q .
Ile jest takich par?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Podaj najmniejszą możliwą wartość p .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.3 (1 pkt)
Podaj najmniejszą możliwą wartość q .
Odpowiedź:
q_{min}=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30073 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Wyznacz wszystkie wartości parametru
m\in\mathbb{R} ,
dla których równanie
-ax^2+4ax=m ma dwa różne
pierwiastki rzeczywiste, oba większe od
1 .
Rozwiązanie zapisz w postaci sumy przedziałów. Spośród wszystkich końców
tych przedziałów, które są liczbami, podaj ten, który jest najmniejszy.
Dane
a=6
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Spośród wszystkich końców tych przedziałów, które są liczbami, podaj ten,
który jest największy.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Rozwiąż