« Rzucono pionowo do góry kamień z prędkością początkową 10\ m/s.
Wysokość s\ [m], jaką osiągnie ten kamień po t
sekundach czasu opisuje wzór s(t)=6t-3t^2.
Podaj maksymalną wysokość jaką osiągnie ten kamień.
Odpowiedź:
s_{max}(t)=(wpisz liczbę całkowitą)
Zadanie 5.1 pkt ⋅ Numer: pp-11065 ⋅ Poprawnie: 60/107 [56%]
Funkcja kwadratowa f określona wzorem f(x)=-(x-p)^2+q
jest rosnąca w przedziale (-\infty,-3\rangle i malejąca,
w przedziale \langle -3,+\infty), a jej miejsca zerowe
x_1 i x_2 spełniają warunek
x_1\cdot x_2=-72. Wiedząc, że do wykresu funkcji
f należy punkt o współrzędnych (0,72),
wyznacz liczby p i q.
Podaj liczbę p.
Odpowiedź:
p=(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj liczbę q.
Odpowiedź:
q=(wpisz liczbę całkowitą)
Zadanie 9.2 pkt ⋅ Numer: pr-20093 ⋅ Poprawnie: 0/1 [0%]
« Równanie kwadratowe x^2+(m-8)x+m=0
ma dwa różne rozwiązania x_1 i x_2, wtedy i tylko wtedy,
gdy parametr m należy do zbioru postaci
(-\infty, p)\cup(q, +\infty).
Podaj liczby p i q.
Odpowiedzi:
p
=
(wpisz liczbę całkowitą)
q
=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Wyznacz wszystkie wartości parametru m, dla których prawdziwa jest nierówność
(x_1-x_2)^2\leqslant 2m^2-24m+64. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
min
=
(wpisz liczbę całkowitą)
max
=
(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat