Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-13-okr-i-kola-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10544 ⋅ Poprawnie: 277/457 [60%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt O jest środkiem okręgu na rysunku, w którym \alpha=104^{\circ} i \beta=112^{\circ}:

Oblicz miarę stopniową kąta \gamma.

Odpowiedź:
\gamma= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10489 ⋅ Poprawnie: 182/258 [70%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt O jest środkiem okręgu na rysunku, w którym \alpha=70^{\circ}:

Wyznacz miarę stopniową kąta \beta.

Odpowiedź:
\beta= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10536 ⋅ Poprawnie: 110/152 [72%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkt O jest środkiem okręgu, przy czym \beta=52^{\circ}:

Kąt \alpha, zaznaczony na rysunku, ma miarę:

Odpowiedzi:
A. 23^{\circ} B. 14^{\circ}
C. 19^{\circ} D. 15^{\circ}
E. 17^{\circ} F. 22^{\circ}
Zadanie 4.  1 pkt ⋅ Numer: pp-10538 ⋅ Poprawnie: 139/246 [56%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
Punkt O jest środkiem okręgu:

Wyznacz miarę stopniową kąta ACO.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pp-10523 ⋅ Poprawnie: 67/108 [62%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt O jest środkiem okręgu, a kąt \alpha ma miarę 66^{\circ}:

Wyznacz miarę stopniową kąta \beta zaznaczonego na rysunku.

Odpowiedź:
\beta= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11756 ⋅ Poprawnie: 15/39 [38%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 (1 pkt) Trójkąty ABC i ADC są wpisane w okrąg o środku S, przy czym S\in CD. Kąt \alpha ma miarę 45^{\circ}, odcinek AC długość 18\sqrt{2}:
Średnica tego okręgu ma długość:
Odpowiedzi:
A. 36 B. 27
C. 36\sqrt{2} D. 12\sqrt{2}
E. 18 F. 18\sqrt{2}
Zadanie 7.  1 pkt ⋅ Numer: pp-11654 ⋅ Poprawnie: 41/77 [53%] Rozwiąż 
Podpunkt 7.1 (0.5 pkt)
 Okręgi o_1(A, r_1) oraz o_2(B,r_2) (r_1\lessdot r_2) są styczne zewnętrznie, a odległość ich środków jest równa \frac{13}{2}. Różnica długości promieni tych okręgów jest równa \frac{1}{6}.

Oblicz r_1.

Odpowiedź:
r_1=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
 Oblicz r_2.
Odpowiedź:
r_2=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-10567 ⋅ Poprawnie: 274/453 [60%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Okręgi o_1(A, 8) i o_2(B, 14) przecinają się w dwóch punktach:

Do odcinka AB należy środek okręgu o_3(C, r_3) stycznego wewnętrznie do obu okręgów o_1 i o_2.

Oblicz długość promienia r_3 wiedząc, że |AB|=20.

Odpowiedź:
r_3= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-10476 ⋅ Poprawnie: 420/638 [65%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Dane są okręgi, w których |O_1A|=40, |O_2B|=24 i |O_1O_2|=128:

Oblicz długość odcinka O_1P.

Odpowiedź:
|O_1P|= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11649 ⋅ Poprawnie: 33/60 [55%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 W okręgu o promieniu 113 narysowano cięciwę, która znajduje się w odległości 112 od środka tego okręgu.

Oblicz długość tej cięciwy.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  1 pkt ⋅ Numer: pp-11740 ⋅ Poprawnie: 9/17 [52%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Jaką część okręgu o promieniu 11\pi stanowi jego łuk o długości 13\pi^2?
Odpowiedź:
\frac{m}{n}= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm