Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-13-okr-i-kola-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10494 ⋅ Poprawnie: 189/423 [44%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Punkt O jest środkiem okręgu na rysunku, w którym \alpha=38^{\circ}:

Wyznacz miary stopniowe kątów \beta i \gamma.

Odpowiedzi:
\beta= (wpisz liczbę całkowitą)
\gamma= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10489 ⋅ Poprawnie: 182/258 [70%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt O jest środkiem okręgu na rysunku, w którym \alpha=58^{\circ}:

Wyznacz miarę stopniową kąta \beta.

Odpowiedź:
\beta= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10500 ⋅ Poprawnie: 63/87 [72%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Dłuższa przekątna sześciokąta foremnego ma długość 2\sqrt{13}.

Oblicz pole powierzchni tego sześciokąta.

Odpowiedź:
P= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10510 ⋅ Poprawnie: 81/143 [56%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Na łuku okręgu o długości równej \frac{1}{20} długości okręgu, oparto dwa kąty: kąt wpisany w ten okrąg i kąt środkowy tego okręgu.

Wyznacz sumę miar stopniowych tych kątów.

Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11414 ⋅ Poprawnie: 56/94 [59%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Trójkąt ABC jest równoramienny o podstawie AB, odcinek CD jest średnicą okręgu oraz \alpha=39^{\circ}:

Wyznacz miarę stopniową kąta \beta.

Odpowiedź:
\beta= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10501 ⋅ Poprawnie: 31/96 [32%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
» Stosunek obwodu zacieniowanej części koła do obwodu całego koła wynosi:
Odpowiedzi:
A. \frac{4+\pi}{2\pi} B. \frac{4+\pi}{4\pi}
C. \frac{1}{4} D. \frac{3}{4}
Zadanie 7.  1 pkt ⋅ Numer: pp-11655 ⋅ Poprawnie: 25/43 [58%] Rozwiąż 
Podpunkt 7.1 (0.5 pkt)
 Okręgi o_1(A, r_1) oraz o_2(B,r_2) (r_1\lessdot r_2) są styczne wewnętrznie, a odległość ich środków jest równa \frac{7}{3}. Suma długości promieni tych okręgów jest równa \frac{14}{3}.

Oblicz r_1.

Odpowiedź:
r_1=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
 Oblicz r_2.
Odpowiedź:
r_2=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11415 ⋅ Poprawnie: 170/227 [74%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Stosunek pól powierzchni dwóch kół jest równy 192.

Wynika z tego, że promień większego z tych kół jest większy od promienia mniejszego koła:

Odpowiedzi:
A. o 8\sqrt{3} B. 8\sqrt{3} razy
C. o 192 D. 8 razy
Zadanie 9.  1 pkt ⋅ Numer: pp-10565 ⋅ Poprawnie: 113/203 [55%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dany jest okrąg o_1(S_1, 2021), przy czym S_1=(-9,-12). Okrąg o_2(S_2,2021) jest obrazem okręgu o_1 w symetrii względem osi Oy.

Wyznacz długość odcinka S_1S_2.

Odpowiedź:
|S_1S_2|= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11649 ⋅ Poprawnie: 33/60 [55%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 W okręgu o promieniu 10 narysowano cięciwę, która znajduje się w odległości 6 od środka tego okręgu.

Oblicz długość tej cięciwy.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  1 pkt ⋅ Numer: pp-11651 ⋅ Poprawnie: 19/26 [73%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Dwa promienie okręgu tworzą kąt środkowy tego okręgu o mierze 112^{\circ}. Przez końce tych promieni położone na okręgu poprowadzono styczne do tego okręgu, które przecięły się w punkcie P.

Wyznacz miarę stopniową kąta, pod którym widać ten okrąg z punktu P.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm