Podgląd testu : lo2@sp-13-okr-i-kola-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10548 ⋅ Poprawnie: 276/537 [51%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Punkt
O jest środkiem okręgu na rysunku, w którym
\alpha=46^{\circ} :
Oblicz miarę stopniową kąta \beta .
Odpowiedź:
\beta=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-10485 ⋅ Poprawnie: 469/702 [66%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Punkt
O jest środkiem okręgu opisanego na trojkącie
równoramiennym, a prosta jest styczną do tego okręgu:
Wiedząc, że \alpha=132^{\circ} , wyznacz miarę stopniową kąta \beta .
Odpowiedź:
\beta=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-10478 ⋅ Poprawnie: 49/76 [64%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
«« Kąt wpisany w okrąg o promieniu
\sqrt{5} ma miarę
36^{\circ} . Długość łuku, na którym oparty jest
ten kąt można zapisać w postaci
a\cdot \sqrt{5}\cdot \pi .
Podaj liczbę a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10513 ⋅ Poprawnie: 152/257 [59%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Punkt
O jest środkiem okręgu na rysunku, a kąt:
\alpha ma miarę
188^{\circ} :
Wyznacz miarę stopniową kąta \beta zaznaczonego na rysunku.
Odpowiedź:
\beta=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10524 ⋅ Poprawnie: 148/203 [72%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Prosta jest styczną do okręgu, a kąty
\alpha i
\beta mają miary:
\alpha=26^{\circ} oraz
\beta=60^{\circ} :
Wyznacz miarę stopniową kąta \gamma .
Odpowiedź:
\gamma=
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-10530 ⋅ Poprawnie: 110/144 [76%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Dany jest okrąg o środku w punkcie
S , w którym
a=58^{\circ} :
Oblicz sumę miar stopniowych kątów
\beta i \gamma .
Odpowiedź:
\beta+\gamma=
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-11653 ⋅ Poprawnie: 14/33 [42%]
Rozwiąż
Podpunkt 7.1 (0.5 pkt)
« Okręgi
o_1(A, 6) oraz
o_2(B,2m-3)
są styczne wewnętrznie, a odległość ich środków jest równa
10 .
Wyznacz najmniejszą wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
Wyznacz największą wartość parametru
m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-10563 ⋅ Poprawnie: 96/155 [61%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Okręgi o takich samych promieniach mają środki w punktach
M=(0, 0) i
N=(72, -65) i są wzajemnie styczne zewnętrznie.
Wyznacz długość promienia tych okręgów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 1 pkt ⋅ Numer: pp-10562 ⋅ Poprawnie: 332/471 [70%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Okręgi
o_1(O_1, 1) i
o_2(O_2,8) są styczne zewnętrznie w punkcie
S , a prosta
O_1P
jest styczną do okręgu
o_2 :
Oblicz pole powierzchni trójkąta O_1O_2P .
Odpowiedź:
Zadanie 10. 1 pkt ⋅ Numer: pp-11649 ⋅ Poprawnie: 33/60 [55%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
W okręgu o promieniu
61 narysowano cięciwę,
która znajduje się w odległości
60
od środka tego okręgu.
Oblicz długość tej cięciwy.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 11. 1 pkt ⋅ Numer: pp-11739 ⋅ Poprawnie: 28/30 [93%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Jaką część okręgu o promieniu
8
stanowi jego łuk o długości
6\pi ?
Odpowiedź:
Rozwiąż