Podgląd testu : lo2@sp-13-okr-i-kola-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10548 ⋅ Poprawnie: 276/537 [51%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Punkt
O jest środkiem okręgu na rysunku, w którym
\alpha=64^{\circ} :
Oblicz miarę stopniową kąta \beta .
Odpowiedź:
\beta=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-10486 ⋅ Poprawnie: 313/405 [77%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Punkt
O jest środkiem okręgu na rysunku:
Wiedząc, że
\alpha=40^{\circ} , wyznacz miarę stopniową kąta
\beta .
Odpowiedź:
\beta=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-10514 ⋅ Poprawnie: 185/314 [58%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Punkt
O jest środkiem okręgu na rysunku, przy czym
\beta=32^{\circ} :
Wyznacz miarę stopniową zaznaczonego na rysunku kąta \alpha .
Odpowiedź:
\alpha=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-10513 ⋅ Poprawnie: 152/257 [59%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Punkt
O jest środkiem okręgu na rysunku, a kąt:
\alpha ma miarę
224^{\circ} :
Wyznacz miarę stopniową kąta \beta zaznaczonego na rysunku.
Odpowiedź:
\beta=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10519 ⋅ Poprawnie: 27/56 [48%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Na okręgu o środku
O zaznaczono
k=12
wierzchołków wielokąta foremnego. Spośród nich wybrano trzy kolejne i narysowano kąt
jak na rysunku:
Wyznacz miarę stopniową kąta \alpha .
Odpowiedź:
\alpha=
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-10540 ⋅ Poprawnie: 52/65 [80%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« O godzinie 1020 wskazówki zegara tworzą kąt:
Odpowiedzi:
A. 160^{\circ}
B. 170^{\circ}
C. 165^{\circ}
D. 162^{\circ}
Zadanie 7. 1 pkt ⋅ Numer: pp-11653 ⋅ Poprawnie: 14/33 [42%]
Rozwiąż
Podpunkt 7.1 (0.5 pkt)
« Okręgi
o_1(A, 7) oraz
o_2(B,2m-4)
są styczne wewnętrznie, a odległość ich środków jest równa
20 .
Wyznacz najmniejszą wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
Wyznacz największą wartość parametru
m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-10567 ⋅ Poprawnie: 274/452 [60%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Okręgi
o_1(A, 3) i
o_2(B, 11) przecinają się w dwóch punktach:
Do odcinka AB należy środek okręgu
o_3(C, r_3 ) stycznego wewnętrznie do obu okręgów
o_1 i o_2 .
Oblicz długość promienia r_3 wiedząc, że
|AB|=12 .
Odpowiedź:
r_3=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-10564 ⋅ Poprawnie: 131/190 [68%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Dwa okręgi mają promienie o długości
\frac{2}{3} i
\frac{5}{3} . Mniejszy z okręgów przechodzi przez środek
większego.
Oblicz odległość między środkami tych okręgów.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 1 pkt ⋅ Numer: pp-11648 ⋅ Poprawnie: 90/141 [63%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Odcinek
AB ma długość
84
i jest cięciwą okręgu o promieniu
\frac{85}{2} .
Oblicz odległość d cięciwy AB od środka tego okręgu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-11651 ⋅ Poprawnie: 19/26 [73%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Dwa promienie okręgu tworzą kąt środkowy tego okręgu o mierze
58^{\circ} .
Przez końce tych promieni położone na okręgu poprowadzono styczne do tego okręgu, które
przecięły się w punkcie
P .
Wyznacz miarę stopniową kąta, pod którym widać ten okrąg z punktu P .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż