Podgląd testu : lo2@sp-13-okr-i-kola-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10504 ⋅ Poprawnie: 722/1039 [69%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Punkt
O jest środkiem okręgu, w którym
\alpha=23^{\circ} :
Oblicz miarę stopniową kąta \beta .
Odpowiedź:
\beta=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-10486 ⋅ Poprawnie: 313/405 [77%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Punkt
O jest środkiem okręgu na rysunku:
Wiedząc, że
\alpha=27^{\circ} , wyznacz miarę stopniową kąta
\beta .
Odpowiedź:
\beta=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-10536 ⋅ Poprawnie: 110/152 [72%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Punkt
O jest środkiem okręgu, przy czym
\beta=24^{\circ} :
Kąt \alpha , zaznaczony na rysunku, ma miarę:
Odpowiedzi:
A. 33^{\circ}
B. 39^{\circ}
C. 31^{\circ}
D. 36^{\circ}
E. 28^{\circ}
F. 29^{\circ}
Zadanie 4. 1 pkt ⋅ Numer: pp-10512 ⋅ Poprawnie: 187/251 [74%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Punkt
O na rysunku jest środkiem okręgu, a kąty mają miary
\alpha=84^{\circ} oraz
\beta=118^{\circ} :
Wyznacz miarę stopniową kąta ABC .
Odpowiedź:
|\sphericalangle ABC|=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10520 ⋅ Poprawnie: 54/108 [50%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Na okręgu zaznaczono wierzchołki
12 -kąta foremnego.
Spośród nich wybrano pięć kolejnych i narysowano kąt jak na rysunku:
Wyznacz miarę stopniową kąta \alpha .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 6. 1 pkt ⋅ Numer: pp-10534 ⋅ Poprawnie: 109/128 [85%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Punkty
A ,
B i
C leżą na okręgu o środku
O :
Wyznacz miarę stopniową zaznaczonego na rysunku wypukłego kąta środkowego
AOB .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7. 1 pkt ⋅ Numer: pp-11737 ⋅ Poprawnie: 6/10 [60%]
Rozwiąż
Podpunkt 7.1 (0.5 pkt)
Okręgi
o_1(A, r_1) oraz
o_2(B,r_2)
(
r_1\lessdot r_2 ) są styczne zewnętrznie, a odległość ich środków jest równa
35 .
Stosunek długości promieni tych okręgów jest równy
9 .
Oblicz r_1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-10563 ⋅ Poprawnie: 96/155 [61%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Okręgi o takich samych promieniach mają środki w punktach
M=(2, -9) i
N=(18, -72) i są wzajemnie styczne zewnętrznie.
Wyznacz długość promienia tych okręgów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 1 pkt ⋅ Numer: pp-10562 ⋅ Poprawnie: 332/471 [70%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Okręgi
o_1(O_1, 1) i
o_2(O_2,11) są styczne zewnętrznie w punkcie
S , a prosta
O_1P
jest styczną do okręgu
o_2 :
Oblicz pole powierzchni trójkąta O_1O_2P .
Odpowiedź:
Zadanie 10. 1 pkt ⋅ Numer: pp-11648 ⋅ Poprawnie: 90/141 [63%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Odcinek
AB ma długość
112
i jest cięciwą okręgu o promieniu
\frac{113}{2} .
Oblicz odległość d cięciwy AB od środka tego okręgu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-11740 ⋅ Poprawnie: 9/17 [52%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Jaką część okręgu o promieniu
12\pi
stanowi jego łuk o długości
7\pi^2 ?
Odpowiedź:
Rozwiąż