Podgląd testu : lo2@sp-13-okr-i-kola-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10543 ⋅ Poprawnie: 89/124 [71%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
» Czworokąt na rysunku jest kwadratem o boku długości
6\sqrt{2} , a okręgi przechodzące przez punkty
A i
C mają środki w
punktach
B i
D :
Oblicz pole powierzchni zielonej figury i zapisz wynik w postaci
m+n\cdot \pi , gdzie m,n\in\mathbb{Z} .
Podaj liczby m i n .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-10486 ⋅ Poprawnie: 313/405 [77%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Punkt
O jest środkiem okręgu na rysunku:
Wiedząc, że
\alpha=40^{\circ} , wyznacz miarę stopniową kąta
\beta .
Odpowiedź:
\beta=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-10514 ⋅ Poprawnie: 185/314 [58%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Punkt
O jest środkiem okręgu na rysunku, przy czym
\beta=32^{\circ} :
Wyznacz miarę stopniową zaznaczonego na rysunku kąta \alpha .
Odpowiedź:
\alpha=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-10538 ⋅ Poprawnie: 139/246 [56%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Punkt
O jest środkiem okręgu:
Wyznacz miarę stopniową kąta ACO .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 5. 1 pkt ⋅ Numer: pp-10521 ⋅ Poprawnie: 48/120 [40%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
«« Na okręgu zaznaczono wierzchołki
27 -kąta foremnego.
Spośród nich wybrano siedem kolejnych i narysowano kąt jak na rysunku:
Wyznacz miarę stopniową kąta \alpha .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 6. 1 pkt ⋅ Numer: pp-10487 ⋅ Poprawnie: 50/61 [81%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
W czworokącie
OBMA kąty wewnętrzne
AOB i
AMB mają równe
miary.
Wyznacz miarę stopniową kąta \alpha .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7. 1 pkt ⋅ Numer: pp-11737 ⋅ Poprawnie: 6/10 [60%]
Rozwiąż
Podpunkt 7.1 (0.5 pkt)
Okręgi
o_1(A, r_1) oraz
o_2(B,r_2)
(
r_1\lessdot r_2 ) są styczne zewnętrznie, a odległość ich środków jest równa
\frac{33}{2} .
Stosunek długości promieni tych okręgów jest równy
8 .
Oblicz r_1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-10569 ⋅ Poprawnie: 300/393 [76%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Dane są okręgi
o_1\left(A, \frac{15}{2}\right) i
o_2\left(B, \frac{9}{2}\right) , przy czym
|AB|=\frac{23}{2} .
Okręgi te:
Odpowiedzi:
A. są styczne zewnętrznie
B. są rozłączne wewnętrznie
C. są styczne wewnętrznie
D. mają dwa punkty wspólne
Zadanie 9. 1 pkt ⋅ Numer: pp-10566 ⋅ Poprawnie: 192/310 [61%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Okręgi
o_1(O_1, 6) i
o_2(O_2, 7) są styczne zewnętrznie w punkcie
S , a prosta
k
jest styczną do tych okręgów:
Oblicz długość odcinka AB .
Odpowiedź:
|AB|=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-11650 ⋅ Poprawnie: 32/55 [58%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Jaką część okręgu o promieniu
8
stanowi jego łuk o długości
4\pi ?
Odpowiedź:
Zadanie 11. 1 pkt ⋅ Numer: pp-11740 ⋅ Poprawnie: 9/17 [52%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Jaką część okręgu o promieniu
12\pi
stanowi jego łuk o długości
8\pi^2 ?
Odpowiedź:
Rozwiąż