Podgląd testu : lo2@sp-13-okr-i-kola-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10548 ⋅ Poprawnie: 276/537 [51%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Punkt
O jest środkiem okręgu na rysunku, w którym
\alpha=46^{\circ} :
Oblicz miarę stopniową kąta \beta .
Odpowiedź:
\beta=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-10539 ⋅ Poprawnie: 266/387 [68%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Punkt
O jest środkiem okręgu na rysunku, przy czym
\alpha=48^{\circ} :
Wyznacz miarę stopniową kąta \beta .
Odpowiedź:
\beta=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-10536 ⋅ Poprawnie: 110/152 [72%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Punkt
O jest środkiem okręgu, przy czym
\beta=28^{\circ} :
Kąt \alpha , zaznaczony na rysunku, ma miarę:
Odpowiedzi:
A. 27^{\circ}
B. 37^{\circ}
C. 35^{\circ}
D. 31^{\circ}
E. 29^{\circ}
F. 34^{\circ}
Zadanie 4. 1 pkt ⋅ Numer: pp-10506 ⋅ Poprawnie: 215/281 [76%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Punkt
O jest środkiem a prosta jest styczną
to tego okręgu, przy czym
\alpha=56^{\circ} :
Wyznacz miarę stopniową kąta \beta .
Odpowiedź:
\beta=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10518 ⋅ Poprawnie: 187/269 [69%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Punkt
O jest środkiem okręgu,
kąt
\alpha ma miarę
234^{\circ}
a prosta jest styczna do tego okręgu:
Wyznacz miarę stopniową kąta \beta .
Odpowiedź:
\beta=
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-10533 ⋅ Poprawnie: 119/147 [80%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Punkt
O jest środkiem okręgu:
Wyznacz miarę stopniową kąta \alpha .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7. 1 pkt ⋅ Numer: pp-11653 ⋅ Poprawnie: 14/33 [42%]
Rozwiąż
Podpunkt 7.1 (0.5 pkt)
« Okręgi
o_1(A, 2) oraz
o_2(B,2m-1)
są styczne wewnętrznie, a odległość ich środków jest równa
10 .
Wyznacz najmniejszą wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
Wyznacz największą wartość parametru
m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-10567 ⋅ Poprawnie: 274/452 [60%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Okręgi
o_1(A, 3) i
o_2(B, 5) przecinają się w dwóch punktach:
Do odcinka AB należy środek okręgu
o_3(C, r_3 ) stycznego wewnętrznie do obu okręgów
o_1 i o_2 .
Oblicz długość promienia r_3 wiedząc, że
|AB|=6 .
Odpowiedź:
r_3=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-10476 ⋅ Poprawnie: 420/638 [65%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Dane są okręgi, w których
|O_1A|=15 ,
|O_2B|=9 i
|O_1O_2|=48 :
Oblicz długość odcinka O_1P .
Odpowiedź:
|O_1P|=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-11648 ⋅ Poprawnie: 90/141 [63%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Odcinek
AB ma długość
36
i jest cięciwą okręgu o promieniu
\frac{45}{2} .
Oblicz odległość d cięciwy AB od środka tego okręgu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-11651 ⋅ Poprawnie: 19/26 [73%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Dwa promienie okręgu tworzą kąt środkowy tego okręgu o mierze
40^{\circ} .
Przez końce tych promieni położone na okręgu poprowadzono styczne do tego okręgu, które
przecięły się w punkcie
P .
Wyznacz miarę stopniową kąta, pod którym widać ten okrąg z punktu P .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż