Podgląd testu : lo2@sp-13-okr-i-kola-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10546 ⋅ Poprawnie: 630/964 [65%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Punkt
O jest środkiem okręgu na rysunku, w którym
\alpha=36^{\circ} :
Wyznacz miary stopniowe kątów \beta i
\gamma .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-10493 ⋅ Poprawnie: 275/414 [66%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
» Miara kąta wpisanego w okrąg jest o
57^{\circ}
mniejsza od miary kąta środkowego opartego na tym samym łuku.
Oblicz miarę stopniową kąta wpisanego w ten okrąg.
Odpowiedź:
\alpha=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-10514 ⋅ Poprawnie: 185/314 [58%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Punkt
O jest środkiem okręgu na rysunku, przy czym
\beta=28^{\circ} :
Wyznacz miarę stopniową zaznaczonego na rysunku kąta \alpha .
Odpowiedź:
\alpha=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-10513 ⋅ Poprawnie: 152/257 [59%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Punkt
O jest środkiem okręgu na rysunku, a kąt:
\alpha ma miarę
216^{\circ} :
Wyznacz miarę stopniową kąta \beta zaznaczonego na rysunku.
Odpowiedź:
\beta=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10521 ⋅ Poprawnie: 48/121 [39%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
«« Na okręgu zaznaczono wierzchołki
27 -kąta foremnego.
Spośród nich wybrano siedem kolejnych i narysowano kąt jak na rysunku:
Wyznacz miarę stopniową kąta \alpha .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 6. 1 pkt ⋅ Numer: pp-10532 ⋅ Poprawnie: 30/66 [45%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Punkt
O jest środkiem okręgu, przy czym
\beta=66^{\circ}
Wyznacz miarę stopniową kąta \alpha .
Odpowiedź:
\alpha=
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-11737 ⋅ Poprawnie: 6/10 [60%]
Rozwiąż
Podpunkt 7.1 (0.5 pkt)
Okręgi
o_1(A, r_1) oraz
o_2(B,r_2)
(
r_1\lessdot r_2 ) są styczne zewnętrznie, a odległość ich środków jest równa
24 .
Stosunek długości promieni tych okręgów jest równy
8 .
Oblicz r_1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-10569 ⋅ Poprawnie: 300/394 [76%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Dane są okręgi
o_1\left(A, \frac{13}{2}\right) i
o_2\left(B, 7\right) , przy czym
|AB|=11 .
Okręgi te:
Odpowiedzi:
A. mają dwa punkty wspólne
B. są rozłączne zewnętrznie
C. są styczne zewnętrznie
D. są styczne wewnętrznie
Zadanie 9. 1 pkt ⋅ Numer: pp-10476 ⋅ Poprawnie: 420/638 [65%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Dane są okręgi, w których
|O_1A|=30 ,
|O_2B|=18 i
|O_1O_2|=96 :
Oblicz długość odcinka O_1P .
Odpowiedź:
|O_1P|=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-11650 ⋅ Poprawnie: 32/56 [57%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Jaką część okręgu o promieniu
7
stanowi jego łuk o długości
7\pi ?
Odpowiedź:
Zadanie 11. 1 pkt ⋅ Numer: pp-11740 ⋅ Poprawnie: 9/17 [52%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Jaką część okręgu o promieniu
12\pi
stanowi jego łuk o długości
8\pi^2 ?
Odpowiedź:
Rozwiąż