Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-13-okr-i-kola-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10544 ⋅ Poprawnie: 277/456 [60%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt O jest środkiem okręgu na rysunku, w którym \alpha=96^{\circ} i \beta=106^{\circ}:

Oblicz miarę stopniową kąta \gamma.

Odpowiedź:
\gamma= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10493 ⋅ Poprawnie: 275/414 [66%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Miara kąta wpisanego w okrąg jest o 37^{\circ} mniejsza od miary kąta środkowego opartego na tym samym łuku.

Oblicz miarę stopniową kąta wpisanego w ten okrąg.

Odpowiedź:
\alpha= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10498 ⋅ Poprawnie: 180/281 [64%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Punkt O jest środkiem okręgu na rysunku, przy czym |OB|=|BC| i \alpha=40^{\circ}:

Wyznacz miarę stopniową kąta \beta.

Odpowiedź:
\beta= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10516 ⋅ Poprawnie: 164/225 [72%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Punkt O jest środkiem okręgu, a kąty mają miary \alpha=25^{\circ} oraz \beta=34^{\circ}:
Wyznacz miarę stopniową kąta \gamma.
Odpowiedź:
\gamma= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10517 ⋅ Poprawnie: 196/272 [72%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt O jest środkiem okręgu, przy czym \alpha=111^{\circ}:

Wyznacz miarę stopniową kąta \beta.

Odpowiedź:
\beta= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10501 ⋅ Poprawnie: 31/96 [32%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
» Stosunek obwodu zacieniowanej części koła do obwodu całego koła wynosi:
Odpowiedzi:
A. \frac{1}{4} B. \frac{4+\pi}{4\pi}
C. \frac{4+\pi}{2\pi} D. \frac{3}{4}
Zadanie 7.  1 pkt ⋅ Numer: pp-11655 ⋅ Poprawnie: 25/43 [58%] Rozwiąż 
Podpunkt 7.1 (0.5 pkt)
 Okręgi o_1(A, r_1) oraz o_2(B,r_2) (r_1\lessdot r_2) są styczne wewnętrznie, a odległość ich środków jest równa \frac{7}{6}. Suma długości promieni tych okręgów jest równa \frac{31}{6}.

Oblicz r_1.

Odpowiedź:
r_1=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
 Oblicz r_2.
Odpowiedź:
r_2=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11415 ⋅ Poprawnie: 170/227 [74%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Stosunek pól powierzchni dwóch kół jest równy 72.

Wynika z tego, że promień większego z tych kół jest większy od promienia mniejszego koła:

Odpowiedzi:
A. 6 razy B. o 6\sqrt{2}
C. 6\sqrt{2} razy D. o 72
Zadanie 9.  1 pkt ⋅ Numer: pp-10562 ⋅ Poprawnie: 332/471 [70%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Okręgi o_1(O_1, 2) i o_2(O_2,6) są styczne zewnętrznie w punkcie S, a prosta O_1P jest styczną do okręgu o_2:

Oblicz pole powierzchni trójkąta O_1O_2P.

Odpowiedź:
P_{\triangle O_1O_2P}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-11650 ⋅ Poprawnie: 32/55 [58%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Jaką część okręgu o promieniu 4 stanowi jego łuk o długości 4\pi?
Odpowiedź:
\frac{m}{n}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-11651 ⋅ Poprawnie: 19/26 [73%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Dwa promienie okręgu tworzą kąt środkowy tego okręgu o mierze 68^{\circ}. Przez końce tych promieni położone na okręgu poprowadzono styczne do tego okręgu, które przecięły się w punkcie P.

Wyznacz miarę stopniową kąta, pod którym widać ten okrąg z punktu P.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm