Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-13-okr-i-kola-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10546 ⋅ Poprawnie: 629/963 [65%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt O jest środkiem okręgu na rysunku, w którym \alpha=38^{\circ}:

Wyznacz miary stopniowe kątów \beta i \gamma.

Odpowiedzi:
\beta= (wpisz liczbę całkowitą)
\gamma= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10486 ⋅ Poprawnie: 313/405 [77%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt O jest środkiem okręgu na rysunku:
Wiedząc, że \alpha=40^{\circ}, wyznacz miarę stopniową kąta \beta.
Odpowiedź:
\beta= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10505 ⋅ Poprawnie: 178/231 [77%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkt O na rysunku jest środkiem okręgu, przy czym \alpha=66^{\circ}:

Wyznacz miarę zaznaczonego na rysunku kąta \beta.

Odpowiedź:
\beta= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10509 ⋅ Poprawnie: 39/61 [63%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 «« Kąt wpisany w okrąg o promieniu długości 18 ma miarę 20^{\circ}. Kąt ten oparty jest na łuku o długości k\cdot \pi.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10519 ⋅ Poprawnie: 27/56 [48%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Na okręgu o środku O zaznaczono k=20 wierzchołków wielokąta foremnego. Spośród nich wybrano trzy kolejne i narysowano kąt jak na rysunku:

Wyznacz miarę stopniową kąta \alpha.

Odpowiedź:
\alpha= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10532 ⋅ Poprawnie: 30/65 [46%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Punkt O jest środkiem okręgu, przy czym \beta=72^{\circ}

Wyznacz miarę stopniową kąta \alpha.

Odpowiedź:
\alpha= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-11737 ⋅ Poprawnie: 6/10 [60%] Rozwiąż 
Podpunkt 7.1 (0.5 pkt)
 Okręgi o_1(A, r_1) oraz o_2(B,r_2) (r_1\lessdot r_2) są styczne zewnętrznie, a odległość ich środków jest równa 17. Stosunek długości promieni tych okręgów jest równy 5.

Oblicz r_1.

Odpowiedź:
r_1=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
 Oblicz r_2.
Odpowiedź:
r_2=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-10567 ⋅ Poprawnie: 274/452 [60%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Okręgi o_1(A, 7) i o_2(B, 13) przecinają się w dwóch punktach:

Do odcinka AB należy środek okręgu o_3(C, r_3) stycznego wewnętrznie do obu okręgów o_1 i o_2.

Oblicz długość promienia r_3 wiedząc, że |AB|=18.

Odpowiedź:
r_3= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-10564 ⋅ Poprawnie: 131/190 [68%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dwa okręgi mają promienie o długości \frac{4}{3} i \frac{11}{6}. Mniejszy z okręgów przechodzi przez środek większego.

Oblicz odległość między środkami tych okręgów.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  1 pkt ⋅ Numer: pp-11650 ⋅ Poprawnie: 32/55 [58%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Jaką część okręgu o promieniu 8 stanowi jego łuk o długości 7\pi?
Odpowiedź:
\frac{m}{n}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-11651 ⋅ Poprawnie: 19/26 [73%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Dwa promienie okręgu tworzą kąt środkowy tego okręgu o mierze 120^{\circ}. Przez końce tych promieni położone na okręgu poprowadzono styczne do tego okręgu, które przecięły się w punkcie P.

Wyznacz miarę stopniową kąta, pod którym widać ten okrąg z punktu P.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm