Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-13-okr-i-kola-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10526 ⋅ Poprawnie: 189/274 [68%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
Dany jest okrąg o(O, r):

Oblicz miarę stopniową kąta \alpha.

Odpowiedź:
\alpha= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10542 ⋅ Poprawnie: 78/110 [70%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Pięć punktów na okręgu dzieli go na łuki o długościach 1, 2, 8, 2 i x. Kąt środkowy tego okręgu oparty na łuku o długości 1 ma miarę 20^{\circ}.

Oblicz x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10499 ⋅ Poprawnie: 189/270 [70%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Oblicz miarę stopniową zaznaczonego na rysunku kąta \gamma wiedząc, że \alpha=31^{\circ} i \beta=48^{\circ}:
.
Odpowiedź:
\gamma= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10538 ⋅ Poprawnie: 139/246 [56%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
Punkt O jest środkiem okręgu:

Wyznacz miarę stopniową kąta ACO.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pp-10524 ⋅ Poprawnie: 148/203 [72%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Prosta jest styczną do okręgu, a kąty \alpha i \beta mają miary: \alpha=25^{\circ} oraz \beta=36^{\circ}:

Wyznacz miarę stopniową kąta \gamma.

Odpowiedź:
\gamma= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10531 ⋅ Poprawnie: 98/132 [74%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Punkt O jest środkiem okręgu, przy czym \alpha=15^{\circ}:

Wyznacz miarę stopniową kąta \beta.

Odpowiedź:
\beta= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-11652 ⋅ Poprawnie: 69/116 [59%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Okręgi o_1(A, 3) oraz o_2(B,2m-4) są styczne zewnętrznie, a odległość ich środków jest równa 10.

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-10567 ⋅ Poprawnie: 274/452 [60%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Okręgi o_1(A, 7) i o_2(B, 13) przecinają się w dwóch punktach:

Do odcinka AB należy środek okręgu o_3(C, r_3) stycznego wewnętrznie do obu okręgów o_1 i o_2.

Oblicz długość promienia r_3 wiedząc, że |AB|=18.

Odpowiedź:
r_3= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-10565 ⋅ Poprawnie: 113/203 [55%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dany jest okrąg o_1(S_1, 2025), przy czym S_1=(-5,-7). Okrąg o_2(S_2,2025) jest obrazem okręgu o_1 w symetrii względem osi Oy.

Wyznacz długość odcinka S_1S_2.

Odpowiedź:
|S_1S_2|= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11648 ⋅ Poprawnie: 90/141 [63%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Odcinek AB ma długość 8 i jest cięciwą okręgu o promieniu \frac{17}{2}.

Oblicz odległość d cięciwy AB od środka tego okręgu.

Odpowiedź:
d=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-11651 ⋅ Poprawnie: 19/26 [73%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Dwa promienie okręgu tworzą kąt środkowy tego okręgu o mierze 44^{\circ}. Przez końce tych promieni położone na okręgu poprowadzono styczne do tego okręgu, które przecięły się w punkcie P.

Wyznacz miarę stopniową kąta, pod którym widać ten okrąg z punktu P.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm