Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-13-okr-i-kola-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10526 ⋅ Poprawnie: 189/274 [68%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
Dany jest okrąg o(O, r):

Oblicz miarę stopniową kąta \alpha.

Odpowiedź:
\alpha= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10485 ⋅ Poprawnie: 469/702 [66%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt O jest środkiem okręgu opisanego na trojkącie równoramiennym, a prosta jest styczną do tego okręgu:

Wiedząc, że \alpha=144^{\circ}, wyznacz miarę stopniową kąta \beta.

Odpowiedź:
\beta= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10536 ⋅ Poprawnie: 110/152 [72%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkt O jest środkiem okręgu, przy czym \beta=48^{\circ}:

Kąt \alpha, zaznaczony na rysunku, ma miarę:

Odpowiedzi:
A. 19^{\circ} B. 27^{\circ}
C. 24^{\circ} D. 25^{\circ}
E. 16^{\circ} F. 21^{\circ}
Zadanie 4.  1 pkt ⋅ Numer: pp-10509 ⋅ Poprawnie: 39/61 [63%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 «« Kąt wpisany w okrąg o promieniu długości 36 ma miarę 10^{\circ}. Kąt ten oparty jest na łuku o długości k\cdot \pi.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10520 ⋅ Poprawnie: 54/108 [50%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Na okręgu zaznaczono wierzchołki 18-kąta foremnego. Spośród nich wybrano pięć kolejnych i narysowano kąt jak na rysunku:

Wyznacz miarę stopniową kąta \alpha.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  1 pkt ⋅ Numer: pp-11445 ⋅ Poprawnie: 51/189 [26%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Trójkąt ABC jest równoramienny o podstawie AB, odcinek CD jest średnicą okręgu oraz \alpha=51^{\circ}:

Wyznacz miarę stopniową kąta \beta.

Odpowiedź:
\alpha= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-11652 ⋅ Poprawnie: 69/116 [59%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Okręgi o_1(A, 2) oraz o_2(B,2m-3) są styczne zewnętrznie, a odległość ich środków jest równa 14.

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-10569 ⋅ Poprawnie: 300/393 [76%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Dane są okręgi o_1\left(A, \frac{15}{2}\right) i o_2\left(B, 6\right), przy czym |AB|=8.

Okręgi te:

Odpowiedzi:
A. mają dwa punkty wspólne B. są rozłączne wewnętrznie
C. są styczne zewnętrznie D. są rozłączne zewnętrznie
Zadanie 9.  1 pkt ⋅ Numer: pp-10564 ⋅ Poprawnie: 131/190 [68%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dwa okręgi mają promienie o długości \frac{4}{3} i \frac{3}{2}. Mniejszy z okręgów przechodzi przez środek większego.

Oblicz odległość między środkami tych okręgów.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  1 pkt ⋅ Numer: pp-11648 ⋅ Poprawnie: 90/141 [63%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Odcinek AB ma długość 60 i jest cięciwą okręgu o promieniu \frac{61}{2}.

Oblicz odległość d cięciwy AB od środka tego okręgu.

Odpowiedź:
d=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-11651 ⋅ Poprawnie: 19/26 [73%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Dwa promienie okręgu tworzą kąt środkowy tego okręgu o mierze 86^{\circ}. Przez końce tych promieni położone na okręgu poprowadzono styczne do tego okręgu, które przecięły się w punkcie P.

Wyznacz miarę stopniową kąta, pod którym widać ten okrąg z punktu P.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm