Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-13-okr-i-kola-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10543 ⋅ Poprawnie: 89/124 [71%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Czworokąt na rysunku jest kwadratem o boku długości 4\sqrt{2}, a okręgi przechodzące przez punkty A i C mają środki w punktach B i D:

Oblicz pole powierzchni zielonej figury i zapisz wynik w postaci m+n\cdot \pi, gdzie m,n\in\mathbb{Z}.

Podaj liczby m i n.

Odpowiedzi:
m= (wpisz liczbę całkowitą)
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10492 ⋅ Poprawnie: 123/173 [71%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt O jest środkiem okręgu na rysunku, w którym: |AO|=9 oraz |AB|=9\sqrt{3}:

Wówczas:

Odpowiedzi:
A. |\sphericalangle BCA|=90^{\circ} B. |\sphericalangle BCA|=45^{\circ}
C. |\sphericalangle BOC|=60^{\circ} D. |\sphericalangle BAC|=45^{\circ}
Zadanie 3.  1 pkt ⋅ Numer: pp-10500 ⋅ Poprawnie: 63/87 [72%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Dłuższa przekątna sześciokąta foremnego ma długość 2\sqrt{7}.

Oblicz pole powierzchni tego sześciokąta.

Odpowiedź:
P= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10506 ⋅ Poprawnie: 215/281 [76%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Punkt O jest środkiem a prosta jest styczną to tego okręgu, przy czym \alpha=68^{\circ}:

Wyznacz miarę stopniową kąta \beta.

Odpowiedź:
\beta= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11414 ⋅ Poprawnie: 56/94 [59%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Trójkąt ABC jest równoramienny o podstawie AB, odcinek CD jest średnicą okręgu oraz \alpha=39^{\circ}:

Wyznacz miarę stopniową kąta \beta.

Odpowiedź:
\beta= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10532 ⋅ Poprawnie: 30/65 [46%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Punkt O jest środkiem okręgu, przy czym \beta=58^{\circ}

Wyznacz miarę stopniową kąta \alpha.

Odpowiedź:
\alpha= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-11655 ⋅ Poprawnie: 25/43 [58%] Rozwiąż 
Podpunkt 7.1 (0.5 pkt)
 Okręgi o_1(A, r_1) oraz o_2(B,r_2) (r_1\lessdot r_2) są styczne wewnętrznie, a odległość ich środków jest równa \frac{1}{2}. Suma długości promieni tych okręgów jest równa \frac{25}{6}.

Oblicz r_1.

Odpowiedź:
r_1=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
 Oblicz r_2.
Odpowiedź:
r_2=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11102 ⋅ Poprawnie: 26/118 [22%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 W okrąg o promieniu długości 30 wpisano kąt środkowy oparty na łuku długości równej 25% długości całego okręgu. Następnie w ten kąt środkowy wpisano okrąg.

Oblicz długość promienia tego okręgu.

Odpowiedź:
r= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10566 ⋅ Poprawnie: 192/310 [61%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Okręgi o_1(O_1, 3) i o_2(O_2, 5) są styczne zewnętrznie w punkcie S, a prosta k jest styczną do tych okręgów:

Oblicz długość odcinka AB.

Odpowiedź:
|AB|= \cdot
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-11648 ⋅ Poprawnie: 90/141 [63%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Odcinek AB ma długość 24 i jest cięciwą okręgu o promieniu \frac{25}{2}.

Oblicz odległość d cięciwy AB od środka tego okręgu.

Odpowiedź:
d=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-11740 ⋅ Poprawnie: 9/17 [52%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Jaką część okręgu o promieniu 8\pi stanowi jego łuk o długości 7\pi^2?
Odpowiedź:
\frac{m}{n}= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm