Podgląd testu : lo2@sp-13-okr-i-kola-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10544 ⋅ Poprawnie: 277/456 [60%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Punkt
O jest środkiem okręgu na rysunku, w którym
\alpha=96^{\circ} i
\beta=108^{\circ} :
Oblicz miarę stopniową kąta \gamma .
Odpowiedź:
\gamma=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-10491 ⋅ Poprawnie: 56/75 [74%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« W kąt
\alpha o mierze
54^{\circ} wpisano okrąg o środku
O styczny do ramion kąta w punktach
A i
B .
Wyznacz miarę stopniową mniejszego z kątów środkowych okręgu AOB .
Odpowiedź:
|\sphericalangle AOB|=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-10495 ⋅ Poprawnie: 129/185 [69%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
» Długości przyprostokątnych trójkąta prostokątnego są równe
55 i
48 .
Oblicz długość środkowej tego trójkąta poprowadzonej z wierzchołka kąta prostego.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10508 ⋅ Poprawnie: 61/107 [57%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Kąt
\alpha wpisany w okrąg o promieniu długości
15
oparty jest na łuku o długości
5\pi .
Wyznacz miarę tego kąta.
Odpowiedź:
\alpha=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10519 ⋅ Poprawnie: 27/56 [48%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Na okręgu o środku
O zaznaczono
k=24
wierzchołków wielokąta foremnego. Spośród nich wybrano trzy kolejne i narysowano kąt
jak na rysunku:
Wyznacz miarę stopniową kąta \alpha .
Odpowiedź:
\alpha=
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-10545 ⋅ Poprawnie: 81/112 [72%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Punkt
O jest środkiem okręgu, a prosta
k styczną do tego okręgu w punkcie
A :
.
Wyznacz miarę stopniową kąta \alpha .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7. 1 pkt ⋅ Numer: pp-11654 ⋅ Poprawnie: 41/77 [53%]
Rozwiąż
Podpunkt 7.1 (0.5 pkt)
Okręgi
o_1(A, r_1) oraz
o_2(B,r_2)
(
r_1\lessdot r_2 ) są styczne zewnętrznie, a odległość ich środków jest równa
\frac{13}{3} .
Różnica długości promieni tych okręgów jest równa
\frac{2}{3} .
Oblicz r_1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-10569 ⋅ Poprawnie: 300/393 [76%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Dane są okręgi
o_1\left(A, \frac{17}{2}\right) i
o_2\left(B, 4\right) , przy czym
|AB|=\frac{15}{2} .
Okręgi te:
Odpowiedzi:
A. są rozłączne zewnętrznie
B. są styczne wewnętrznie
C. mają dwa punkty wspólne
D. są styczne zewnętrznie
Zadanie 9. 1 pkt ⋅ Numer: pp-10566 ⋅ Poprawnie: 192/310 [61%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Okręgi
o_1(O_1, 3) i
o_2(O_2, 7) są styczne zewnętrznie w punkcie
S , a prosta
k
jest styczną do tych okręgów:
Oblicz długość odcinka AB .
Odpowiedź:
|AB|=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-11649 ⋅ Poprawnie: 33/60 [55%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
W okręgu o promieniu
73 narysowano cięciwę,
która znajduje się w odległości
48
od środka tego okręgu.
Oblicz długość tej cięciwy.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 11. 1 pkt ⋅ Numer: pp-11739 ⋅ Poprawnie: 28/30 [93%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Jaką część okręgu o promieniu
4
stanowi jego łuk o długości
4\pi ?
Odpowiedź:
Rozwiąż