Podgląd testu : lo2@sp-13-okr-i-kola-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10504 ⋅ Poprawnie: 722/1039 [69%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Punkt
O jest środkiem okręgu, w którym
\alpha=29^{\circ} :
Oblicz miarę stopniową kąta \beta .
Odpowiedź:
\beta=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-10486 ⋅ Poprawnie: 313/405 [77%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Punkt
O jest środkiem okręgu na rysunku:
Wiedząc, że
\alpha=32^{\circ} , wyznacz miarę stopniową kąta
\beta .
Odpowiedź:
\beta=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-10500 ⋅ Poprawnie: 63/87 [72%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Dłuższa przekątna sześciokąta foremnego ma długość
2\sqrt{7} .
Oblicz pole powierzchni tego sześciokąta.
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-10509 ⋅ Poprawnie: 39/61 [63%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
«« Kąt wpisany w okrąg o promieniu długości
20 ma miarę
9^{\circ} . Kąt ten oparty jest na łuku o długości
k\cdot \pi .
Wyznacz liczbę k .
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10523 ⋅ Poprawnie: 67/107 [62%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Punkt
O jest środkiem okręgu, a kąt
\alpha
ma miarę
57^{\circ} :
Wyznacz miarę stopniową kąta \beta zaznaczonego na rysunku.
Odpowiedź:
\beta=
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-10540 ⋅ Poprawnie: 52/65 [80%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« O godzinie 1020 wskazówki zegara tworzą kąt:
Odpowiedzi:
A. 165^{\circ}
B. 170^{\circ}
C. 160^{\circ}
D. 162^{\circ}
Zadanie 7. 1 pkt ⋅ Numer: pp-11655 ⋅ Poprawnie: 25/43 [58%]
Rozwiąż
Podpunkt 7.1 (0.5 pkt)
Okręgi
o_1(A, r_1) oraz
o_2(B,r_2)
(
r_1\lessdot r_2 ) są styczne wewnętrznie, a odległość ich środków jest równa
\frac{1}{3} .
Suma długości promieni tych okręgów jest równa
\frac{20}{3} .
Oblicz r_1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-10563 ⋅ Poprawnie: 96/155 [61%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Okręgi o takich samych promieniach mają środki w punktach
M=(1, -1) i
N=(7, -9) i są wzajemnie styczne zewnętrznie.
Wyznacz długość promienia tych okręgów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 1 pkt ⋅ Numer: pp-10566 ⋅ Poprawnie: 192/310 [61%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Okręgi
o_1(O_1, 3) i
o_2(O_2, 8) są styczne zewnętrznie w punkcie
S , a prosta
k
jest styczną do tych okręgów:
Oblicz długość odcinka AB .
Odpowiedź:
|AB|=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-11649 ⋅ Poprawnie: 33/60 [55%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
W okręgu o promieniu
10 narysowano cięciwę,
która znajduje się w odległości
6
od środka tego okręgu.
Oblicz długość tej cięciwy.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 11. 1 pkt ⋅ Numer: pp-11740 ⋅ Poprawnie: 9/17 [52%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Jaką część okręgu o promieniu
5\pi
stanowi jego łuk o długości
3\pi^2 ?
Odpowiedź:
Rozwiąż