Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-13-okr-i-kola-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10494 ⋅ Poprawnie: 189/423 [44%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Punkt O jest środkiem okręgu na rysunku, w którym \alpha=56^{\circ}:

Wyznacz miary stopniowe kątów \beta i \gamma.

Odpowiedzi:
\beta= (wpisz liczbę całkowitą)
\gamma= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10489 ⋅ Poprawnie: 182/258 [70%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt O jest środkiem okręgu na rysunku, w którym \alpha=76^{\circ}:

Wyznacz miarę stopniową kąta \beta.

Odpowiedź:
\beta= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10505 ⋅ Poprawnie: 178/231 [77%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkt O na rysunku jest środkiem okręgu, przy czym \alpha=82^{\circ}:

Wyznacz miarę zaznaczonego na rysunku kąta \beta.

Odpowiedź:
\beta= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10507 ⋅ Poprawnie: 73/100 [73%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Suma miar kąta środkowego okręgu i kąta wpisanego w ten okrąg, opartego są na tym samym łuku jest równa 192.

Oblicz miarę kąta środkowego.

Odpowiedź:
\alpha= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10524 ⋅ Poprawnie: 148/203 [72%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Prosta jest styczną do okręgu, a kąty \alpha i \beta mają miary: \alpha=56^{\circ} oraz \beta=28^{\circ}:

Wyznacz miarę stopniową kąta \gamma.

Odpowiedź:
\gamma= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10529 ⋅ Poprawnie: 63/98 [64%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Punkt O jest środkiem okręgu oraz \alpha=47^{\circ} i \beta=13^{\circ}:

Wyznacz miarę stopniopwą kąta \gamma.

Odpowiedź:
\gamma= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-11654 ⋅ Poprawnie: 41/77 [53%] Rozwiąż 
Podpunkt 7.1 (0.5 pkt)
 Okręgi o_1(A, r_1) oraz o_2(B,r_2) (r_1\lessdot r_2) są styczne zewnętrznie, a odległość ich środków jest równa \frac{16}{3}. Różnica długości promieni tych okręgów jest równa \frac{2}{3}.

Oblicz r_1.

Odpowiedź:
r_1=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
 Oblicz r_2.
Odpowiedź:
r_2=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11738 ⋅ Poprawnie: 34/52 [65%] Rozwiąż 
Podpunkt 8.1 (0.5 pkt)
 Okręgi o_1(A, r_1) oraz o_2(B,r_2) (r_1\lessdot r_2) są styczne wewnętrznie, a odległość ich środków jest równa 4. Stosunek długości promieni tych okręgów jest równy 3.

Oblicz r_1.

Odpowiedź:
r_1=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (0.5 pkt)
 Oblicz r_2.
Odpowiedź:
r_2=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10566 ⋅ Poprawnie: 192/310 [61%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Okręgi o_1(O_1, 6) i o_2(O_2, 8) są styczne zewnętrznie w punkcie S, a prosta k jest styczną do tych okręgów:

Oblicz długość odcinka AB.

Odpowiedź:
|AB|= \cdot
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-11649 ⋅ Poprawnie: 33/60 [55%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 W okręgu o promieniu 85 narysowano cięciwę, która znajduje się w odległości 36 od środka tego okręgu.

Oblicz długość tej cięciwy.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  1 pkt ⋅ Numer: pp-11739 ⋅ Poprawnie: 28/30 [93%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Jaką część okręgu o promieniu 3 stanowi jego łuk o długości 4\pi?
Odpowiedź:
\frac{m}{n}= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm