Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-13-okr-i-kola-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10543 ⋅ Poprawnie: 89/124 [71%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Czworokąt na rysunku jest kwadratem o boku długości 4\sqrt{2}, a okręgi przechodzące przez punkty A i C mają środki w punktach B i D:

Oblicz pole powierzchni zielonej figury i zapisz wynik w postaci m+n\cdot \pi, gdzie m,n\in\mathbb{Z}.

Podaj liczby m i n.

Odpowiedzi:
m= (wpisz liczbę całkowitą)
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10486 ⋅ Poprawnie: 313/405 [77%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt O jest środkiem okręgu na rysunku:
Wiedząc, że \alpha=33^{\circ}, wyznacz miarę stopniową kąta \beta.
Odpowiedź:
\beta= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10499 ⋅ Poprawnie: 189/270 [70%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Oblicz miarę stopniową zaznaczonego na rysunku kąta \gamma wiedząc, że \alpha=34^{\circ} i \beta=52^{\circ}:
.
Odpowiedź:
\gamma= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10513 ⋅ Poprawnie: 152/257 [59%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Punkt O jest środkiem okręgu na rysunku, a kąt: \alpha ma miarę 202^{\circ}:

Wyznacz miarę stopniową kąta \beta zaznaczonego na rysunku.

Odpowiedź:
\beta= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10523 ⋅ Poprawnie: 67/107 [62%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt O jest środkiem okręgu, a kąt \alpha ma miarę 58^{\circ}:

Wyznacz miarę stopniową kąta \beta zaznaczonego na rysunku.

Odpowiedź:
\beta= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10529 ⋅ Poprawnie: 63/98 [64%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Punkt O jest środkiem okręgu oraz \alpha=31^{\circ} i \beta=22^{\circ}:

Wyznacz miarę stopniopwą kąta \gamma.

Odpowiedź:
\gamma= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-11654 ⋅ Poprawnie: 41/77 [53%] Rozwiąż 
Podpunkt 7.1 (0.5 pkt)
 Okręgi o_1(A, r_1) oraz o_2(B,r_2) (r_1\lessdot r_2) są styczne zewnętrznie, a odległość ich środków jest równa \frac{13}{3}. Różnica długości promieni tych okręgów jest równa \frac{1}{3}.

Oblicz r_1.

Odpowiedź:
r_1=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
 Oblicz r_2.
Odpowiedź:
r_2=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-10569 ⋅ Poprawnie: 300/393 [76%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Dane są okręgi o_1\left(A, 5\right) i o_2\left(B, 6\right), przy czym |AB|=6.

Okręgi te:

Odpowiedzi:
A. są styczne zewnętrznie B. są rozłączne zewnętrznie
C. są rozłączne wewnętrznie D. mają dwa punkty wspólne
Zadanie 9.  1 pkt ⋅ Numer: pp-10565 ⋅ Poprawnie: 113/203 [55%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dany jest okrąg o_1(S_1, 2020), przy czym S_1=(-8,-10). Okrąg o_2(S_2,2020) jest obrazem okręgu o_1 w symetrii względem osi Oy.

Wyznacz długość odcinka S_1S_2.

Odpowiedź:
|S_1S_2|= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11648 ⋅ Poprawnie: 90/141 [63%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Odcinek AB ma długość 4 i jest cięciwą okręgu o promieniu \frac{5}{2}.

Oblicz odległość d cięciwy AB od środka tego okręgu.

Odpowiedź:
d=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-11739 ⋅ Poprawnie: 28/30 [93%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Jaką część okręgu o promieniu 6 stanowi jego łuk o długości 2\pi?
Odpowiedź:
\frac{m}{n}= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm