Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-13-okr-i-kola-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10526 ⋅ Poprawnie: 189/274 [68%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
Dany jest okrąg o(O, r):

Oblicz miarę stopniową kąta \alpha.

Odpowiedź:
\alpha= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10539 ⋅ Poprawnie: 266/387 [68%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt O jest środkiem okręgu na rysunku, przy czym \alpha=51^{\circ}:

Wyznacz miarę stopniową kąta \beta.

Odpowiedź:
\beta= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10536 ⋅ Poprawnie: 110/152 [72%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkt O jest środkiem okręgu, przy czym \beta=36^{\circ}:

Kąt \alpha, zaznaczony na rysunku, ma miarę:

Odpowiedzi:
A. 30^{\circ} B. 33^{\circ}
C. 23^{\circ} D. 22^{\circ}
E. 25^{\circ} F. 27^{\circ}
Zadanie 4.  1 pkt ⋅ Numer: pp-10510 ⋅ Poprawnie: 81/143 [56%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Na łuku okręgu o długości równej \frac{1}{8} długości okręgu, oparto dwa kąty: kąt wpisany w ten okrąg i kąt środkowy tego okręgu.

Wyznacz sumę miar stopniowych tych kątów.

Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10524 ⋅ Poprawnie: 148/203 [72%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Prosta jest styczną do okręgu, a kąty \alpha i \beta mają miary: \alpha=35^{\circ} oraz \beta=52^{\circ}:

Wyznacz miarę stopniową kąta \gamma.

Odpowiedź:
\gamma= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10545 ⋅ Poprawnie: 81/112 [72%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
Punkt O jest środkiem okręgu, a prosta k styczną do tego okręgu w punkcie A:
.

Wyznacz miarę stopniową kąta \alpha.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  1 pkt ⋅ Numer: pp-11737 ⋅ Poprawnie: 6/10 [60%] Rozwiąż 
Podpunkt 7.1 (0.5 pkt)
 Okręgi o_1(A, r_1) oraz o_2(B,r_2) (r_1\lessdot r_2) są styczne zewnętrznie, a odległość ich środków jest równa \frac{28}{3}. Stosunek długości promieni tych okręgów jest równy 3.

Oblicz r_1.

Odpowiedź:
r_1=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
 Oblicz r_2.
Odpowiedź:
r_2=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11738 ⋅ Poprawnie: 34/52 [65%] Rozwiąż 
Podpunkt 8.1 (0.5 pkt)
 Okręgi o_1(A, r_1) oraz o_2(B,r_2) (r_1\lessdot r_2) są styczne wewnętrznie, a odległość ich środków jest równa \frac{16}{3}. Stosunek długości promieni tych okręgów jest równy 5.

Oblicz r_1.

Odpowiedź:
r_1=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (0.5 pkt)
 Oblicz r_2.
Odpowiedź:
r_2=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-11102 ⋅ Poprawnie: 26/118 [22%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 W okrąg o promieniu długości 24 wpisano kąt środkowy oparty na łuku długości równej 25% długości całego okręgu. Następnie w ten kąt środkowy wpisano okrąg.

Oblicz długość promienia tego okręgu.

Odpowiedź:
r= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-11649 ⋅ Poprawnie: 33/60 [55%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 W okręgu o promieniu 50 narysowano cięciwę, która znajduje się w odległości 14 od środka tego okręgu.

Oblicz długość tej cięciwy.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  1 pkt ⋅ Numer: pp-11651 ⋅ Poprawnie: 19/26 [73%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Dwa promienie okręgu tworzą kąt środkowy tego okręgu o mierze 86^{\circ}. Przez końce tych promieni położone na okręgu poprowadzono styczne do tego okręgu, które przecięły się w punkcie P.

Wyznacz miarę stopniową kąta, pod którym widać ten okrąg z punktu P.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm