Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-13-okr-i-kola-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10482 ⋅ Poprawnie: 488/653 [74%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Kąt środkowy okręgu \alpha i kąt wpisany w ten okrąg są oparte na tym samym łuku. Suma ich miar jest równa 234^{\circ}.

Jaka jest miara stopniowa kąta środkowego?

Odpowiedź:
\alpha= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10484 ⋅ Poprawnie: 167/224 [74%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz miarę stopniową kąta środkowego opartego na łuku, którego długość jest równa \frac{3}{4} długości okręgu.
Odpowiedź:
\alpha= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10536 ⋅ Poprawnie: 110/152 [72%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkt O jest środkiem okręgu, przy czym \beta=54^{\circ}:

Kąt \alpha, zaznaczony na rysunku, ma miarę:

Odpowiedzi:
A. 22^{\circ} B. 13^{\circ}
C. 14^{\circ} D. 18^{\circ}
E. 24^{\circ} F. 16^{\circ}
Zadanie 4.  1 pkt ⋅ Numer: pp-10508 ⋅ Poprawnie: 61/107 [57%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Kąt \alpha wpisany w okrąg o promieniu długości 18 oparty jest na łuku o długości 8\pi.

Wyznacz miarę tego kąta.

Odpowiedź:
\alpha= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10525 ⋅ Poprawnie: 58/101 [57%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt O jest środkiem okręgu, przy czym \alpha=166^{\circ}:

Wyznacz miarę stopniową kąta \beta.

Odpowiedź:
\beta= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10529 ⋅ Poprawnie: 63/98 [64%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Punkt O jest środkiem okręgu oraz \alpha=44^{\circ} i \beta=16^{\circ}:

Wyznacz miarę stopniopwą kąta \gamma.

Odpowiedź:
\gamma= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-11655 ⋅ Poprawnie: 25/43 [58%] Rozwiąż 
Podpunkt 7.1 (0.5 pkt)
 Okręgi o_1(A, r_1) oraz o_2(B,r_2) (r_1\lessdot r_2) są styczne wewnętrznie, a odległość ich środków jest równa \frac{1}{3}. Suma długości promieni tych okręgów jest równa \frac{10}{3}.

Oblicz r_1.

Odpowiedź:
r_1=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
 Oblicz r_2.
Odpowiedź:
r_2=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11102 ⋅ Poprawnie: 26/118 [22%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 W okrąg o promieniu długości 50 wpisano kąt środkowy oparty na łuku długości równej 25% długości całego okręgu. Następnie w ten kąt środkowy wpisano okrąg.

Oblicz długość promienia tego okręgu.

Odpowiedź:
r= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10565 ⋅ Poprawnie: 113/203 [55%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dany jest okrąg o_1(S_1, 2021), przy czym S_1=(-13,-6). Okrąg o_2(S_2,2021) jest obrazem okręgu o_1 w symetrii względem osi Oy.

Wyznacz długość odcinka S_1S_2.

Odpowiedź:
|S_1S_2|= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11649 ⋅ Poprawnie: 33/60 [55%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 W okręgu o promieniu 73 narysowano cięciwę, która znajduje się w odległości 48 od środka tego okręgu.

Oblicz długość tej cięciwy.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  1 pkt ⋅ Numer: pp-11651 ⋅ Poprawnie: 19/26 [73%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Dwa promienie okręgu tworzą kąt środkowy tego okręgu o mierze 40^{\circ}. Przez końce tych promieni położone na okręgu poprowadzono styczne do tego okręgu, które przecięły się w punkcie P.

Wyznacz miarę stopniową kąta, pod którym widać ten okrąg z punktu P.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm