Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-13-okr-i-kola-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10494 ⋅ Poprawnie: 186/399 [46%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Punkt O jest środkiem okręgu na rysunku, w którym \alpha=28^{\circ}:

Wyznacz miary stopniowe kątów \beta i \gamma.

Odpowiedzi:
\beta= (wpisz liczbę całkowitą)
\gamma= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10484 ⋅ Poprawnie: 167/224 [74%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz miarę stopniową kąta środkowego opartego na łuku, którego długość jest równa \frac{1}{9} długości okręgu.
Odpowiedź:
\alpha= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10495 ⋅ Poprawnie: 129/185 [69%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Długości przyprostokątnych trójkąta prostokątnego są równe 24 i 70.

Oblicz długość środkowej tego trójkąta poprowadzonej z wierzchołka kąta prostego.

Odpowiedź:
d=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10538 ⋅ Poprawnie: 139/246 [56%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
Punkt O jest środkiem okręgu:

Wyznacz miarę stopniową kąta ACO.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pp-10521 ⋅ Poprawnie: 48/120 [40%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 «« Na okręgu zaznaczono wierzchołki 24-kąta foremnego. Spośród nich wybrano siedem kolejnych i narysowano kąt jak na rysunku:

Wyznacz miarę stopniową kąta \alpha.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  1 pkt ⋅ Numer: pp-11513 ⋅ Poprawnie: 456/830 [54%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 (1 pkt) Punkt O jest środkiem okręgu na rysunku, a kąt \alpha ma miarę 26^{\circ}:

Wyznacz miarę stopniową kąta \beta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  1 pkt ⋅ Numer: pp-11652 ⋅ Poprawnie: 69/116 [59%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Okręgi o_1(A, 10) oraz o_2(B,2m-1) są styczne zewnętrznie, a odległość ich środków jest równa 12.

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11738 ⋅ Poprawnie: 34/52 [65%] Rozwiąż 
Podpunkt 8.1 (0.5 pkt)
 Okręgi o_1(A, r_1) oraz o_2(B,r_2) (r_1\lessdot r_2) są styczne wewnętrznie, a odległość ich środków jest równa \frac{9}{2}. Stosunek długości promieni tych okręgów jest równy 4.

Oblicz r_1.

Odpowiedź:
r_1=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (0.5 pkt)
 Oblicz r_2.
Odpowiedź:
r_2=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10476 ⋅ Poprawnie: 420/638 [65%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Dane są okręgi, w których |O_1A|=15, |O_2B|=9 i |O_1O_2|=48:

Oblicz długość odcinka O_1P.

Odpowiedź:
|O_1P|= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11649 ⋅ Poprawnie: 33/60 [55%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 W okręgu o promieniu 74 narysowano cięciwę, która znajduje się w odległości 70 od środka tego okręgu.

Oblicz długość tej cięciwy.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  1 pkt ⋅ Numer: pp-11739 ⋅ Poprawnie: 28/30 [93%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Jaką część okręgu o promieniu 10 stanowi jego łuk o długości 3\pi?
Odpowiedź:
\frac{m}{n}= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm