Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-13-okr-i-kola-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10547 ⋅ Poprawnie: 663/914 [72%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt O jest środkiem okręgu na rysunku, w którym \beta=128^{\circ} i \gamma=27^{\circ}:

Obicz miarę stopniową kąta \alpha.

Odpowiedź:
\alpha= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10485 ⋅ Poprawnie: 469/702 [66%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt O jest środkiem okręgu opisanego na trojkącie równoramiennym, a prosta jest styczną do tego okręgu:

Wiedząc, że \alpha=148^{\circ}, wyznacz miarę stopniową kąta \beta.

Odpowiedź:
\beta= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10478 ⋅ Poprawnie: 49/76 [64%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 «« Kąt wpisany w okrąg o promieniu \sqrt{3} ma miarę 10^{\circ}. Długość łuku, na którym oparty jest ten kąt można zapisać w postaci a\cdot \sqrt{3}\cdot \pi.

Podaj liczbę a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10509 ⋅ Poprawnie: 39/61 [63%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 «« Kąt wpisany w okrąg o promieniu długości 45 ma miarę 52^{\circ}. Kąt ten oparty jest na łuku o długości k\cdot \pi.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10521 ⋅ Poprawnie: 48/120 [40%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 «« Na okręgu zaznaczono wierzchołki 16-kąta foremnego. Spośród nich wybrano siedem kolejnych i narysowano kąt jak na rysunku:

Wyznacz miarę stopniową kąta \alpha.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  1 pkt ⋅ Numer: pp-10530 ⋅ Poprawnie: 110/144 [76%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Dany jest okrąg o środku w punkcie S, w którym a=84^{\circ}:

Oblicz sumę miar stopniowych kątów \beta i \gamma.

Odpowiedź:
\beta+\gamma= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-11654 ⋅ Poprawnie: 41/77 [53%] Rozwiąż 
Podpunkt 7.1 (0.5 pkt)
 Okręgi o_1(A, r_1) oraz o_2(B,r_2) (r_1\lessdot r_2) są styczne zewnętrznie, a odległość ich środków jest równa \frac{16}{3}. Różnica długości promieni tych okręgów jest równa \frac{4}{3}.

Oblicz r_1.

Odpowiedź:
r_1=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
 Oblicz r_2.
Odpowiedź:
r_2=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-10563 ⋅ Poprawnie: 96/155 [61%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Okręgi o takich samych promieniach mają środki w punktach M=(-5, -5) i N=(43, -60) i są wzajemnie styczne zewnętrznie.

Wyznacz długość promienia tych okręgów.

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10566 ⋅ Poprawnie: 192/310 [61%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Okręgi o_1(O_1, 3) i o_2(O_2, 5) są styczne zewnętrznie w punkcie S, a prosta k jest styczną do tych okręgów:

Oblicz długość odcinka AB.

Odpowiedź:
|AB|= \cdot
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-11648 ⋅ Poprawnie: 90/141 [63%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Odcinek AB ma długość 12 i jest cięciwą okręgu o promieniu \frac{13}{2}.

Oblicz odległość d cięciwy AB od środka tego okręgu.

Odpowiedź:
d=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-11651 ⋅ Poprawnie: 19/26 [73%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Dwa promienie okręgu tworzą kąt środkowy tego okręgu o mierze 46^{\circ}. Przez końce tych promieni położone na okręgu poprowadzono styczne do tego okręgu, które przecięły się w punkcie P.

Wyznacz miarę stopniową kąta, pod którym widać ten okrąg z punktu P.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm