Podgląd testu : lo2@sp-13-okr-i-kola-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10546 ⋅ Poprawnie: 629/963 [65%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Punkt
O jest środkiem okręgu na rysunku, w którym
\alpha=24^{\circ} :
Wyznacz miary stopniowe kątów \beta i
\gamma .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-10542 ⋅ Poprawnie: 78/110 [70%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Pięć punktów na okręgu dzieli go na łuki o długościach
1 ,
3 ,
5 ,
5 i
x . Kąt środkowy tego okręgu oparty na łuku o długości
1 ma miarę
8^{\circ} .
Oblicz x .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-10499 ⋅ Poprawnie: 189/270 [70%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Oblicz miarę stopniową zaznaczonego na rysunku kąta
\gamma wiedząc,
że
\alpha=30^{\circ} i
\beta=50^{\circ} :
.
Odpowiedź:
\gamma=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-10509 ⋅ Poprawnie: 39/61 [63%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
«« Kąt wpisany w okrąg o promieniu długości
32 ma miarę
45^{\circ} . Kąt ten oparty jest na łuku o długości
k\cdot \pi .
Wyznacz liczbę k .
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10519 ⋅ Poprawnie: 27/56 [48%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Na okręgu o środku
O zaznaczono
k=5
wierzchołków wielokąta foremnego. Spośród nich wybrano trzy kolejne i narysowano kąt
jak na rysunku:
Wyznacz miarę stopniową kąta \alpha .
Odpowiedź:
\alpha=
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-10533 ⋅ Poprawnie: 119/147 [80%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Punkt
O jest środkiem okręgu:
Wyznacz miarę stopniową kąta \alpha .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7. 1 pkt ⋅ Numer: pp-11653 ⋅ Poprawnie: 14/33 [42%]
Rozwiąż
Podpunkt 7.1 (0.5 pkt)
« Okręgi
o_1(A, 5) oraz
o_2(B,2m-2)
są styczne wewnętrznie, a odległość ich środków jest równa
16 .
Wyznacz najmniejszą wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
Wyznacz największą wartość parametru
m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-11738 ⋅ Poprawnie: 34/52 [65%]
Rozwiąż
Podpunkt 8.1 (0.5 pkt)
Okręgi
o_1(A, r_1) oraz
o_2(B,r_2)
(
r_1\lessdot r_2 ) są styczne wewnętrznie, a odległość ich środków jest równa
\frac{26}{3} .
Stosunek długości promieni tych okręgów jest równy
5 .
Oblicz r_1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 1 pkt ⋅ Numer: pp-10562 ⋅ Poprawnie: 332/471 [70%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Okręgi
o_1(O_1, 1) i
o_2(O_2,6) są styczne zewnętrznie w punkcie
S , a prosta
O_1P
jest styczną do okręgu
o_2 :
Oblicz pole powierzchni trójkąta O_1O_2P .
Odpowiedź:
Zadanie 10. 1 pkt ⋅ Numer: pp-11648 ⋅ Poprawnie: 90/141 [63%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Odcinek
AB ma długość
12
i jest cięciwą okręgu o promieniu
\frac{13}{2} .
Oblicz odległość d cięciwy AB od środka tego okręgu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-11651 ⋅ Poprawnie: 19/26 [73%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Dwa promienie okręgu tworzą kąt środkowy tego okręgu o mierze
66^{\circ} .
Przez końce tych promieni położone na okręgu poprowadzono styczne do tego okręgu, które
przecięły się w punkcie
P .
Wyznacz miarę stopniową kąta, pod którym widać ten okrąg z punktu P .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż