Podgląd testu : lo2@sp-13-okr-i-kola-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10494 ⋅ Poprawnie: 188/422 [44%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Punkt
O jest środkiem okręgu na rysunku,
w którym
\alpha=32^{\circ} :
Wyznacz miary stopniowe kątów \beta i \gamma .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-10486 ⋅ Poprawnie: 313/405 [77%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Punkt
O jest środkiem okręgu na rysunku:
Wiedząc, że
\alpha=32^{\circ} , wyznacz miarę stopniową kąta
\beta .
Odpowiedź:
\beta=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-10505 ⋅ Poprawnie: 178/231 [77%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Punkt
O na rysunku jest środkiem okręgu, przy czym
\alpha=36^{\circ} :
Wyznacz miarę zaznaczonego na rysunku kąta \beta .
Odpowiedź:
\beta=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-10508 ⋅ Poprawnie: 61/107 [57%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Kąt
\alpha wpisany w okrąg o promieniu długości
18
oparty jest na łuku o długości
4\pi .
Wyznacz miarę tego kąta.
Odpowiedź:
\alpha=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10518 ⋅ Poprawnie: 187/269 [69%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Punkt
O jest środkiem okręgu,
kąt
\alpha ma miarę
246^{\circ}
a prosta jest styczna do tego okręgu:
Wyznacz miarę stopniową kąta \beta .
Odpowiedź:
\beta=
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-10530 ⋅ Poprawnie: 110/144 [76%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Dany jest okrąg o środku w punkcie
S , w którym
a=66^{\circ} :
Oblicz sumę miar stopniowych kątów
\beta i \gamma .
Odpowiedź:
\beta+\gamma=
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-11654 ⋅ Poprawnie: 41/77 [53%]
Rozwiąż
Podpunkt 7.1 (0.5 pkt)
Okręgi
o_1(A, r_1) oraz
o_2(B,r_2)
(
r_1\lessdot r_2 ) są styczne zewnętrznie, a odległość ich środków jest równa
\frac{9}{2} .
Różnica długości promieni tych okręgów jest równa
\frac{5}{6} .
Oblicz r_1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-10567 ⋅ Poprawnie: 274/452 [60%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Okręgi
o_1(A, 4) i
o_2(B, 12) przecinają się w dwóch punktach:
Do odcinka AB należy środek okręgu
o_3(C, r_3 ) stycznego wewnętrznie do obu okręgów
o_1 i o_2 .
Oblicz długość promienia r_3 wiedząc, że
|AB|=14 .
Odpowiedź:
r_3=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-10565 ⋅ Poprawnie: 113/203 [55%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Dany jest okrąg
o_1(S_1, 2022) , przy czym
S_1=(-8,-11) . Okrąg
o_2(S_2,2022) jest obrazem okręgu
o_1 w symetrii względem osi
Oy .
Wyznacz długość odcinka S_1S_2 .
Odpowiedź:
|S_1S_2|=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-11649 ⋅ Poprawnie: 33/60 [55%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
W okręgu o promieniu
25 narysowano cięciwę,
która znajduje się w odległości
24
od środka tego okręgu.
Oblicz długość tej cięciwy.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 11. 1 pkt ⋅ Numer: pp-11739 ⋅ Poprawnie: 28/30 [93%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Jaką część okręgu o promieniu
7
stanowi jego łuk o długości
4\pi ?
Odpowiedź:
Rozwiąż