Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-13-okr-i-kola-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10547 ⋅ Poprawnie: 663/914 [72%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt O jest środkiem okręgu na rysunku, w którym \beta=116^{\circ} i \gamma=37^{\circ}:

Obicz miarę stopniową kąta \alpha.

Odpowiedź:
\alpha= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10489 ⋅ Poprawnie: 182/258 [70%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt O jest środkiem okręgu na rysunku, w którym \alpha=52^{\circ}:

Wyznacz miarę stopniową kąta \beta.

Odpowiedź:
\beta= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10535 ⋅ Poprawnie: 205/255 [80%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkt O jest środkiem okręgu na rysunku, przy czym \alpha=232^{\circ}:

Wyznacz miarę stopniową kąta \beta.

Odpowiedź:
\beta= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10510 ⋅ Poprawnie: 81/143 [56%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Na łuku okręgu o długości równej \frac{1}{24} długości okręgu, oparto dwa kąty: kąt wpisany w ten okrąg i kąt środkowy tego okręgu.

Wyznacz sumę miar stopniowych tych kątów.

Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10522 ⋅ Poprawnie: 236/330 [71%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt O jest środkiem okręgu, a prosta jest styczną do tego okręgu, przy czym \beta=49^{\circ}:

Wyznacz miarę stopniową kąta \alpha.

Odpowiedź:
\alpha= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11513 ⋅ Poprawnie: 456/830 [54%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 (1 pkt) Punkt O jest środkiem okręgu na rysunku, a kąt \alpha ma miarę 28^{\circ}:

Wyznacz miarę stopniową kąta \beta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  1 pkt ⋅ Numer: pp-11654 ⋅ Poprawnie: 41/77 [53%] Rozwiąż 
Podpunkt 7.1 (0.5 pkt)
 Okręgi o_1(A, r_1) oraz o_2(B,r_2) (r_1\lessdot r_2) są styczne zewnętrznie, a odległość ich środków jest równa \frac{29}{6}. Różnica długości promieni tych okręgów jest równa \frac{7}{6}.

Oblicz r_1.

Odpowiedź:
r_1=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
 Oblicz r_2.
Odpowiedź:
r_2=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-10563 ⋅ Poprawnie: 96/155 [61%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Okręgi o takich samych promieniach mają środki w punktach M=(-3, -9) i N=(51, -81) i są wzajemnie styczne zewnętrznie.

Wyznacz długość promienia tych okręgów.

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10564 ⋅ Poprawnie: 131/190 [68%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dwa okręgi mają promienie o długości \frac{5}{6} i 2. Mniejszy z okręgów przechodzi przez środek większego.

Oblicz odległość między środkami tych okręgów.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  1 pkt ⋅ Numer: pp-11649 ⋅ Poprawnie: 33/60 [55%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 W okręgu o promieniu 45 narysowano cięciwę, która znajduje się w odległości 36 od środka tego okręgu.

Oblicz długość tej cięciwy.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  1 pkt ⋅ Numer: pp-11651 ⋅ Poprawnie: 19/26 [73%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Dwa promienie okręgu tworzą kąt środkowy tego okręgu o mierze 130^{\circ}. Przez końce tych promieni położone na okręgu poprowadzono styczne do tego okręgu, które przecięły się w punkcie P.

Wyznacz miarę stopniową kąta, pod którym widać ten okrąg z punktu P.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm