Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-13-okr-i-kola-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10482 ⋅ Poprawnie: 488/653 [74%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Kąt środkowy okręgu \alpha i kąt wpisany w ten okrąg są oparte na tym samym łuku. Suma ich miar jest równa 210^{\circ}.

Jaka jest miara stopniowa kąta środkowego?

Odpowiedź:
\alpha= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10493 ⋅ Poprawnie: 275/413 [66%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Miara kąta wpisanego w okrąg jest o 61^{\circ} mniejsza od miary kąta środkowego opartego na tym samym łuku.

Oblicz miarę stopniową kąta wpisanego w ten okrąg.

Odpowiedź:
\alpha= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10505 ⋅ Poprawnie: 178/231 [77%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkt O na rysunku jest środkiem okręgu, przy czym \alpha=10^{\circ}:

Wyznacz miarę zaznaczonego na rysunku kąta \beta.

Odpowiedź:
\beta= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10508 ⋅ Poprawnie: 61/106 [57%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Kąt \alpha wpisany w okrąg o promieniu długości 10 oparty jest na łuku o długości 2\pi.

Wyznacz miarę tego kąta.

Odpowiedź:
\alpha= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10525 ⋅ Poprawnie: 58/100 [58%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt O jest środkiem okręgu, przy czym \alpha=170^{\circ}:

Wyznacz miarę stopniową kąta \beta.

Odpowiedź:
\beta= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10501 ⋅ Poprawnie: 30/94 [31%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
» Stosunek obwodu zacieniowanej części koła do obwodu całego koła wynosi:
Odpowiedzi:
A. \frac{1}{4} B. \frac{4+\pi}{4\pi}
C. \frac{4+\pi}{2\pi} D. \frac{3}{4}
Zadanie 7.  1 pkt ⋅ Numer: pp-11737 ⋅ Poprawnie: 6/8 [75%] Rozwiąż 
Podpunkt 7.1 (0.5 pkt)
 Okręgi o_1(A, r_1) oraz o_2(B,r_2) (r_1\lessdot r_2) są styczne zewnętrznie, a odległość ich środków jest równa 4. Stosunek długości promieni tych okręgów jest równy 2.

Oblicz r_1.

Odpowiedź:
r_1=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
 Oblicz r_2.
Odpowiedź:
r_2=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11102 ⋅ Poprawnie: 26/118 [22%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 W okrąg o promieniu długości 42 wpisano kąt środkowy oparty na łuku długości równej 25% długości całego okręgu. Następnie w ten kąt środkowy wpisano okrąg.

Oblicz długość promienia tego okręgu.

Odpowiedź:
r= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10562 ⋅ Poprawnie: 331/469 [70%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Okręgi o_1(O_1, 1) i o_2(O_2,2) są styczne zewnętrznie w punkcie S, a prosta O_1P jest styczną do okręgu o_2:

Oblicz pole powierzchni trójkąta O_1O_2P.

Odpowiedź:
P_{\triangle O_1O_2P}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-11649 ⋅ Poprawnie: 32/57 [56%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 W okręgu o promieniu 53 narysowano cięciwę, która znajduje się w odległości 28 od środka tego okręgu.

Oblicz długość tej cięciwy.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  1 pkt ⋅ Numer: pp-11739 ⋅ Poprawnie: 27/29 [93%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Jaką część okręgu o promieniu 3 stanowi jego łuk o długości 1\pi?
Odpowiedź:
\frac{m}{n}= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm