Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-13-okr-i-kola-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10544 ⋅ Poprawnie: 277/456 [60%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt O jest środkiem okręgu na rysunku, w którym \alpha=92^{\circ} i \beta=110^{\circ}:

Oblicz miarę stopniową kąta \gamma.

Odpowiedź:
\gamma= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10488 ⋅ Poprawnie: 200/278 [71%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt O jest środkiem okręgu o średnicy AB, w którym \alpha=94^{\circ}:

Oblicz miarę stopniową kąta \gamma.

Odpowiedź:
\gamma= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10536 ⋅ Poprawnie: 110/152 [72%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkt O jest środkiem okręgu, przy czym \beta=22^{\circ}:

Kąt \alpha, zaznaczony na rysunku, ma miarę:

Odpowiedzi:
A. 38^{\circ} B. 40^{\circ}
C. 29^{\circ} D. 34^{\circ}
E. 32^{\circ} F. 30^{\circ}
Zadanie 4.  1 pkt ⋅ Numer: pp-10510 ⋅ Poprawnie: 81/143 [56%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Na łuku okręgu o długości równej \frac{1}{6} długości okręgu, oparto dwa kąty: kąt wpisany w ten okrąg i kąt środkowy tego okręgu.

Wyznacz sumę miar stopniowych tych kątów.

Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10519 ⋅ Poprawnie: 27/56 [48%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Na okręgu o środku O zaznaczono k=12 wierzchołków wielokąta foremnego. Spośród nich wybrano trzy kolejne i narysowano kąt jak na rysunku:

Wyznacz miarę stopniową kąta \alpha.

Odpowiedź:
\alpha= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10532 ⋅ Poprawnie: 30/65 [46%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Punkt O jest środkiem okręgu, przy czym \beta=34^{\circ}

Wyznacz miarę stopniową kąta \alpha.

Odpowiedź:
\alpha= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-11655 ⋅ Poprawnie: 25/43 [58%] Rozwiąż 
Podpunkt 7.1 (0.5 pkt)
 Okręgi o_1(A, r_1) oraz o_2(B,r_2) (r_1\lessdot r_2) są styczne wewnętrznie, a odległość ich środków jest równa \frac{1}{3}. Suma długości promieni tych okręgów jest równa 4.

Oblicz r_1.

Odpowiedź:
r_1=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
 Oblicz r_2.
Odpowiedź:
r_2=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-10563 ⋅ Poprawnie: 96/155 [61%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Okręgi o takich samych promieniach mają środki w punktach M=(-5, -5) i N=(1, -13) i są wzajemnie styczne zewnętrznie.

Wyznacz długość promienia tych okręgów.

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10565 ⋅ Poprawnie: 113/203 [55%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dany jest okrąg o_1(S_1, 2024), przy czym S_1=(-5,-12). Okrąg o_2(S_2,2024) jest obrazem okręgu o_1 w symetrii względem osi Oy.

Wyznacz długość odcinka S_1S_2.

Odpowiedź:
|S_1S_2|= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11648 ⋅ Poprawnie: 90/141 [63%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Odcinek AB ma długość 4 i jest cięciwą okręgu o promieniu \frac{5}{2}.

Oblicz odległość d cięciwy AB od środka tego okręgu.

Odpowiedź:
d=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-11651 ⋅ Poprawnie: 19/26 [73%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Dwa promienie okręgu tworzą kąt środkowy tego okręgu o mierze 114^{\circ}. Przez końce tych promieni położone na okręgu poprowadzono styczne do tego okręgu, które przecięły się w punkcie P.

Wyznacz miarę stopniową kąta, pod którym widać ten okrąg z punktu P.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm