Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-13-okr-i-kola-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10544 ⋅ Poprawnie: 277/456 [60%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt O jest środkiem okręgu na rysunku, w którym \alpha=94^{\circ} i \beta=104^{\circ}:

Oblicz miarę stopniową kąta \gamma.

Odpowiedź:
\gamma= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10488 ⋅ Poprawnie: 200/278 [71%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt O jest środkiem okręgu o średnicy AB, w którym \alpha=98^{\circ}:

Oblicz miarę stopniową kąta \gamma.

Odpowiedź:
\gamma= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10495 ⋅ Poprawnie: 129/185 [69%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Długości przyprostokątnych trójkąta prostokątnego są równe 48 i 64.

Oblicz długość środkowej tego trójkąta poprowadzonej z wierzchołka kąta prostego.

Odpowiedź:
d=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10511 ⋅ Poprawnie: 147/201 [73%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Kąt \alpha na rysunku ma miarę 34^{\circ}:

Wyznacz miarę stopniową kąta \beta zaznaczonego na rysunku.

Odpowiedź:
\beta= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11414 ⋅ Poprawnie: 56/94 [59%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Trójkąt ABC jest równoramienny o podstawie AB, odcinek CD jest średnicą okręgu oraz \alpha=24^{\circ}:

Wyznacz miarę stopniową kąta \beta.

Odpowiedź:
\beta= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10497 ⋅ Poprawnie: 52/88 [59%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
W okręgu poprowadzono cięciwę AB oraz cięciwę BC (A\neq C). Obie cięciwy mają długość równą promieniowi okręgu.

Wyznacz miarę stopniową kąta ABC.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  1 pkt ⋅ Numer: pp-11653 ⋅ Poprawnie: 14/33 [42%] Rozwiąż 
Podpunkt 7.1 (0.5 pkt)
 « Okręgi o_1(A, 9) oraz o_2(B,2m-2) są styczne wewnętrznie, a odległość ich środków jest równa 26.

Wyznacz najmniejszą wartość parametru m.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
 Wyznacz największą wartość parametru m.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-10567 ⋅ Poprawnie: 274/452 [60%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Okręgi o_1(A, 3) i o_2(B, 7) przecinają się w dwóch punktach:

Do odcinka AB należy środek okręgu o_3(C, r_3) stycznego wewnętrznie do obu okręgów o_1 i o_2.

Oblicz długość promienia r_3 wiedząc, że |AB|=8.

Odpowiedź:
r_3= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-10476 ⋅ Poprawnie: 420/638 [65%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Dane są okręgi, w których |O_1A|=15, |O_2B|=9 i |O_1O_2|=48:

Oblicz długość odcinka O_1P.

Odpowiedź:
|O_1P|= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11650 ⋅ Poprawnie: 32/55 [58%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Jaką część okręgu o promieniu 4 stanowi jego łuk o długości 4\pi?
Odpowiedź:
\frac{m}{n}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-11740 ⋅ Poprawnie: 9/17 [52%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Jaką część okręgu o promieniu 9\pi stanowi jego łuk o długości 9\pi^2?
Odpowiedź:
\frac{m}{n}= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm