Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-13-okr-i-kola-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10544 ⋅ Poprawnie: 277/456 [60%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt O jest środkiem okręgu na rysunku, w którym \alpha=100^{\circ} i \beta=102^{\circ}:

Oblicz miarę stopniową kąta \gamma.

Odpowiedź:
\gamma= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10489 ⋅ Poprawnie: 182/258 [70%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt O jest środkiem okręgu na rysunku, w którym \alpha=60^{\circ}:

Wyznacz miarę stopniową kąta \beta.

Odpowiedź:
\beta= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10496 ⋅ Poprawnie: 32/88 [36%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 «« Na okręgu o promieniu długości r zaznaczono punkty A i B, które wyznaczyły łuk o długości \frac{\pi}{3}\cdot r.

Wyznacz miarę stopniową kąta wpisanego w ten okrąg opartego na tym łuku.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10510 ⋅ Poprawnie: 81/143 [56%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Na łuku okręgu o długości równej \frac{1}{8} długości okręgu, oparto dwa kąty: kąt wpisany w ten okrąg i kąt środkowy tego okręgu.

Wyznacz sumę miar stopniowych tych kątów.

Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10523 ⋅ Poprawnie: 67/107 [62%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt O jest środkiem okręgu, a kąt \alpha ma miarę 60^{\circ}:

Wyznacz miarę stopniową kąta \beta zaznaczonego na rysunku.

Odpowiedź:
\beta= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10529 ⋅ Poprawnie: 63/98 [64%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Punkt O jest środkiem okręgu oraz \alpha=35^{\circ} i \beta=13^{\circ}:

Wyznacz miarę stopniopwą kąta \gamma.

Odpowiedź:
\gamma= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-11652 ⋅ Poprawnie: 69/116 [59%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Okręgi o_1(A, 1) oraz o_2(B,2m-2) są styczne zewnętrznie, a odległość ich środków jest równa 14.

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11415 ⋅ Poprawnie: 170/227 [74%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Stosunek pól powierzchni dwóch kół jest równy 162.

Wynika z tego, że promień większego z tych kół jest większy od promienia mniejszego koła:

Odpowiedzi:
A. 36 razy B. 9\sqrt{2} razy
C. o 9\sqrt{2} D. 9 razy
Zadanie 9.  1 pkt ⋅ Numer: pp-10565 ⋅ Poprawnie: 113/203 [55%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dany jest okrąg o_1(S_1, 2026), przy czym S_1=(-10,-5). Okrąg o_2(S_2,2026) jest obrazem okręgu o_1 w symetrii względem osi Oy.

Wyznacz długość odcinka S_1S_2.

Odpowiedź:
|S_1S_2|= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11648 ⋅ Poprawnie: 90/141 [63%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Odcinek AB ma długość 20 i jest cięciwą okręgu o promieniu \frac{29}{2}.

Oblicz odległość d cięciwy AB od środka tego okręgu.

Odpowiedź:
d=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-11739 ⋅ Poprawnie: 28/30 [93%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Jaką część okręgu o promieniu 3 stanowi jego łuk o długości 9\pi?
Odpowiedź:
\frac{m}{n}= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm