Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-13-okr-i-kola-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10543 ⋅ Poprawnie: 89/124 [71%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Czworokąt na rysunku jest kwadratem o boku długości 4\sqrt{2}, a okręgi przechodzące przez punkty A i C mają środki w punktach B i D:

Oblicz pole powierzchni zielonej figury i zapisz wynik w postaci m+n\cdot \pi, gdzie m,n\in\mathbb{Z}.

Podaj liczby m i n.

Odpowiedzi:
m= (wpisz liczbę całkowitą)
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10485 ⋅ Poprawnie: 469/702 [66%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt O jest środkiem okręgu opisanego na trojkącie równoramiennym, a prosta jest styczną do tego okręgu:

Wiedząc, że \alpha=138^{\circ}, wyznacz miarę stopniową kąta \beta.

Odpowiedź:
\beta= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10495 ⋅ Poprawnie: 129/185 [69%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Długości przyprostokątnych trójkąta prostokątnego są równe 7 i 24.

Oblicz długość środkowej tego trójkąta poprowadzonej z wierzchołka kąta prostego.

Odpowiedź:
d=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10511 ⋅ Poprawnie: 147/201 [73%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Kąt \alpha na rysunku ma miarę 44^{\circ}:

Wyznacz miarę stopniową kąta \beta zaznaczonego na rysunku.

Odpowiedź:
\beta= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10525 ⋅ Poprawnie: 58/101 [57%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt O jest środkiem okręgu, przy czym \alpha=164^{\circ}:

Wyznacz miarę stopniową kąta \beta.

Odpowiedź:
\beta= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10533 ⋅ Poprawnie: 119/147 [80%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
Punkt O jest środkiem okręgu:

Wyznacz miarę stopniową kąta \alpha.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  1 pkt ⋅ Numer: pp-11652 ⋅ Poprawnie: 69/116 [59%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Okręgi o_1(A, 4) oraz o_2(B,2m-1) są styczne zewnętrznie, a odległość ich środków jest równa 16.

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-10563 ⋅ Poprawnie: 96/155 [61%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Okręgi o takich samych promieniach mają środki w punktach M=(-1, -9) i N=(23, -16) i są wzajemnie styczne zewnętrznie.

Wyznacz długość promienia tych okręgów.

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10566 ⋅ Poprawnie: 192/310 [61%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Okręgi o_1(O_1, 3) i o_2(O_2, 4) są styczne zewnętrznie w punkcie S, a prosta k jest styczną do tych okręgów:

Oblicz długość odcinka AB.

Odpowiedź:
|AB|= \cdot
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-11648 ⋅ Poprawnie: 90/141 [63%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Odcinek AB ma długość 24 i jest cięciwą okręgu o promieniu \frac{25}{2}.

Oblicz odległość d cięciwy AB od środka tego okręgu.

Odpowiedź:
d=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-11739 ⋅ Poprawnie: 28/30 [93%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Jaką część okręgu o promieniu 4 stanowi jego łuk o długości 6\pi?
Odpowiedź:
\frac{m}{n}= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm