Podgląd testu : lo2@sp-13-okr-i-kola-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10526 ⋅ Poprawnie: 189/274 [68%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Dany jest okrąg
o(O, r) :
Oblicz miarę stopniową kąta \alpha .
Odpowiedź:
\alpha=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-10484 ⋅ Poprawnie: 167/224 [74%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Oblicz miarę stopniową kąta środkowego opartego na łuku, którego długość jest równa
\frac{4}{5} długości okręgu.
Odpowiedź:
\alpha=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-10496 ⋅ Poprawnie: 32/88 [36%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
«« Na okręgu o promieniu długości
r zaznaczono
punkty
A i
B , które
wyznaczyły łuk o długości
\frac{\pi}{3}\cdot r .
Wyznacz miarę stopniową kąta wpisanego w ten okrąg opartego na tym łuku.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10511 ⋅ Poprawnie: 147/201 [73%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Kąt
\alpha na rysunku ma miarę
76^{\circ} :
Wyznacz miarę stopniową kąta \beta zaznaczonego na rysunku.
Odpowiedź:
\beta=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10524 ⋅ Poprawnie: 148/203 [72%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Prosta jest styczną do okręgu, a kąty
\alpha i
\beta mają miary:
\alpha=58^{\circ} oraz
\beta=68^{\circ} :
Wyznacz miarę stopniową kąta \gamma .
Odpowiedź:
\gamma=
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-11756 ⋅ Poprawnie: 15/39 [38%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
(1 pkt)
Trójkąty
ABC i
ADC są wpisane w okrąg o środku
S , przy czym
S\in CD . Kąt
\alpha
ma miarę
45^{\circ} , odcinek
AC długość
20\sqrt{2} :
Średnica tego okręgu ma długość:
Odpowiedzi:
A. 20
B. 30
C. \frac{40\sqrt{2}}{3}
D. 20\sqrt{2}
E. 40
F. 40\sqrt{2}
Zadanie 7. 1 pkt ⋅ Numer: pp-11655 ⋅ Poprawnie: 25/43 [58%]
Rozwiąż
Podpunkt 7.1 (0.5 pkt)
Okręgi
o_1(A, r_1) oraz
o_2(B,r_2)
(
r_1\lessdot r_2 ) są styczne wewnętrznie, a odległość ich środków jest równa
\frac{7}{6} .
Suma długości promieni tych okręgów jest równa
\frac{7}{2} .
Oblicz r_1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-11415 ⋅ Poprawnie: 170/227 [74%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Stosunek pól powierzchni dwóch kół jest równy
507 .
Wynika z tego, że promień większego z tych kół jest większy od promienia
mniejszego koła:
Odpowiedzi:
A. 117 razy
B. 13\sqrt{3} razy
C. o 507
D. o 13\sqrt{3}
Zadanie 9. 1 pkt ⋅ Numer: pp-10566 ⋅ Poprawnie: 192/310 [61%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Okręgi
o_1(O_1, 6) i
o_2(O_2, 10) są styczne zewnętrznie w punkcie
S , a prosta
k
jest styczną do tych okręgów:
Oblicz długość odcinka AB .
Odpowiedź:
|AB|=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-11648 ⋅ Poprawnie: 90/141 [63%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Odcinek
AB ma długość
112
i jest cięciwą okręgu o promieniu
\frac{113}{2} .
Oblicz odległość d cięciwy AB od środka tego okręgu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-11740 ⋅ Poprawnie: 9/17 [52%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Jaką część okręgu o promieniu
9\pi
stanowi jego łuk o długości
10\pi^2 ?
Odpowiedź:
Rozwiąż