Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-13-okr-i-kola-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10546 ⋅ Poprawnie: 630/964 [65%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt O jest środkiem okręgu na rysunku, w którym \alpha=42^{\circ}:

Wyznacz miary stopniowe kątów \beta i \gamma.

Odpowiedzi:
\beta= (wpisz liczbę całkowitą)
\gamma= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10493 ⋅ Poprawnie: 275/414 [66%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Miara kąta wpisanego w okrąg jest o 73^{\circ} mniejsza od miary kąta środkowego opartego na tym samym łuku.

Oblicz miarę stopniową kąta wpisanego w ten okrąg.

Odpowiedź:
\alpha= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10499 ⋅ Poprawnie: 189/271 [69%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Oblicz miarę stopniową zaznaczonego na rysunku kąta \gamma wiedząc, że \alpha=39^{\circ} i \beta=50^{\circ}:
.
Odpowiedź:
\gamma= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10516 ⋅ Poprawnie: 164/225 [72%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Punkt O jest środkiem okręgu, a kąty mają miary \alpha=37^{\circ} oraz \beta=33^{\circ}:
Wyznacz miarę stopniową kąta \gamma.
Odpowiedź:
\gamma= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10525 ⋅ Poprawnie: 58/101 [57%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt O jest środkiem okręgu, przy czym \alpha=160^{\circ}:

Wyznacz miarę stopniową kąta \beta.

Odpowiedź:
\beta= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11756 ⋅ Poprawnie: 15/39 [38%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 (1 pkt) Trójkąty ABC i ADC są wpisane w okrąg o środku S, przy czym S\in CD. Kąt \alpha ma miarę 45^{\circ}, odcinek AC długość 10\sqrt{2}:
Średnica tego okręgu ma długość:
Odpowiedzi:
A. 10 B. 20\sqrt{2}
C. 20 D. \frac{20\sqrt{2}}{3}
E. 15 F. 10\sqrt{2}
Zadanie 7.  1 pkt ⋅ Numer: pp-11654 ⋅ Poprawnie: 41/77 [53%] Rozwiąż 
Podpunkt 7.1 (0.5 pkt)
 Okręgi o_1(A, r_1) oraz o_2(B,r_2) (r_1\lessdot r_2) są styczne zewnętrznie, a odległość ich środków jest równa 6. Różnica długości promieni tych okręgów jest równa \frac{1}{3}.

Oblicz r_1.

Odpowiedź:
r_1=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
 Oblicz r_2.
Odpowiedź:
r_2=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-10563 ⋅ Poprawnie: 96/155 [61%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Okręgi o takich samych promieniach mają środki w punktach M=(1, 3) i N=(65, -45) i są wzajemnie styczne zewnętrznie.

Wyznacz długość promienia tych okręgów.

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10476 ⋅ Poprawnie: 420/638 [65%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Dane są okręgi, w których |O_1A|=40, |O_2B|=24 i |O_1O_2|=128:

Oblicz długość odcinka O_1P.

Odpowiedź:
|O_1P|= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11649 ⋅ Poprawnie: 33/60 [55%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 W okręgu o promieniu 80 narysowano cięciwę, która znajduje się w odległości 64 od środka tego okręgu.

Oblicz długość tej cięciwy.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  1 pkt ⋅ Numer: pp-11740 ⋅ Poprawnie: 9/17 [52%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Jaką część okręgu o promieniu 10\pi stanowi jego łuk o długości 11\pi^2?
Odpowiedź:
\frac{m}{n}= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm