Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-13-okr-i-kola-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10526 ⋅ Poprawnie: 189/274 [68%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
Dany jest okrąg o(O, r):

Oblicz miarę stopniową kąta \alpha.

Odpowiedź:
\alpha= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10484 ⋅ Poprawnie: 167/224 [74%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz miarę stopniową kąta środkowego opartego na łuku, którego długość jest równa \frac{4}{5} długości okręgu.
Odpowiedź:
\alpha= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10496 ⋅ Poprawnie: 32/88 [36%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 «« Na okręgu o promieniu długości r zaznaczono punkty A i B, które wyznaczyły łuk o długości \frac{\pi}{3}\cdot r.

Wyznacz miarę stopniową kąta wpisanego w ten okrąg opartego na tym łuku.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10511 ⋅ Poprawnie: 147/201 [73%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Kąt \alpha na rysunku ma miarę 76^{\circ}:

Wyznacz miarę stopniową kąta \beta zaznaczonego na rysunku.

Odpowiedź:
\beta= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10524 ⋅ Poprawnie: 148/203 [72%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Prosta jest styczną do okręgu, a kąty \alpha i \beta mają miary: \alpha=58^{\circ} oraz \beta=68^{\circ}:

Wyznacz miarę stopniową kąta \gamma.

Odpowiedź:
\gamma= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11756 ⋅ Poprawnie: 15/39 [38%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 (1 pkt) Trójkąty ABC i ADC są wpisane w okrąg o środku S, przy czym S\in CD. Kąt \alpha ma miarę 45^{\circ}, odcinek AC długość 20\sqrt{2}:
Średnica tego okręgu ma długość:
Odpowiedzi:
A. 20 B. 30
C. \frac{40\sqrt{2}}{3} D. 20\sqrt{2}
E. 40 F. 40\sqrt{2}
Zadanie 7.  1 pkt ⋅ Numer: pp-11655 ⋅ Poprawnie: 25/43 [58%] Rozwiąż 
Podpunkt 7.1 (0.5 pkt)
 Okręgi o_1(A, r_1) oraz o_2(B,r_2) (r_1\lessdot r_2) są styczne wewnętrznie, a odległość ich środków jest równa \frac{7}{6}. Suma długości promieni tych okręgów jest równa \frac{7}{2}.

Oblicz r_1.

Odpowiedź:
r_1=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
 Oblicz r_2.
Odpowiedź:
r_2=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11415 ⋅ Poprawnie: 170/227 [74%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Stosunek pól powierzchni dwóch kół jest równy 507.

Wynika z tego, że promień większego z tych kół jest większy od promienia mniejszego koła:

Odpowiedzi:
A. 117 razy B. 13\sqrt{3} razy
C. o 507 D. o 13\sqrt{3}
Zadanie 9.  1 pkt ⋅ Numer: pp-10566 ⋅ Poprawnie: 192/310 [61%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Okręgi o_1(O_1, 6) i o_2(O_2, 10) są styczne zewnętrznie w punkcie S, a prosta k jest styczną do tych okręgów:

Oblicz długość odcinka AB.

Odpowiedź:
|AB|= \cdot
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-11648 ⋅ Poprawnie: 90/141 [63%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Odcinek AB ma długość 112 i jest cięciwą okręgu o promieniu \frac{113}{2}.

Oblicz odległość d cięciwy AB od środka tego okręgu.

Odpowiedź:
d=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-11740 ⋅ Poprawnie: 9/17 [52%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Jaką część okręgu o promieniu 9\pi stanowi jego łuk o długości 10\pi^2?
Odpowiedź:
\frac{m}{n}= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm