Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-13-okr-i-kola-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10482 ⋅ Poprawnie: 488/653 [74%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Kąt środkowy okręgu \alpha i kąt wpisany w ten okrąg są oparte na tym samym łuku. Suma ich miar jest równa 144^{\circ}.

Jaka jest miara stopniowa kąta środkowego?

Odpowiedź:
\alpha= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10486 ⋅ Poprawnie: 314/406 [77%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt O jest środkiem okręgu na rysunku:
Wiedząc, że \alpha=31^{\circ}, wyznacz miarę stopniową kąta \beta.
Odpowiedź:
\beta= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10495 ⋅ Poprawnie: 130/186 [69%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Długości przyprostokątnych trójkąta prostokątnego są równe 20 i 48.

Oblicz długość środkowej tego trójkąta poprowadzonej z wierzchołka kąta prostego.

Odpowiedź:
d=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10512 ⋅ Poprawnie: 187/251 [74%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Punkt O na rysunku jest środkiem okręgu, a kąty mają miary \alpha=103^{\circ} oraz \beta=97^{\circ}:

Wyznacz miarę stopniową kąta ABC.

Odpowiedź:
|\sphericalangle ABC|= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10523 ⋅ Poprawnie: 67/108 [62%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt O jest środkiem okręgu, a kąt \alpha ma miarę 56^{\circ}:

Wyznacz miarę stopniową kąta \beta zaznaczonego na rysunku.

Odpowiedź:
\beta= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11445 ⋅ Poprawnie: 51/189 [26%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Trójkąt ABC jest równoramienny o podstawie AB, odcinek CD jest średnicą okręgu oraz \alpha=28^{\circ}:

Wyznacz miarę stopniową kąta \beta.

Odpowiedź:
\alpha= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-11655 ⋅ Poprawnie: 25/43 [58%] Rozwiąż 
Podpunkt 7.1 (0.5 pkt)
 Okręgi o_1(A, r_1) oraz o_2(B,r_2) (r_1\lessdot r_2) są styczne wewnętrznie, a odległość ich środków jest równa \frac{4}{3}. Suma długości promieni tych okręgów jest równa \frac{13}{3}.

Oblicz r_1.

Odpowiedź:
r_1=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
 Oblicz r_2.
Odpowiedź:
r_2=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11738 ⋅ Poprawnie: 34/52 [65%] Rozwiąż 
Podpunkt 8.1 (0.5 pkt)
 Okręgi o_1(A, r_1) oraz o_2(B,r_2) (r_1\lessdot r_2) są styczne wewnętrznie, a odległość ich środków jest równa 10. Stosunek długości promieni tych okręgów jest równy 5.

Oblicz r_1.

Odpowiedź:
r_1=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (0.5 pkt)
 Oblicz r_2.
Odpowiedź:
r_2=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10562 ⋅ Poprawnie: 332/471 [70%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Okręgi o_1(O_1, 2) i o_2(O_2,9) są styczne zewnętrznie w punkcie S, a prosta O_1P jest styczną do okręgu o_2:

Oblicz pole powierzchni trójkąta O_1O_2P.

Odpowiedź:
P_{\triangle O_1O_2P}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-11650 ⋅ Poprawnie: 32/56 [57%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Jaką część okręgu o promieniu 4 stanowi jego łuk o długości 8\pi?
Odpowiedź:
\frac{m}{n}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-11739 ⋅ Poprawnie: 28/30 [93%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Jaką część okręgu o promieniu 9 stanowi jego łuk o długości 6\pi?
Odpowiedź:
\frac{m}{n}= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm