Podgląd testu : lo2@sp-13-okr-i-kola-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10547 ⋅ Poprawnie: 663/914 [72%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Punkt
O jest środkiem okręgu na rysunku, w którym
\beta=130^{\circ} i
\gamma=35^{\circ} :
Obicz miarę stopniową kąta \alpha .
Odpowiedź:
\alpha=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-10492 ⋅ Poprawnie: 123/173 [71%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Punkt
O jest środkiem okręgu na rysunku, w którym:
|AO|=16 oraz
|AB|=16\sqrt{3} :
Wówczas:
Odpowiedzi:
A. |\sphericalangle BAC|=45^{\circ}
B. |\sphericalangle BCA|=45^{\circ}
C. |\sphericalangle BCA|=90^{\circ}
D. |\sphericalangle BOC|=60^{\circ}
Zadanie 3. 1 pkt ⋅ Numer: pp-10499 ⋅ Poprawnie: 189/271 [69%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Oblicz miarę stopniową zaznaczonego na rysunku kąta
\gamma wiedząc,
że
\alpha=40^{\circ} i
\beta=54^{\circ} :
.
Odpowiedź:
\gamma=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-10512 ⋅ Poprawnie: 187/251 [74%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Punkt
O na rysunku jest środkiem okręgu, a kąty mają miary
\alpha=113^{\circ} oraz
\beta=83^{\circ} :
Wyznacz miarę stopniową kąta ABC .
Odpowiedź:
|\sphericalangle ABC|=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10520 ⋅ Poprawnie: 54/108 [50%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Na okręgu zaznaczono wierzchołki
40 -kąta foremnego.
Spośród nich wybrano pięć kolejnych i narysowano kąt jak na rysunku:
Wyznacz miarę stopniową kąta \alpha .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 6. 1 pkt ⋅ Numer: pp-10533 ⋅ Poprawnie: 119/147 [80%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Punkt
O jest środkiem okręgu:
Wyznacz miarę stopniową kąta \alpha .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7. 1 pkt ⋅ Numer: pp-11737 ⋅ Poprawnie: 6/10 [60%]
Rozwiąż
Podpunkt 7.1 (0.5 pkt)
Okręgi
o_1(A, r_1) oraz
o_2(B,r_2)
(
r_1\lessdot r_2 ) są styczne zewnętrznie, a odległość ich środków jest równa
\frac{40}{3} .
Stosunek długości promieni tych okręgów jest równy
4 .
Oblicz r_1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-10569 ⋅ Poprawnie: 300/394 [76%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Dane są okręgi
o_1\left(A, \frac{19}{2}\right) i
o_2\left(B, 7\right) , przy czym
|AB|=\frac{15}{2} .
Okręgi te:
Odpowiedzi:
A. są styczne wewnętrznie
B. mają dwa punkty wspólne
C. są rozłączne wewnętrznie
D. są rozłączne zewnętrznie
Zadanie 9. 1 pkt ⋅ Numer: pp-11102 ⋅ Poprawnie: 26/118 [22%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
W okrąg o promieniu długości
58 wpisano kąt środkowy
oparty na łuku długości równej
25 % długości całego
okręgu. Następnie w ten kąt środkowy wpisano okrąg.
Oblicz długość promienia tego okręgu.
Odpowiedź:
r=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-11650 ⋅ Poprawnie: 32/56 [57%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Jaką część okręgu o promieniu
10
stanowi jego łuk o długości
7\pi ?
Odpowiedź:
Zadanie 11. 1 pkt ⋅ Numer: pp-11740 ⋅ Poprawnie: 9/17 [52%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Jaką część okręgu o promieniu
6\pi
stanowi jego łuk o długości
9\pi^2 ?
Odpowiedź:
Rozwiąż