Podgląd testu : lo2@sp-13-okr-i-kola-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10482 ⋅ Poprawnie: 488/653 [74%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Kąt środkowy okręgu
\alpha i kąt wpisany w ten okrąg są oparte na tym samym łuku.
Suma ich miar jest równa
210^{\circ} .
Jaka jest miara stopniowa kąta środkowego?
Odpowiedź:
\alpha=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-10493 ⋅ Poprawnie: 275/413 [66%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
» Miara kąta wpisanego w okrąg jest o
61^{\circ}
mniejsza od miary kąta środkowego opartego na tym samym łuku.
Oblicz miarę stopniową kąta wpisanego w ten okrąg.
Odpowiedź:
\alpha=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-10505 ⋅ Poprawnie: 178/231 [77%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Punkt
O na rysunku jest środkiem okręgu, przy czym
\alpha=10^{\circ} :
Wyznacz miarę zaznaczonego na rysunku kąta \beta .
Odpowiedź:
\beta=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-10508 ⋅ Poprawnie: 61/106 [57%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Kąt
\alpha wpisany w okrąg o promieniu długości
10
oparty jest na łuku o długości
2\pi .
Wyznacz miarę tego kąta.
Odpowiedź:
\alpha=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10525 ⋅ Poprawnie: 58/100 [58%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Punkt
O jest środkiem okręgu, przy czym
\alpha=170^{\circ} :
Wyznacz miarę stopniową kąta \beta .
Odpowiedź:
\beta=
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-10501 ⋅ Poprawnie: 30/94 [31%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Stosunek obwodu zacieniowanej części koła do obwodu całego koła wynosi:
Odpowiedzi:
A. \frac{1}{4}
B. \frac{4+\pi}{4\pi}
C. \frac{4+\pi}{2\pi}
D. \frac{3}{4}
Zadanie 7. 1 pkt ⋅ Numer: pp-11737 ⋅ Poprawnie: 6/8 [75%]
Rozwiąż
Podpunkt 7.1 (0.5 pkt)
Okręgi
o_1(A, r_1) oraz
o_2(B,r_2)
(
r_1\lessdot r_2 ) są styczne zewnętrznie, a odległość ich środków jest równa
4 .
Stosunek długości promieni tych okręgów jest równy
2 .
Oblicz r_1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-11102 ⋅ Poprawnie: 26/118 [22%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
W okrąg o promieniu długości
42 wpisano kąt środkowy
oparty na łuku długości równej
25 % długości całego
okręgu. Następnie w ten kąt środkowy wpisano okrąg.
Oblicz długość promienia tego okręgu.
Odpowiedź:
r=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 9. 1 pkt ⋅ Numer: pp-10562 ⋅ Poprawnie: 331/469 [70%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Okręgi
o_1(O_1, 1) i
o_2(O_2,2) są styczne zewnętrznie w punkcie
S , a prosta
O_1P
jest styczną do okręgu
o_2 :
Oblicz pole powierzchni trójkąta O_1O_2P .
Odpowiedź:
Zadanie 10. 1 pkt ⋅ Numer: pp-11649 ⋅ Poprawnie: 32/57 [56%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
W okręgu o promieniu
53 narysowano cięciwę,
która znajduje się w odległości
28
od środka tego okręgu.
Oblicz długość tej cięciwy.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 11. 1 pkt ⋅ Numer: pp-11739 ⋅ Poprawnie: 27/29 [93%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Jaką część okręgu o promieniu
3
stanowi jego łuk o długości
1\pi ?
Odpowiedź:
Rozwiąż