Podgląd testu : lo2@sp-13-okr-i-kola-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10482 ⋅ Poprawnie: 488/653 [74%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Kąt środkowy okręgu
\alpha i kąt wpisany w ten okrąg są oparte na tym samym łuku.
Suma ich miar jest równa
144^{\circ} .
Jaka jest miara stopniowa kąta środkowego?
Odpowiedź:
\alpha=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-10486 ⋅ Poprawnie: 314/406 [77%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Punkt
O jest środkiem okręgu na rysunku:
Wiedząc, że
\alpha=31^{\circ} , wyznacz miarę stopniową kąta
\beta .
Odpowiedź:
\beta=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-10495 ⋅ Poprawnie: 130/186 [69%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
» Długości przyprostokątnych trójkąta prostokątnego są równe
20 i
48 .
Oblicz długość środkowej tego trójkąta poprowadzonej z wierzchołka kąta prostego.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10512 ⋅ Poprawnie: 187/251 [74%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Punkt
O na rysunku jest środkiem okręgu, a kąty mają miary
\alpha=103^{\circ} oraz
\beta=97^{\circ} :
Wyznacz miarę stopniową kąta ABC .
Odpowiedź:
|\sphericalangle ABC|=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10523 ⋅ Poprawnie: 67/108 [62%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Punkt
O jest środkiem okręgu, a kąt
\alpha
ma miarę
56^{\circ} :
Wyznacz miarę stopniową kąta \beta zaznaczonego na rysunku.
Odpowiedź:
\beta=
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-11445 ⋅ Poprawnie: 51/189 [26%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Trójkąt
ABC jest równoramienny o podstawie
AB , odcinek
CD
jest średnicą okręgu oraz
\alpha=28^{\circ} :
Wyznacz miarę stopniową kąta \beta .
Odpowiedź:
\alpha=
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-11655 ⋅ Poprawnie: 25/43 [58%]
Rozwiąż
Podpunkt 7.1 (0.5 pkt)
Okręgi
o_1(A, r_1) oraz
o_2(B,r_2)
(
r_1\lessdot r_2 ) są styczne wewnętrznie, a odległość ich środków jest równa
\frac{4}{3} .
Suma długości promieni tych okręgów jest równa
\frac{13}{3} .
Oblicz r_1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-11738 ⋅ Poprawnie: 34/52 [65%]
Rozwiąż
Podpunkt 8.1 (0.5 pkt)
Okręgi
o_1(A, r_1) oraz
o_2(B,r_2)
(
r_1\lessdot r_2 ) są styczne wewnętrznie, a odległość ich środków jest równa
10 .
Stosunek długości promieni tych okręgów jest równy
5 .
Oblicz r_1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 1 pkt ⋅ Numer: pp-10562 ⋅ Poprawnie: 332/471 [70%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Okręgi
o_1(O_1, 2) i
o_2(O_2,9) są styczne zewnętrznie w punkcie
S , a prosta
O_1P
jest styczną do okręgu
o_2 :
Oblicz pole powierzchni trójkąta O_1O_2P .
Odpowiedź:
Zadanie 10. 1 pkt ⋅ Numer: pp-11650 ⋅ Poprawnie: 32/56 [57%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Jaką część okręgu o promieniu
4
stanowi jego łuk o długości
8\pi ?
Odpowiedź:
Zadanie 11. 1 pkt ⋅ Numer: pp-11739 ⋅ Poprawnie: 28/30 [93%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Jaką część okręgu o promieniu
9
stanowi jego łuk o długości
6\pi ?
Odpowiedź:
Rozwiąż