Podgląd testu : lo2@sp-13-okr-i-kola-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10483 ⋅ Poprawnie: 174/258 [67%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Punkt
O jest środkiem okręgu na rysunku, w którym:
\alpha=36^{\circ} i
\beta=52^{\circ} :
Oblicz miarę stopniową kąta \gamma .
Odpowiedź:
\gamma=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-10539 ⋅ Poprawnie: 266/387 [68%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Punkt
O jest środkiem okręgu na rysunku, przy czym
\alpha=58^{\circ} :
Wyznacz miarę stopniową kąta \beta .
Odpowiedź:
\beta=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-10498 ⋅ Poprawnie: 180/281 [64%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
» Punkt
O jest środkiem okręgu na rysunku, przy czym
|OB|=|BC| i
\alpha=52^{\circ} :
Wyznacz miarę stopniową kąta \beta .
Odpowiedź:
\beta=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-10511 ⋅ Poprawnie: 147/201 [73%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Kąt
\alpha na rysunku ma miarę
68^{\circ} :
Wyznacz miarę stopniową kąta \beta zaznaczonego na rysunku.
Odpowiedź:
\beta=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10521 ⋅ Poprawnie: 48/120 [40%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
«« Na okręgu zaznaczono wierzchołki
30 -kąta foremnego.
Spośród nich wybrano siedem kolejnych i narysowano kąt jak na rysunku:
Wyznacz miarę stopniową kąta \alpha .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 6. 1 pkt ⋅ Numer: pp-11543 ⋅ Poprawnie: 102/178 [57%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
(1 pkt)
Trójkąty
ABC i
ADC są wpisane w okrąg o środku
S , przy czym
S\in CD . Kąt
\alpha
ma miarę
45^{\circ} , odcinek
AC długość
20 :
Średnica tego okręgu ma długość:
Odpowiedzi:
A. 10\sqrt{2}
B. \frac{40\sqrt{2}}{3}
C. 30\sqrt{2}
D. 30
E. 20\sqrt{2}
F. 20
Zadanie 7. 1 pkt ⋅ Numer: pp-11652 ⋅ Poprawnie: 69/116 [59%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Okręgi
o_1(A, 8) oraz
o_2(B,2m-3)
są styczne zewnętrznie, a odległość ich środków jest równa
24 .
Wyznacz wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-11102 ⋅ Poprawnie: 26/118 [22%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
W okrąg o promieniu długości
50 wpisano kąt środkowy
oparty na łuku długości równej
25 % długości całego
okręgu. Następnie w ten kąt środkowy wpisano okrąg.
Oblicz długość promienia tego okręgu.
Odpowiedź:
r=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 9. 1 pkt ⋅ Numer: pp-10562 ⋅ Poprawnie: 332/471 [70%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Okręgi
o_1(O_1, 5) i
o_2(O_2,9) są styczne zewnętrznie w punkcie
S , a prosta
O_1P
jest styczną do okręgu
o_2 :
Oblicz pole powierzchni trójkąta O_1O_2P .
Odpowiedź:
Zadanie 10. 1 pkt ⋅ Numer: pp-11650 ⋅ Poprawnie: 32/55 [58%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Jaką część okręgu o promieniu
9
stanowi jego łuk o długości
7\pi ?
Odpowiedź:
Zadanie 11. 1 pkt ⋅ Numer: pp-11651 ⋅ Poprawnie: 19/26 [73%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Dwa promienie okręgu tworzą kąt środkowy tego okręgu o mierze
118^{\circ} .
Przez końce tych promieni położone na okręgu poprowadzono styczne do tego okręgu, które
przecięły się w punkcie
P .
Wyznacz miarę stopniową kąta, pod którym widać ten okrąg z punktu P .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż