Podgląd testu : lo2@sp-13-okr-i-kola-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10546 ⋅ Poprawnie: 629/963 [65%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Punkt
O jest środkiem okręgu na rysunku, w którym
\alpha=34^{\circ} :
Wyznacz miary stopniowe kątów \beta i
\gamma .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-10485 ⋅ Poprawnie: 469/702 [66%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Punkt
O jest środkiem okręgu opisanego na trojkącie
równoramiennym, a prosta jest styczną do tego okręgu:
Wiedząc, że \alpha=138^{\circ} , wyznacz miarę stopniową kąta \beta .
Odpowiedź:
\beta=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-10499 ⋅ Poprawnie: 189/270 [70%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Oblicz miarę stopniową zaznaczonego na rysunku kąta
\gamma wiedząc,
że
\alpha=35^{\circ} i
\beta=50^{\circ} :
.
Odpowiedź:
\gamma=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-10510 ⋅ Poprawnie: 81/143 [56%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Na łuku okręgu o długości równej
\frac{1}{20} długości okręgu, oparto dwa kąty:
kąt wpisany w ten okrąg i kąt środkowy tego okręgu.
Wyznacz sumę miar stopniowych tych kątów.
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10517 ⋅ Poprawnie: 196/272 [72%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Punkt
O jest środkiem okręgu, przy czym
\alpha=120^{\circ} :
Wyznacz miarę stopniową kąta \beta .
Odpowiedź:
\beta=
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-11756 ⋅ Poprawnie: 15/39 [38%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
(1 pkt)
Trójkąty
ABC i
ADC są wpisane w okrąg o środku
S , przy czym
S\in CD . Kąt
\alpha
ma miarę
45^{\circ} , odcinek
AC długość
10\sqrt{2} :
Średnica tego okręgu ma długość:
Odpowiedzi:
A. 10\sqrt{2}
B. 15
C. 10
D. 20\sqrt{2}
E. \frac{20\sqrt{2}}{3}
F. 20
Zadanie 7. 1 pkt ⋅ Numer: pp-11652 ⋅ Poprawnie: 69/116 [59%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Okręgi
o_1(A, 9) oraz
o_2(B,2m-2)
są styczne zewnętrznie, a odległość ich środków jest równa
26 .
Wyznacz wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-11102 ⋅ Poprawnie: 26/118 [22%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
W okrąg o promieniu długości
32 wpisano kąt środkowy
oparty na łuku długości równej
25 % długości całego
okręgu. Następnie w ten kąt środkowy wpisano okrąg.
Oblicz długość promienia tego okręgu.
Odpowiedź:
r=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 9. 1 pkt ⋅ Numer: pp-11102 ⋅ Poprawnie: 26/118 [22%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
W okrąg o promieniu długości
32 wpisano kąt środkowy
oparty na łuku długości równej
25 % długości całego
okręgu. Następnie w ten kąt środkowy wpisano okrąg.
Oblicz długość promienia tego okręgu.
Odpowiedź:
r=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-11650 ⋅ Poprawnie: 32/55 [58%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Jaką część okręgu o promieniu
6
stanowi jego łuk o długości
4\pi ?
Odpowiedź:
Zadanie 11. 1 pkt ⋅ Numer: pp-11739 ⋅ Poprawnie: 28/30 [93%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Jaką część okręgu o promieniu
5
stanowi jego łuk o długości
5\pi ?
Odpowiedź:
Rozwiąż