Podgląd testu : lo2@sp-13-okr-i-kola-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10543 ⋅ Poprawnie: 89/124 [71%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
» Czworokąt na rysunku jest kwadratem o boku długości
6\sqrt{2} , a okręgi przechodzące przez punkty
A i
C mają środki w
punktach
B i
D :
Oblicz pole powierzchni zielonej figury i zapisz wynik w postaci
m+n\cdot \pi , gdzie m,n\in\mathbb{Z} .
Podaj liczby m i n .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-10491 ⋅ Poprawnie: 56/75 [74%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« W kąt
\alpha o mierze
53^{\circ} wpisano okrąg o środku
O styczny do ramion kąta w punktach
A i
B .
Wyznacz miarę stopniową mniejszego z kątów środkowych okręgu AOB .
Odpowiedź:
|\sphericalangle AOB|=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-10499 ⋅ Poprawnie: 189/270 [70%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Oblicz miarę stopniową zaznaczonego na rysunku kąta
\gamma wiedząc,
że
\alpha=38^{\circ} i
\beta=52^{\circ} :
.
Odpowiedź:
\gamma=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-10506 ⋅ Poprawnie: 215/281 [76%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Punkt
O jest środkiem a prosta jest styczną
to tego okręgu, przy czym
\alpha=80^{\circ} :
Wyznacz miarę stopniową kąta \beta .
Odpowiedź:
\beta=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11414 ⋅ Poprawnie: 56/94 [59%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
» Trójkąt
ABC jest równoramienny o podstawie
AB , odcinek
CD
jest średnicą okręgu oraz
\alpha=57^{\circ} :
Wyznacz miarę stopniową kąta \beta .
Odpowiedź:
\beta=
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-11756 ⋅ Poprawnie: 15/39 [38%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
(1 pkt)
Trójkąty
ABC i
ADC są wpisane w okrąg o środku
S , przy czym
S\in CD . Kąt
\alpha
ma miarę
45^{\circ} , odcinek
AC długość
14\sqrt{2} :
Średnica tego okręgu ma długość:
Odpowiedzi:
A. 28
B. 14\sqrt{2}
C. 21
D. 28\sqrt{2}
E. \frac{28\sqrt{2}}{3}
F. 14
Zadanie 7. 1 pkt ⋅ Numer: pp-11655 ⋅ Poprawnie: 25/43 [58%]
Rozwiąż
Podpunkt 7.1 (0.5 pkt)
Okręgi
o_1(A, r_1) oraz
o_2(B,r_2)
(
r_1\lessdot r_2 ) są styczne wewnętrznie, a odległość ich środków jest równa
\frac{7}{6} .
Suma długości promieni tych okręgów jest równa
\frac{35}{6} .
Oblicz r_1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-11102 ⋅ Poprawnie: 26/118 [22%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
W okrąg o promieniu długości
48 wpisano kąt środkowy
oparty na łuku długości równej
25 % długości całego
okręgu. Następnie w ten kąt środkowy wpisano okrąg.
Oblicz długość promienia tego okręgu.
Odpowiedź:
r=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 9. 1 pkt ⋅ Numer: pp-10565 ⋅ Poprawnie: 113/203 [55%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Dany jest okrąg
o_1(S_1, 2026) , przy czym
S_1=(-13,-10) . Okrąg
o_2(S_2,2026) jest obrazem okręgu
o_1 w symetrii względem osi
Oy .
Wyznacz długość odcinka S_1S_2 .
Odpowiedź:
|S_1S_2|=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-11650 ⋅ Poprawnie: 32/55 [58%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Jaką część okręgu o promieniu
9
stanowi jego łuk o długości
5\pi ?
Odpowiedź:
Zadanie 11. 1 pkt ⋅ Numer: pp-11740 ⋅ Poprawnie: 9/17 [52%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Jaką część okręgu o promieniu
13\pi
stanowi jego łuk o długości
13\pi^2 ?
Odpowiedź:
Rozwiąż