Podgląd testu : lo2@sp-13-okr-i-kola-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10544 ⋅ Poprawnie: 277/456 [60%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Punkt
O jest środkiem okręgu na rysunku, w którym
\alpha=104^{\circ} i
\beta=112^{\circ} :
Oblicz miarę stopniową kąta \gamma .
Odpowiedź:
\gamma=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-10493 ⋅ Poprawnie: 275/414 [66%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
» Miara kąta wpisanego w okrąg jest o
67^{\circ}
mniejsza od miary kąta środkowego opartego na tym samym łuku.
Oblicz miarę stopniową kąta wpisanego w ten okrąg.
Odpowiedź:
\alpha=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-10496 ⋅ Poprawnie: 32/88 [36%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
«« Na okręgu o promieniu długości
r zaznaczono
punkty
A i
B , które
wyznaczyły łuk o długości
\frac{\pi}{3}\cdot r .
Wyznacz miarę stopniową kąta wpisanego w ten okrąg opartego na tym łuku.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10511 ⋅ Poprawnie: 147/201 [73%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Kąt
\alpha na rysunku ma miarę
66^{\circ} :
Wyznacz miarę stopniową kąta \beta zaznaczonego na rysunku.
Odpowiedź:
\beta=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10518 ⋅ Poprawnie: 187/269 [69%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Punkt
O jest środkiem okręgu,
kąt
\alpha ma miarę
282^{\circ}
a prosta jest styczna do tego okręgu:
Wyznacz miarę stopniową kąta \beta .
Odpowiedź:
\beta=
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-10540 ⋅ Poprawnie: 52/65 [80%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« O godzinie 1020 wskazówki zegara tworzą kąt:
Odpowiedzi:
A. 160^{\circ}
B. 162^{\circ}
C. 165^{\circ}
D. 170^{\circ}
Zadanie 7. 1 pkt ⋅ Numer: pp-11653 ⋅ Poprawnie: 14/33 [42%]
Rozwiąż
Podpunkt 7.1 (0.5 pkt)
« Okręgi
o_1(A, 7) oraz
o_2(B,2m-2)
są styczne wewnętrznie, a odległość ich środków jest równa
24 .
Wyznacz najmniejszą wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
Wyznacz największą wartość parametru
m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-11102 ⋅ Poprawnie: 26/118 [22%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
W okrąg o promieniu długości
48 wpisano kąt środkowy
oparty na łuku długości równej
25 % długości całego
okręgu. Następnie w ten kąt środkowy wpisano okrąg.
Oblicz długość promienia tego okręgu.
Odpowiedź:
r=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 9. 1 pkt ⋅ Numer: pp-10562 ⋅ Poprawnie: 332/471 [70%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Okręgi
o_1(O_1, 5) i
o_2(O_2,10) są styczne zewnętrznie w punkcie
S , a prosta
O_1P
jest styczną do okręgu
o_2 :
Oblicz pole powierzchni trójkąta O_1O_2P .
Odpowiedź:
Zadanie 10. 1 pkt ⋅ Numer: pp-11649 ⋅ Poprawnie: 33/60 [55%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
W okręgu o promieniu
45 narysowano cięciwę,
która znajduje się w odległości
36
od środka tego okręgu.
Oblicz długość tej cięciwy.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 11. 1 pkt ⋅ Numer: pp-11651 ⋅ Poprawnie: 19/26 [73%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Dwa promienie okręgu tworzą kąt środkowy tego okręgu o mierze
132^{\circ} .
Przez końce tych promieni położone na okręgu poprowadzono styczne do tego okręgu, które
przecięły się w punkcie
P .
Wyznacz miarę stopniową kąta, pod którym widać ten okrąg z punktu P .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż