Podgląd testu : lo2@sp-13-okr-i-kola-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10546 ⋅ Poprawnie: 630/964 [65%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Punkt
O jest środkiem okręgu na rysunku, w którym
\alpha=28^{\circ} :
Wyznacz miary stopniowe kątów \beta i
\gamma .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-10488 ⋅ Poprawnie: 201/279 [72%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Punkt
O jest środkiem okręgu o średnicy
AB , w którym
\alpha=98^{\circ} :
Oblicz miarę stopniową kąta \gamma .
Odpowiedź:
\gamma=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-10495 ⋅ Poprawnie: 130/186 [69%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
» Długości przyprostokątnych trójkąta prostokątnego są równe
27 i
36 .
Oblicz długość środkowej tego trójkąta poprowadzonej z wierzchołka kąta prostego.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10511 ⋅ Poprawnie: 147/201 [73%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Kąt
\alpha na rysunku ma miarę
34^{\circ} :
Wyznacz miarę stopniową kąta \beta zaznaczonego na rysunku.
Odpowiedź:
\beta=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10525 ⋅ Poprawnie: 58/101 [57%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Punkt
O jest środkiem okręgu, przy czym
\alpha=150^{\circ} :
Wyznacz miarę stopniową kąta \beta .
Odpowiedź:
\beta=
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-10532 ⋅ Poprawnie: 30/66 [45%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Punkt
O jest środkiem okręgu, przy czym
\beta=44^{\circ}
Wyznacz miarę stopniową kąta \alpha .
Odpowiedź:
\alpha=
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-11654 ⋅ Poprawnie: 41/77 [53%]
Rozwiąż
Podpunkt 7.1 (0.5 pkt)
Okręgi
o_1(A, r_1) oraz
o_2(B,r_2)
(
r_1\lessdot r_2 ) są styczne zewnętrznie, a odległość ich środków jest równa
\frac{13}{3} .
Różnica długości promieni tych okręgów jest równa
1 .
Oblicz r_1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-10563 ⋅ Poprawnie: 96/155 [61%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Okręgi o takich samych promieniach mają środki w punktach
M=(4, -7) i
N=(40, -34) i są wzajemnie styczne zewnętrznie.
Wyznacz długość promienia tych okręgów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 1 pkt ⋅ Numer: pp-10565 ⋅ Poprawnie: 113/203 [55%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Dany jest okrąg
o_1(S_1, 2021) , przy czym
S_1=(-7,-11) . Okrąg
o_2(S_2,2021) jest obrazem okręgu
o_1 w symetrii względem osi
Oy .
Wyznacz długość odcinka S_1S_2 .
Odpowiedź:
|S_1S_2|=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-11650 ⋅ Poprawnie: 32/56 [57%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Jaką część okręgu o promieniu
4
stanowi jego łuk o długości
6\pi ?
Odpowiedź:
Zadanie 11. 1 pkt ⋅ Numer: pp-11740 ⋅ Poprawnie: 9/17 [52%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Jaką część okręgu o promieniu
9\pi
stanowi jego łuk o długości
5\pi^2 ?
Odpowiedź:
Rozwiąż