Podgląd testu : lo2@sp-13-okr-i-kola-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10483 ⋅ Poprawnie: 174/258 [67%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Punkt
O jest środkiem okręgu na rysunku, w którym:
\alpha=28^{\circ} i
\beta=54^{\circ} :
Oblicz miarę stopniową kąta \gamma .
Odpowiedź:
\gamma=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-10485 ⋅ Poprawnie: 469/702 [66%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Punkt
O jest środkiem okręgu opisanego na trojkącie
równoramiennym, a prosta jest styczną do tego okręgu:
Wiedząc, że \alpha=146^{\circ} , wyznacz miarę stopniową kąta \beta .
Odpowiedź:
\beta=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-10499 ⋅ Poprawnie: 189/270 [70%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Oblicz miarę stopniową zaznaczonego na rysunku kąta
\gamma wiedząc,
że
\alpha=35^{\circ} i
\beta=56^{\circ} :
.
Odpowiedź:
\gamma=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-10507 ⋅ Poprawnie: 73/100 [73%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Suma miar kąta środkowego okręgu i kąta wpisanego w ten okrąg, opartego są na tym samym łuku
jest równa
120 .
Oblicz miarę kąta środkowego.
Odpowiedź:
\alpha=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11414 ⋅ Poprawnie: 56/94 [59%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
» Trójkąt
ABC jest równoramienny o podstawie
AB , odcinek
CD
jest średnicą okręgu oraz
\alpha=40^{\circ} :
Wyznacz miarę stopniową kąta \beta .
Odpowiedź:
\beta=
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-10531 ⋅ Poprawnie: 98/132 [74%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Punkt
O jest środkiem okręgu, przy czym
\alpha=27^{\circ} :
Wyznacz miarę stopniową kąta \beta .
Odpowiedź:
\beta=
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-11655 ⋅ Poprawnie: 25/43 [58%]
Rozwiąż
Podpunkt 7.1 (0.5 pkt)
Okręgi
o_1(A, r_1) oraz
o_2(B,r_2)
(
r_1\lessdot r_2 ) są styczne wewnętrznie, a odległość ich środków jest równa
\frac{1}{2} .
Suma długości promieni tych okręgów jest równa
\frac{29}{6} .
Oblicz r_1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-11415 ⋅ Poprawnie: 170/227 [74%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Stosunek pól powierzchni dwóch kół jest równy
243 .
Wynika z tego, że promień większego z tych kół jest większy od promienia
mniejszego koła:
Odpowiedzi:
A. o 9\sqrt{3}
B. 9\sqrt{3} razy
C. 81 razy
D. o 243
Zadanie 9. 1 pkt ⋅ Numer: pp-10566 ⋅ Poprawnie: 192/310 [61%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Okręgi
o_1(O_1, 4) i
o_2(O_2, 9) są styczne zewnętrznie w punkcie
S , a prosta
k
jest styczną do tych okręgów:
Oblicz długość odcinka AB .
Odpowiedź:
|AB|=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-11648 ⋅ Poprawnie: 90/141 [63%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Odcinek
AB ma długość
12
i jest cięciwą okręgu o promieniu
\frac{13}{2} .
Oblicz odległość d cięciwy AB od środka tego okręgu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-11740 ⋅ Poprawnie: 9/17 [52%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Jaką część okręgu o promieniu
4\pi
stanowi jego łuk o długości
4\pi^2 ?
Odpowiedź:
Rozwiąż