Podgląd testu : lo2@sp-13-okr-i-kola-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10546 ⋅ Poprawnie: 630/964 [65%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Punkt
O jest środkiem okręgu na rysunku, w którym
\alpha=42^{\circ} :
Wyznacz miary stopniowe kątów \beta i
\gamma .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-10493 ⋅ Poprawnie: 275/414 [66%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
» Miara kąta wpisanego w okrąg jest o
73^{\circ}
mniejsza od miary kąta środkowego opartego na tym samym łuku.
Oblicz miarę stopniową kąta wpisanego w ten okrąg.
Odpowiedź:
\alpha=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-10499 ⋅ Poprawnie: 189/271 [69%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Oblicz miarę stopniową zaznaczonego na rysunku kąta
\gamma wiedząc,
że
\alpha=39^{\circ} i
\beta=50^{\circ} :
.
Odpowiedź:
\gamma=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-10516 ⋅ Poprawnie: 164/225 [72%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Punkt
O jest środkiem okręgu, a kąty mają miary
\alpha=37^{\circ} oraz
\beta=33^{\circ} :
Wyznacz miarę stopniową kąta
\gamma .
Odpowiedź:
\gamma=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10525 ⋅ Poprawnie: 58/101 [57%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Punkt
O jest środkiem okręgu, przy czym
\alpha=160^{\circ} :
Wyznacz miarę stopniową kąta \beta .
Odpowiedź:
\beta=
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-11756 ⋅ Poprawnie: 15/39 [38%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
(1 pkt)
Trójkąty
ABC i
ADC są wpisane w okrąg o środku
S , przy czym
S\in CD . Kąt
\alpha
ma miarę
45^{\circ} , odcinek
AC długość
10\sqrt{2} :
Średnica tego okręgu ma długość:
Odpowiedzi:
A. 10
B. 20\sqrt{2}
C. 20
D. \frac{20\sqrt{2}}{3}
E. 15
F. 10\sqrt{2}
Zadanie 7. 1 pkt ⋅ Numer: pp-11654 ⋅ Poprawnie: 41/77 [53%]
Rozwiąż
Podpunkt 7.1 (0.5 pkt)
Okręgi
o_1(A, r_1) oraz
o_2(B,r_2)
(
r_1\lessdot r_2 ) są styczne zewnętrznie, a odległość ich środków jest równa
6 .
Różnica długości promieni tych okręgów jest równa
\frac{1}{3} .
Oblicz r_1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-10563 ⋅ Poprawnie: 96/155 [61%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Okręgi o takich samych promieniach mają środki w punktach
M=(1, 3) i
N=(65, -45) i są wzajemnie styczne zewnętrznie.
Wyznacz długość promienia tych okręgów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 1 pkt ⋅ Numer: pp-10476 ⋅ Poprawnie: 420/638 [65%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Dane są okręgi, w których
|O_1A|=40 ,
|O_2B|=24 i
|O_1O_2|=128 :
Oblicz długość odcinka O_1P .
Odpowiedź:
|O_1P|=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-11649 ⋅ Poprawnie: 33/60 [55%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
W okręgu o promieniu
80 narysowano cięciwę,
która znajduje się w odległości
64
od środka tego okręgu.
Oblicz długość tej cięciwy.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 11. 1 pkt ⋅ Numer: pp-11740 ⋅ Poprawnie: 9/17 [52%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Jaką część okręgu o promieniu
10\pi
stanowi jego łuk o długości
11\pi^2 ?
Odpowiedź:
Rozwiąż