Podgląd testu : lo2@sp-13-okr-i-kola-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10547 ⋅ Poprawnie: 663/914 [72%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Punkt
O jest środkiem okręgu na rysunku, w którym
\beta=126^{\circ} i
\gamma=31^{\circ} :
Obicz miarę stopniową kąta \alpha .
Odpowiedź:
\alpha=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-10492 ⋅ Poprawnie: 123/173 [71%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Punkt
O jest środkiem okręgu na rysunku, w którym:
|AO|=13 oraz
|AB|=13\sqrt{3} :
Wówczas:
Odpowiedzi:
A. |\sphericalangle BAC|=45^{\circ}
B. |\sphericalangle BCA|=45^{\circ}
C. |\sphericalangle BCA|=90^{\circ}
D. |\sphericalangle BOC|=60^{\circ}
Zadanie 3. 1 pkt ⋅ Numer: pp-10478 ⋅ Poprawnie: 49/76 [64%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
«« Kąt wpisany w okrąg o promieniu
\sqrt{2} ma miarę
3^{\circ} . Długość łuku, na którym oparty jest
ten kąt można zapisać w postaci
a\cdot \sqrt{2}\cdot \pi .
Podaj liczbę a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10510 ⋅ Poprawnie: 81/143 [56%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Na łuku okręgu o długości równej
\frac{1}{30} długości okręgu, oparto dwa kąty:
kąt wpisany w ten okrąg i kąt środkowy tego okręgu.
Wyznacz sumę miar stopniowych tych kątów.
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10519 ⋅ Poprawnie: 27/56 [48%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Na okręgu o środku
O zaznaczono
k=20
wierzchołków wielokąta foremnego. Spośród nich wybrano trzy kolejne i narysowano kąt
jak na rysunku:
Wyznacz miarę stopniową kąta \alpha .
Odpowiedź:
\alpha=
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-10534 ⋅ Poprawnie: 109/128 [85%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Punkty
A ,
B i
C leżą na okręgu o środku
O :
Wyznacz miarę stopniową zaznaczonego na rysunku wypukłego kąta środkowego
AOB .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7. 1 pkt ⋅ Numer: pp-11653 ⋅ Poprawnie: 14/33 [42%]
Rozwiąż
Podpunkt 7.1 (0.5 pkt)
« Okręgi
o_1(A, 10) oraz
o_2(B,2m-1)
są styczne wewnętrznie, a odległość ich środków jest równa
16 .
Wyznacz najmniejszą wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
Wyznacz największą wartość parametru
m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-11102 ⋅ Poprawnie: 26/118 [22%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
W okrąg o promieniu długości
48 wpisano kąt środkowy
oparty na łuku długości równej
25 % długości całego
okręgu. Następnie w ten kąt środkowy wpisano okrąg.
Oblicz długość promienia tego okręgu.
Odpowiedź:
r=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 9. 1 pkt ⋅ Numer: pp-10564 ⋅ Poprawnie: 131/190 [68%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Dwa okręgi mają promienie o długości
\frac{5}{3} i
\frac{11}{6} . Mniejszy z okręgów przechodzi przez środek
większego.
Oblicz odległość między środkami tych okręgów.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 1 pkt ⋅ Numer: pp-11650 ⋅ Poprawnie: 32/55 [58%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Jaką część okręgu o promieniu
8
stanowi jego łuk o długości
5\pi ?
Odpowiedź:
Zadanie 11. 1 pkt ⋅ Numer: pp-11739 ⋅ Poprawnie: 28/30 [93%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Jaką część okręgu o promieniu
6
stanowi jego łuk o długości
9\pi ?
Odpowiedź:
Rozwiąż