Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-13-okr-i-kola-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10548 ⋅ Poprawnie: 276/537 [51%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt O jest środkiem okręgu na rysunku, w którym \alpha=64^{\circ}:

Oblicz miarę stopniową kąta \beta.

Odpowiedź:
\beta= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10486 ⋅ Poprawnie: 313/405 [77%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt O jest środkiem okręgu na rysunku:
Wiedząc, że \alpha=38^{\circ}, wyznacz miarę stopniową kąta \beta.
Odpowiedź:
\beta= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10514 ⋅ Poprawnie: 185/314 [58%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkt O jest środkiem okręgu na rysunku, przy czym \beta=22^{\circ}:

Wyznacz miarę stopniową zaznaczonego na rysunku kąta \alpha.

Odpowiedź:
\alpha= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10513 ⋅ Poprawnie: 152/257 [59%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Punkt O jest środkiem okręgu na rysunku, a kąt: \alpha ma miarę 218^{\circ}:

Wyznacz miarę stopniową kąta \beta zaznaczonego na rysunku.

Odpowiedź:
\beta= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10519 ⋅ Poprawnie: 27/56 [48%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Na okręgu o środku O zaznaczono k=18 wierzchołków wielokąta foremnego. Spośród nich wybrano trzy kolejne i narysowano kąt jak na rysunku:

Wyznacz miarę stopniową kąta \alpha.

Odpowiedź:
\alpha= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10545 ⋅ Poprawnie: 81/112 [72%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
Punkt O jest środkiem okręgu, a prosta k styczną do tego okręgu w punkcie A:
.

Wyznacz miarę stopniową kąta \alpha.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  1 pkt ⋅ Numer: pp-11654 ⋅ Poprawnie: 41/77 [53%] Rozwiąż 
Podpunkt 7.1 (0.5 pkt)
 Okręgi o_1(A, r_1) oraz o_2(B,r_2) (r_1\lessdot r_2) są styczne zewnętrznie, a odległość ich środków jest równa \frac{17}{3}. Różnica długości promieni tych okręgów jest równa \frac{1}{3}.

Oblicz r_1.

Odpowiedź:
r_1=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
 Oblicz r_2.
Odpowiedź:
r_2=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11102 ⋅ Poprawnie: 26/118 [22%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 W okrąg o promieniu długości 40 wpisano kąt środkowy oparty na łuku długości równej 25% długości całego okręgu. Następnie w ten kąt środkowy wpisano okrąg.

Oblicz długość promienia tego okręgu.

Odpowiedź:
r= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10564 ⋅ Poprawnie: 131/190 [68%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dwa okręgi mają promienie o długości \frac{4}{3} i \frac{11}{6}. Mniejszy z okręgów przechodzi przez środek większego.

Oblicz odległość między środkami tych okręgów.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  1 pkt ⋅ Numer: pp-11649 ⋅ Poprawnie: 33/60 [55%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 W okręgu o promieniu 17 narysowano cięciwę, która znajduje się w odległości 8 od środka tego okręgu.

Oblicz długość tej cięciwy.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  1 pkt ⋅ Numer: pp-11740 ⋅ Poprawnie: 9/17 [52%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Jaką część okręgu o promieniu 7\pi stanowi jego łuk o długości 3\pi^2?
Odpowiedź:
\frac{m}{n}= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm