Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-13-okr-i-kola-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10504 ⋅ Poprawnie: 722/1039 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt O jest środkiem okręgu, w którym \alpha=25^{\circ}:

Oblicz miarę stopniową kąta \beta.

Odpowiedź:
\beta= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10486 ⋅ Poprawnie: 313/405 [77%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt O jest środkiem okręgu na rysunku:
Wiedząc, że \alpha=28^{\circ}, wyznacz miarę stopniową kąta \beta.
Odpowiedź:
\beta= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10495 ⋅ Poprawnie: 129/185 [69%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Długości przyprostokątnych trójkąta prostokątnego są równe 24 i 10.

Oblicz długość środkowej tego trójkąta poprowadzonej z wierzchołka kąta prostego.

Odpowiedź:
d=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10536 ⋅ Poprawnie: 110/152 [72%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Punkt O jest środkiem okręgu, przy czym \beta=26^{\circ}:

Kąt \alpha, zaznaczony na rysunku, ma miarę:

Odpowiedzi:
A. 32^{\circ} B. 35^{\circ}
C. 36^{\circ} D. 27^{\circ}
E. 38^{\circ} F. 30^{\circ}
Zadanie 5.  1 pkt ⋅ Numer: pp-10516 ⋅ Poprawnie: 164/225 [72%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt O jest środkiem okręgu, a kąty mają miary \alpha=23^{\circ} oraz \beta=31^{\circ}:
Wyznacz miarę stopniową kąta \gamma.
Odpowiedź:
\gamma= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10521 ⋅ Poprawnie: 48/120 [40%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 «« Na okręgu zaznaczono wierzchołki 18-kąta foremnego. Spośród nich wybrano siedem kolejnych i narysowano kąt jak na rysunku:

Wyznacz miarę stopniową kąta \alpha.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  1 pkt ⋅ Numer: pp-10525 ⋅ Poprawnie: 58/101 [57%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Punkt O jest środkiem okręgu, przy czym \alpha=168^{\circ}:

Wyznacz miarę stopniową kąta \beta.

Odpowiedź:
\beta= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-10501 ⋅ Poprawnie: 31/96 [32%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
» Stosunek obwodu zacieniowanej części koła do obwodu całego koła wynosi:
Odpowiedzi:
A. \frac{4+\pi}{2\pi} B. \frac{4+\pi}{4\pi}
C. \frac{1}{4} D. \frac{3}{4}
Zadanie 9.  1 pkt ⋅ Numer: pp-11652 ⋅ Poprawnie: 69/116 [59%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Okręgi o_1(A, 2) oraz o_2(B,2m-3) są styczne zewnętrznie, a odległość ich środków jest równa 10.

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-11655 ⋅ Poprawnie: 25/43 [58%] Rozwiąż 
Podpunkt 10.1 (0.5 pkt)
 Okręgi o_1(A, r_1) oraz o_2(B,r_2) (r_1\lessdot r_2) są styczne wewnętrznie, a odległość ich środków jest równa 1. Suma długości promieni tych okręgów jest równa \frac{11}{3}.

Oblicz r_1.

Odpowiedź:
r_1=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (0.5 pkt)
 Oblicz r_2.
Odpowiedź:
r_2=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-10569 ⋅ Poprawnie: 300/393 [76%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Dane są okręgi o_1\left(A, \frac{5}{2}\right) i o_2\left(B, \frac{11}{2}\right), przy czym |AB|=\frac{21}{2}.

Okręgi te:

Odpowiedzi:
A. są styczne wewnętrznie B. są rozłączne zewnętrznie
C. są rozłączne wewnętrznie D. są styczne zewnętrznie
Zadanie 12.  1 pkt ⋅ Numer: pp-10564 ⋅ Poprawnie: 131/190 [68%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Dwa okręgi mają promienie o długości \frac{2}{3} i \frac{5}{6}. Mniejszy z okręgów przechodzi przez środek większego.

Oblicz odległość między środkami tych okręgów.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 13.  1 pkt ⋅ Numer: pp-11650 ⋅ Poprawnie: 32/55 [58%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Jaką część okręgu o promieniu 3 stanowi jego łuk o długości 2\pi?
Odpowiedź:
\frac{m}{n}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 14.  1 pkt ⋅ Numer: pp-11739 ⋅ Poprawnie: 28/30 [93%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Jaką część okręgu o promieniu 3 stanowi jego łuk o długości 5\pi?
Odpowiedź:
\frac{m}{n}= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm