« Na trójkącie ABC opisano okrąg.
Z punktu P leżącego poza okręgiem poprowadzono
styczną do okręgu w punkcie A oraz sieczną,
która przecięła okrąg w punktach B i
C.
Oblicz miary kątów trójkąta APC.
Podaj miarę stopniową najmniejszego z kątów tego trójkąta.
Dane
\alpha=58^{\circ} \beta=89^{\circ}
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
Podaj miarę stopniową największego z kątów tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7.2 pkt ⋅ Numer: pp-20224 ⋅ Poprawnie: 87/161 [54%]
Na trójkątach równobocznych ACD i
BEC, których podstawy zawierają się w jednej
prostej, opisano dwa okręgi jak na rysunku. Okręgi te przecięły się w punktach
C i P.
Oblicz miarę stopniową kąta APB.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8.4 pkt ⋅ Numer: pp-30017 ⋅ Poprawnie: 20/89 [22%]
» W kwadrat o boku długości a\sqrt{2} wpisano
cztery okręgi jak na rysunku. Następnie narysowano koło zawarte w kwadracie i
styczne do tych czterech okręgów.
Oblicz promień tego koła.
Dane
a=18
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9.4 pkt ⋅ Numer: pp-30395 ⋅ Poprawnie: 68/153 [44%]