Okręgi o_1(A, r_1) oraz o_2(B,r_2)
(r_1\lessdot r_2) są styczne wewnętrznie, a odległość ich środków jest równa \frac{49}{6}.
Stosunek długości promieni tych okręgów jest równy 8.
Oblicz r_1.
Odpowiedź:
r_1=
(wpisz dwie liczby całkowite)
Podpunkt 3.2 (0.5 pkt)
Oblicz r_2.
Odpowiedź:
r_2=
(wpisz dwie liczby całkowite)
Zadanie 4.1 pkt ⋅ Numer: pp-11649 ⋅ Poprawnie: 33/60 [55%]
(1 pkt) Punkt O jest środkiem, a odcinek
AC średnicą okręgu na rysunku.
W okrąg ten wpisano kąt ABC, a następnie odcinek
BC przedłużono do takiego punktu
D, że |BC|=|CD|.
Wiedząc, że kąt BOD jest prosty, oblicz pole
powierzchni trójkąta ABO.
Dane
a=26
Odpowiedź:
P_{ABO}=
\cdot√
(wpisz trzy liczby całkowite)
Podpunkt 6.2 (1 pkt)
(1 pkt) Łuk, na którym oparty jest mniejszy z kątów
środkowych okręgu AOE, ma długość
p\cdot\pi.
Wyznacz liczbę p.
Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 7.2 pkt ⋅ Numer: pp-20230 ⋅ Poprawnie: 32/52 [61%]