Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-13-okr-i-kola-pp-6

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10486  
Podpunkt 1.1 (1 pkt)
 Punkt O jest środkiem okręgu na rysunku:
Wiedząc, że \alpha=34^{\circ}, wyznacz miarę stopniową kąta \beta.
Odpowiedź:
\beta= (wpisz liczbę całkowitą)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10517  
Podpunkt 2.1 (1 pkt)
 Punkt O jest środkiem okręgu, przy czym \alpha=117^{\circ}:

Wyznacz miarę stopniową kąta \beta.

Odpowiedź:
\beta= (wpisz liczbę całkowitą)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10557  
Podpunkt 3.1 (1 pkt)
 Okrąg jest opisany na prostokącie o bokach długości 10 i \sqrt{3}.

Oblicz długość promienia tego okręgu.

Odpowiedź:
r= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11737  
Podpunkt 4.1 (0.5 pkt)
 Okręgi o_1(A, r_1) oraz o_2(B,r_2) (r_1\lessdot r_2) są styczne zewnętrznie, a odległość ich środków jest równa 7. Stosunek długości promieni tych okręgów jest równy 6.

Oblicz r_1.

Odpowiedź:
r_1=
(wpisz dwie liczby całkowite)
Podpunkt 4.2 (0.5 pkt)
 Oblicz r_2.
Odpowiedź:
r_2=
(wpisz dwie liczby całkowite)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11651  
Podpunkt 5.1 (1 pkt)
 Dwa promienie okręgu tworzą kąt środkowy tego okręgu o mierze 4^{\circ}. Przez końce tych promieni położone na okręgu poprowadzono styczne do tego okręgu, które przecięły się w punkcie P.

Wyznacz miarę stopniową kąta, pod którym widać ten okrąg z punktu P.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20949  
Podpunkt 6.1 (1 pkt)
 « Cięciwa CD okręgu o środku O jest prostopadła do średnicy AB tego okręgu i przecina ją w punkcie P takim, że |AP|:|PB|=32:2 oraz |OP|=15.

Oblicz długość promienia tego okręgu.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Oblicz długość cięciwy CD.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20206  
Podpunkt 7.1 (2 pkt)
Kąt między cięciwą AB a styczną do okręgu w punkcie B ma miarę 30^{\circ}. Korzystając z danych na rysunku oblicz miarę kąta ABC.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20212  
Podpunkt 8.1 (1 pkt)
 « Na trójkącie ABCopisano okrąg. Wierzchołki trójkąta podzieliły okrąg na trzy łuki AB, BC i CA, które pozostają w stosunku x:y:z.

Podaj miarę stopniową najmniejszego kąta tego trójkąta.

Dane
x=11
y=30
z=31
Odpowiedź:
\gamma_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj miarę stopniową największego kąta tego trójkąta.
Odpowiedź:
\gamma_{max}=
(wpisz dwie liczby całkowite)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20963  
Podpunkt 9.1 (1 pkt)
 W trójkąt prostokątny o przyprostokątnych długości 20 i 48 wpisano okrąg.

Oblicz długości odcinków, na które punkt styczności podzielił przeciwprostokątną tego trójkąta.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Podpunkt 9.2 (0.5 pkt)
 Dwusieczna kąta prostego przecina przeciwprostokątną tego trójkąta w punkcie P.

Oblicz długości odcinków, na które dzieli przeciwprostokątną punkt P.

Odpowiedź:
d_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 9.3 (0.5 pkt)
 Podaj długość dłuższego z tych odcinków.
Odpowiedź:
d_{max}=
(wpisz dwie liczby całkowite)
Zadanie 10.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20221  
Podpunkt 10.1 (2 pkt)
 Na okręgu o środku O zaznaczono dwa punkty A i B, które podzieliły ten okrąg na dwa łuki, których długości pozostają w stosunku a:b.

Oblicz miarę stopniową mniejszego z kątów środkowych AOB tego okręgu.

Dane
a:b=\frac{1}{3}=0.33333333333333
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30013  
Podpunkt 11.1 (4 pkt)
 » Prosta k jest styczną do dwóch rozłącznych zewnętrznie okręgów o promieniach r_1 i r_2 i poprowadzona jest w taki sposób, że środki okręgów znajdują sie po różnych stronach prostej k.

Wiedząc, że odległość między środkami okręgów wynosi d oblicz odległość pomiędzy punktami styczności.

Dane
r_1=9
r_2=24
d=55
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 12.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30395  
Podpunkt 12.1 (2 pkt)
 «« Punkt O jest środkiem okręgu:

Oblicz |AC|.

Dane
|AB|=17
|BN|=8
|CN|=4
Odpowiedź:
|AC|= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Oblicz |MC|.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm