Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-13-okr-i-kola-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10495 ⋅ Poprawnie: 129/185 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Długości przyprostokątnych trójkąta prostokątnego są równe 24 i 70.

Oblicz długość środkowej tego trójkąta poprowadzonej z wierzchołka kąta prostego.

Odpowiedź:
d=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10487 ⋅ Poprawnie: 50/61 [81%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
W czworokącie OBMA kąty wewnętrzne AOB i AMB mają równe miary.

Wyznacz miarę stopniową kąta \alpha.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-11738 ⋅ Poprawnie: 34/52 [65%] Rozwiąż 
Podpunkt 3.1 (0.5 pkt)
 Okręgi o_1(A, r_1) oraz o_2(B,r_2) (r_1\lessdot r_2) są styczne wewnętrznie, a odległość ich środków jest równa \frac{32}{3}. Stosunek długości promieni tych okręgów jest równy 5.

Oblicz r_1.

Odpowiedź:
r_1=
(wpisz dwie liczby całkowite)
Podpunkt 3.2 (0.5 pkt)
 Oblicz r_2.
Odpowiedź:
r_2=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11739 ⋅ Poprawnie: 28/30 [93%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Jaką część okręgu o promieniu 9 stanowi jego łuk o długości 7\pi?
Odpowiedź:
\frac{m}{n}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  2 pkt ⋅ Numer: pp-20204 ⋅ Poprawnie: 30/79 [37%] Rozwiąż 
Podpunkt 5.1 (2 pkt)
 » Korzystając z danych na rysunku oblicz miarę stopniową kąta \beta:
Dane
\alpha=48^{\circ}
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20231 ⋅ Poprawnie: 116/163 [71%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Dane są dwa okręgi o środkach w punktach P i R, styczne zewnętrznie w punkcie C. Prosta AB jest styczna do obu okręgów odpowiednio w punktach A i B oraz |\sphericalangle ABC|=\beta:

Oblicz miarę kąta \alpha. Wynik zapisz w stopniach bez jednostki.

Dane
\beta=74^{\circ}
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  4 pkt ⋅ Numer: pp-30017 ⋅ Poprawnie: 20/89 [22%] Rozwiąż 
Podpunkt 7.1 (4 pkt)
 » W kwadrat o boku długości a\sqrt{2} wpisano cztery okręgi jak na rysunku. Następnie narysowano koło zawarte w kwadracie i styczne do tych czterech okręgów.

Oblicz promień tego koła.

Dane
a=14
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pp-30395 ⋅ Poprawnie: 68/153 [44%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 «« Punkt O jest środkiem okręgu:

Oblicz |AC|.

Dane
|AB|=50
|BN|=14
|CN|=7
Odpowiedź:
|AC|= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (2 pkt)
 Oblicz |MC|.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm