Punkt O jest środkiem okręgu na rysunku, przy czym
\beta=16^{\circ}:
Wyznacz miarę stopniową zaznaczonego na rysunku kąta \alpha.
Odpowiedź:
\alpha=(wpisz liczbę całkowitą)
Zadanie 2.(1 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-10533
Podpunkt 2.1 (1 pkt)
Punkt O jest środkiem okręgu:
Wyznacz miarę stopniową kąta \alpha.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 3.(1 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-10559
Podpunkt 3.1 (1 pkt)
Pole koła opisanego na trójkącie równobocznym jest równe \frac{1}{3^{9}}\pi^3.
Bok tego trójkąta ma długość \frac{\pi^m}{3^n}, gdzie.
m,n\in\mathbb{Z}.
Podaj liczby m i n.
Odpowiedzi:
m
=
(wpisz liczbę całkowitą)
n
=
(wpisz liczbę całkowitą)
Zadanie 4.(1 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-11654
Podpunkt 4.1 (0.5 pkt)
Okręgi o_1(A, r_1) oraz o_2(B,r_2)
(r_1\lessdot r_2) są styczne zewnętrznie, a odległość ich środków jest równa \frac{16}{3}.
Różnica długości promieni tych okręgów jest równa \frac{2}{3}.
Oblicz r_1.
Odpowiedź:
r_1=
(wpisz dwie liczby całkowite)
Podpunkt 4.2 (0.5 pkt)
Oblicz r_2.
Odpowiedź:
r_2=
(wpisz dwie liczby całkowite)
Zadanie 5.(1 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-11739
Podpunkt 5.1 (1 pkt)
Jaką część okręgu o promieniu 5
stanowi jego łuk o długości 3\pi?
Odpowiedź:
\frac{m}{n}=
\cdot√
(wpisz trzy liczby całkowite)
Zadanie 6.(2 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-20201
Podpunkt 6.1 (1 pkt)
» Na trójkącie ABC opisano okrąg.
W punkcie C poprowadzono styczną do okręgu, jak
na rysunku.
Wiedząc, że CE jest dwusieczną kąta
BCA oblicz miary kątów trójkąta
EFC.
Podaj miarę stopniową najmniejszego z kątów tego trójkąta.
Dane
\alpha=42^{\circ} \beta=82^{\circ}
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
Podaj miarę stopniową największego z kątów tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7.(2 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-20958
Podpunkt 7.1 (2 pkt)
W trójkącie ABC boki AC i BC
mają równą długość równą \sqrt{197}, a promień okręgu opisanego na tym
trójkącie ma długość \frac{197}{2}.
Oblicz długość boku AB tego trójkąta.
Odpowiedź:
|AB|=\cdot√
(wpisz dwie liczby całkowite)
Zadanie 8.(3 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-20960
Podpunkt 8.1 (1 pkt)
Dany jest trójkąt ostrokątny ABC, w którym
|CD|=\frac{841}{69} i |BD|=\frac{1160}{69}:
Oblicz |AB|.
Odpowiedź:
|AB|=(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
R=
(wpisz dwie liczby całkowite)
Podpunkt 8.3 (1 pkt)
Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 9.(2 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-20230
Podpunkt 9.1 (2 pkt)
» Czworokąt na rysunku jest kwadratem:
Oblicz |AB|:|CO|.
Odpowiedź:
|AB|:|CO|=\cdot√
(wpisz dwie liczby całkowite)
Zadanie 10.(4 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-30017
Podpunkt 10.1 (4 pkt)
» W kwadrat o boku długości a\sqrt{2} wpisano
cztery okręgi jak na rysunku. Następnie narysowano koło zawarte w kwadracie i
styczne do tych czterech okręgów.
Oblicz promień tego koła.
Dane
a=14
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 11.(4 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-30395
Podpunkt 11.1 (2 pkt)
«« Punkt O jest środkiem okręgu:
Oblicz |AC|.
Dane
|AB|=65 |BN|=16 |CN|=8
Odpowiedź:
|AC|=\cdot√
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Oblicz |MC|.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat