Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-13-okr-i-kola-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10484 ⋅ Poprawnie: 167/224 [74%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Oblicz miarę stopniową kąta środkowego opartego na łuku, którego długość jest równa \frac{1}{2} długości okręgu.
Odpowiedź:
\alpha= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10532 ⋅ Poprawnie: 30/65 [46%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt O jest środkiem okręgu, przy czym \beta=42^{\circ}

Wyznacz miarę stopniową kąta \alpha.

Odpowiedź:
\alpha= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11654 ⋅ Poprawnie: 41/77 [53%] Rozwiąż 
Podpunkt 3.1 (0.5 pkt)
 Okręgi o_1(A, r_1) oraz o_2(B,r_2) (r_1\lessdot r_2) są styczne zewnętrznie, a odległość ich środków jest równa \frac{13}{2}. Różnica długości promieni tych okręgów jest równa \frac{1}{2}.

Oblicz r_1.

Odpowiedź:
r_1=
(wpisz dwie liczby całkowite)
Podpunkt 3.2 (0.5 pkt)
 Oblicz r_2.
Odpowiedź:
r_2=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11650 ⋅ Poprawnie: 32/55 [58%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Jaką część okręgu o promieniu 3 stanowi jego łuk o długości 2\pi?
Odpowiedź:
\frac{m}{n}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  2 pkt ⋅ Numer: pp-20202 ⋅ Poprawnie: 73/149 [48%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Na trójkącie ABC opisano okrąg. Z punktu P leżącego poza okręgiem poprowadzono styczną do okręgu w punkcie A oraz sieczną, która przecięła okrąg w punktach B i C.
Oblicz miary kątów trójkąta APC.

Podaj miarę stopniową najmniejszego z kątów tego trójkąta.

Dane
\alpha=52^{\circ}
\beta=81^{\circ}
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 5.2 (1 pkt)
 Podaj miarę stopniową największego z kątów tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20893 ⋅ Poprawnie: 98/171 [57%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 «« Dany jest okrąg:

Oblicz długość cięciwy |AB|.

Dane
|BO|=4
|CO|=10
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  4 pkt ⋅ Numer: pp-30014 ⋅ Poprawnie: 26/72 [36%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « W kąt o wierzchołku A wpisano dwa styczne zewnętrznie okręgi, których środki są odległe od wierzchołka kąta o a cm i b cm. Oblicz długości promieni tych okręgów.

Podaj długość mniejszego z promieni.

Dane
a=4
b=6
Odpowiedź:
r_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (2 pkt)
 Podaj długość większego z promieni.
Odpowiedź:
r_{max}=
(wpisz dwie liczby całkowite)
Zadanie 8.  4 pkt ⋅ Numer: pp-30395 ⋅ Poprawnie: 19/102 [18%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 «« Punkt O jest środkiem okręgu:

Oblicz |AC|.

Dane
|AB|=65
|BN|=16
|CN|=8
Odpowiedź:
|AC|= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (2 pkt)
 Oblicz |MC|.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm