Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-13-okr-i-kola-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10488 ⋅ Poprawnie: 200/278 [71%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt O jest środkiem okręgu o średnicy AB, w którym \alpha=92^{\circ}:

Oblicz miarę stopniową kąta \gamma.

Odpowiedź:
\gamma= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10487 ⋅ Poprawnie: 50/61 [81%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
W czworokącie OBMA kąty wewnętrzne AOB i AMB mają równe miary.

Wyznacz miarę stopniową kąta \alpha.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10562 ⋅ Poprawnie: 332/471 [70%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Okręgi o_1(O_1, 1) i o_2(O_2,3) są styczne zewnętrznie w punkcie S, a prosta O_1P jest styczną do okręgu o_2:

Oblicz pole powierzchni trójkąta O_1O_2P.

Odpowiedź:
P_{\triangle O_1O_2P}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11648 ⋅ Poprawnie: 89/140 [63%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Odcinek AB ma długość 84 i jest cięciwą okręgu o promieniu \frac{85}{2}.

Oblicz odległość d cięciwy AB od środka tego okręgu.

Odpowiedź:
d=
(wpisz dwie liczby całkowite)
Zadanie 5.  2 pkt ⋅ Numer: pp-20205 ⋅ Poprawnie: 11/22 [50%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » W okrąg wpisano trójkąt ABC, w którym |\sphericalangle A|=26^{\circ} oraz |\sphericalangle B|=47^{\circ}. Poprowadzono styczną do okręgu w punkcie C, która przecięła przedłużenie boku AB w punkcie D. Oblicz miary kątów trójkąta BDC.

Podaj miarę stopniową najmniejszego kąta tego trójkąta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 5.2 (1 pkt)
 Podaj miarę stopniową największego kąta tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20222 ⋅ Poprawnie: 45/226 [19%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Okręgi są styczne do siebie i boków kwadratu. Stosunek ich promieni wynosi k:1, a przekątna kwadratu ma długość d.

Oblicz promień mniejszego z okręgów.

Dane
k=2
d=10
Odpowiedź:
r= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 7.  4 pkt ⋅ Numer: pp-30011 ⋅ Poprawnie: 10/34 [29%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Okręgi na rysunku są styczne do siebie i boków trójkąta równobocznego o polu powierzchni P, a promień r ma długość x\sqrt{y}, gdzie x,y\in\mathbb{N} i y jest liczbą pierwszą:

Wyznacz x.

Dane
P=48+32\sqrt{3}=103.42562584220407
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (2 pkt)
 Wyznacz y.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pp-30395 ⋅ Poprawnie: 13/88 [14%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 «« Punkt O jest środkiem okręgu:

Oblicz |AC|.

Dane
|AB|=53
|BN|=28
|CN|=14
Odpowiedź:
|AC|= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (2 pkt)
 Oblicz |MC|.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm