Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-13-okr-i-kola-pr-3

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10483  
Podpunkt 1.1 (1 pkt)
 Punkt O jest środkiem okręgu na rysunku, w którym: \alpha=16^{\circ} i \beta=42^{\circ}:

Oblicz miarę stopniową kąta \gamma.

Odpowiedź:
\gamma= (wpisz liczbę całkowitą)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10509  
Podpunkt 2.1 (1 pkt)
 «« Kąt wpisany w okrąg o promieniu długości 18 ma miarę 10^{\circ}. Kąt ten oparty jest na łuku o długości k\cdot \pi.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10556  
Podpunkt 3.1 (1 pkt)
 « Trójkąt ma przyprostokątne długości 3 i \sqrt{19}. Pole powierzchni koła opisanego na tym trójkącie jest równe p\cdot \pi.

Oblicz liczbę p.

Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11738  
Podpunkt 4.1 (0.5 pkt)
 Okręgi o_1(A, r_1) oraz o_2(B,r_2) (r_1\lessdot r_2) są styczne wewnętrznie, a odległość ich środków jest równa 14. Stosunek długości promieni tych okręgów jest równy 5.

Oblicz r_1.

Odpowiedź:
r_1=
(wpisz dwie liczby całkowite)
Podpunkt 4.2 (0.5 pkt)
 Oblicz r_2.
Odpowiedź:
r_2=
(wpisz dwie liczby całkowite)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11740  
Podpunkt 5.1 (1 pkt)
 Jaką część okręgu o promieniu 13\pi stanowi jego łuk o długości 7\pi^2?
Odpowiedź:
\frac{m}{n}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20952  
Podpunkt 6.1 (2 pkt)
 « Końce A i B średnicy okręgu są odległe od stycznej do tego okręgu odpowiednio o 4 i 22.

Oblicz długość promienia tego okręgu.

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20958  
Podpunkt 7.1 (2 pkt)
 W trójkącie ABC boki AC i BC mają równą długość równą \sqrt{197}, a promień okręgu opisanego na tym trójkącie ma długość \frac{197}{2}.

Oblicz długość boku AB tego trójkąta.

Odpowiedź:
|AB|= \cdot
(wpisz dwie liczby całkowite)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-21011  
Podpunkt 8.1 (0.5 pkt)
 W trójkąt prostokątny o przyprostokątnych długości 33 i 56 wpisano okrąg.

Wyznacz długości odcinków, na jakie dwusieczna kąta prostego podzieliła przeciwprostokątną tego trójkąta.

Odpowiedź:
d_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (0.5 pkt)
 Podaj długość dłuższego z tych odcinków.
Odpowiedź:
d_{max}=
(wpisz dwie liczby całkowite)
Podpunkt 8.3 (1 pkt)
 Wyznacz długości odcinków, na jakie punkt styczności okręgu z przeciwprostokątną podzielił tę przeciwprostokątną.
Odpowiedzi:
d_{min}= (wpisz liczbę całkowitą)
d_{max}= (wpisz liczbę całkowitą)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20893  
Podpunkt 9.1 (2 pkt)
 «« Dany jest okrąg:

Oblicz długość cięciwy |AB|.

Dane
|BO|=4
|CO|=8
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30013  
Podpunkt 10.1 (4 pkt)
 » Prosta k jest styczną do dwóch rozłącznych zewnętrznie okręgów o promieniach r_1 i r_2 i poprowadzona jest w taki sposób, że środki okręgów znajdują sie po różnych stronach prostej k.

Wiedząc, że odległość między środkami okręgów wynosi d oblicz odległość pomiędzy punktami styczności.

Dane
r_1=4
r_2=11
d=18
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30300  
Podpunkt 11.1 (2 pkt)
 « Spodek wysokości opuszczonej z wierzchołka kąta prostego trójkata prostokatnego leży w odległości d od środka okręgu opisanego na tym trójkącie, a wysokość ta ma długość h.

Oblicz długość promienia okręgu opisanego na tym trójkącie.

Dane
d=\frac{7}{2}=3.50000000000000
h=12
Odpowiedź:
R=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Oblicz długość obwodu tego trójkąta.
Odpowiedź:
L= (liczba zapisana dziesiętnie)
Zadanie 12.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30853  
Podpunkt 12.1 (2 pkt)
 W trójkąt rozwartokątny ABC, w którym |AC|=|BC|, wpisano okrąg o środku w punkcie O i promiemiu równym 6. Punkt P jest punktem styczności tego okręgu z ramieniem AC, a symetralna boku AC przecina ten bok w punkcie M oraz symetralną boku AB w punkcie S. Wiedząc, że |PM|=10.4 oraz |MS|=25.5, oblicz promień R okręgu opisanego na trójkącie ABC oraz długość boku AB.

Podaj R.

Odpowiedź:
R=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Podaj |AB|.
Odpowiedź:
|AB|= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm