» Czworokąt na rysunku jest kwadratem o boku długości
4\sqrt{2}, a okręgi przechodzące przez punkty
A i C mają środki w
punktach B i D:
Oblicz pole powierzchni zielonej figury i zapisz wynik w postaci
m+n\cdot \pi, gdzie m,n\in\mathbb{Z}.
Podaj liczby m i n.
Odpowiedzi:
m
=
(wpisz liczbę całkowitą)
n
=
(wpisz liczbę całkowitą)
Zadanie 2.(1 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-10538
Podpunkt 2.1 (1 pkt)
Punkt O jest środkiem okręgu:
Wyznacz miarę stopniową kąta ACO.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 3.(1 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-10551
Podpunkt 3.1 (1 pkt)
» Wielokąt na rysunku jest foremny, w którym |AB|=\frac{\sqrt{6}}{4}:
Pole powierzchni koła opisanego na tym wielokącie jest równe p\cdot\pi.
Wyznacz liczbę p.
Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 4.(1 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-11102
Podpunkt 4.1 (1 pkt)
W okrąg o promieniu długości 22 wpisano kąt środkowy
oparty na łuku długości równej 25% długości całego
okręgu. Następnie w ten kąt środkowy wpisano okrąg.
Oblicz długość promienia tego okręgu.
Odpowiedź:
r=+\cdot√
(wpisz trzy liczby całkowite)
Zadanie 5.(1 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-11651
Podpunkt 5.1 (1 pkt)
Dwa promienie okręgu tworzą kąt środkowy tego okręgu o mierze 130^{\circ}.
Przez końce tych promieni położone na okręgu poprowadzono styczne do tego okręgu, które
przecięły się w punkcie P.
Wyznacz miarę stopniową kąta, pod którym widać ten okrąg z punktu P.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 6.(2 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-20951
Podpunkt 6.1 (2 pkt)
Z punktu P poprowadzono styczną do okręgu
o(O,r). Półprosta PO^{\rightarrow}
przecina ten okrąg w punktach A i B,
przy czym punkt B znajduje się 5
razy dalej od tej stycznej niż punkt A.
Jakim procentem promienia okręgu jest długość odcinka PA?
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7.(2 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-20216
Podpunkt 7.1 (2 pkt)
Okrąg opisano na trójkącie o bokach długości
a, b i
c. Oblicz długość promienia tego okręgu.
« AM i CN są
dwusiecznymi kątów \alpha i
\gamma w trójkącie ABC.
Dwusieczne te przecinają się w punkcie S. Wiedząc,
że na czworokącie NBMS można opisać okrąg oblicz
\frac{\alpha+\gamma}{2}.
Podaj obliczoną miarę stopniową.
Odpowiedź:
\frac{\alpha+\gamma}{2}=(wpisz liczbę całkowitą)
Zadanie 9.(2 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-20221
Podpunkt 9.1 (2 pkt)
Na okręgu o środku O zaznaczono dwa punkty
A i B, które podzieliły
ten okrąg na dwa łuki, których długości pozostają w stosunku
a:b.
Oblicz miarę stopniową mniejszego z kątów środkowych
AOB tego okręgu.
Dane
a:b=\frac{7}{29}=0.24137931034483
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10.(4 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-30016
Podpunkt 10.1 (4 pkt)
« W kole o promieniu r narysowano cięciwę okręgu
tego koła oddaloną od środka koła o d.
Cięciwa podzieliła koło na dwie części.
Oblicz pole powierzchni mniejszej z tych cześci.
Dane
r=12 d=6
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 11.(4 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pr-30004
Podpunkt 11.1 (2 pkt)
Na przedłużeniu przeciwprostokątnej AB trójkata
ABC zaznaczono punkty D
i E w kolejności D,A,B,E
takie, że |DA|=|AC| i
|EB|=|BC|. Obwód trójkąta
ABC jest równy \frac{7\sqrt{2}}{4}.
Podaj miarę stopniową największego z kątów trójkąta
CDE.
Odpowiedź:
\alpha=(liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
Oblicz długość promienia okręgu opisanego na trójkącie
CDE.
Odpowiedź:
R=
(wpisz dwie liczby całkowite)
Zadanie 12.(4 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pr-30853
Podpunkt 12.1 (2 pkt)
W trójkąt rozwartokątny ABC, w którym |AC|=|BC|,
wpisano okrąg o środku w punkcie O i promiemiu równym
24. Punkt P jest punktem styczności tego okręgu
z ramieniem AC, a symetralna boku AC przecina ten bok
w punkcie M oraz symetralną boku AB w punkcie
S. Wiedząc, że |PM|=41.6 oraz
|MS|=102.0, oblicz promień R okręgu opisanego
na trójkącie ABC oraz długość boku AB.
Podaj R.
Odpowiedź:
R=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
Podaj |AB|.
Odpowiedź:
|AB|=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat