Podgląd testu : lo2@sp-15-geom-analit-1-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11417 ⋅ Poprawnie: 535/1040 [51%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Punkty o współrzędnych
A=(-1,6) i
C=(11,-3) są przeciwległymi wierzchołkami
kwadratu, na którym opisano okrąg. Zapisz długość promienia tego okręgu w najprostszej postaci
\frac{a\sqrt{b}}{c} , gdzie
a,b,c\in\mathbb{N} .
Podaj liczby a , b i c .
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-11239 ⋅ Poprawnie: 147/266 [55%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Punkty
A=(5,5) i
C=\left(4,2\right)
są dwoma przeciwległymi wierzchołkami prostokąta.
Oblicz długość promienia okręgu opisanego
na tym prostokącie.
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-11511 ⋅ Poprawnie: 542/919 [58%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Punkty o współrzędnych
A=\left(6\sqrt{3},3\right) i
B=\left(12\sqrt{3},3\right) są wierzchołkami trójkąta
równobocznego
ABC .
Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-11224 ⋅ Poprawnie: 125/231 [54%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Pole powierzchni trójkąta o wierzchołkach
K=(5,0) ,
L=(10,-5) i
M=(10,3)
jest równe
P .
Oblicz długość boku kwadratu o polu powierzchni
P .
Odpowiedź:
a=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11221 ⋅ Poprawnie: 71/162 [43%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Punkty A=(2,0) , B=(5,0)
i C=(4,3) są wierzchołkami trójkąta. Zbiór wszystkich
punktów M należacych do trójkąta
ABC spełniających warunek
|MA|\leqslant |MB| jest:
Odpowiedzi:
A. trójkątem prostokątnym
B. trójkątem ostrokątnym
C. wycinkiem koła
D. czworokątem
Zadanie 6. 1 pkt ⋅ Numer: pp-11246 ⋅ Poprawnie: 152/291 [52%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Prosta, do której należą punkty
A=(28,55) i
B=(53,5)
przecina oś
Ox w punkcie o odciętej
x_0 .
Podaj x_0 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-11231 ⋅ Poprawnie: 201/333 [60%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Środek odcinka o końcach
(6,2) i
(8,2) należy do prostej o równaniu
y+ax=6+5a .
Wyznacz wartość parametru a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-10838 ⋅ Poprawnie: 245/407 [60%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Do wykresu funkcji określonej wzorem
y=6x-\sqrt{7} równoległy jest
wykres funkcji określonej wzorem:
Odpowiedzi:
A. f(x)=\frac{13}{2}x+3-\frac{1}{2}x
B. f(x)=\frac{11}{2}x+5
C. f(x)=\frac{15}{2}x+5
D. f(x)=-6x-1
Zadanie 9. 1 pkt ⋅ Numer: pp-10821 ⋅ Poprawnie: 39/90 [43%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Wykresy funkcji liniowych
f(x)=\frac{\sqrt{5}}{9}x-3 oraz
g(x)=\frac{5}{9\sqrt{5}}x-\frac{1}{2} :
Odpowiedzi:
A. są prostopadłe
B. są równoległe i nie pokrywają się
C. przecinają się, ale nie są prostopadłe
D. pokrywają się
Zadanie 10. 1 pkt ⋅ Numer: pp-10823 ⋅ Poprawnie: 129/245 [52%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Wykresy funkcji
y=(9-m)x-\frac{5}{3} i
y=4-(m+9)x są prostopadłe.
Zatem m^2 jest:
Odpowiedzi:
A. liczbą niewymierną
B. liczbą wymierną
C. równe zero
D. liczbą nieparzystą
Zadanie 11. 1 pkt ⋅ Numer: pp-10846 ⋅ Poprawnie: 140/304 [46%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Do prostej o równaniu
3x+\frac{4}{3}y+1=0 równoległa
jest prosta określona wzorem
y=......\cdot x+b .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-11416 ⋅ Poprawnie: 507/815 [62%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
« Do prostej o równaniu
y=ax+b należy punkt
A=\left(\frac{1}{2}, 1\right) i prosta ta jest
prostopadła do prostej o równaniu
y=-4x+2 .
Wyznacz b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż