Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-15-geom-analit-1-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11242 ⋅ Poprawnie: 467/632 [73%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Punkt C=(-2m,y_C) jest środkiem odcinka o końcach A=(-1,1) i B=(-2,-6).

Zatem liczba m jest równa:

Odpowiedzi:
A. \frac{3}{4} B. \frac{3}{2}
C. -\frac{3}{2} D. -\frac{3}{4}
Zadanie 2.  1 pkt ⋅ Numer: pp-11239 ⋅ Poprawnie: 147/266 [55%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkty A=(4,-1) i C=\left(1,-1\right) są dwoma przeciwległymi wierzchołkami prostokąta.

Oblicz długość promienia okręgu opisanego na tym prostokącie.

Odpowiedź:
r= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11226 ⋅ Poprawnie: 340/504 [67%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Wierzchołkiem kwadratu, którego przekątne przecinają się w punkcie S=(-2,-6) jest punkt C=(7,3).

Oblicz pole powierzchni tego kwadratu.

Odpowiedź:
P_{\square}= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11232 ⋅ Poprawnie: 119/254 [46%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 «« Punkty A=(0,-6) i B=(48,14) są środkami okręgów stycznych wewnętrznie. Promienie tych okręgów r_1,r_2 spełniają warunek r_1=5r_2.

Oblicz sumę długości promieni tych okręgów.

Odpowiedź:
r_1+r_2=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11221 ⋅ Poprawnie: 71/162 [43%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
Punkty A=(2,0), B=(5,0) i C=(4,3) są wierzchołkami trójkąta. Zbiór wszystkich punktów M należacych do trójkąta ABC spełniających warunek |MA|\leqslant |MB| jest:
Odpowiedzi:
A. trójkątem prostokątnym B. trójkątem ostrokątnym
C. wycinkiem koła D. czworokątem
Zadanie 6.  1 pkt ⋅ Numer: pp-11251 ⋅ Poprawnie: 222/438 [50%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Prostą k o równaniu y=6x-3 przekształcono przez symetrię względem początku układu współrzędnych i otrzymano prostą l o równaniu y=ax+b.

Podaj współczynniki a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-11231 ⋅ Poprawnie: 201/333 [60%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Środek odcinka o końcach (6,-1) i (8,-1) należy do prostej o równaniu y+ax=3+5a.

Wyznacz wartość parametru a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-10842 ⋅ Poprawnie: 335/524 [63%] Rozwiąż 
Podpunkt 8.1 (0.5 pkt)
 Prosta równoległa do prostej o równaniu y=3x+\frac{1}{3} i zawiera punkt P=\left(7\sqrt{2},4+2\sqrt{2}\right) i określona jest ma równaniem y=ax+b.

Wyznacz współczynnik a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 8.2 (0.5 pkt)
 Wyznacz współczynnik b.
Odpowiedź:
b= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10847 ⋅ Poprawnie: 236/345 [68%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wykres funkcji liniowej określonej wzorem f(x)=2x+3 jest prostą prostopadłą do prostej o równaniu y=mx+n.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10819 ⋅ Poprawnie: 129/208 [62%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Prosta o równaniu y=\frac{2}{m+2}x+4 jest prostopadła do prostej o równaniu y=-\frac{3}{2}x+3.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-10828 ⋅ Poprawnie: 281/518 [54%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 «« Wykresy funkcji określonych wzorami f(x)=\left(-m+\frac{11}{2}\right)x+5 i g(x)=\left(3m+19\right)x-2 są równoległe.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-10836 ⋅ Poprawnie: 93/138 [67%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Prostą prostopadłą do wykresu funkcji y=6x+2 jest prosta określona równaniem y=ax+\frac{1}{6}

Wyznacz współczynnik a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm