Podgląd testu : lo2@sp-15-geom-analit-1-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11248 ⋅ Poprawnie: 222/345 [64%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Dany jest kwadrat
ABCD . Punkty o współrzędnych
E=(2,6) i
F=(-6,-3) są
środkami dwóch jego boków odpowiednio
AB i
BC . Zapisz długość przekątnej tego kwadratu w najprostszej postaci
a\sqrt{b} , gdzie
a,b\in\mathbb{N} .
Podaj liczby a i b .
Odpowiedź:
d=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11241 ⋅ Poprawnie: 273/431 [63%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Punkt
S=\left(\frac{9}{4},6\right) jest środkiem odcinka
AB , gdzie
A=(x_A,y_A) i
B=(-6,-3) .
Podaj współrzedne x_A i y_A .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-11226 ⋅ Poprawnie: 340/504 [67%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Wierzchołkiem kwadratu, którego przekątne przecinają się w punkcie
S=(5,-6) jest punkt
C=(8,-9) .
Oblicz pole powierzchni tego kwadratu.
Odpowiedź:
P_{\square}=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11233 ⋅ Poprawnie: 197/362 [54%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Odcinek
AB jest średnicą okręgu oraz
A=(a+2,8) i
B=(-7,b+1) .
Punkt
C=(2,8) jest środkiem tego okręgu.
Wyznacz wartości parametrów a i b .
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pp-11220 ⋅ Poprawnie: 183/331 [55%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Punkt
M=\left(-\frac{3m}{2},7\right) jest środkiem odcinka o końcach
A=(2,5) i
B=(6,9) .
Wyznacz wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 1 pkt ⋅ Numer: pp-11251 ⋅ Poprawnie: 222/438 [50%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Prostą
k o równaniu
y=-6x+5 przekształcono przez symetrię względem
początku układu współrzędnych i otrzymano prostą
l o równaniu
y=ax+b .
Podaj współczynniki a i b .
Odpowiedzi:
Zadanie 7. 1 pkt ⋅ Numer: pp-11247 ⋅ Poprawnie: 223/443 [50%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Prosta o równaniu
14x+2y-14=0 wraz z osiami układu
współrzędnych ogranicza trójkąt.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-10844 ⋅ Poprawnie: 424/761 [55%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Prosta prostopadła do prostej
y=\frac{1}{2}x-1
i przechodzącą przez punkt
P=\left(5,\frac{1}{2}\right) określona jest równaniem
y=ax+b .
Podaj a i b .
Odpowiedzi:
Zadanie 9. 1 pkt ⋅ Numer: pp-10821 ⋅ Poprawnie: 39/90 [43%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Wykresy funkcji liniowych
f(x)=\frac{\sqrt{5}}{9}x-3 oraz
g(x)=\frac{5}{9\sqrt{5}}x-\frac{1}{2} :
Odpowiedzi:
A. pokrywają się
B. są prostopadłe
C. przecinają się, ale nie są prostopadłe
D. są równoległe i nie pokrywają się
Zadanie 10. 1 pkt ⋅ Numer: pp-10819 ⋅ Poprawnie: 129/208 [62%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Prosta o równaniu
y=\frac{7}{m+2}x+4 jest prostopadła
do prostej o równaniu
y=-\frac{3}{2}x+3 .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-10829 ⋅ Poprawnie: 31/65 [47%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Proste o równaniach
y=\frac{p}{2}x+6 i
y=16qx-6 są prostopadłe.
Oblicz iloczyn p\cdot q .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-10836 ⋅ Poprawnie: 93/138 [67%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Prostą prostopadłą do wykresu funkcji
y=2x+7 jest prosta określona równaniem
y=ax+\frac{1}{2}
Wyznacz współczynnik a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż