Podgląd testu : lo2@sp-15-geom-analit-1-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11437 ⋅ Poprawnie: 355/474 [74%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Punkt o współrzędnych oraz punkty
A=(-4,-2) ,
B i
C są wierzchołkami trójkąta równoramiennego
o podstawie
AB , a punkt
D=(-2,-1) jest spodkiem wysokości tego trójkąta
opuszczonej z wierzchołka
C .
Wówczas punkt
B ma współrzędne
B=(x_B, y_B) .
Wyznacz współrzędne x_B i y_B .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11230 ⋅ Poprawnie: 183/268 [68%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Zapisz długość okręgu o środku w punkcie
S=(4,-5) , do którego
należy punkt o współrzędnych
A=(5,5) w postaci
p\cdot\pi .
Podaj liczbę p .
Odpowiedź:
p=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11228 ⋅ Poprawnie: 154/267 [57%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Obwód
L rombu o sąsiednich wierzchołkach
A=(3,-1) i
B=(-8,-9)
spełnia nierówność
m\leqslant L\lessdot m+1 , gdzie
m\in\mathbb{Z} .
Wyznacz liczbę m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11540 ⋅ Poprawnie: 81/149 [54%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Punkty o współrzędnych
K=(4,-1) oraz
L=(-9,-10)
są środkami dwóch sąsiednich boków kwadratu.
Oblicz pole powierzchni tego kwadratu.
Odpowiedź:
P_{\square}=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11237 ⋅ Poprawnie: 119/180 [66%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Punkt
S=(-7,-8) jest środkiem okręgu, a
odległość punktu
A=(23,8) od punktu
S jest
trzykrotnie większa od długości promienia tego okręgu.
Oblicz długość promienia tego okręgu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 1 pkt ⋅ Numer: pp-11246 ⋅ Poprawnie: 152/291 [52%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Prosta, do której należą punkty
A=(-11,26) i
B=(16,53)
przecina oś
Ox w punkcie o odciętej
x_0 .
Podaj x_0 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-11236 ⋅ Poprawnie: 89/145 [61%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Proste o równaniach
\sqrt{3}x-y+\frac{1}{3}=0 i
-2y+5=0 :
Odpowiedzi:
A. są równoległe
B. przecinają się pod kątem 30^{\circ}
C. przecinają się pod kątem 45^{\circ}
D. przecinają się pod kątem 60^{\circ}
Zadanie 8. 1 pkt ⋅ Numer: pp-10844 ⋅ Poprawnie: 424/761 [55%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Prosta prostopadła do prostej
y=\frac{1}{2}x-1
i przechodzącą przez punkt
P=\left(-5,\frac{1}{2}\right) określona jest równaniem
y=ax+b .
Podaj a i b .
Odpowiedzi:
Zadanie 9. 1 pkt ⋅ Numer: pp-10830 ⋅ Poprawnie: 152/241 [63%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Proste
k:y=\frac{-1}{m-3}x+m-2 oraz
l:y=2mx+\frac{1}{m+1} spełniają warunek
k\perp l .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-10826 ⋅ Poprawnie: 61/147 [41%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
«Proste określone równaniami
y=mx+n i
\frac{3}{2}x+\frac{2}{3}y+4=0
są prostopadłe.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-10846 ⋅ Poprawnie: 140/304 [46%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Do prostej o równaniu
-x+\frac{4}{3}y+1=0 równoległa
jest prosta określona wzorem
y=......\cdot x+b .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-10836 ⋅ Poprawnie: 93/138 [67%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Prostą prostopadłą do wykresu funkcji
y=3x-1 jest prosta określona równaniem
y=ax+\frac{1}{3}
Wyznacz współczynnik a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż