Podgląd testu : lo2@sp-15-geom-analit-1-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11248 ⋅ Poprawnie: 222/345 [64%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Dany jest kwadrat
ABCD . Punkty o współrzędnych
E=(-4,-2) i
F=(3,-1) są
środkami dwóch jego boków odpowiednio
AB i
BC . Zapisz długość przekątnej tego kwadratu w najprostszej postaci
a\sqrt{b} , gdzie
a,b\in\mathbb{N} .
Podaj liczby a i b .
Odpowiedź:
d=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11241 ⋅ Poprawnie: 273/431 [63%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Punkt
S=\left(-\frac{15}{4},-2\right) jest środkiem odcinka
AB , gdzie
A=(x_A,y_A) i
B=(3,-1) .
Podaj współrzedne x_A i y_A .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-11511 ⋅ Poprawnie: 542/919 [58%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Punkty o współrzędnych
A=\left(4,3\right) i
B=\left(10,3\right) są wierzchołkami trójkąta
równobocznego
ABC .
Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-11252 ⋅ Poprawnie: 239/368 [64%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Do okręgu o środku w punkcie
S=(-3,-2) i promieniu długości
\sqrt{37} należy punkt:
Odpowiedzi:
A. (5,-3)
B. (7,-3)
C. (3,-1)
D. (0,1)
E. (0,-4)
F. (4,0)
Zadanie 5. 1 pkt ⋅ Numer: pp-11237 ⋅ Poprawnie: 119/180 [66%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Punkt
S=(-8,4) jest środkiem okręgu, a
odległość punktu
A=(32,13) od punktu
S jest
trzykrotnie większa od długości promienia tego okręgu.
Oblicz długość promienia tego okręgu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 1 pkt ⋅ Numer: pp-11251 ⋅ Poprawnie: 222/438 [50%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Prostą
k o równaniu
y=4x-1 przekształcono przez symetrię względem
początku układu współrzędnych i otrzymano prostą
l o równaniu
y=ax+b .
Podaj współczynniki a i b .
Odpowiedzi:
Zadanie 7. 1 pkt ⋅ Numer: pp-11247 ⋅ Poprawnie: 223/443 [50%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Prosta o równaniu
-6x-5y-15=0 wraz z osiami układu
współrzędnych ogranicza trójkąt.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-10834 ⋅ Poprawnie: 307/495 [62%]
Rozwiąż
Podpunkt 8.1 (0.5 pkt)
Do wykresu funkcji liniowej określonej wzorem
f(x)=ax+b należy punkt
P=\left(7\sqrt{5},-1\right) , a jej wykres jest prostą równoleglą
do prostej o równaniu
y=-\sqrt{5}x-2 .
Wyznacz współczynnik a .
Odpowiedź:
a=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (0.5 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-10841 ⋅ Poprawnie: 175/335 [52%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Proste o równaniach
k:y=4m^2x-m-4 oraz
l:y=16mx+m+4 spełniają warunek
k\perp l .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-10819 ⋅ Poprawnie: 129/208 [62%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Prosta o równaniu
y=\frac{-3}{m+2}x+4 jest prostopadła
do prostej o równaniu
y=-\frac{3}{2}x+3 .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-10829 ⋅ Poprawnie: 31/65 [47%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Proste o równaniach
y=\frac{p}{3}x+6 i
y=6qx-6 są prostopadłe.
Oblicz iloczyn p\cdot q .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-10888 ⋅ Poprawnie: 479/632 [75%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
« Wskaż parę prostych prostopadłych:
Odpowiedzi:
A. y=7}x-6 i y=7x+6
B. y=4}x-7 i y=-4x+7
C. y=\frac{1}{8}x-4 i y=8x-8
D. y=\frac{1}{4}x-4 i y=-4x-8
Rozwiąż