Podgląd testu : lo2@sp-15-geom-analit-1-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11437 ⋅ Poprawnie: 355/474 [74%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Punkt o współrzędnych oraz punkty
A=(0,-4) ,
B i
C są wierzchołkami trójkąta równoramiennego
o podstawie
AB , a punkt
D=(2,-3) jest spodkiem wysokości tego trójkąta
opuszczonej z wierzchołka
C .
Wówczas punkt
B ma współrzędne
B=(x_B, y_B) .
Wyznacz współrzędne x_B i y_B .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11241 ⋅ Poprawnie: 273/431 [63%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Punkt
S=\left(\frac{5}{4},-2\right) jest środkiem odcinka
AB , gdzie
A=(x_A,y_A) i
B=(-6,1) .
Podaj współrzedne x_A i y_A .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-11511 ⋅ Poprawnie: 542/919 [58%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Punkty o współrzędnych
A=\left(4\sqrt{3},-6\right) i
B=\left(10\sqrt{3},-6\right) są wierzchołkami trójkąta
równobocznego
ABC .
Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-11233 ⋅ Poprawnie: 197/362 [54%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Odcinek
AB jest średnicą okręgu oraz
A=(a+2,8) i
B=(-7,b+1) .
Punkt
C=(1,-4) jest środkiem tego okręgu.
Wyznacz wartości parametrów a i b .
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pp-11237 ⋅ Poprawnie: 119/180 [66%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Punkt
S=(-8,-1) jest środkiem okręgu, a
odległość punktu
A=(8,11) od punktu
S jest
trzykrotnie większa od długości promienia tego okręgu.
Oblicz długość promienia tego okręgu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 1 pkt ⋅ Numer: pp-11246 ⋅ Poprawnie: 152/291 [52%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Prosta, do której należą punkty
A=(-10,-42) i
B=(-32,24)
przecina oś
Ox w punkcie o odciętej
x_0 .
Podaj x_0 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-11235 ⋅ Poprawnie: 189/301 [62%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Punkt przecięcia prostych określonych równaniami
2x+y=m+2 i
x-3y=6 należy do osi
Ox .
Wyznacz wartość parametru m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-10834 ⋅ Poprawnie: 307/495 [62%]
Rozwiąż
Podpunkt 8.1 (0.5 pkt)
Do wykresu funkcji liniowej określonej wzorem
f(x)=ax+b należy punkt
P=\left(9\sqrt{11},4\right) , a jej wykres jest prostą równoleglą
do prostej o równaniu
y=\sqrt{11}x-3 .
Wyznacz współczynnik a .
Odpowiedź:
a=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (0.5 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-10821 ⋅ Poprawnie: 39/90 [43%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Wykresy funkcji liniowych
f(x)=\frac{\sqrt{7}}{10}x-3 oraz
g(x)=\frac{7}{10\sqrt{7}}x-\frac{1}{2} :
Odpowiedzi:
A. są równoległe i nie pokrywają się
B. przecinają się, ale nie są prostopadłe
C. są prostopadłe
D. pokrywają się
Zadanie 10. 1 pkt ⋅ Numer: pp-10823 ⋅ Poprawnie: 129/245 [52%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Wykresy funkcji
y=(7-m)x-\frac{5}{3} i
y=4-(m+7)x są prostopadłe.
Zatem m^2 jest:
Odpowiedzi:
A. równe zero
B. liczbą nieparzystą
C. liczbą niewymierną
D. liczbą wymierną
Zadanie 11. 1 pkt ⋅ Numer: pp-10828 ⋅ Poprawnie: 281/518 [54%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
«« Wykresy funkcji określonych wzorami
f(x)=\left(-m+\frac{1}{2}\right)x+5 i
g(x)=\left(3m+4\right)x-2 są równoległe.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-10822 ⋅ Poprawnie: 15/37 [40%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
« Wykresy funkcji
f(x)=2a+x i
g(x)=-6x-3 przecinają oś
Ox w dwóch różnych punktach.
Jaką liczbą nie może być a ?
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż