Podgląd testu : lo2@sp-15-geom-analit-1-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11242 ⋅ Poprawnie: 467/632 [73%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Punkt
C=(-2m,y_C) jest środkiem odcinka o końcach
A=(-1,1) i
B=(-2,-6) .
Zatem liczba m jest równa:
Odpowiedzi:
A. \frac{3}{4}
B. \frac{3}{2}
C. -\frac{3}{2}
D. -\frac{3}{4}
Zadanie 2. 1 pkt ⋅ Numer: pp-11239 ⋅ Poprawnie: 147/266 [55%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Punkty
A=(4,-1) i
C=\left(1,-1\right)
są dwoma przeciwległymi wierzchołkami prostokąta.
Oblicz długość promienia okręgu opisanego
na tym prostokącie.
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-11226 ⋅ Poprawnie: 340/504 [67%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Wierzchołkiem kwadratu, którego przekątne przecinają się w punkcie
S=(-2,-6) jest punkt
C=(7,3) .
Oblicz pole powierzchni tego kwadratu.
Odpowiedź:
P_{\square}=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11232 ⋅ Poprawnie: 119/254 [46%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
«« Punkty
A=(0,-6) i
B=(48,14)
są środkami okręgów stycznych wewnętrznie. Promienie tych okręgów
r_1,r_2 spełniają warunek
r_1=5r_2 .
Oblicz sumę długości promieni tych okręgów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11221 ⋅ Poprawnie: 71/162 [43%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Punkty A=(2,0) , B=(5,0)
i C=(4,3) są wierzchołkami trójkąta. Zbiór wszystkich
punktów M należacych do trójkąta
ABC spełniających warunek
|MA|\leqslant |MB| jest:
Odpowiedzi:
A. trójkątem prostokątnym
B. trójkątem ostrokątnym
C. wycinkiem koła
D. czworokątem
Zadanie 6. 1 pkt ⋅ Numer: pp-11251 ⋅ Poprawnie: 222/438 [50%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Prostą
k o równaniu
y=6x-3 przekształcono przez symetrię względem
początku układu współrzędnych i otrzymano prostą
l o równaniu
y=ax+b .
Podaj współczynniki a i b .
Odpowiedzi:
Zadanie 7. 1 pkt ⋅ Numer: pp-11231 ⋅ Poprawnie: 201/333 [60%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Środek odcinka o końcach
(6,-1) i
(8,-1) należy do prostej o równaniu
y+ax=3+5a .
Wyznacz wartość parametru a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-10842 ⋅ Poprawnie: 335/524 [63%]
Rozwiąż
Podpunkt 8.1 (0.5 pkt)
Prosta równoległa do prostej o równaniu
y=3x+\frac{1}{3} i
zawiera punkt
P=\left(7\sqrt{2},4+2\sqrt{2}\right)
i określona jest ma równaniem
y=ax+b .
Wyznacz współczynnik a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (0.5 pkt)
Odpowiedź:
b=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 9. 1 pkt ⋅ Numer: pp-10847 ⋅ Poprawnie: 236/345 [68%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Wykres funkcji liniowej określonej wzorem
f(x)=2x+3 jest prostą
prostopadłą do prostej o równaniu
y=mx+n .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-10819 ⋅ Poprawnie: 129/208 [62%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Prosta o równaniu
y=\frac{2}{m+2}x+4 jest prostopadła
do prostej o równaniu
y=-\frac{3}{2}x+3 .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-10828 ⋅ Poprawnie: 281/518 [54%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
«« Wykresy funkcji określonych wzorami
f(x)=\left(-m+\frac{11}{2}\right)x+5 i
g(x)=\left(3m+19\right)x-2 są równoległe.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-10836 ⋅ Poprawnie: 93/138 [67%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Prostą prostopadłą do wykresu funkcji
y=6x+2 jest prosta określona równaniem
y=ax+\frac{1}{6}
Wyznacz współczynnik a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż