Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-15-geom-analit-1-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11225 ⋅ Poprawnie: 257/416 [61%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « W kwadracie o wierzchołkach ABCD punkty K=(6,1) i L=(2,4) są środkami boków odpowiednio AB i BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{N}.

Podaj liczby a i b.

Odpowiedź:
d= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11241 ⋅ Poprawnie: 273/431 [63%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt S=\left(\frac{25}{4},1\right) jest środkiem odcinka AB, gdzie A=(x_A,y_A) i B=(2,4).

Podaj współrzedne x_A i y_A.

Odpowiedzi:
x_A= (dwie liczby całkowite)

y_A= (dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11243 ⋅ Poprawnie: 166/304 [54%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkty A=(6,1) i B=(2,4) są wierzchołkami trójąta równobocznego.

Oblicz wysokość tego trójkąta.

Odpowiedź:
h= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11224 ⋅ Poprawnie: 125/231 [54%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Pole powierzchni trójkąta o wierzchołkach K=(8,2), L=(13,-3) i M=(13,5) jest równe P.

Oblicz długość boku kwadratu o polu powierzchni P.

Odpowiedź:
a= \cdot
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11238 ⋅ Poprawnie: 73/161 [45%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Punkty A=(9,2) i C są dwoma przeciwległymi wierzchołkami kwadratu, a punkt P=(3,6) jest środkiem boku BC tego kwadratu.

Oblicz pole powierzchni tego kwadratu.

Odpowiedź:
P_{\square}=
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-11520 ⋅ Poprawnie: 367/855 [42%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Punkty o współrzędnych A=(2,0) i B=(10,8) są symetryczne względem prostej określonej równaniem:
Odpowiedzi:
A. y=-x+10 B. y=x+2
C. y=-x+2 D. y=-x
Zadanie 7.  1 pkt ⋅ Numer: pp-11247 ⋅ Poprawnie: 223/443 [50%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Prosta o równaniu 2x+8y-8=0 wraz z osiami układu współrzędnych ogranicza trójkąt.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-10834 ⋅ Poprawnie: 307/495 [62%] Rozwiąż 
Podpunkt 8.1 (0.5 pkt)
 Do wykresu funkcji liniowej określonej wzorem f(x)=ax+b należy punkt P=\left(7\sqrt{7},4\right), a jej wykres jest prostą równoleglą do prostej o równaniu y=\sqrt{7}x-3.

Wyznacz współczynnik a.

Odpowiedź:
a= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (0.5 pkt)
 Wyznacz współczynnik b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-10847 ⋅ Poprawnie: 236/345 [68%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wykres funkcji liniowej określonej wzorem f(x)=x+3 jest prostą prostopadłą do prostej o równaniu y=mx+n.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10819 ⋅ Poprawnie: 129/208 [62%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Prosta o równaniu y=\frac{1}{m+2}x+4 jest prostopadła do prostej o równaniu y=-\frac{3}{2}x+3.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-10829 ⋅ Poprawnie: 31/65 [47%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Proste o równaniach y=\frac{p}{4}x+1 i y=8qx-6 są prostopadłe.

Oblicz iloczyn p\cdot q.

Odpowiedź:
p\cdot q=
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-11536 ⋅ Poprawnie: 9/21 [42%] Rozwiąż 
Podpunkt 12.1 (0.5 pkt)
 Punkty o współrzędnych A=(72,24) oraz B=(24,72) są wzajemnie symetryczne względem prostej określonej równaniem y=ax+b.

Podaj liczbę a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 12.2 (0.5 pkt)
 Podaj liczbę b.
Odpowiedź:
b= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm