Dany jest kwadrat ABCD. Punkty o współrzędnych
E=(5,-5) i F=(-3,-4) są
środkami dwóch jego boków odpowiednio AB i
BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci
a\sqrt{b}, gdzie a,b\in\mathbb{N}.
Podaj liczby a i b.
Odpowiedź:
d=\cdot√
(wpisz dwie liczby całkowite)
Zadanie 2.(1 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-11240
Podpunkt 2.1 (1 pkt)
Punkt S=(5,-5) jest środkiem odcinka
AC, gdzie A=(x_A,y_A) i
C=\left(-\frac{3}{2},-4\right).
Podaj współrzędne x_A i y_A.
Odpowiedzi:
x_A
=
(dwie liczby całkowite)
y_A
=
(dwie liczby całkowite)
Zadanie 3.(1 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-11226
Podpunkt 3.1 (1 pkt)
« Wierzchołkiem kwadratu, którego przekątne przecinają się w punkcie
S=(-5,-1) jest punkt
C=(-2,2).
Oblicz pole powierzchni tego kwadratu.
Odpowiedź:
P_{\square}=(wpisz liczbę całkowitą)
Zadanie 4.(1 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-11540
Podpunkt 4.1 (1 pkt)
Punkty o współrzędnych K=(9,-8) oraz L=(-4,-6)
są środkami dwóch sąsiednich boków kwadratu.
Oblicz pole powierzchni tego kwadratu.
Odpowiedź:
P_{\square}=(wpisz liczbę całkowitą)
Zadanie 5.(1 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-11221
Podpunkt 5.1 (1 pkt)
Punkty A=(2,0), B=(5,0)
i C=(4,3) są wierzchołkami trójkąta. Zbiór wszystkich
punktów M należacych do trójkąta
ABC spełniających warunek
|MA|\leqslant |MB| jest:
Odpowiedzi:
A. trójkątem prostokątnym
B. czworokątem
C. wycinkiem koła
D. trójkątem ostrokątnym
Zadanie 6.(1 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-11520
Podpunkt 6.1 (1 pkt)
Punkty o współrzędnych A=(-4,-4) i
B=(4,4) są symetryczne względem prostej
określonej równaniem:
Odpowiedzi:
A.y=-x+4
B.y=-x+10
C.y=x+4
D.y=-x
Zadanie 7.(1 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-11235
Podpunkt 7.1 (1 pkt)
Punkt przecięcia prostych określonych równaniami 2x+y=m-7 i
x-3y=6 należy do osi Ox.
Wyznacz wartość parametru m.
Odpowiedź:
m=(wpisz liczbę całkowitą)
Zadanie 8.(1 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-10838
Podpunkt 8.1 (1 pkt)
« Do wykresu funkcji określonej wzorem y=5x-\sqrt{3} równoległy jest
wykres funkcji określonej wzorem:
Odpowiedzi:
A.f(x)=\frac{9}{2}x+3
B.f(x)=\frac{11}{2}x-3-\frac{1}{2}x
C.f(x)=\frac{13}{2}x+4
D.f(x)=-5x-4
Zadanie 9.(1 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-10845
Podpunkt 9.1 (1 pkt)
» Prostą równoległą do prostej o równaniu
-4x-2y-3=0 jest prosta określona wzorem
y=.....\cdot x+n.
Podaj brakującą liczbę.
Odpowiedź:
\frac{p}{q}=
(wpisz dwie liczby całkowite)
Zadanie 10.(1 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-10824
Podpunkt 10.1 (1 pkt)
» Wykresy funkcji y=-4+(m-5)x i
y=(5-m)x+\frac{1}{2} są prostopadłe.
Zatem m jest:
Odpowiedzi:
A. liczbą nieparzystą
B. liczbą niewymierną
C. liczbą pierwszą
D. liczbą parzystą
Zadanie 11.(1 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-10828
Podpunkt 11.1 (1 pkt)
«« Wykresy funkcji określonych wzorami
f(x)=\left(-m+\frac{13}{2}\right)x+5 i
g(x)=\left(3m+22\right)x-2 są równoległe.
Wyznacz m.
Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 12.(1 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-10837
Podpunkt 12.1 (1 pkt)
Do wykresu funkcji określonej wzorem y=-\frac{1}{5}x-4 prostopadły
jest wykres funkcji określonej wzorem y=ax-\frac{1}{4}.
Wyznacz współczynnik a.
Odpowiedź:
a=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat