Podgląd testu : lo2@sp-15-geom-analit-1-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11437 ⋅ Poprawnie: 355/474 [74%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Punkt o współrzędnych oraz punkty
A=(3,0) ,
B i
C są wierzchołkami trójkąta równoramiennego
o podstawie
AB , a punkt
D=(5,1) jest spodkiem wysokości tego trójkąta
opuszczonej z wierzchołka
C .
Wówczas punkt
B ma współrzędne
B=(x_B, y_B) .
Wyznacz współrzędne x_B i y_B .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11241 ⋅ Poprawnie: 273/431 [63%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Punkt
S=\left(\frac{5}{4},1\right) jest środkiem odcinka
AB , gdzie
A=(x_A,y_A) i
B=(-2,-5) .
Podaj współrzedne x_A i y_A .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-11243 ⋅ Poprawnie: 166/304 [54%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Punkty
A=(1,1) i
B=(-2,-5)
są wierzchołkami trójąta równobocznego.
Oblicz wysokość tego trójkąta.
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-11245 ⋅ Poprawnie: 86/163 [52%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Punkt
A=(-12,2) jest środkiem okręgu o promieniu
2019 . Okrąg ten przekształcono przez symetrię
względem osi
Oy i otrzymano okrąg o środku w
punkcie
A_1 .
Oblicz długość odcinka AA_1 .
Odpowiedź:
|AA_1|=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11223 ⋅ Poprawnie: 388/630 [61%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Środkiem odcinka o końcach
A=(0,2a) i
B=(6b,-1) jest punkt
C=(1,2) .
Wyznacz wartości parametrów a i b .
Odpowiedzi:
Zadanie 6. 1 pkt ⋅ Numer: pp-11234 ⋅ Poprawnie: 152/322 [47%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Oblicz odległość między prostymi określonymi równaniami
y=x-3 i
x-y=8 .
Odpowiedź:
Zadanie 7. 1 pkt ⋅ Numer: pp-11235 ⋅ Poprawnie: 189/301 [62%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Punkt przecięcia prostych określonych równaniami
2x+y=m+1 i
x-3y=6 należy do osi
Ox .
Wyznacz wartość parametru m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-10832 ⋅ Poprawnie: 140/254 [55%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Prosta o równaniu
y=-\frac{1}{4}x-\frac{11}{4} przecina
pod kątem prostym w punkcie
K=(1,-3) prostą określoną równaniem
y=ax+b .
Podaj współczynniki a i b .
Odpowiedzi:
Zadanie 9. 1 pkt ⋅ Numer: pp-10841 ⋅ Poprawnie: 175/335 [52%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Proste o równaniach
k:y=5m^2x-m-4 oraz
l:y=25mx+m+4 spełniają warunek
k\perp l .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-10825 ⋅ Poprawnie: 20/52 [38%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Proste określone równaniami
y=-\frac{3}{5}x-2 i
(3m-1)x+2y+4=0 są prostopadłe.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-10829 ⋅ Poprawnie: 31/65 [47%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Proste o równaniach
y=\frac{p}{2}x+2 i
y=12qx-2 są prostopadłe.
Oblicz iloczyn p\cdot q .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-11416 ⋅ Poprawnie: 507/815 [62%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
« Do prostej o równaniu
y=ax+b należy punkt
A=\left(\frac{1}{2}, 1\right) i prosta ta jest
prostopadła do prostej o równaniu
y=-4x+2 .
Wyznacz b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż