Podgląd testu : lo2@sp-15-geom-analit-1-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11225 ⋅ Poprawnie: 257/416 [61%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« W kwadracie o wierzchołkach
ABCD punkty
K=(3,-4) i
L=(2,1) są
środkami boków odpowiednio
AB i
BC . Zapisz długość przekątnej tego kwadratu w najprostszej postaci
a\sqrt{b} , gdzie
a,b\in\mathbb{N} .
Podaj liczby a i b .
Odpowiedź:
d=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11250 ⋅ Poprawnie: 171/321 [53%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
» Punkty
A=(2,-1) ,
B=(3,2) ,
C=\left(-\frac{17}{3},-\frac{4}{3}\right) i
D=(x_D,y_D) są czterema kolejnymi wierzchołkami
równoległoboku (odwrotnie do ruchu wskazówek zegara).
Podaj współrzędne x_D i y_D .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-11226 ⋅ Poprawnie: 340/504 [67%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Wierzchołkiem kwadratu, którego przekątne przecinają się w punkcie
S=(-4,1) jest punkt
C=(-9,6) .
Oblicz pole powierzchni tego kwadratu.
Odpowiedź:
P_{\square}=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11540 ⋅ Poprawnie: 81/149 [54%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Punkty o współrzędnych
K=(5,-6) oraz
L=(3,2)
są środkami dwóch sąsiednich boków kwadratu.
Oblicz pole powierzchni tego kwadratu.
Odpowiedź:
P_{\square}=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11238 ⋅ Poprawnie: 73/161 [45%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Punkty
A=(5,-5) i
C
są dwoma przeciwległymi wierzchołkami kwadratu, a punkt
P=(3,2)
jest środkiem boku
BC tego kwadratu.
Oblicz pole powierzchni tego kwadratu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 1 pkt ⋅ Numer: pp-11520 ⋅ Poprawnie: 367/855 [42%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Punkty o współrzędnych
A=(2,2) i
B=(10,10) są symetryczne względem prostej
określonej równaniem:
Odpowiedzi:
A. y=-x+4
B. y=-x-2
C. y=-x+12
D. y=x+4
Zadanie 7. 1 pkt ⋅ Numer: pp-11247 ⋅ Poprawnie: 223/443 [50%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Prosta o równaniu
-10x+4y+20=0 wraz z osiami układu
współrzędnych ogranicza trójkąt.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-11413 ⋅ Poprawnie: 830/1099 [75%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Proste o równaniach
y=(-2m-20)x+12 oraz
y=(m+16)x-3 są równoległe.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 1 pkt ⋅ Numer: pp-10841 ⋅ Poprawnie: 175/335 [52%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Proste o równaniach
k:y=3m^2x-m-4 oraz
l:y=9mx+m+4 spełniają warunek
k\perp l .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-10824 ⋅ Poprawnie: 43/87 [49%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
» Wykresy funkcji
y=-4+(m-7)x i
y=(7-m)x+\frac{1}{2} są prostopadłe.
Zatem m jest:
Odpowiedzi:
A. liczbą nieparzystą
B. liczbą parzystą
C. liczbą niewymierną
D. liczbą pierwszą
Zadanie 11. 1 pkt ⋅ Numer: pp-10835 ⋅ Poprawnie: 82/158 [51%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Proste o równaniach
y=\frac{3}{a}x+5 oraz
y=(-4a+2)x-8 są prostopadłe.
Wyznacz a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-11523 ⋅ Poprawnie: 492/764 [64%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
(1 pkt)
Jedna z przekątnych rombu zawiera się w prostej o równaniu
y=\frac{1}{3}x+8 .
Druga przekątna tego rombu zawarta jest w prostej o równaniu y=ax+b .
Podaj a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż