Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-15-geom-analit-1-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11417 ⋅ Poprawnie: 535/1040 [51%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Punkty o współrzędnych A=(-10,1) i C=(5,9) są przeciwległymi wierzchołkami kwadratu, na którym opisano okrąg. Zapisz długość promienia tego okręgu w najprostszej postaci \frac{a\sqrt{b}}{c}, gdzie a,b,c\in\mathbb{N}.

Podaj liczby a, b i c.

Odpowiedź:
r= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11239 ⋅ Poprawnie: 147/266 [55%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkty A=(5,-5) i C=\left(2,2\right) są dwoma przeciwległymi wierzchołkami prostokąta.

Oblicz długość promienia okręgu opisanego na tym prostokącie.

Odpowiedź:
r= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11226 ⋅ Poprawnie: 340/504 [67%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Wierzchołkiem kwadratu, którego przekątne przecinają się w punkcie S=(8,-2) jest punkt C=(4,2).

Oblicz pole powierzchni tego kwadratu.

Odpowiedź:
P_{\square}= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11245 ⋅ Poprawnie: 86/163 [52%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Punkt A=(10,-1) jest środkiem okręgu o promieniu 2024. Okrąg ten przekształcono przez symetrię względem osi Oy i otrzymano okrąg o środku w punkcie A_1.

Oblicz długość odcinka AA_1.

Odpowiedź:
|AA_1|= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11220 ⋅ Poprawnie: 183/331 [55%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt M=\left(-\frac{3m}{2},7\right) jest środkiem odcinka o końcach A=(6,5) i B=(4,9).

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-11234 ⋅ Poprawnie: 152/322 [47%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Oblicz odległość między prostymi określonymi równaniami y=x+6 i x-y=1.
Odpowiedź:
d= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11236 ⋅ Poprawnie: 89/145 [61%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Proste o równaniach \sqrt{3}x-y+\frac{5}{3}=0 i -6y+5=0:
Odpowiedzi:
A. przecinają się pod kątem 60^{\circ} B. są prostopadłe
C. przecinają się pod kątem 45^{\circ} D. przecinają się pod kątem 30^{\circ}
Zadanie 8.  1 pkt ⋅ Numer: pp-10844 ⋅ Poprawnie: 424/761 [55%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Prosta prostopadła do prostej y=\frac{1}{2}x-1 i przechodzącą przez punkt P=\left(3,\frac{5}{2}\right) określona jest równaniem y=ax+b.

Podaj a i b.

Odpowiedzi:
a=
(wpisz liczbę całkowitą)

b=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10830 ⋅ Poprawnie: 152/241 [63%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Proste k:y=\frac{-1}{m-3}x+m-2 oraz l:y=2mx+\frac{1}{m+1} spełniają warunek k\perp l.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10824 ⋅ Poprawnie: 43/87 [49%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » Wykresy funkcji y=-4+(m-11)x i y=(11-m)x+\frac{1}{2} są prostopadłe.

Zatem m jest:

Odpowiedzi:
A. liczbą nieparzystą B. liczbą pierwszą
C. liczbą parzystą D. liczbą niewymierną
Zadanie 11.  1 pkt ⋅ Numer: pp-10829 ⋅ Poprawnie: 31/65 [47%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Proste o równaniach y=\frac{p}{2}x+8 i y=20qx-5 są prostopadłe.

Oblicz iloczyn p\cdot q.

Odpowiedź:
p\cdot q=
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-10839 ⋅ Poprawnie: 78/150 [52%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Funkcja liniowa, której wykres jest prostopadły do prostej o równaniu k:2x+\frac{1}{15}y+5=0 ma współczynnik kierunkowy a.

Podaj a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm