Podgląd testu : lo2@sp-15-geom-analit-1-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11537 ⋅ Poprawnie: 41/82 [50%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
(1 pkt)
Obrazami punktów o współrzędnych
A=(2,8) oraz
B=(-20,12)
w symetrii środkowej względem punktu
O=(0,0) są punkty odpowiednio
A' i
B' .
Środek odcinka
A'B' ma współrzędne
S=(x_S, y_S) .
Podaj współrzędne x_S i y_S .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11239 ⋅ Poprawnie: 147/266 [55%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Punkty
A=(2,2) i
C=\left(3,-\frac{3}{2}\right)
są dwoma przeciwległymi wierzchołkami prostokąta.
Oblicz długość promienia okręgu opisanego
na tym prostokącie.
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-11227 ⋅ Poprawnie: 106/251 [42%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wierzchołkiem kwadratu, którego przekątne przecinają się w punkcie
S=(-6,-2) jest punkt
C=(-7,-1) .
Oblicz długość wysokości trójkąta równobocznego, wpisanego w okrąg, wpisany w
ten kwadrat.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-11252 ⋅ Poprawnie: 239/368 [64%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Do okręgu o środku w punkcie
S=(-2,-5) i promieniu długości
3\sqrt{13} należy punkt:
Odpowiedzi:
A. (7,5)
B. (6,8)
C. (4,4)
D. (1,5)
E. (7,0)
F. (7,6)
Zadanie 5. 1 pkt ⋅ Numer: pp-11223 ⋅ Poprawnie: 388/630 [61%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Środkiem odcinka o końcach
A=(0,2a) i
B=(6b,-1) jest punkt
C=(-9,-4) .
Wyznacz wartości parametrów a i b .
Odpowiedzi:
Zadanie 6. 1 pkt ⋅ Numer: pp-11246 ⋅ Poprawnie: 152/291 [52%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Prosta, do której należą punkty
A=(17,21) i
B=(24,-28)
przecina oś
Ox w punkcie o odciętej
x_0 .
Podaj x_0 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-11236 ⋅ Poprawnie: 89/145 [61%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Proste o równaniach
\frac{\sqrt{3}}{3}x-y+1=0 i
-5y+5=0 :
Odpowiedzi:
A. przecinają się pod kątem 45^{\circ}
B. są równoległe
C. przecinają się pod kątem 60^{\circ}
D. przecinają się pod kątem 30^{\circ}
Zadanie 8. 1 pkt ⋅ Numer: pp-10832 ⋅ Poprawnie: 140/254 [55%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Prosta o równaniu
y=-\frac{1}{4}x-3 przecina
pod kątem prostym w punkcie
K=(-4,-2) prostą określoną równaniem
y=ax+b .
Podaj współczynniki a i b .
Odpowiedzi:
Zadanie 9. 1 pkt ⋅ Numer: pp-10845 ⋅ Poprawnie: 283/456 [62%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
» Prostą równoległą do prostej o równaniu
2x+y+2=0 jest prosta określona wzorem
y=.....\cdot x+n .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-10825 ⋅ Poprawnie: 20/52 [38%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Proste określone równaniami
y=-\frac{3}{5}x-2 i
(3m+2)x+2y+4=0 są prostopadłe.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-10831 ⋅ Poprawnie: 98/181 [54%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
« Do prostej
k należą punkty o współrzędnych
(0,0) oraz
\left(2,-\frac{11}{2}\right) oraz
k\perp l .
Wyznacz współczynnik kierunkowy prostej l .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-10888 ⋅ Poprawnie: 479/632 [75%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
« Wskaż parę prostych prostopadłych:
Odpowiedzi:
A. y=6}x-6 i y=-6x+6
B. y=\frac{1}{5}x-5 i y=5x-10
C. y=4}x-7 i y=4x+7
D. y=\frac{1}{3}x-3 i y=-3x-6
Rozwiąż