Podgląd testu : lo2@sp-15-geom-analit-1-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11242 ⋅ Poprawnie: 467/632 [73%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Punkt
C=(-2m,y_C) jest środkiem odcinka o końcach
A=(-4,-4) i
B=(5,-2) .
Zatem liczba m jest równa:
Odpowiedzi:
A. -\frac{1}{2}
B. \frac{1}{2}
C. \frac{1}{4}
D. -\frac{1}{4}
Zadanie 2. 1 pkt ⋅ Numer: pp-11250 ⋅ Poprawnie: 171/321 [53%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
» Punkty
A=(2,-1) ,
B=(3,2) ,
C=\left(-\frac{17}{3},-\frac{4}{3}\right) i
D=(x_D,y_D) są czterema kolejnymi wierzchołkami
równoległoboku (odwrotnie do ruchu wskazówek zegara).
Podaj współrzędne x_D i y_D .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-11243 ⋅ Poprawnie: 166/304 [54%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Punkty
A=(6,-4) i
B=(-4,5)
są wierzchołkami trójąta równobocznego.
Oblicz wysokość tego trójkąta.
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-11252 ⋅ Poprawnie: 239/368 [64%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Do okręgu o środku w punkcie
S=(3,3) i promieniu długości
\sqrt{65} należy punkt:
Odpowiedzi:
A. (1,-9)
B. (-2,-7)
C. (1,-1)
D. (-2,-1)
E. (0,-3)
F. (2,-5)
Zadanie 5. 1 pkt ⋅ Numer: pp-11249 ⋅ Poprawnie: 68/178 [38%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Dane są współrzędne dwóch kolejnych wierzchołków kwadratu
A=\left(\frac{13}{2},-4\right) i
B=\left(-4,\frac{11}{2}\right) . Przekątne tego kwadratu mogą się przecinać
w punkcie:
Odpowiedzi:
A. \left(-\frac{7}{2},-\frac{29}{6}\right)
B. \left(-\frac{19}{6},-\frac{9}{2}\right)
C. \left(-\frac{11}{3},-\frac{13}{3}\right)
D. \left(-\frac{7}{2},-\frac{9}{2}\right)
Zadanie 6. 1 pkt ⋅ Numer: pp-11251 ⋅ Poprawnie: 222/438 [50%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Prostą
k o równaniu
y=8x-6 przekształcono przez symetrię względem
początku układu współrzędnych i otrzymano prostą
l o równaniu
y=ax+b .
Podaj współczynniki a i b .
Odpowiedzi:
Zadanie 7. 1 pkt ⋅ Numer: pp-11236 ⋅ Poprawnie: 89/145 [61%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Proste o równaniach
\sqrt{3}x-y+2=0 i
-7y+5=0 :
Odpowiedzi:
A. przecinają się pod kątem 30^{\circ}
B. przecinają się pod kątem 60^{\circ}
C. są prostopadłe
D. są równoległe
Zadanie 8. 1 pkt ⋅ Numer: pp-10842 ⋅ Poprawnie: 335/524 [63%]
Rozwiąż
Podpunkt 8.1 (0.5 pkt)
Prosta równoległa do prostej o równaniu
y=3x+\frac{1}{5} i
zawiera punkt
P=\left(7\sqrt{2},-3-4\sqrt{2}\right)
i określona jest ma równaniem
y=ax+b .
Wyznacz współczynnik a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (0.5 pkt)
Odpowiedź:
b=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 9. 1 pkt ⋅ Numer: pp-10845 ⋅ Poprawnie: 283/456 [62%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
» Prostą równoległą do prostej o równaniu
-3x-2y+3=0 jest prosta określona wzorem
y=.....\cdot x+n .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-10825 ⋅ Poprawnie: 20/52 [38%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Proste określone równaniami
y=-\frac{3}{5}x-2 i
(3m+4)x+2y+4=0 są prostopadłe.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-10833 ⋅ Poprawnie: 101/178 [56%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Proste o równaniach
y=(8-m)x-5 oraz
y=-\frac{1}{2}x+\frac{15}{2} są prostopadłe.
Wyznacz m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 12. 1 pkt ⋅ Numer: pp-10822 ⋅ Poprawnie: 15/37 [40%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
« Wykresy funkcji
f(x)=2a+x i
g(x)=-6x-6 przecinają oś
Ox w dwóch różnych punktach.
Jaką liczbą nie może być a ?
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż