Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-15-geom-analit-1-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11225 ⋅ Poprawnie: 257/416 [61%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « W kwadracie o wierzchołkach ABCD punkty K=(1,0) i L=(4,4) są środkami boków odpowiednio AB i BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{N}.

Podaj liczby a i b.

Odpowiedź:
d= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11230 ⋅ Poprawnie: 183/268 [68%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Zapisz długość okręgu o środku w punkcie S=(6,-4), do którego należy punkt o współrzędnych A=(-1,-3) w postaci p\cdot\pi.

Podaj liczbę p.

Odpowiedź:
p= \cdot
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11511 ⋅ Poprawnie: 542/919 [58%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkty o współrzędnych A=\left(6\sqrt{3},4\right) i B=\left(16\sqrt{3},4\right) są wierzchołkami trójkąta równobocznego ABC.

Oblicz długość promienia okręgu opisanego na tym trójkącie.

Odpowiedź:
r= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11540 ⋅ Poprawnie: 81/149 [54%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Punkty o współrzędnych K=(3,10) oraz L=(-7,-2) są środkami dwóch sąsiednich boków kwadratu.

Oblicz pole powierzchni tego kwadratu.

Odpowiedź:
P_{\square}= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11249 ⋅ Poprawnie: 68/178 [38%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dane są współrzędne dwóch kolejnych wierzchołków kwadratu A=\left(\frac{5}{2},6\right) i B=\left(-4,-\frac{1}{2}\right). Przekątne tego kwadratu mogą się przecinać w punkcie:
Odpowiedzi:
A. \left(\frac{5}{2},-\frac{5}{6}\right) B. \left(\frac{5}{2},-\frac{1}{2}\right)
C. \left(\frac{17}{6},-\frac{1}{2}\right) D. \left(\frac{7}{3},-\frac{1}{3}\right)
Zadanie 6.  1 pkt ⋅ Numer: pp-11246 ⋅ Poprawnie: 152/291 [52%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Prosta, do której należą punkty A=(-19,37) i B=(-39,-3) przecina oś Ox w punkcie o odciętej x_0.

Podaj x_0.

Odpowiedź:
x_0=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11236 ⋅ Poprawnie: 89/145 [61%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Proste o równaniach x-y+\frac{5}{4}=0 i -7y+5=0:
Odpowiedzi:
A. przecinają się pod kątem 60^{\circ} B. przecinają się pod kątem 45^{\circ}
C. przecinają się pod kątem 30^{\circ} D. są prostopadłe
Zadanie 8.  1 pkt ⋅ Numer: pp-10838 ⋅ Poprawnie: 245/407 [60%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Do wykresu funkcji określonej wzorem y=x-\sqrt{8} równoległy jest wykres funkcji określonej wzorem:
Odpowiedzi:
A. f(x)=\frac{1}{2}x+6 B. f(x)=-x+4
C. f(x)=\frac{3}{2}x+4-\frac{1}{2}x D. f(x)=\frac{5}{2}x+2
Zadanie 9.  1 pkt ⋅ Numer: pp-10847 ⋅ Poprawnie: 236/345 [68%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wykres funkcji liniowej określonej wzorem f(x)=4x+3 jest prostą prostopadłą do prostej o równaniu y=mx+n.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10843 ⋅ Poprawnie: 242/521 [46%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Proste o równaniach -3y-4mx+12=0 oraz y=6x-12 są prostopadłe.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-10835 ⋅ Poprawnie: 82/158 [51%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Proste o równaniach y=\frac{4}{a}x+2 oraz y=(2a+6)x-4 są prostopadłe.

Wyznacz a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-10822 ⋅ Poprawnie: 15/37 [40%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « Wykresy funkcji f(x)=2a+x i g(x)=-6x+6 przecinają oś Ox w dwóch różnych punktach.

Jaką liczbą nie może być a?

Odpowiedź:
a=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm