Podgląd testu : lo2@sp-15-geom-analit-1-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11417 ⋅ Poprawnie: 535/1040 [51%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Punkty o współrzędnych
A=(-6,-6) i
C=(-3,-2) są przeciwległymi wierzchołkami
kwadratu, na którym opisano okrąg. Zapisz długość promienia tego okręgu w najprostszej postaci
\frac{a\sqrt{b}}{c} , gdzie
a,b,c\in\mathbb{N} .
Podaj liczby a , b i c .
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-11229 ⋅ Poprawnie: 306/476 [64%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Przeciwległe wierzchołki prostokąta maja współrzędne
A=(2,-2) i
C=(-2,-5) .
Okrąg opisany na tym prostokącie ma obwód długości:
Odpowiedzi:
A. \frac{15}{2}\pi
B. \frac{5}{2}\pi
C. 5\sqrt{2}\pi
D. 5\pi
E. \frac{5}{4}\pi
F. 10\pi
Zadanie 3. 1 pkt ⋅ Numer: pp-11244 ⋅ Poprawnie: 201/325 [61%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Punkty
A=(-5,5) i
B=(1,6)
są wierzchołkami trójąta równobocznego.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-11232 ⋅ Poprawnie: 119/254 [46%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
«« Punkty
A=(-6,-10) i
B=(-2,-7)
są środkami okręgów stycznych wewnętrznie. Promienie tych okręgów
r_1,r_2 spełniają warunek
r_1=2r_2 .
Oblicz sumę długości promieni tych okręgów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11223 ⋅ Poprawnie: 388/630 [61%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Środkiem odcinka o końcach
A=(0,2a) i
B=(6b,-1) jest punkt
C=(1,-5) .
Wyznacz wartości parametrów a i b .
Odpowiedzi:
Zadanie 6. 1 pkt ⋅ Numer: pp-11246 ⋅ Poprawnie: 152/291 [52%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Prosta, do której należą punkty
A=(-24,-7) i
B=(-16,-15)
przecina oś
Ox w punkcie o odciętej
x_0 .
Podaj x_0 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-11235 ⋅ Poprawnie: 189/301 [62%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Punkt przecięcia prostych określonych równaniami
2x+y=m+12 i
x-3y=6 należy do osi
Ox .
Wyznacz wartość parametru m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-10834 ⋅ Poprawnie: 307/495 [62%]
Rozwiąż
Podpunkt 8.1 (0.5 pkt)
Do wykresu funkcji liniowej określonej wzorem
f(x)=ax+b należy punkt
P=\left(4\sqrt{7},2\right) , a jej wykres jest prostą równoleglą
do prostej o równaniu
y=-\sqrt{7}x-8 .
Wyznacz współczynnik a .
Odpowiedź:
a=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (0.5 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-10845 ⋅ Poprawnie: 283/456 [62%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
» Prostą równoległą do prostej o równaniu
-2x+y-2=0 jest prosta określona wzorem
y=.....\cdot x+n .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-10843 ⋅ Poprawnie: 242/521 [46%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Proste o równaniach
-3y-2mx+12=0 oraz
y=6x-12 są prostopadłe.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-10828 ⋅ Poprawnie: 281/518 [54%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
«« Wykresy funkcji określonych wzorami
f(x)=\left(-m-\frac{13}{2}\right)x+5 i
g(x)=\left(3m-17\right)x-2 są równoległe.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-10836 ⋅ Poprawnie: 93/138 [67%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Prostą prostopadłą do wykresu funkcji
y=x-4 jest prosta określona równaniem
y=ax+1
Wyznacz współczynnik a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż