Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-15-geom-analit-1-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11242 ⋅ Poprawnie: 467/632 [73%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Punkt C=(-2m,y_C) jest środkiem odcinka o końcach A=(-1,6) i B=(3,-2).

Zatem liczba m jest równa:

Odpowiedzi:
A. -\frac{1}{2} B. \frac{1}{2}
C. 1 D. -1
Zadanie 2.  1 pkt ⋅ Numer: pp-11229 ⋅ Poprawnie: 306/476 [64%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Przeciwległe wierzchołki prostokąta maja współrzędne A=(-1,-1) i C=(6,3). Okrąg opisany na tym prostokącie ma obwód długości:
Odpowiedzi:
A. \sqrt{130}\pi B. \frac{\sqrt{65}}{4}\pi
C. \frac{3\sqrt{65}}{2}\pi D. 2\sqrt{65}\pi
E. \frac{\sqrt{65}}{2}\pi F. \sqrt{65}\pi
Zadanie 3.  1 pkt ⋅ Numer: pp-11228 ⋅ Poprawnie: 154/267 [57%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Obwód L rombu o sąsiednich wierzchołkach A=(-2,-1) i B=(9,5) spełnia nierówność m\leqslant L\lessdot m+1, gdzie m\in\mathbb{Z}.

Wyznacz liczbę m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11540 ⋅ Poprawnie: 81/149 [54%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Punkty o współrzędnych K=(2,5) oraz L=(5,4) są środkami dwóch sąsiednich boków kwadratu.

Oblicz pole powierzchni tego kwadratu.

Odpowiedź:
P_{\square}= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11223 ⋅ Poprawnie: 388/630 [61%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Środkiem odcinka o końcach A=(0,2a) i B=(6b,-1) jest punkt C=(2,4).

Wyznacz wartości parametrów a i b.

Odpowiedzi:
a= (dwie liczby całkowite)

b= (dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-11520 ⋅ Poprawnie: 367/855 [42%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Punkty o współrzędnych A=(-1,1) i B=(7,9) są symetryczne względem prostej określonej równaniem:
Odpowiedzi:
A. y=-x+6 B. y=-x+2
C. y=-x+8 D. y=x+6
Zadanie 7.  1 pkt ⋅ Numer: pp-11236 ⋅ Poprawnie: 89/145 [61%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Proste o równaniach x-y+\frac{4}{5}=0 i -6y+5=0:
Odpowiedzi:
A. są równoległe B. są prostopadłe
C. przecinają się pod kątem 45^{\circ} D. przecinają się pod kątem 60^{\circ}
Zadanie 8.  1 pkt ⋅ Numer: pp-10844 ⋅ Poprawnie: 424/761 [55%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Prosta prostopadła do prostej y=\frac{1}{2}x-1 i przechodzącą przez punkt P=\left(2,\frac{5}{2}\right) określona jest równaniem y=ax+b.

Podaj a i b.

Odpowiedzi:
a=
(wpisz liczbę całkowitą)

b=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10830 ⋅ Poprawnie: 152/241 [63%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Proste k:y=\frac{4}{m-3}x+m-2 oraz l:y=2mx+\frac{1}{m+1} spełniają warunek k\perp l.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10823 ⋅ Poprawnie: 129/245 [52%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Wykresy funkcji y=(13-m)x-\frac{5}{3} i y=4-(m+13)x są prostopadłe.

Zatem m^2 jest:

Odpowiedzi:
A. liczbą nieparzystą B. równe zero
C. liczbą wymierną D. liczbą niewymierną
Zadanie 11.  1 pkt ⋅ Numer: pp-10829 ⋅ Poprawnie: 31/65 [47%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Proste o równaniach y=\frac{p}{4}x+7 i y=8qx-5 są prostopadłe.

Oblicz iloczyn p\cdot q.

Odpowiedź:
p\cdot q=
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-11523 ⋅ Poprawnie: 492/764 [64%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 (1 pkt) Jedna z przekątnych rombu zawiera się w prostej o równaniu y=\frac{1}{7}x+8.

Druga przekątna tego rombu zawarta jest w prostej o równaniu y=ax+b.

Podaj a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm