Podgląd testu : lo2@sp-15-geom-analit-1-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11248 ⋅ Poprawnie: 222/345 [64%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Dany jest kwadrat
ABCD . Punkty o współrzędnych
E=(5,2) i
F=(-4,-6) są
środkami dwóch jego boków odpowiednio
AB i
BC . Zapisz długość przekątnej tego kwadratu w najprostszej postaci
a\sqrt{b} , gdzie
a,b\in\mathbb{N} .
Podaj liczby a i b .
Odpowiedź:
d=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11241 ⋅ Poprawnie: 273/431 [63%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Punkt
S=\left(\frac{21}{4},2\right) jest środkiem odcinka
AB , gdzie
A=(x_A,y_A) i
B=(-4,-6) .
Podaj współrzedne x_A i y_A .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-11226 ⋅ Poprawnie: 340/504 [67%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Wierzchołkiem kwadratu, którego przekątne przecinają się w punkcie
S=(9,-3) jest punkt
C=(8,-2) .
Oblicz pole powierzchni tego kwadratu.
Odpowiedź:
P_{\square}=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11245 ⋅ Poprawnie: 86/163 [52%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Punkt
A=(7,2) jest środkiem okręgu o promieniu
2017 . Okrąg ten przekształcono przez symetrię
względem osi
Oy i otrzymano okrąg o środku w
punkcie
A_1 .
Oblicz długość odcinka AA_1 .
Odpowiedź:
|AA_1|=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11221 ⋅ Poprawnie: 71/162 [43%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Punkty A=(2,0) , B=(5,0)
i C=(4,3) są wierzchołkami trójkąta. Zbiór wszystkich
punktów M należacych do trójkąta
ABC spełniających warunek
|MA|\leqslant |MB| jest:
Odpowiedzi:
A. wycinkiem koła
B. trójkątem prostokątnym
C. czworokątem
D. trójkątem ostrokątnym
Zadanie 6. 1 pkt ⋅ Numer: pp-11251 ⋅ Poprawnie: 222/438 [50%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Prostą
k o równaniu
y=-7x+1 przekształcono przez symetrię względem
początku układu współrzędnych i otrzymano prostą
l o równaniu
y=ax+b .
Podaj współczynniki a i b .
Odpowiedzi:
Zadanie 7. 1 pkt ⋅ Numer: pp-11231 ⋅ Poprawnie: 201/333 [60%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Środek odcinka o końcach
(4,-2) i
(6,-2) należy do prostej o równaniu
y+ax=2+3a .
Wyznacz wartość parametru a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-10844 ⋅ Poprawnie: 424/761 [55%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Prosta prostopadła do prostej
y=\frac{1}{2}x-1
i przechodzącą przez punkt
P=\left(1,\frac{1}{2}\right) określona jest równaniem
y=ax+b .
Podaj a i b .
Odpowiedzi:
Zadanie 9. 1 pkt ⋅ Numer: pp-10845 ⋅ Poprawnie: 283/456 [62%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
» Prostą równoległą do prostej o równaniu
3x+2y-3=0 jest prosta określona wzorem
y=.....\cdot x+n .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-10843 ⋅ Poprawnie: 242/521 [46%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Proste o równaniach
-3y-mx+12=0 oraz
y=6x-12 są prostopadłe.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-10831 ⋅ Poprawnie: 98/181 [54%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
« Do prostej
k należą punkty o współrzędnych
(0,0) oraz
\left(3,-\frac{9}{4}\right) oraz
k\perp l .
Wyznacz współczynnik kierunkowy prostej l .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-10839 ⋅ Poprawnie: 78/150 [52%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Funkcja liniowa, której wykres jest prostopadły do prostej o równaniu
k:x+\frac{2}{3}y+5=0
ma współczynnik kierunkowy
a .
Podaj a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż