Podgląd testu : lo2@sp-15-geom-analit-1-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11225 ⋅ Poprawnie: 257/416 [61%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« W kwadracie o wierzchołkach
ABCD punkty
K=(1,0) i
L=(4,4) są
środkami boków odpowiednio
AB i
BC . Zapisz długość przekątnej tego kwadratu w najprostszej postaci
a\sqrt{b} , gdzie
a,b\in\mathbb{N} .
Podaj liczby a i b .
Odpowiedź:
d=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11230 ⋅ Poprawnie: 183/268 [68%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Zapisz długość okręgu o środku w punkcie
S=(6,-4) , do którego
należy punkt o współrzędnych
A=(-1,-3) w postaci
p\cdot\pi .
Podaj liczbę p .
Odpowiedź:
p=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11511 ⋅ Poprawnie: 542/919 [58%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Punkty o współrzędnych
A=\left(6\sqrt{3},4\right) i
B=\left(16\sqrt{3},4\right) są wierzchołkami trójkąta
równobocznego
ABC .
Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-11540 ⋅ Poprawnie: 81/149 [54%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Punkty o współrzędnych
K=(3,10) oraz
L=(-7,-2)
są środkami dwóch sąsiednich boków kwadratu.
Oblicz pole powierzchni tego kwadratu.
Odpowiedź:
P_{\square}=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11249 ⋅ Poprawnie: 68/178 [38%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Dane są współrzędne dwóch kolejnych wierzchołków kwadratu
A=\left(\frac{5}{2},6\right) i
B=\left(-4,-\frac{1}{2}\right) . Przekątne tego kwadratu mogą się przecinać
w punkcie:
Odpowiedzi:
A. \left(\frac{5}{2},-\frac{5}{6}\right)
B. \left(\frac{5}{2},-\frac{1}{2}\right)
C. \left(\frac{17}{6},-\frac{1}{2}\right)
D. \left(\frac{7}{3},-\frac{1}{3}\right)
Zadanie 6. 1 pkt ⋅ Numer: pp-11246 ⋅ Poprawnie: 152/291 [52%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Prosta, do której należą punkty
A=(-19,37) i
B=(-39,-3)
przecina oś
Ox w punkcie o odciętej
x_0 .
Podaj x_0 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-11236 ⋅ Poprawnie: 89/145 [61%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Proste o równaniach
x-y+\frac{5}{4}=0 i
-7y+5=0 :
Odpowiedzi:
A. przecinają się pod kątem 60^{\circ}
B. przecinają się pod kątem 45^{\circ}
C. przecinają się pod kątem 30^{\circ}
D. są prostopadłe
Zadanie 8. 1 pkt ⋅ Numer: pp-10838 ⋅ Poprawnie: 245/407 [60%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Do wykresu funkcji określonej wzorem
y=x-\sqrt{8} równoległy jest
wykres funkcji określonej wzorem:
Odpowiedzi:
A. f(x)=\frac{1}{2}x+6
B. f(x)=-x+4
C. f(x)=\frac{3}{2}x+4-\frac{1}{2}x
D. f(x)=\frac{5}{2}x+2
Zadanie 9. 1 pkt ⋅ Numer: pp-10847 ⋅ Poprawnie: 236/345 [68%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Wykres funkcji liniowej określonej wzorem
f(x)=4x+3 jest prostą
prostopadłą do prostej o równaniu
y=mx+n .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-10843 ⋅ Poprawnie: 242/521 [46%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Proste o równaniach
-3y-4mx+12=0 oraz
y=6x-12 są prostopadłe.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-10835 ⋅ Poprawnie: 82/158 [51%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Proste o równaniach
y=\frac{4}{a}x+2 oraz
y=(2a+6)x-4 są prostopadłe.
Wyznacz a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-10822 ⋅ Poprawnie: 15/37 [40%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
« Wykresy funkcji
f(x)=2a+x i
g(x)=-6x+6 przecinają oś
Ox w dwóch różnych punktach.
Jaką liczbą nie może być a ?
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż