Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-15-geom-analit-1-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-11417 ⋅ Poprawnie: 535/1040 [51%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Punkty o współrzędnych A=(-5,-9) i C=(-11,-1) są przeciwległymi wierzchołkami kwadratu, na którym opisano okrąg. Zapisz długość promienia tego okręgu w najprostszej postaci \frac{a\sqrt{b}}{c}, gdzie a,b,c\in\mathbb{N}.

Podaj liczby a, b i c.

Odpowiedź:
r= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11227 ⋅ Poprawnie: 106/251 [42%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wierzchołkiem kwadratu, którego przekątne przecinają się w punkcie S=(-5,-6) jest punkt C=(5,4). Oblicz długość wysokości trójkąta równobocznego, wpisanego w okrąg, wpisany w ten kwadrat.
Odpowiedź:
h=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11247 ⋅ Poprawnie: 223/443 [50%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Prosta o równaniu -2x+8y+8=0 wraz z osiami układu współrzędnych ogranicza trójkąt.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10824 ⋅ Poprawnie: 43/87 [49%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Wykresy funkcji y=-4+(m-9)x i y=(9-m)x+\frac{1}{2} są prostopadłe.

Zatem m jest:

Odpowiedzi:
A. liczbą parzystą B. liczbą pierwszą
C. liczbą nieparzystą D. liczbą niewymierną
Zadanie 5.  1 pkt ⋅ Numer: pp-10839 ⋅ Poprawnie: 78/150 [52%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Funkcja liniowa, której wykres jest prostopadły do prostej o równaniu k:2x-\frac{1}{9}y-2=0 ma współczynnik kierunkowy a.

Podaj a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20592 ⋅ Poprawnie: 53/220 [24%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
» Punkty A=(3p^2+6p+4, 3-m) oraz B=(p+2,2m-1) są symetryczne względem osi Ox.

Podaj m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe p.
Odpowiedź:
p_{max}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20590 ⋅ Poprawnie: 54/189 [28%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Prosta o równaniu y=ax+b przechodzi przez punkt P=(1+\sqrt{6},-2+2\sqrt{2}) i jest nachylona do osi Ox pod kątem o mierze 150^{\circ}.

Podaj a.

Odpowiedź:
a= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20587 ⋅ Poprawnie: 14/85 [16%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Dla jakich wartości parametru m punkt przecięcia prostych y=-3m+2x+16 oraz m+x+2y-17=0 należy do prostej o równaniu 3x-2y-11=0?

Podaj najmniejsze możliwe m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20313 ⋅ Poprawnie: 37/227 [16%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Dane są punkty o współrzędnych A=(6,5), B=(3,6) i C=(-6,-4). Prosta k:y=mx+n przechodzi przez punkt C i jest prostopadła do odcinka AB. Wyznacz równanie prostej k.

Podaj m+n.

Odpowiedź:
m+n=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm