Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-15-geom-analit-1-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11228 ⋅ Poprawnie: 154/267 [57%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Obwód L rombu o sąsiednich wierzchołkach A=(2,-8) i B=(-4,3) spełnia nierówność m\leqslant L\lessdot m+1, gdzie m\in\mathbb{Z}.

Wyznacz liczbę m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11251 ⋅ Poprawnie: 222/438 [50%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Prostą k o równaniu y=2x-7 przekształcono przez symetrię względem początku układu współrzędnych i otrzymano prostą l o równaniu y=ax+b.

Podaj współczynniki a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10820 ⋅ Poprawnie: 186/354 [52%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Wykres funkcji liniowej h jest prostopadły do prostej określonej równaniem y=\frac{1}{4}x-11 i zawiera punkt P=\left(\frac{4}{3},-2\right).

Wyznacz miejsce zerowe funkcji h.

Odpowiedź:
h(x)=0\iff x=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10846 ⋅ Poprawnie: 140/304 [46%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Do prostej o równaniu -7x+\frac{4}{3}y+1=0 równoległa jest prosta określona wzorem y=......\cdot x+b.

Podaj brakującą liczbę.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10211 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz pole kwadratu wpisanego w okrąg o równaniu x^2+y^2-4x+12y=-15.
Odpowiedź:
P_{\square}= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20606 ⋅ Poprawnie: 7/62 [11%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Środkiem odcinka o końcach A=(x-2,0) i B=(0,3y) jest punkt P=(2,-8).

Podaj najmniejsze możliwe x.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj największe możliwe y.
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20358 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Prosta o równaniu \left(m+\frac{5}{2}\right)x+\left(m+\frac{13}{2}\right)y-5=0 przecina prostą o równaniu (2m+7)x-(2m+5)y-20=0 w punkcie P=(x_0,0).

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20315 ⋅ Poprawnie: 50/190 [26%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 » Proste o równaniach -5x-2y-8=0 i y=\frac{m+4}{2}x+3 przecinają się pod kątem prostym.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20383 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Okrąg o:x^2+y^2+ax+by+c=0 ma środek w punkcie S=(-7,-1) i przechodzi przez punkt A=(-1,5).

Podaj b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj c.
Odpowiedź:
c= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm