Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-15-geom-analit-1-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11245 ⋅ Poprawnie: 86/163 [52%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt A=(-11,-13) jest środkiem okręgu o promieniu 2017. Okrąg ten przekształcono przez symetrię względem osi Oy i otrzymano okrąg o środku w punkcie A_1.

Oblicz długość odcinka AA_1.

Odpowiedź:
|AA_1|= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11247 ⋅ Poprawnie: 223/443 [50%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Prosta o równaniu -14x-6y-42=0 wraz z osiami układu współrzędnych ogranicza trójkąt.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10841 ⋅ Poprawnie: 175/335 [52%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Proste o równaniach k:y=2m^2x-m-4 oraz l:y=4mx+m+4 spełniają warunek k\perp l.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10888 ⋅ Poprawnie: 479/632 [75%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Wskaż parę prostych prostopadłych:
Odpowiedzi:
A. y=\frac{1}{4}x-1 i y=-4x-2 B. y=4}x-8 i y=-4x+8
C. y=3}x-3 i y=3x+3 D. y=\frac{1}{3}x-4 i y=3x-8
Zadanie 5.  1 pkt ⋅ Numer: pr-10210 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
Punkty (22,17), (20,15) i (20,17) należą do okręgu. Okrąg ten ma równanie:
Odpowiedzi:
A. x^2-42x+y^2-32y+695=0 B. x^2-40x+y^2-34y+645=0
C. x^2-42x+y^2-34y+729=0 D. x^2-40x+y^2-32y+655=0
Zadanie 6.  2 pkt ⋅ Numer: pp-20589 ⋅ Poprawnie: 123/358 [34%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Prosta o równaniu y=ax+b przechodzi przez punkt P=(-1-2\sqrt{3},1 ) i jest nachylona do osi Ox pod kątem o mierze 60^{\circ}.

Podaj a.

Odpowiedź:
a= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20588 ⋅ Poprawnie: 157/384 [40%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Prosta o równaniu ax+y+c=0 przechodzi przez punkty A=\left(-1,0) i B=\left(-4,12\right).

Podaj c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20313 ⋅ Poprawnie: 37/227 [16%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Dane są punkty o współrzędnych A=(9,1), B=(8,7) i C=(-8,10). Prosta k:y=mx+n przechodzi przez punkt C i jest prostopadła do odcinka AB. Wyznacz równanie prostej k.

Podaj m+n.

Odpowiedź:
m+n=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20386 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Okrąg o_2 jest symetryczny do okręgu o_1:x^2+y^2+8x+20y+91=0 względem punktu P=(-13,-9). Wyznacz środek S=(x_S,y_S) okręgu o_2.

Podaj x_S.

Odpowiedź:
x_S= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj y_S.
Odpowiedź:
y_S= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm