Podgląd testu : lo2@sp-15-geom-analit-1-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11243 ⋅ Poprawnie: 166/304 [54%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Punkty
A=(6,-3) i
B=(-3,6)
są wierzchołkami trójąta równobocznego.
Oblicz wysokość tego trójkąta.
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-11234 ⋅ Poprawnie: 152/322 [47%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Oblicz odległość między prostymi określonymi równaniami
y=x+9 i
x-y=5 .
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-10824 ⋅ Poprawnie: 43/87 [49%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
» Wykresy funkcji
y=-4+(m-7)x i
y=(7-m)x+\frac{1}{2} są prostopadłe.
Zatem m jest:
Odpowiedzi:
A. liczbą pierwszą
B. liczbą parzystą
C. liczbą nieparzystą
D. liczbą niewymierną
Zadanie 4. 1 pkt ⋅ Numer: pp-10829 ⋅ Poprawnie: 31/65 [47%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Proste o równaniach
y=\frac{p}{3}x+2 i
y=9qx-1 są prostopadłe.
Oblicz iloczyn p\cdot q .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pr-10212 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Oblicz długość promienia okręgu określonego równaniem
(x+y-4)^2+2(x-7)(-2-y)-3=0 .
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20606 ⋅ Poprawnie: 7/62 [11%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Środkiem odcinka o końcach
A=(x-2,0) i
B=(0,3y) jest punkt
P=(9,-5) .
Podaj najmniejsze możliwe x .
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe
y .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20588 ⋅ Poprawnie: 157/384 [40%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Prosta o równaniu
ax+y+c=0 przechodzi przez punkty
A=\left(5,23) i
B=\left(-3,-17\right) .
Podaj c .
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20313 ⋅ Poprawnie: 37/227 [16%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Dane są punkty o współrzędnych
A=(5,-10) ,
B=(4,6) i
C=(-4,7) .
Prosta
k:y=mx+n przechodzi przez punkt
C i jest prostopadła do odcinka
AB . Wyznacz równanie prostej
k .
Podaj m+n .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pr-20385 ⋅ Poprawnie: 3/2 [150%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Punkty
A=(4,2) i
B=(-8,-14) należą do okręgu, którego środek
należy do prostej
y=x-4 .
Podaj długość promienia tego okręgu.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Środkiem tego okręgu jest punkt
S=(x_S,y_S) .
Podaj x_S+y_S .
Odpowiedź:
x_S+y_S=
(wpisz liczbę całkowitą)
Rozwiąż