Podgląd testu : lo2@sp-16-trojkaty-pole-pp-4
Zadanie 1. 1 pkt ⋅ Numer: pp-10515 ⋅ Poprawnie: 92/170 [54%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Obwody dwóch trójkątów podobnych, których pola pozostają w stosunku
25:49 , mogą być równe:
Odpowiedzi:
A. 10:\frac{75}{7}
B. 5:\frac{25}{7}
C. 7:\frac{25}{7}
D. 5:\frac{49}{5}
Zadanie 2. 1 pkt ⋅ Numer: pp-11599 ⋅ Poprawnie: 43/82 [52%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Pole powierzchni wycinka koła jest równe
104\pi , a łuk tego wycinka ma długość
\frac{1}{7}\pi .
Oblicz długość promienia tego koła.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 3. 1 pkt ⋅ Numer: pp-10669 ⋅ Poprawnie: 411/603 [68%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Dany jest trójkąt
ABC , w którym
|AB|=7 ,
|BC|=10
oraz
\sin\sphericalangle ABC=\frac{\sqrt{51}}{10} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-10654 ⋅ Poprawnie: 235/356 [66%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Oblicz pole powierzchni równoległoboku o bokach długości
\frac{5}{2} i
5 oraz kącie ostrym o mierze
30^{\circ} .
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-11389 ⋅ Poprawnie: 395/557 [70%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
» Podstawa trójkąta równoramiennego ma długość
8 , a jego wysokość długość
3 .
Oblicz długość wysokości opuszczonej na ramię tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20281 ⋅ Poprawnie: 19/60 [31%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
« W okrąg o obwodzie
\frac{1}{7}\pi wpisano ośmiokąt foremny.
Oblicz pole powierzchni tego ośmiokąta.
Odpowiedź:
Zadanie 7. 2 pkt ⋅ Numer: pp-20907 ⋅ Poprawnie: 42/115 [36%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Podstawa trójkąta równoramiennego ma długość
32 , a pole
powierzchni tego trójkąta jest równe
1008 .
Oblicz długość ramienia tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Wyznacz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20757 ⋅ Poprawnie: 16/88 [18%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
» Dany jest trójkąt równoramienny o podstawie
AB :
Oblicz \sin\sphericalangle DAB .
Dane
k=7
Odpowiedź:
Podpunkt 8.2 (1 pkt)
Oblicz
\frac{P_{\triangle AES}}{P_{\triangle SDC}}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20918 ⋅ Poprawnie: 2/4 [50%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Dwa koła mają promień o długości
1 i są tak położone, że do okręgu każdego z nich
należy środek drugiego z kół:
Oblicz pole obszaru wspólnego tych kół.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 2 pkt ⋅ Numer: pp-20807 ⋅ Poprawnie: 90/174 [51%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
«« Punkt
D należy do podstawy
AB trójkąta równoramiennego
ABC i dzieli tę podstawę w stosunku
|AD|:|DB|=13:1 . Odcinek
CD jest 14 razy dłuższy od odcinka
DB .
Oblicz \cos\sphericalangle ADC .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pp-30025 ⋅ Poprawnie: 38/219 [17%]
Rozwiąż
Podpunkt 11.1 (4 pkt)
«« W trójkącie
ABC dane są długości boków
AC ,
BC i kąt
między tymi bokami o mierze
60^{\circ} .
Dwusieczna kąta
BCA przecina bok
AB w punkcie
D .
Oblicz |CD| .
Dane
|AC|=11
|BC|=2
Odpowiedź:
Rozwiąż