Podgląd testu : lo2@sp-16-trojkaty-pole-pp-4
Zadanie 1. 1 pkt ⋅ Numer: pp-10591 ⋅ Poprawnie: 305/384 [79%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Trójkąt
ABC jest podobny do trójkąta
A_1B_1C_1 w skali
k=\frac{5}{4} . Stosunek pola trójkąta
ABC do pola trójkąta
A_1B_1C_1
jest równy:
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11599 ⋅ Poprawnie: 43/82 [52%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Pole powierzchni wycinka koła jest równe
24\pi , a łuk tego wycinka ma długość
\frac{1}{2}\pi .
Oblicz długość promienia tego koła.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 3. 1 pkt ⋅ Numer: pp-10647 ⋅ Poprawnie: 380/532 [71%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
W trójkącie równoramiennym ramię o długości
3\sqrt{2} tworzy z podstawą kąt o mierze
67,5^{\circ} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-10654 ⋅ Poprawnie: 235/356 [66%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Oblicz pole powierzchni równoległoboku o bokach długości
\frac{2}{3} i
2 oraz kącie ostrym o mierze
45^{\circ} .
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-10667 ⋅ Poprawnie: 258/335 [77%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Każde z ramion trójkąta równoramiennego ma długość
2 .
Kąt zawarty między ramionami tego trójkąta ma miarę
120^{\circ} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 6. 2 pkt ⋅ Numer: pp-20904 ⋅ Poprawnie: 5/8 [62%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Podstawą trójkąta równoramiennego
ABC jest bok
AB .
Środkowe
AL i
BK przecinają się w punkcie
S i tworzą kąt
ASB o mierze
60^{\circ} . Wiadomo, że pole powierzchni trójkąta
ABS
jest równe
9\sqrt{3} .
Oblicz pole powierzchni trójkąta ABC .
Odpowiedź:
Zadanie 7. 2 pkt ⋅ Numer: pp-21028 ⋅ Poprawnie: 23/40 [57%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Pole powierzchni trójkąta jest równe
6 , a promień
okręgu wpisanego w ten trójkąt ma długość
1 .
Wiedząc, że długości boków tego trójkąta są kolejnymi liczbami naturalnymi, oblicz długość
najdłuższej wysokości tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20912 ⋅ Poprawnie: 21/34 [61%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
W trójkącie ostrokątnym równoramiennym
ABC ,
|AC|=|BC| ,
poprowadzono wysokości
CD i
BE . Stosunek pól powierzchni
trójkątów
ABE i
ADC jest równy
P_{ABE}:P_{ADC}=\frac{256}{289} , a obwód tego trójkąta ma długość
100 .
Oblicz pole powierzchni trójkąta ABC .
Odpowiedź:
P_{\triangle ABC}=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20766 ⋅ Poprawnie: 77/170 [45%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
W wycinek kołowy o kącie środkowym
\alpha
wpisano okrąg o polu powierzchni
P :
Oblicz pole powierzchni tego wycinka.
Dane
\alpha=120^{\circ}
P=16\pi=50.26548245743669
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 2 pkt ⋅ Numer: pp-20885 ⋅ Poprawnie: 136/179 [75%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Dany jest trójkąt
ABC , w którym
|AB|=2\sqrt{2} ,
|BC|=\sqrt{2} i
|AC|=\sqrt{6} .
Oblicz miarę kąta CAB .
Odpowiedź:
|\sphericalangle CAB|=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pp-30398 ⋅ Poprawnie: 11/47 [23%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
« Dwa boki trójkąta ostrokątnego mają długość
2 i
3 , a jego
pole powierzchni jest równe
\frac{3\sqrt{3}}{2} .
Oblicz miarę stopniową kąta zawartego między tymi bokami.
Odpowiedź:
\alpha=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Oblicz długość trzeciego boku tego trójkąta.
Odpowiedź:
c=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 11.3 (1 pkt)
Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
R=
(liczba zapisana dziesiętnie)
Podpunkt 11.4 (1 pkt)
Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
r=
(liczba zapisana dziesiętnie)
Rozwiąż