Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-16-trojkaty-pole-pp-4

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10586  
Podpunkt 1.1 (1 pkt)
 « Najkrótsze wysokości dwóch trójkątów podobnych pozostają w stosunku 5:18. Pola tych trójkątów mogą być równe:
Odpowiedzi:
A. 1 i \frac{54}{5} B. 15 i \frac{972}{5}
C. 3 i \frac{324}{5} D. 3 i \frac{54}{5}
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11602  
Podpunkt 2.1 (1 pkt)
 W trójkącie prostokątnym stosunek długości przyprostokątnej do długości przeciwprostokątnej jest równy 8:17.

Oblicz stosunek pola powierzchni koła wpisanego w ten trójkąt do pola powierzchni koła opisanego na tym trójkącie.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10669  
Podpunkt 3.1 (1 pkt)
 Dany jest trójkąt ABC, w którym |AB|=6, |BC|=15 oraz \sin\sphericalangle ABC=\frac{\sqrt{21}}{5}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle ABC}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10673  
Podpunkt 4.1 (1 pkt)
 » Przekątne równoległoboku o długości 12 i \frac{6}{7} przecinają się pod kątem rozwartym o mierze 150^{\circ}.

Oblicz pole powierzchni tego równoległoboku.

Odpowiedź:
P=
(wpisz dwie liczby całkowite)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10679  
Podpunkt 5.1 (1 pkt)
 Pole powierzchni rombu o obwodzie długości 56 jest równe 49. Kąt ostry tego rombu ma miarę \alpha.

Wówczas:

Odpowiedzi:
A. 60^{\circ} \lessdot \alpha \lessdot 61^{\circ} B. 29^{\circ} \lessdot \alpha \lessdot 30^{\circ}
C. 14^{\circ} \lessdot \alpha \lessdot 15^{\circ} D. 75^{\circ} \lessdot \alpha \lessdot 76^{\circ}
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20750  
Podpunkt 6.1 (2 pkt)
 « Punkty M i N są środkami boków trójkąta na rysunku i spełniają warunki: |AM|=20 i |BN|=35:

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle ABC}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20909  
Podpunkt 7.1 (1 pkt)
 W trójkącie dwa boki mają długość 34, a promień okręgu opisanego na tym trójkącie ma długość \frac{289}{8}. Pole powierzchni tego trójkąta jest równe 480.

Oblicz długość trzeciego boku tego trójkąta.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20913  
Podpunkt 8.1 (2 pkt)
 «« W trójkącie prostrokątnym ABC stosunek przyprostokątnych jest równy |AC|:|AB|=5:12, Punkt D należy do przeciwprostokątnej BC oraz |CD|:|DB|=5:3. Punkt E należy do przyprostokątnej AB i ED\perp BC.

Oblicz stosunek pola powierzchni czworokąta AEDC do pola powierzchni trójkąta EBD.

Odpowiedź:
P_{\square AEDC}:P_{\triangle EBD}= (liczba zapisana dziesiętnie)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20762  
Podpunkt 9.1 (2 pkt)
 «« Dany jest okrąg:

Oblicz pole powierzchni zielonego obszaru.

Dane
d=12
\alpha=60^{\circ}
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20892  
Podpunkt 10.1 (2 pkt)
 « Dany jest trójkąt, w którym |AB|=4\sqrt{10}, |BC|=4\sqrt{5}, |AC|=2\sqrt{10}+2\sqrt{30} i \alpha=30^{\circ}:

Oblicz miarę stopniową największego kąta tego trójkąta.

Odpowiedź:
\beta_{max}\ [^{\circ}]= (wpisz liczbę całkowitą)
Zadanie 11.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30398  
Podpunkt 11.1 (1 pkt)
 « Dwa boki trójkąta ostrokątnego mają długość 12 i 16, a jego pole powierzchni jest równe 48\sqrt{3}.

Oblicz miarę stopniową kąta zawartego między tymi bokami.

Odpowiedź:
\alpha= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Oblicz długość trzeciego boku tego trójkąta.
Odpowiedź:
c= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 11.3 (1 pkt)
 Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
R= (liczba zapisana dziesiętnie)
Podpunkt 11.4 (1 pkt)
 Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
r= (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm