Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-16-trojkaty-pole-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-10587 ⋅ Poprawnie: 430/615 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Trójkąty ABC i A'B'C' są podobne, a ich pola powierzchni są odpowiednio, równe 5 cm2 i 24 cm2.

Wyznacz skalę tego podobieństwa \frac{|A'B'|}{|AB|}.

Odpowiedź:
\frac{|A'B'|}{|AB|}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11602 ⋅ Poprawnie: 5/11 [45%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 W trójkącie prostokątnym stosunek długości przyprostokątnej do długości przeciwprostokątnej jest równy 9:41.

Oblicz stosunek pola powierzchni koła wpisanego w ten trójkąt do pola powierzchni koła opisanego na tym trójkącie.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10669 ⋅ Poprawnie: 411/603 [68%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Dany jest trójkąt ABC, w którym |AB|=9, |BC|=12 oraz \sin\sphericalangle ABC=\frac{\sqrt{7}}{4}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle ABC}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10656 ⋅ Poprawnie: 354/511 [69%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Przekątne równoległoboku mają długość 6 i 20, a kąt między tymi przekątnymi ma miarę 30^{\circ}.

Oblicz pole powierzchni tego równoległoboku.

Odpowiedź:
P=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10679 ⋅ Poprawnie: 172/233 [73%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Pole powierzchni rombu o obwodzie długości 48 jest równe 36. Kąt ostry tego rombu ma miarę \alpha.

Wówczas:

Odpowiedzi:
A. 60^{\circ} \lessdot \alpha \lessdot 61^{\circ} B. 14^{\circ} \lessdot \alpha \lessdot 15^{\circ}
C. 75^{\circ} \lessdot \alpha \lessdot 76^{\circ} D. 29^{\circ} \lessdot \alpha \lessdot 30^{\circ}
Zadanie 6.  2 pkt ⋅ Numer: pp-20284 ⋅ Poprawnie: 18/39 [46%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » We wnętrzu trójkąta równobocznego o boku długości 5\sqrt{2} zaznaczono dowolny punkt.

Oblicz sumę odległości tego punktu od wszystkich boków tego trójkąta.

Odpowiedź:
d= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-21031 ⋅ Poprawnie: 1/5 [20%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 W trójkącie równoramiennym podstawa ma długość 96, a tangens kąta przy podstawie jest równy \frac{55}{48}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
R=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20903 ⋅ Poprawnie: 19/36 [52%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 W trapezie ABCD, AB\parallel CD, poprowadzono przekątne, które przecięły się w punkcie E. Pola powierzchni trójkątów ABE i BCE są równe odpowiednio 39 i 27.

Oblicz pole powierzchni trójkąta CDE.

Odpowiedź:
P_{\triangle CDE}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20763 ⋅ Poprawnie: 11/49 [22%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Punkt O jest środkiem okręgu, a niebieski trójkąt jest równoboczny:

Oblicz pole powierzchni części koła leżącej poza trójkątem.

Dane
r=5\sqrt{6}=12.24744871391589
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pp-20883 ⋅ Poprawnie: 111/300 [37%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Kąt ostry DAB równoległoboku ABCD, w którym |AB|=4 i |AD|=10, ma miarę 30^{\circ}.

Oblicz długość krótszej przekątnej tego równoległoboku.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Oblicz długość dłuższej przekątnej tego równoległoboku.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pp-30025 ⋅ Poprawnie: 38/219 [17%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 «« W trójkącie ABC dane są długości boków AC, BC i kąt między tymi bokami o mierze 60^{\circ}. Dwusieczna kąta BCA przecina bok AB w punkcie D.

Oblicz |CD|.

Dane
|AC|=7
|BC|=6
Odpowiedź:
|CD|= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm