Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-16-trojkaty-pole-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-10586 ⋅ Poprawnie: 104/233 [44%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Najkrótsze wysokości dwóch trójkątów podobnych pozostają w stosunku 3:16. Pola tych trójkątów mogą być równe:
Odpowiedzi:
A. 15 i \frac{1280}{3} B. 5 i \frac{80}{3}
C. 5 i \frac{256}{3} D. 1 i \frac{80}{3}
Zadanie 2.  1 pkt ⋅ Numer: pp-11601 ⋅ Poprawnie: 9/11 [81%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Stosunek pola powierzchni trójkąta do pola powierzchni koła wpisanego w ten trójkąt jest równy 4:\pi, a średnica tego koła ma długość 14.

Oblicz długość obwodu tego trójkąta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10669 ⋅ Poprawnie: 411/603 [68%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Dany jest trójkąt ABC, w którym |AB|=4, |BC|=14 oraz \sin\sphericalangle ABC=\frac{3\sqrt{5}}{7}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle ABC}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10666 ⋅ Poprawnie: 259/456 [56%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Przyprostokątna trójkąta o długości 2 jest jednym z ramion kąta ostrego tego trójkąta o mierze 60^{\circ}

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10679 ⋅ Poprawnie: 172/233 [73%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Pole powierzchni rombu o obwodzie długości 16 jest równe 4. Kąt ostry tego rombu ma miarę \alpha.

Wówczas:

Odpowiedzi:
A. 75^{\circ} \lessdot \alpha \lessdot 76^{\circ} B. 14^{\circ} \lessdot \alpha \lessdot 15^{\circ}
C. 60^{\circ} \lessdot \alpha \lessdot 61^{\circ} D. 29^{\circ} \lessdot \alpha \lessdot 30^{\circ}
Zadanie 6.  2 pkt ⋅ Numer: pp-20750 ⋅ Poprawnie: 10/41 [24%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Punkty M i N są środkami boków trójkąta na rysunku i spełniają warunki: |AM|=8 i |BN|=14:

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle ABC}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20908 ⋅ Poprawnie: 38/71 [53%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 W trójkącie równoramiennym podstawa ma długość 64, a cosinus kąta przy podstawie jest równy \frac{8}{17}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
R=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20756 ⋅ Poprawnie: 57/207 [27%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Dane są punkty na okręgu:

Oblicz P_{\triangle ASD}.

Dane
|AS|=8
|SB|=6
|SC|=7
Odpowiedź:
P_{\triangle ASD}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20763 ⋅ Poprawnie: 11/49 [22%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Punkt O jest środkiem okręgu, a niebieski trójkąt jest równoboczny:

Oblicz pole powierzchni części koła leżącej poza trójkątem.

Dane
r=4\sqrt{2}=5.65685424949238
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pp-20891 ⋅ Poprawnie: 90/153 [58%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « W trójkącie ABC, w którym |AB|=20, |AC|=26 i \cos\alpha=\frac{5}{13}, promień okręgu opisanego na tym trójkącie ma długość \frac{169}{12}:

Oblicz sumę sinusów wszystkich kątów tego trójkąta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pp-30020 ⋅ Poprawnie: 35/120 [29%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 « Każdy bok trójkąta podzielono dwoma punktami na odcinki, których długości mają się do siebie jak a:b:a. Pole powierzchni tego trójkąta jest równe P.

Wyznacz pole sześciokąta, którego wierzchołkami są punkty podziałów boków trójkąta.

Dane
a=1
b=3
P=25
Odpowiedź:
P= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm