Podgląd testu : lo2@sp-16-trojkaty-pole-pp-4
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10586 ⋅ Poprawnie: 104/233 [44%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
« Najkrótsze wysokości dwóch trójkątów podobnych pozostają w stosunku
3:16. Pola tych trójkątów mogą być równe:
Odpowiedzi:
|
A. 15 i \frac{1280}{3}
|
B. 5 i \frac{80}{3}
|
|
C. 5 i \frac{256}{3}
|
D. 1 i \frac{80}{3}
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11601 ⋅ Poprawnie: 9/11 [81%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Stosunek pola powierzchni trójkąta do pola powierzchni koła wpisanego w ten trójkąt jest równy
4:\pi, a średnica tego koła ma długość
14.
Oblicz długość obwodu tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10669 ⋅ Poprawnie: 411/603 [68%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Dany jest trójkąt
ABC, w którym
|AB|=4,
|BC|=14
oraz
\sin\sphericalangle ABC=\frac{3\sqrt{5}}{7}.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10666 ⋅ Poprawnie: 259/456 [56%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
« Przyprostokątna trójkąta o długości
2 jest jednym
z ramion kąta ostrego tego trójkąta o mierze
60^{\circ}
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10679 ⋅ Poprawnie: 172/233 [73%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Pole powierzchni rombu o obwodzie długości
16 jest równe
4. Kąt ostry tego rombu ma miarę
\alpha.
Wówczas:
Odpowiedzi:
|
A. 75^{\circ} \lessdot \alpha \lessdot 76^{\circ}
|
B. 14^{\circ} \lessdot \alpha \lessdot 15^{\circ}
|
|
C. 60^{\circ} \lessdot \alpha \lessdot 61^{\circ}
|
D. 29^{\circ} \lessdot \alpha \lessdot 30^{\circ}
|
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20750 ⋅ Poprawnie: 10/41 [24%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
« Punkty
M i
N są środkami
boków trójkąta na rysunku i spełniają warunki:
|AM|=8 i
|BN|=14:
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20908 ⋅ Poprawnie: 38/71 [53%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
W trójkącie równoramiennym podstawa ma długość
64, a cosinus
kąta przy podstawie jest równy
\frac{8}{17}.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
P_{\triangle}=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20756 ⋅ Poprawnie: 57/207 [27%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
« Dane są punkty na okręgu:
Oblicz P_{\triangle ASD}.
Dane
|AS|=8
|SB|=6
|SC|=7
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20763 ⋅ Poprawnie: 11/49 [22%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
Punkt
O jest środkiem okręgu, a niebieski trójkąt
jest równoboczny:
Oblicz pole powierzchni części koła leżącej poza trójkątem.
Dane
r=4\sqrt{2}=5.65685424949238
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 10. 2 pkt ⋅ Numer: pp-20891 ⋅ Poprawnie: 90/153 [58%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
« W trójkącie
ABC, w którym
|AB|=20,
|AC|=26 i
\cos\alpha=\frac{5}{13}, promień okręgu opisanego
na tym trójkącie ma długość
\frac{169}{12}:
Oblicz sumę sinusów wszystkich kątów tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 11. 4 pkt ⋅ Numer: pp-30020 ⋅ Poprawnie: 35/120 [29%] |
Rozwiąż |
Podpunkt 11.1 (4 pkt)
« Każdy bok trójkąta podzielono dwoma punktami na odcinki, których długości
mają się do siebie jak
a:b:a. Pole powierzchni
tego trójkąta jest równe
P.
Wyznacz pole sześciokąta, którego wierzchołkami są punkty podziałów boków
trójkąta.
Dane
a=1
b=3
P=25
Odpowiedź:
P=
(wpisz liczbę całkowitą)