Podgląd testu : lo2@sp-16-trojkaty-pole-pp-4
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10586 ⋅ Poprawnie: 104/233 [44%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
« Najkrótsze wysokości dwóch trójkątów podobnych pozostają w stosunku
4:11. Pola tych trójkątów mogą być równe:
Odpowiedzi:
|
A. 2 i \frac{121}{4}
|
B. 1 i \frac{11}{2}
|
|
C. 2 i \frac{11}{2}
|
D. 8 i \frac{121}{2}
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11599 ⋅ Poprawnie: 43/82 [52%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Pole powierzchni wycinka koła jest równe
61\pi, a łuk tego wycinka ma długość
\frac{7}{2}\pi.
Oblicz długość promienia tego koła.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10678 ⋅ Poprawnie: 417/518 [80%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
» Oblicz pole powierzchni rombu o boku długości
30 i kącie rozwartym
120^{\circ}.
Odpowiedź:
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10673 ⋅ Poprawnie: 233/362 [64%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
» Przekątne równoległoboku o długości
7
i
\frac{3}{2} przecinają się pod kątem rozwartym o mierze
150^{\circ}.
Oblicz pole powierzchni tego równoległoboku.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10679 ⋅ Poprawnie: 172/233 [73%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Pole powierzchni rombu o obwodzie długości
48 jest równe
36. Kąt ostry tego rombu ma miarę
\alpha.
Wówczas:
Odpowiedzi:
|
A. 14^{\circ} \lessdot \alpha \lessdot 15^{\circ}
|
B. 29^{\circ} \lessdot \alpha \lessdot 30^{\circ}
|
|
C. 60^{\circ} \lessdot \alpha \lessdot 61^{\circ}
|
D. 75^{\circ} \lessdot \alpha \lessdot 76^{\circ}
|
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20901 ⋅ Poprawnie: 14/19 [73%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
« Pole powierzchni trójkąta prostokątnego jest równe
60,
a tangens jednego z kątów ostrych tego trójkąta jest równy
\frac{15}{8}.
Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-21029 ⋅ Poprawnie: 16/25 [64%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Podstawa trójkąta równoramiennego ma długość
16, a pole
powierzchni tego trójkąta jest równe
120.
Oblicz długość obwodu tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Wyznacz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20756 ⋅ Poprawnie: 57/207 [27%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
« Dane są punkty na okręgu:
Oblicz P_{\triangle ASD}.
Dane
|AS|=11
|SB|=10
|SC|=4
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20763 ⋅ Poprawnie: 11/49 [22%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
Punkt
O jest środkiem okręgu, a niebieski trójkąt
jest równoboczny:
Oblicz pole powierzchni części koła leżącej poza trójkątem.
Dane
r=4\sqrt{6}=9.79795897113271
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 10. 2 pkt ⋅ Numer: pp-20889 ⋅ Poprawnie: 49/82 [59%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
» Dwa okręgi o środkach
O_1 i
O_2 i promieniu
3 są styczne,
jeden zewnętrznie, a drugi wewnętrznie do trzeciego okręgu o środku
O i promieniu
9.
Wiedząc, że |\sphericalangle O_1OO_2|=60^{\circ}
oblicz |O_1O_2|.
Odpowiedź:
|O_1O_2|=
\cdot√
(wpisz dwie liczby całkowite)
|
Zadanie 11. 4 pkt ⋅ Numer: pp-30020 ⋅ Poprawnie: 35/120 [29%] |
Rozwiąż |
Podpunkt 11.1 (4 pkt)
« Każdy bok trójkąta podzielono dwoma punktami na odcinki, których długości
mają się do siebie jak
a:b:a. Pole powierzchni
tego trójkąta jest równe
P.
Wyznacz pole sześciokąta, którego wierzchołkami są punkty podziałów boków
trójkąta.
Dane
a=2
b=1
P=25
Odpowiedź:
P=
(wpisz liczbę całkowitą)