Podgląd testu : lo2@sp-16-trojkaty-pole-pp-4
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10587 ⋅ Poprawnie: 430/615 [69%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Trójkąty
ABC i
A'B'C' są podobne, a ich pola powierzchni są odpowiednio,
równe
2 cm
2 i
36 cm
2.
Wyznacz skalę tego podobieństwa
\frac{|A'B'|}{|AB|}.
Odpowiedź:
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11699 ⋅ Poprawnie: 1/4 [25%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
W trójkącie prostokątnym stosunek długości przyprostokątnej do długości przeciwprostokątnej jest równy
6:10.
Oblicz stosunek pola powierzchni koła opisanego na tym trójkącie do pola powierzchni koła wpisanego
w ten trójkąt.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10655 ⋅ Poprawnie: 365/620 [58%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
« Bok rombu ma długość
4, a jego kąt ostry miarę
\alpha taką, że
\cos\alpha=\frac{\sqrt{3}}{4}.
Oblicz pole powierzchni tego rombu.
Odpowiedź:
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10654 ⋅ Poprawnie: 235/356 [66%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Oblicz pole powierzchni równoległoboku o bokach długości
\frac{4}{7} i
5 oraz kącie ostrym o mierze
30^{\circ}.
Odpowiedź:
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11512 ⋅ Poprawnie: 483/859 [56%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Oblicz pole powierzchni prostokąta,którego przekątne mają długość
8 i
przecinają się pod kątem o mierze
60^{\circ}.
Odpowiedź:
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20281 ⋅ Poprawnie: 19/60 [31%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
« W okrąg o obwodzie
\frac{3}{10}\pi wpisano ośmiokąt foremny.
Oblicz pole powierzchni tego ośmiokąta.
Odpowiedź:
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20906 ⋅ Poprawnie: 31/71 [43%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
« Pole powierzchni trójkąta jest równe
6, a promień
okręgu wpisanego w ten trójkąt ma długość
1.
Wiedząc, że długości boków tego trójkąta są kolejnymi liczbami naturalnymi, oblicz długość
najkrótszej wysokości tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20760 ⋅ Poprawnie: 15/85 [17%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
» Trójkąt
ABC jest ostrokątny i równoramienny o
podstawie
AB:
Oblicz P_{ABC}.
Dane
|AB|+|BC|+|AC|=160
\frac{P_{\triangle ABE}}{P_{\triangle ADC}}=\frac{36}{25}=1.44000000000000
Odpowiedź:
P_{\triangle ABC}=
(wpisz liczbę całkowitą)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20765 ⋅ Poprawnie: 47/195 [24%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
« Punkt
O jest środkiem okręgu. Oblicz pole
powierzchni niebieskiego obszaru:
Dane
r=6
\alpha=30^{\circ}
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 10. 2 pkt ⋅ Numer: pp-20889 ⋅ Poprawnie: 49/82 [59%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
» Dwa okręgi o środkach
O_1 i
O_2 i promieniu
1 są styczne,
jeden zewnętrznie, a drugi wewnętrznie do trzeciego okręgu o środku
O i promieniu
4.
Wiedząc, że |\sphericalangle O_1OO_2|=60^{\circ}
oblicz |O_1O_2|.
Odpowiedź:
|O_1O_2|=
\cdot√
(wpisz dwie liczby całkowite)
|
Zadanie 11. 4 pkt ⋅ Numer: pp-30020 ⋅ Poprawnie: 35/120 [29%] |
Rozwiąż |
Podpunkt 11.1 (4 pkt)
« Każdy bok trójkąta podzielono dwoma punktami na odcinki, których długości
mają się do siebie jak
a:b:a. Pole powierzchni
tego trójkąta jest równe
P.
Wyznacz pole sześciokąta, którego wierzchołkami są punkty podziałów boków
trójkąta.
Dane
a=1
b=2
P=16
Odpowiedź:
P=
(wpisz liczbę całkowitą)