Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-16-trojkaty-pole-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-10586 ⋅ Poprawnie: 104/233 [44%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Najkrótsze wysokości dwóch trójkątów podobnych pozostają w stosunku 6:7. Pola tych trójkątów mogą być równe:
Odpowiedzi:
A. 18 i \frac{49}{2} B. 1 i \frac{7}{2}
C. 3 i \frac{49}{6} D. 3 i \frac{7}{2}
Zadanie 2.  1 pkt ⋅ Numer: pp-11601 ⋅ Poprawnie: 9/11 [81%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Stosunek pola powierzchni trójkąta do pola powierzchni koła wpisanego w ten trójkąt jest równy 2:\pi, a średnica tego koła ma długość 16.

Oblicz długość obwodu tego trójkąta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10669 ⋅ Poprawnie: 411/603 [68%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Dany jest trójkąt ABC, w którym |AB|=5, |BC|=15 oraz \sin\sphericalangle ABC=\frac{2\sqrt{2}}{3}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle ABC}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10654 ⋅ Poprawnie: 235/356 [66%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oblicz pole powierzchni równoległoboku o bokach długości \frac{12}{5} i 12 oraz kącie ostrym o mierze 30^{\circ}.
Odpowiedź:
P= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11512 ⋅ Poprawnie: 483/859 [56%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz pole powierzchni prostokąta,którego przekątne mają długość 30 i przecinają się pod kątem o mierze 60^{\circ}.
Odpowiedź:
P= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20279 ⋅ Poprawnie: 104/190 [54%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Dwa boki trójkąta mają długości \frac{1}{2} i \frac{3}{8}, a pole powierzchni tego trójkąta jest równe \frac{1}{16}.

Wyznacz z dokładnością do jednego stopnia miarę kąta zawartego między tymi bokami.

Odpowiedź:
\alpha\ [^{\circ}]= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-21028 ⋅ Poprawnie: 23/40 [57%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Pole powierzchni trójkąta jest równe 16296, a promień okręgu wpisanego w ten trójkąt ma długość 56.

Wiedząc, że długości boków tego trójkąta są kolejnymi liczbami naturalnymi, oblicz długość najdłuższej wysokości tego trójkąta.

Odpowiedź:
h_{min}=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20774 ⋅ Poprawnie: 18/104 [17%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Odcinki DE, FG i AB są równoległe, a pola wielokątów DEC, FGED i ABGF pozostają w stosunku a:b:c.

Oblicz \frac{|DE|}{|FG|}.

Dane
a=4
b=21
c=11
Odpowiedź:
\frac{|DE|}{|FG|}=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Oblicz \frac{|FG|}{|AB|}.
Odpowiedź:
\frac{|FG|}{|AB|}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20918 ⋅ Poprawnie: 2/4 [50%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Dwa koła mają promień o długości 11 i są tak położone, że do okręgu każdego z nich należy środek drugiego z kół:

Oblicz pole obszaru wspólnego tych kół.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pp-20886 ⋅ Poprawnie: 128/201 [63%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Oblicz długość niebieskiego odcinka na rysunku wiedząc, że: |AD|=54, |DB|=6, |AC|=90, |BC|=6\sqrt{145}:
Odpowiedź:
|CD|= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30020 ⋅ Poprawnie: 35/120 [29%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 « Każdy bok trójkąta podzielono dwoma punktami na odcinki, których długości mają się do siebie jak a:b:a. Pole powierzchni tego trójkąta jest równe P.

Wyznacz pole sześciokąta, którego wierzchołkami są punkty podziałów boków trójkąta.

Dane
a=2
b=4
P=64
Odpowiedź:
P= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm