Podgląd testu : lo2@sp-16-trojkaty-pole-pp-4
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10587 ⋅ Poprawnie: 430/615 [69%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Trójkąty
ABC i
A'B'C' są podobne, a ich pola powierzchni są odpowiednio,
równe
3 cm
2 i
36 cm
2.
Wyznacz skalę tego podobieństwa
\frac{|A'B'|}{|AB|}.
Odpowiedź:
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11699 ⋅ Poprawnie: 1/4 [25%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
W trójkącie prostokątnym stosunek długości przyprostokątnej do długości przeciwprostokątnej jest równy
14:50.
Oblicz stosunek pola powierzchni koła opisanego na tym trójkącie do pola powierzchni koła wpisanego
w ten trójkąt.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10647 ⋅ Poprawnie: 380/532 [71%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
W trójkącie równoramiennym ramię o długości
6 tworzy z podstawą kąt o mierze
67,5^{\circ}.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10673 ⋅ Poprawnie: 233/362 [64%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
» Przekątne równoległoboku o długości
6
i
\frac{13}{10} przecinają się pod kątem rozwartym o mierze
150^{\circ}.
Oblicz pole powierzchni tego równoległoboku.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10667 ⋅ Poprawnie: 258/335 [77%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Każde z ramion trójkąta równoramiennego ma długość
52.
Kąt zawarty między ramionami tego trójkąta ma miarę
120^{\circ}.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20751 ⋅ Poprawnie: 52/141 [36%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
« Pole powierzchni trójkąta prostokątnego jest równe
12,
a jeden z jego kątów ostrych spełnia warunek
\tan\alpha=6.
Oblicz długość wysokości opuszczonej na przeciwprostokątna tego trójkąta.
Odpowiedź:
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20905 ⋅ Poprawnie: 3/99 [3%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Pole powierzchni trójkąta równoramiennego jest równe
1680, a sinus kąta
kąta przy podstawie jest równy
\frac{112}{113}.
Oblicz długość obwodu tego trójkąta.
Odpowiedź:
L=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20759 ⋅ Poprawnie: 16/126 [12%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
Trójkąt
ABC jest równoramienny o podstawie
AB, a odcinek
DE jest
równoległy do podstawy
AB:
Oblicz P_{DEC}.
Dane
|AC|=|BC|=25
|AB|=14
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20765 ⋅ Poprawnie: 47/195 [24%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
« Punkt
O jest środkiem okręgu. Oblicz pole
powierzchni niebieskiego obszaru:
Dane
r=18
\alpha=30^{\circ}
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 10. 2 pkt ⋅ Numer: pp-20888 ⋅ Poprawnie: 86/161 [53%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
« Oblicz długość środkowej trójkąta o bokach długości
8,
9 i
11, poprowadzonej do najdłuższego boku.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 11. 4 pkt ⋅ Numer: pp-30020 ⋅ Poprawnie: 35/120 [29%] |
Rozwiąż |
Podpunkt 11.1 (4 pkt)
« Każdy bok trójkąta podzielono dwoma punktami na odcinki, których długości
mają się do siebie jak
a:b:a. Pole powierzchni
tego trójkąta jest równe
P.
Wyznacz pole sześciokąta, którego wierzchołkami są punkty podziałów boków
trójkąta.
Dane
a=1
b=4
P=36
Odpowiedź:
P=
(wpisz liczbę całkowitą)