Podgląd testu : lo2@sp-16-trojkaty-pole-pp-4
Zadanie 1. 1 pkt ⋅ Numer: pp-10515 ⋅ Poprawnie: 92/170 [54%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Obwody dwóch trójkątów podobnych, których pola pozostają w stosunku
25:36 , mogą być równe:
Odpowiedzi:
A. 10:\frac{25}{2}
B. 6:\frac{25}{6}
C. 5:\frac{36}{5}
D. 5:\frac{25}{6}
Zadanie 2. 1 pkt ⋅ Numer: pp-11699 ⋅ Poprawnie: 1/4 [25%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
W trójkącie prostokątnym stosunek długości przyprostokątnej do długości przeciwprostokątnej jest równy
6:10 .
Oblicz stosunek pola powierzchni koła opisanego na tym trójkącie do pola powierzchni koła wpisanego
w ten trójkąt.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 3. 1 pkt ⋅ Numer: pp-10655 ⋅ Poprawnie: 365/619 [58%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Bok rombu ma długość
6 , a jego kąt ostry miarę
\alpha taką, że
\cos\alpha=\frac{\sqrt{3}}{2} .
Oblicz pole powierzchni tego rombu.
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-10654 ⋅ Poprawnie: 235/355 [66%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Oblicz pole powierzchni równoległoboku o bokach długości
\frac{5}{2} i
9 oraz kącie ostrym o mierze
30^{\circ} .
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-11512 ⋅ Poprawnie: 483/859 [56%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Oblicz pole powierzchni prostokąta,którego przekątne mają długość
10 i
przecinają się pod kątem o mierze
60^{\circ} .
Odpowiedź:
Zadanie 6. 2 pkt ⋅ Numer: pp-20746 ⋅ Poprawnie: 48/156 [30%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Jeden z kątów trójkąta równoramiennego ma miarę
\alpha taką, że
\cos\alpha=-\frac{1}{2}
a pole powierzchni tego trójkąta jest równe
64 .
Oblicz \alpha .
Odpowiedź:
\alpha\ [^{\circ}]=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Oblicz długość ramienia tego trójkąta.
Odpowiedź:
c=
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pp-21030 ⋅ Poprawnie: 1/3 [33%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
W trójkącie równoramiennym podstawa ma długość
12 , a sinus
kąta przy podstawie jest równy
\frac{4}{5} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
P_{\triangle}=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20914 ⋅ Poprawnie: 4/9 [44%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
W trójkącie prostrokątnym
ABC stosunek przyprostokątnych jest równy
|AB|:|AC|=24:7 , Punkt
D dzieli
przyprostokątną
AB na dwa odcinki takie, że
|AD|:|DB|=1:5 .
Punkt
E należy do przeciwprostokątnej
BC i
DE\perp BC .
Oblicz jakim procentem pola powierzchni trójkąta ABC jest pole powierzchni
trójkąta DBE . Wynik zapisz bez znaku procenta.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 2 pkt ⋅ Numer: pp-20763 ⋅ Poprawnie: 11/49 [22%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Punkt
O jest środkiem okręgu, a niebieski trójkąt
jest równoboczny:
Oblicz pole powierzchni części koła leżącej poza trójkątem.
Dane
r=4\sqrt{2}=5.65685424949238
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 2 pkt ⋅ Numer: pp-20889 ⋅ Poprawnie: 49/82 [59%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Dwa okręgi o środkach
O_1 i
O_2 i promieniu
3 są styczne,
jeden zewnętrznie, a drugi wewnętrznie do trzeciego okręgu o środku
O i promieniu
8 .
Wiedząc, że |\sphericalangle O_1OO_2|=60^{\circ}
oblicz |O_1O_2| .
Odpowiedź:
|O_1O_2|=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pp-30398 ⋅ Poprawnie: 11/47 [23%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
« Dwa boki trójkąta ostrokątnego mają długość
6 i
9 , a jego
pole powierzchni jest równe
\frac{27\sqrt{3}}{2} .
Oblicz miarę stopniową kąta zawartego między tymi bokami.
Odpowiedź:
\alpha=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Oblicz długość trzeciego boku tego trójkąta.
Odpowiedź:
c=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 11.3 (1 pkt)
Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
R=
(liczba zapisana dziesiętnie)
Podpunkt 11.4 (1 pkt)
Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
r=
(liczba zapisana dziesiętnie)
Rozwiąż