Podgląd testu : lo2@sp-16-trojkaty-pole-pp-4
Zadanie 1. 1 pkt ⋅ Numer: pp-10586 ⋅ Poprawnie: 104/233 [44%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Najkrótsze wysokości dwóch trójkątów podobnych pozostają w stosunku
5:10 . Pola tych trójkątów mogą być równe:
Odpowiedzi:
A. 3 i 20
B. 15 i 60
C. 1 i 6
D. 3 i 6
Zadanie 2. 1 pkt ⋅ Numer: pp-11600 ⋅ Poprawnie: 68/105 [64%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Punkt
O jest środkiem koła na rysunku, a promień
r tego
koła ma długość
30 . Kąt środkowy koła
\alpha
oparty jest na łuku o długości
7\pi :
Oblicz pole powierzchni zaznaczonego na rysunku odcinka koła.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 3. 1 pkt ⋅ Numer: pp-10655 ⋅ Poprawnie: 365/620 [58%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Bok rombu ma długość
7 , a jego kąt ostry miarę
\alpha taką, że
\cos\alpha=\frac{\sqrt{3}}{5} .
Oblicz pole powierzchni tego rombu.
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-10673 ⋅ Poprawnie: 233/362 [64%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Przekątne równoległoboku o długości
6
i
\frac{5}{7} przecinają się pod kątem rozwartym o mierze
150^{\circ} .
Oblicz pole powierzchni tego równoległoboku.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10667 ⋅ Poprawnie: 258/335 [77%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Każde z ramion trójkąta równoramiennego ma długość
22 .
Kąt zawarty między ramionami tego trójkąta ma miarę
120^{\circ} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 6. 2 pkt ⋅ Numer: pp-20281 ⋅ Poprawnie: 19/60 [31%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
« W okrąg o obwodzie
\frac{3}{11}\pi wpisano ośmiokąt foremny.
Oblicz pole powierzchni tego ośmiokąta.
Odpowiedź:
Zadanie 7. 2 pkt ⋅ Numer: pp-20906 ⋅ Poprawnie: 31/71 [43%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Pole powierzchni trójkąta jest równe
1170 , a promień
okręgu wpisanego w ten trójkąt ma długość
15 .
Wiedząc, że długości boków tego trójkąta są kolejnymi liczbami naturalnymi, oblicz długość
najkrótszej wysokości tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20913 ⋅ Poprawnie: 6/31 [19%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
«« W trójkącie prostrokątnym
ABC stosunek przyprostokątnych jest równy
|AC|:|AB|=28:45 , Punkt
D należy do
przeciwprostokątnej
BC oraz
|CD|:|DB|=8:7 .
Punkt
E należy do przyprostokątnej
AB i
ED\perp BC .
Oblicz stosunek pola powierzchni czworokąta AEDC do pola powierzchni
trójkąta EBD .
Odpowiedź:
P_{\square AEDC}:P_{\triangle EBD}=
(liczba zapisana dziesiętnie)
Zadanie 9. 2 pkt ⋅ Numer: pp-20918 ⋅ Poprawnie: 2/4 [50%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Dwa koła mają promień o długości
5 i są tak położone, że do okręgu każdego z nich
należy środek drugiego z kół:
Oblicz pole obszaru wspólnego tych kół.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 2 pkt ⋅ Numer: pp-20886 ⋅ Poprawnie: 128/201 [63%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Oblicz długość niebieskiego odcinka na rysunku wiedząc, że:
|AD|=24 ,
|DB|=4 ,
|AC|=25 ,
|BC|=\sqrt{65} :
Odpowiedź:
|CD|=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pp-30020 ⋅ Poprawnie: 35/120 [29%]
Rozwiąż
Podpunkt 11.1 (4 pkt)
« Każdy bok trójkąta podzielono dwoma punktami na odcinki, których długości
mają się do siebie jak
a:b:a . Pole powierzchni
tego trójkąta jest równe
P .
Wyznacz pole sześciokąta, którego wierzchołkami są punkty podziałów boków
trójkąta.
Dane
a=3
b=2
P=64
Odpowiedź:
P=
(wpisz liczbę całkowitą)
Rozwiąż