Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-16-trojkaty-pole-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-10591 ⋅ Poprawnie: 305/384 [79%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Trójkąt ABC jest podobny do trójkąta A_1B_1C_1 w skali k=\frac{8}{3}. Stosunek pola trójkąta ABC do pola trójkąta A_1B_1C_1 jest równy:
Odpowiedź:
\frac{P_{\triangle ABC}}{P_{\triangle A_1B_1C_1}}=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11602 ⋅ Poprawnie: 5/11 [45%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 W trójkącie prostokątnym stosunek długości przyprostokątnej do długości przeciwprostokątnej jest równy 8:17.

Oblicz stosunek pola powierzchni koła wpisanego w ten trójkąt do pola powierzchni koła opisanego na tym trójkącie.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10655 ⋅ Poprawnie: 365/619 [58%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Bok rombu ma długość 4, a jego kąt ostry miarę \alpha taką, że \cos\alpha=\frac{\sqrt{2}}{2}.

Oblicz pole powierzchni tego rombu.

Odpowiedź:
P= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10654 ⋅ Poprawnie: 235/355 [66%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oblicz pole powierzchni równoległoboku o bokach długości \frac{8}{9} i 12 oraz kącie ostrym o mierze 45^{\circ}.
Odpowiedź:
P= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11512 ⋅ Poprawnie: 483/859 [56%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz pole powierzchni prostokąta,którego przekątne mają długość 4 i przecinają się pod kątem o mierze 60^{\circ}.
Odpowiedź:
P= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20746 ⋅ Poprawnie: 48/156 [30%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Jeden z kątów trójkąta równoramiennego ma miarę \alpha taką, że \cos\alpha=-\frac{1}{2} a pole powierzchni tego trójkąta jest równe 16.

Oblicz \alpha.

Odpowiedź:
\alpha\ [^{\circ}]= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Oblicz długość ramienia tego trójkąta.
Odpowiedź:
c= (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20907 ⋅ Poprawnie: 42/115 [36%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Podstawa trójkąta równoramiennego ma długość 16, a pole powierzchni tego trójkąta jest równe 120.

Oblicz długość ramienia tego trójkąta.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Wyznacz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
R=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20759 ⋅ Poprawnie: 16/126 [12%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Trójkąt ABC jest równoramienny o podstawie AB, a odcinek DE jest równoległy do podstawy AB:

Oblicz P_{DEC}.

Dane
|AC|=|BC|=13
|AB|=10
Odpowiedź:
P_{\triangle DEC}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20762 ⋅ Poprawnie: 25/217 [11%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 «« Dany jest okrąg:

Oblicz pole powierzchni zielonego obszaru.

Dane
d=8
\alpha=60^{\circ}
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pp-20886 ⋅ Poprawnie: 128/201 [63%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Oblicz długość niebieskiego odcinka na rysunku wiedząc, że: |AD|=4, |DB|=3, |AC|=5, |BC|=3\sqrt{2}:
Odpowiedź:
|CD|= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30025 ⋅ Poprawnie: 38/219 [17%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 «« W trójkącie ABC dane są długości boków AC, BC i kąt między tymi bokami o mierze 60^{\circ}. Dwusieczna kąta BCA przecina bok AB w punkcie D.

Oblicz |CD|.

Dane
|AC|=6
|BC|=3
Odpowiedź:
|CD|= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm