Podgląd testu : lo2@sp-16-trojkaty-pole-pp-4
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10515 ⋅ Poprawnie: 92/170 [54%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
« Obwody dwóch trójkątów podobnych, których pola pozostają w stosunku
36:49, mogą być równe:
Odpowiedzi:
|
A. 6:\frac{36}{7}
|
B. 7:\frac{36}{7}
|
|
C. 12:\frac{108}{7}
|
D. 21:12
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11699 ⋅ Poprawnie: 1/4 [25%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
W trójkącie prostokątnym stosunek długości przyprostokątnej do długości przeciwprostokątnej jest równy
20:29.
Oblicz stosunek pola powierzchni koła opisanego na tym trójkącie do pola powierzchni koła wpisanego
w ten trójkąt.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10669 ⋅ Poprawnie: 411/603 [68%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Dany jest trójkąt
ABC, w którym
|AB|=6,
|BC|=12
oraz
\sin\sphericalangle ABC=\frac{\sqrt{3}}{2}.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10656 ⋅ Poprawnie: 354/511 [69%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
« Przekątne równoległoboku mają długość
4 i
10,
a kąt między tymi przekątnymi ma miarę
30^{\circ}.
Oblicz pole powierzchni tego równoległoboku.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10679 ⋅ Poprawnie: 172/233 [73%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Pole powierzchni rombu o obwodzie długości
56 jest równe
49. Kąt ostry tego rombu ma miarę
\alpha.
Wówczas:
Odpowiedzi:
|
A. 60^{\circ} \lessdot \alpha \lessdot 61^{\circ}
|
B. 29^{\circ} \lessdot \alpha \lessdot 30^{\circ}
|
|
C. 75^{\circ} \lessdot \alpha \lessdot 76^{\circ}
|
D. 14^{\circ} \lessdot \alpha \lessdot 15^{\circ}
|
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20901 ⋅ Poprawnie: 14/19 [73%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
« Pole powierzchni trójkąta prostokątnego jest równe
240,
a tangens jednego z kątów ostrych tego trójkąta jest równy
\frac{15}{8}.
Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-21026 ⋅ Poprawnie: 2/92 [2%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Pole powierzchni trójkąta równoramiennego jest równe
420, a cosinus
kąta przy podstawie jest równy
\frac{20}{29}.
Oblicz długość obwodu tego trójkąta.
Odpowiedź:
L=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20774 ⋅ Poprawnie: 18/104 [17%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
« Odcinki
DE,
FG i
AB
są równoległe, a pola wielokątów
DEC,
FGED i
ABGF
pozostają w stosunku
a:b:c.
Oblicz \frac{|DE|}{|FG|}.
Dane
a=4
b=12
c=20
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Oblicz
\frac{|FG|}{|AB|}.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20762 ⋅ Poprawnie: 25/217 [11%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
«« Dany jest okrąg:
Oblicz pole powierzchni zielonego obszaru.
Dane
d=11
\alpha=60^{\circ}
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 10. 2 pkt ⋅ Numer: pp-20883 ⋅ Poprawnie: 111/300 [37%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
« Kąt ostry
DAB równoległoboku
ABCD, w którym
|AB|=4 i
|AD|=6, ma miarę
30^{\circ}.
Oblicz długość krótszej przekątnej tego równoległoboku.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
Oblicz długość dłuższej przekątnej tego równoległoboku.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 11. 4 pkt ⋅ Numer: pp-30398 ⋅ Poprawnie: 11/47 [23%] |
Rozwiąż |
Podpunkt 11.1 (1 pkt)
« Dwa boki trójkąta ostrokątnego mają długość
7 i
11, a jego
pole powierzchni jest równe
\frac{77\sqrt{3}}{4}.
Oblicz miarę stopniową kąta zawartego między tymi bokami.
Odpowiedź:
\alpha=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Oblicz długość trzeciego boku tego trójkąta.
Odpowiedź:
c=
\cdot√
(wpisz dwie liczby całkowite)
Podpunkt 11.3 (1 pkt)
Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
R=
(liczba zapisana dziesiętnie)
Podpunkt 11.4 (1 pkt)
Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
r=
(liczba zapisana dziesiętnie)