Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-16-trojkaty-pole-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-10587 ⋅ Poprawnie: 430/615 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Trójkąty ABC i A'B'C' są podobne, a ich pola powierzchni są odpowiednio, równe 3 cm2 i 36 cm2.

Wyznacz skalę tego podobieństwa \frac{|A'B'|}{|AB|}.

Odpowiedź:
\frac{|A'B'|}{|AB|}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11699 ⋅ Poprawnie: 1/4 [25%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 W trójkącie prostokątnym stosunek długości przyprostokątnej do długości przeciwprostokątnej jest równy 14:50.

Oblicz stosunek pola powierzchni koła opisanego na tym trójkącie do pola powierzchni koła wpisanego w ten trójkąt.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10647 ⋅ Poprawnie: 380/532 [71%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 W trójkącie równoramiennym ramię o długości 6 tworzy z podstawą kąt o mierze 67,5^{\circ}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10673 ⋅ Poprawnie: 233/362 [64%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Przekątne równoległoboku o długości 6 i \frac{13}{10} przecinają się pod kątem rozwartym o mierze 150^{\circ}.

Oblicz pole powierzchni tego równoległoboku.

Odpowiedź:
P=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10667 ⋅ Poprawnie: 258/335 [77%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Każde z ramion trójkąta równoramiennego ma długość 52. Kąt zawarty między ramionami tego trójkąta ma miarę 120^{\circ}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20751 ⋅ Poprawnie: 52/141 [36%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Pole powierzchni trójkąta prostokątnego jest równe 12, a jeden z jego kątów ostrych spełnia warunek \tan\alpha=6.

Oblicz długość wysokości opuszczonej na przeciwprostokątna tego trójkąta.

Odpowiedź:
h= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20905 ⋅ Poprawnie: 3/99 [3%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Pole powierzchni trójkąta równoramiennego jest równe 1680, a sinus kąta kąta przy podstawie jest równy \frac{112}{113}.

Oblicz długość obwodu tego trójkąta.

Odpowiedź:
L= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20759 ⋅ Poprawnie: 16/126 [12%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Trójkąt ABC jest równoramienny o podstawie AB, a odcinek DE jest równoległy do podstawy AB:

Oblicz P_{DEC}.

Dane
|AC|=|BC|=25
|AB|=14
Odpowiedź:
P_{\triangle DEC}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20765 ⋅ Poprawnie: 47/195 [24%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Punkt O jest środkiem okręgu. Oblicz pole powierzchni niebieskiego obszaru:
Dane
r=18
\alpha=30^{\circ}
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pp-20888 ⋅ Poprawnie: 86/161 [53%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Oblicz długość środkowej trójkąta o bokach długości 8, 9 i 11, poprowadzonej do najdłuższego boku.
Odpowiedź:
d=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30020 ⋅ Poprawnie: 35/120 [29%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 « Każdy bok trójkąta podzielono dwoma punktami na odcinki, których długości mają się do siebie jak a:b:a. Pole powierzchni tego trójkąta jest równe P.

Wyznacz pole sześciokąta, którego wierzchołkami są punkty podziałów boków trójkąta.

Dane
a=1
b=4
P=36
Odpowiedź:
P= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm