Podgląd testu : lo2@sp-16-trojkaty-pole-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-10515 ⋅ Poprawnie: 92/169 [54%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Obwody dwóch trójkątów podobnych, których pola pozostają w stosunku
25:144 , mogą być równe:
Odpowiedzi:
A. 12:\frac{25}{12}
B. 5:\frac{25}{12}
C. 36:10
D. 5:\frac{144}{5}
Zadanie 2. 1 pkt ⋅ Numer: pp-11699 ⋅ Poprawnie: 1/4 [25%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
W trójkącie prostokątnym stosunek długości przyprostokątnej do długości przeciwprostokątnej jest równy
11:61 .
Oblicz stosunek pola powierzchni koła opisanego na tym trójkącie do pola powierzchni koła wpisanego
w ten trójkąt.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 3. 1 pkt ⋅ Numer: pp-10655 ⋅ Poprawnie: 364/618 [58%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Bok rombu ma długość
6 , a jego kąt ostry miarę
\alpha taką, że
\cos\alpha=\frac{\sqrt{6}}{5} .
Oblicz pole powierzchni tego rombu.
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-10656 ⋅ Poprawnie: 353/510 [69%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Przekątne równoległoboku mają długość
8 i
14 ,
a kąt między tymi przekątnymi ma miarę
30^{\circ} .
Oblicz pole powierzchni tego równoległoboku.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11512 ⋅ Poprawnie: 483/859 [56%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Oblicz pole powierzchni prostokąta,którego przekątne mają długość
24 i
przecinają się pod kątem o mierze
60^{\circ} .
Odpowiedź:
Zadanie 6. 3 pkt ⋅ Numer: pr-20945 ⋅ Poprawnie: 10/46 [21%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
« Dwa boki trójkąta mają długość
|AC|=2 ,
|BC|=9 ,
a kąt
ACB ma miarę
120^{\circ} .
Przez punkt
C poprowadzono prostą prostopadłą do boku
AC , która przecięła bok
AB w punkcie
D .
Oblicz długość odcinka CD .
Odpowiedź:
Podpunkt 6.2 (1 pkt)
Oblicz długość odcinka
DB .
Odpowiedź:
Zadanie 7. 2 pkt ⋅ Numer: pp-20905 ⋅ Poprawnie: 3/99 [3%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Pole powierzchni trójkąta równoramiennego jest równe
2688 , a sinus kąta
kąta przy podstawie jest równy
\frac{24}{25} .
Oblicz długość obwodu tego trójkąta.
Odpowiedź:
L=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20757 ⋅ Poprawnie: 16/88 [18%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
» Dany jest trójkąt równoramienny o podstawie
AB :
Oblicz \sin\sphericalangle DAB .
Dane
k=3
Odpowiedź:
Podpunkt 8.2 (1 pkt)
Oblicz
\frac{P_{\triangle AES}}{P_{\triangle SDC}}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20762 ⋅ Poprawnie: 25/217 [11%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
«« Dany jest okrąg:
Oblicz pole powierzchni zielonego obszaru.
Dane
d=2
\alpha=60^{\circ}
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 2 pkt ⋅ Numer: pp-20889 ⋅ Poprawnie: 14/23 [60%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Dwa okręgi o środkach
O_1 i
O_2 i promieniu
1 są styczne,
jeden zewnętrznie, a drugi wewnętrznie do trzeciego okręgu o środku
O i promieniu
7 .
Wiedząc, że |\sphericalangle O_1OO_2|=60^{\circ}
oblicz |O_1O_2| .
Odpowiedź:
|O_1O_2|=
\cdot √
(wpisz dwie liczby całkowite)
Rozwiąż