Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-16-trojkaty-pole-pr-1

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10515  
Podpunkt 1.1 (1 pkt)
 « Obwody dwóch trójkątów podobnych, których pola pozostają w stosunku 49:100, mogą być równe:
Odpowiedzi:
A. 7:\frac{49}{10} B. 14:\frac{147}{10}
C. 10:\frac{49}{10} D. 7:\frac{100}{7}
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11699  
Podpunkt 2.1 (1 pkt)
 W trójkącie prostokątnym stosunek długości przyprostokątnej do długości przeciwprostokątnej jest równy 32:68.

Oblicz stosunek pola powierzchni koła opisanego na tym trójkącie do pola powierzchni koła wpisanego w ten trójkąt.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10678  
Podpunkt 3.1 (1 pkt)
 » Oblicz pole powierzchni rombu o boku długości 10 i kącie rozwartym 150^{\circ}.
Odpowiedź:
P= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10666  
Podpunkt 4.1 (1 pkt)
 « Przyprostokątna trójkąta o długości 3 jest jednym z ramion kąta ostrego tego trójkąta o mierze 60^{\circ}

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10667  
Podpunkt 5.1 (1 pkt)
 Każde z ramion trójkąta równoramiennego ma długość 56. Kąt zawarty między ramionami tego trójkąta ma miarę 120^{\circ}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20750  
Podpunkt 6.1 (2 pkt)
 « Punkty M i N są środkami boków trójkąta na rysunku i spełniają warunki: |AM|=30 i |BN|=\frac{105}{2}:

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle ABC}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-21026  
Podpunkt 7.1 (1 pkt)
 Pole powierzchni trójkąta równoramiennego jest równe 1920, a cosinus kąta przy podstawie jest równy \frac{8}{17}.

Oblicz długość obwodu tego trójkąta.

Odpowiedź:
L= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20914  
Podpunkt 8.1 (2 pkt)
 W trójkącie prostrokątnym ABC stosunek przyprostokątnych jest równy |AB|:|AC|=12:5, Punkt D dzieli przyprostokątną AB na dwa odcinki takie, że |AD|:|DB|=3:2. Punkt E należy do przeciwprostokątnej BC i DE\perp BC.

Oblicz jakim procentem pola powierzchni trójkąta ABC jest pole powierzchni trójkąta DBE. Wynik zapisz bez znaku procenta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20919  
Podpunkt 9.1 (2 pkt)
 Dwa koła styczne zewnętrznie wpisano w kąt, którego miara jest równa 60^{\circ}. Pole powierzchni mniejszego z kół jest równe 29.

Oblicz pole powierzchni większego koła.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20769  
Podpunkt 10.1 (2 pkt)
 « Dany jest trójkąt ABC, w którym |BC|=\frac{7\sqrt{2}}{5}, |\sphericalangle CAB|=45^{\circ}, |\sphericalangle BCA|=30^{\circ}.

Oblicz |AB|.

Odpowiedź:
|AB|=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm