Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-16-trojkaty-pole-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10587 ⋅ Poprawnie: 430/615 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Trójkąty ABC i A'B'C' są podobne, a ich pola powierzchni są odpowiednio, równe 3 cm2 i 150 cm2.

Wyznacz skalę tego podobieństwa \frac{|A'B'|}{|AB|}.

Odpowiedź:
\frac{|A'B'|}{|AB|}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11598 ⋅ Poprawnie: 48/118 [40%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Promień koła ma długość 3, a kąt wycinka tego koła ma miarę 168^{\circ}. Oblicz pole powierzchni tego wycinka i zapisz wynik w postaci p\cdot\pi.

Podaj liczbę p.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10647 ⋅ Poprawnie: 380/532 [71%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 W trójkącie równoramiennym ramię o długości 3\sqrt{3} tworzy z podstawą kąt o mierze 67,5^{\circ}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10654 ⋅ Poprawnie: 235/356 [66%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oblicz pole powierzchni równoległoboku o bokach długości \frac{7}{11} i 3 oraz kącie ostrym o mierze 30^{\circ}.
Odpowiedź:
P= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10667 ⋅ Poprawnie: 258/335 [77%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Każde z ramion trójkąta równoramiennego ma długość 30. Kąt zawarty między ramionami tego trójkąta ma miarę 150^{\circ}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20901 ⋅ Poprawnie: 14/19 [73%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Pole powierzchni trójkąta prostokątnego jest równe 630, a tangens jednego z kątów ostrych tego trójkąta jest równy \frac{45}{28}.

Oblicz długość promienia okręgu opisanego na tym trójkącie.

Odpowiedź:
R=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20910 ⋅ Poprawnie: 38/57 [66%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Dwa boki trójkąta mają długość 29 i 30, a promień okręgu opisanego na tym trójkącie ma długość \frac{725}{48}. Pole powierzcni tego trójkąta jest równe 72.

Oblicz długość trzeciego boku tego trójkąta.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20760 ⋅ Poprawnie: 15/85 [17%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 » Trójkąt ABC jest ostrokątny i równoramienny o podstawie AB:

Oblicz P_{ABC}.

Dane
|AB|+|BC|+|AC|=160
\frac{P_{\triangle ABE}}{P_{\triangle ADC}}=\frac{36}{25}=1.44000000000000
Odpowiedź:
P_{\triangle ABC}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20763 ⋅ Poprawnie: 11/49 [22%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Punkt O jest środkiem okręgu, a niebieski trójkąt jest równoboczny:

Oblicz pole powierzchni części koła leżącej poza trójkątem.

Dane
r=2\sqrt{6}=4.89897948556636
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pp-20892 ⋅ Poprawnie: 98/220 [44%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Dany jest trójkąt, w którym |AB|=\frac{12\sqrt{6}}{5}, |BC|=\frac{12\sqrt{3}}{5}, |AC|=\frac{6\sqrt{6}}{5}+\frac{18\sqrt{2}}{5} i \alpha=30^{\circ}:

Oblicz miarę stopniową największego kąta tego trójkąta.

Odpowiedź:
\beta_{max}\ [^{\circ}]= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30381 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (4 pkt)
 «« W trójkąt prostokątny wpisano okrąg o promieniu długości 100. Tangens kąta ostrego tego trójkąta jest równy 0,75.

Oblicz odległość wierzchołka kąta prostego trójkąta od punktu styczności tego okręgu z przeciwprostokątną tego trójkąta.

Odpowiedź:
d= \cdot
(wpisz trzy liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pr-30794 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 W prostokącie ABCD dane są długości boków |AB|=26 i |AD|=24. Na boku CD zaznaczono punkt E taki, że |DE|=16, zaś na odcinku EB punkt M taki, że |EM|=24 (zobacz rysunek).

Wykorzystując podane poniżej długości odcinków oblicz pole powierzchni trójkąta ABM.

Odpowiedź:
P_{ABM}= (wpisz liczbę całkowitą)
Podpunkt 12.2 (1 pkt)
 Oblicz długość odcinka AM.
Odpowiedź:
|AM|= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.3 (2 pkt)
 Oblicz długość promienia okręgu opisanego na trójkącie ABM.
Odpowiedź:
R= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm