Podgląd testu : lo2@sp-16-trojkaty-pole-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10586 ⋅ Poprawnie: 104/233 [44%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Najkrótsze wysokości dwóch trójkątów podobnych pozostają w stosunku
4:7 . Pola tych trójkątów mogą być równe:
Odpowiedzi:
A. 1 i \frac{7}{2}
B. 8 i \frac{49}{2}
C. 2 i \frac{7}{2}
D. 2 i \frac{49}{4}
Zadanie 2. 1 pkt ⋅ Numer: pp-11599 ⋅ Poprawnie: 43/82 [52%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Pole powierzchni wycinka koła jest równe
63\pi , a łuk tego wycinka ma długość
\frac{2}{3}\pi .
Oblicz długość promienia tego koła.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 3. 1 pkt ⋅ Numer: pp-10647 ⋅ Poprawnie: 380/532 [71%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
W trójkącie równoramiennym ramię o długości
6\sqrt{2} tworzy z podstawą kąt o mierze
67,5^{\circ} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-10656 ⋅ Poprawnie: 354/511 [69%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Przekątne równoległoboku mają długość
2 i
4 ,
a kąt między tymi przekątnymi ma miarę
30^{\circ} .
Oblicz pole powierzchni tego równoległoboku.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11389 ⋅ Poprawnie: 395/557 [70%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
» Podstawa trójkąta równoramiennego ma długość
8 , a jego wysokość długość
3 .
Oblicz długość wysokości opuszczonej na ramię tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20749 ⋅ Poprawnie: 67/234 [28%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
« W trójkącie prostokątnym kąt ostry spałnia warunek
\cos\alpha=\frac{1}{2} ,
a promień okręgu opisanego na tym trójkącie ma długość
\frac{10}{3} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
P_{\triangle}=
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pp-21032 ⋅ Poprawnie: 25/36 [69%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Dwa boki trójkąta mają długość
7 i
15 , a promień
okręgu opisanego na tym trójkącie ma długość
\frac{25}{2} . Pole powierzcni
tego trójkąta jest równe
42 .
Oblicz długość trzeciego boku tego trójkąta.
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20758 ⋅ Poprawnie: 20/152 [13%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Dany jest trójkąt:
Oblicz |DE| .
Dane
|AC|=20
P_{\triangle DBE}:P_{ADEC}=62:148=0.41891891891892
Odpowiedź:
Zadanie 9. 2 pkt ⋅ Numer: pp-20764 ⋅ Poprawnie: 18/55 [32%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
» Punkt
O jest środkiem okręgu, z którego
wycięto wycinek kołowy:
Oblicz pole powierzchni tego wycinka.
Dane
r=8
R=24
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 2 pkt ⋅ Numer: pr-20769 ⋅ Poprawnie: 82/65 [126%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Dany jest trójkąt
ABC , w którym
|BC|=\frac{3\sqrt{2}}{4} ,
|\sphericalangle CAB|=45^{\circ} ,
|\sphericalangle BCA|=30^{\circ} .
Oblicz |AB| .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pp-30025 ⋅ Poprawnie: 38/219 [17%]
Rozwiąż
Podpunkt 11.1 (4 pkt)
«« W trójkącie
ABC dane są długości boków
AC ,
BC i kąt
między tymi bokami o mierze
60^{\circ} .
Dwusieczna kąta
BCA przecina bok
AB w punkcie
D .
Oblicz |CD| .
Dane
|AC|=7
|BC|=2
Odpowiedź:
Zadanie 12. 4 pkt ⋅ Numer: pr-30348 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 12.1 (4 pkt)
» Odcinki na rysunku maja długość:
a=32 ,
b=28 i
c=12 :
Oblicz obwód trójkąta na rysunku.
Odpowiedź:
L=
(wpisz liczbę całkowitą)
Rozwiąż