Podgląd testu : lo2@sp-16-trojkaty-pole-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10586 ⋅ Poprawnie: 104/233 [44%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Najkrótsze wysokości dwóch trójkątów podobnych pozostają w stosunku
6:10 . Pola tych trójkątów mogą być równe:
Odpowiedzi:
A. 1 i \frac{10}{3}
B. 2 i \frac{10}{3}
C. 2 i \frac{50}{3}
D. 12 i \frac{100}{3}
Zadanie 2. 1 pkt ⋅ Numer: pp-11598 ⋅ Poprawnie: 48/118 [40%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Promień koła ma długość
9 , a kąt wycinka tego koła ma miarę
6^{\circ} . Oblicz pole powierzchni tego wycinka i zapisz wynik w postaci
p\cdot\pi .
Podaj liczbę p .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 3. 1 pkt ⋅ Numer: pp-10678 ⋅ Poprawnie: 417/518 [80%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
» Oblicz pole powierzchni rombu o boku długości
56 i kącie rozwartym
120^{\circ} .
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-10656 ⋅ Poprawnie: 354/511 [69%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Przekątne równoległoboku mają długość
10 i
16 ,
a kąt między tymi przekątnymi ma miarę
30^{\circ} .
Oblicz pole powierzchni tego równoległoboku.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10679 ⋅ Poprawnie: 172/233 [73%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Pole powierzchni rombu o obwodzie długości
80 jest równe
100 . Kąt ostry tego rombu ma miarę
\alpha .
Wówczas:
Odpowiedzi:
A. 14^{\circ} \lessdot \alpha \lessdot 15^{\circ}
B. 29^{\circ} \lessdot \alpha \lessdot 30^{\circ}
C. 60^{\circ} \lessdot \alpha \lessdot 61^{\circ}
D. 75^{\circ} \lessdot \alpha \lessdot 76^{\circ}
Zadanie 6. 2 pkt ⋅ Numer: pp-20904 ⋅ Poprawnie: 5/8 [62%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Podstawą trójkąta równoramiennego
ABC jest bok
AB .
Środkowe
AL i
BK przecinają się w punkcie
S i tworzą kąt
ASB o mierze
60^{\circ} . Wiadomo, że pole powierzchni trójkąta
ABS
jest równe
169\sqrt{3} .
Oblicz pole powierzchni trójkąta ABC .
Odpowiedź:
Zadanie 7. 2 pkt ⋅ Numer: pp-21028 ⋅ Poprawnie: 23/40 [57%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Pole powierzchni trójkąta jest równe
84 , a promień
okręgu wpisanego w ten trójkąt ma długość
4 .
Wiedząc, że długości boków tego trójkąta są kolejnymi liczbami naturalnymi, oblicz długość
najdłuższej wysokości tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pr-20946 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
» W ostrokątnym trójkącie równoramiennym
ABC ,
|AC|=|BC| , wysokość
CD przecięła
wysokość
AE w punkcie
S .
Wysokość
AE dzieli ramię
BC tego trójkąta
w stosunku
|BE|:|EC|=1:2 .
Oblicz sinus kąta EAB .
Odpowiedź:
Podpunkt 8.2 (1 pkt)
Wyznacz stosunek pola powierzchni trójkąta
ADC do pola powierzchni
trójkąta
CSE .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20761 ⋅ Poprawnie: 65/213 [30%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
» Łuk
\stackrel{\frown}{\ AB\ } ma długość
l :
Oblicz pole powierzchni wycinka kołowego wyznaczonego przez ten łuk.
Dane
l=18\pi=56.54866776461628
\alpha=15^{\circ}
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 2 pkt ⋅ Numer: pp-20889 ⋅ Poprawnie: 49/82 [59%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Dwa okręgi o środkach
O_1 i
O_2 i promieniu
6 są styczne,
jeden zewnętrznie, a drugi wewnętrznie do trzeciego okręgu o środku
O i promieniu
14 .
Wiedząc, że |\sphericalangle O_1OO_2|=60^{\circ}
oblicz |O_1O_2| .
Odpowiedź:
|O_1O_2|=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pp-30025 ⋅ Poprawnie: 38/219 [17%]
Rozwiąż
Podpunkt 11.1 (4 pkt)
«« W trójkącie
ABC dane są długości boków
AC ,
BC i kąt
między tymi bokami o mierze
60^{\circ} .
Dwusieczna kąta
BCA przecina bok
AB w punkcie
D .
Oblicz |CD| .
Dane
|AC|=11
|BC|=5
Odpowiedź:
Zadanie 12. 4 pkt ⋅ Numer: pr-30346 ⋅ Poprawnie: 72/65 [110%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
««« W trójkącie
ABC dane są:
|\sphericalangle BCA|=120^{\circ} ,
|AC|=b i
|BC|=a oraz
dwusieczna
CD .
Oblicz |CD| .
Dane
a=9
b=4
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
Oblicz długość promienia okręgu opisanego na trójkącie
DBC .
Odpowiedź:
Rozwiąż