Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-16-trojkaty-pole-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10591 ⋅ Poprawnie: 305/384 [79%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Trójkąt ABC jest podobny do trójkąta A_1B_1C_1 w skali k=\frac{13}{9}. Stosunek pola trójkąta ABC do pola trójkąta A_1B_1C_1 jest równy:
Odpowiedź:
\frac{P_{\triangle ABC}}{P_{\triangle A_1B_1C_1}}=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11602 ⋅ Poprawnie: 5/11 [45%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 W trójkącie prostokątnym stosunek długości przyprostokątnej do długości przeciwprostokątnej jest równy 13:85.

Oblicz stosunek pola powierzchni koła wpisanego w ten trójkąt do pola powierzchni koła opisanego na tym trójkącie.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10669 ⋅ Poprawnie: 411/603 [68%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Dany jest trójkąt ABC, w którym |AB|=9, |BC|=14 oraz \sin\sphericalangle ABC=\frac{\sqrt{115}}{14}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle ABC}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10673 ⋅ Poprawnie: 232/362 [64%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Przekątne równoległoboku o długości 5 i \frac{5}{6} przecinają się pod kątem rozwartym o mierze 150^{\circ}.

Oblicz pole powierzchni tego równoległoboku.

Odpowiedź:
P=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11512 ⋅ Poprawnie: 483/859 [56%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz pole powierzchni prostokąta,którego przekątne mają długość 24 i przecinają się pod kątem o mierze 60^{\circ}.
Odpowiedź:
P= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20901 ⋅ Poprawnie: 14/19 [73%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Pole powierzchni trójkąta prostokątnego jest równe 546, a tangens jednego z kątów ostrych tego trójkąta jest równy \frac{84}{13}.

Oblicz długość promienia okręgu opisanego na tym trójkącie.

Odpowiedź:
R=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20908 ⋅ Poprawnie: 38/71 [53%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 W trójkącie równoramiennym podstawa ma długość 168, a cosinus kąta przy podstawie jest równy \frac{84}{85}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
R=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20760 ⋅ Poprawnie: 15/85 [17%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 » Trójkąt ABC jest ostrokątny i równoramienny o podstawie AB:

Oblicz P_{ABC}.

Dane
|AB|+|BC|+|AC|=160
\frac{P_{\triangle ABE}}{P_{\triangle ADC}}=\frac{36}{25}=1.44000000000000
Odpowiedź:
P_{\triangle ABC}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20763 ⋅ Poprawnie: 11/49 [22%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Punkt O jest środkiem okręgu, a niebieski trójkąt jest równoboczny:

Oblicz pole powierzchni części koła leżącej poza trójkątem.

Dane
r=3\sqrt{5}=6.70820393249937
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pp-20888 ⋅ Poprawnie: 86/161 [53%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Oblicz długość środkowej trójkąta o bokach długości 7, 11 i 14, poprowadzonej do najdłuższego boku.
Odpowiedź:
d=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30020 ⋅ Poprawnie: 35/120 [29%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 « Każdy bok trójkąta podzielono dwoma punktami na odcinki, których długości mają się do siebie jak a:b:a. Pole powierzchni tego trójkąta jest równe P.

Wyznacz pole sześciokąta, którego wierzchołkami są punkty podziałów boków trójkąta.

Dane
a=1
b=3
P=25
Odpowiedź:
P= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30379 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
 «« Pole powierzchni trójkąta o kącie ostrym 30^{\circ} jest równe 4\sqrt{3}, a promień okręgu na nim opisanego ma długość 4.

Podaj długość najdłuższego boku tego trójkąta.

Odpowiedź:
a_{max}= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (1 pkt)
 Podaj długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
R= (wpisz liczbę całkowitą)
Podpunkt 12.3 (1 pkt)
 Podaj długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
r= + \cdot
(wpisz cztery liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm