Podgląd testu : lo2@sp-16-trojkaty-pole-pr-3
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10586 ⋅ Poprawnie: 104/233 [44%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
« Najkrótsze wysokości dwóch trójkątów podobnych pozostają w stosunku
4:6. Pola tych trójkątów mogą być równe:
Odpowiedzi:
|
A. 1 i \frac{15}{2}
|
B. 5 i \frac{15}{2}
|
|
C. 5 i 9
|
D. 20 i 45
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11599 ⋅ Poprawnie: 43/82 [52%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Pole powierzchni wycinka koła jest równe
68\pi, a łuk tego wycinka ma długość
\frac{3}{4}\pi.
Oblicz długość promienia tego koła.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10647 ⋅ Poprawnie: 380/532 [71%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
W trójkącie równoramiennym ramię o długości
7\sqrt{3} tworzy z podstawą kąt o mierze
67,5^{\circ}.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10666 ⋅ Poprawnie: 259/456 [56%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
« Przyprostokątna trójkąta o długości
8 jest jednym
z ramion kąta ostrego tego trójkąta o mierze
30^{\circ}
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10679 ⋅ Poprawnie: 172/233 [73%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Pole powierzchni rombu o obwodzie długości
56 jest równe
49. Kąt ostry tego rombu ma miarę
\alpha.
Wówczas:
Odpowiedzi:
|
A. 14^{\circ} \lessdot \alpha \lessdot 15^{\circ}
|
B. 75^{\circ} \lessdot \alpha \lessdot 76^{\circ}
|
|
C. 29^{\circ} \lessdot \alpha \lessdot 30^{\circ}
|
D. 60^{\circ} \lessdot \alpha \lessdot 61^{\circ}
|
|
Zadanie 6. 2 pkt ⋅ Numer: pr-20567 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
Dany jest trójkąt
ABC, w którym:
|AC|=5,
|BC|=10 oraz
P_{\triangle DBC}-P_{\triangle ADC}=\frac{25\sqrt{3}}{6}:
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
|
Zadanie 7. 2 pkt ⋅ Numer: pr-20749 ⋅ Poprawnie: 61/65 [93%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Oblicz długości boków trójkąta równoramiennego o polu powierzchni równym
P i kącie między ramionami o mierze
45^{\circ}.
Podaj długość ramienia tego trójkąta.
Dane
P=81\sqrt{2}=114.55129855222070
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj długość podstawy tego trójkąta.
Odpowiedź:
a=
(liczba zapisana dziesiętnie)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20759 ⋅ Poprawnie: 16/126 [12%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
Trójkąt
ABC jest równoramienny o podstawie
AB, a odcinek
DE jest
równoległy do podstawy
AB:
Oblicz P_{DEC}.
Dane
|AC|=|BC|=61
|AB|=22
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20764 ⋅ Poprawnie: 18/55 [32%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
» Punkt
O jest środkiem okręgu, z którego
wycięto wycinek kołowy:
Oblicz pole powierzchni tego wycinka.
Dane
r=8
R=24
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 10. 2 pkt ⋅ Numer: pr-20745 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
« Dany jest trójkąt
ABC, w którym
d=4 i
|AC|=8:
Oblicz \sin\alpha.
Odpowiedź:
Podpunkt 10.2 (1 pkt)
Odpowiedź:
|
Zadanie 11. 4 pkt ⋅ Numer: pp-30025 ⋅ Poprawnie: 38/219 [17%] |
Rozwiąż |
Podpunkt 11.1 (4 pkt)
«« W trójkącie
ABC dane są długości boków
AC,
BC i kąt
między tymi bokami o mierze
60^{\circ}.
Dwusieczna kąta
BCA przecina bok
AB w punkcie
D.
Oblicz |CD|.
Dane
|AC|=7
|BC|=5
Odpowiedź:
|
Zadanie 12. 4 pkt ⋅ Numer: pr-30379 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 12.1 (2 pkt)
«« Pole powierzchni trójkąta o kącie ostrym
30^{\circ} jest
równe
36\sqrt{3}, a promień okręgu na nim opisanego
ma długość
12.
Podaj długość najdłuższego boku tego trójkąta.
Odpowiedź:
a_{max}=
\cdot√
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (1 pkt)
Podaj długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
R=
(wpisz liczbę całkowitą)
Podpunkt 12.3 (1 pkt)
Podaj długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź: