Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-16-trojkaty-pole-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10587 ⋅ Poprawnie: 430/615 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Trójkąty ABC i A'B'C' są podobne, a ich pola powierzchni są odpowiednio, równe 7 cm2 i 18 cm2.

Wyznacz skalę tego podobieństwa \frac{|A'B'|}{|AB|}.

Odpowiedź:
\frac{|A'B'|}{|AB|}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11598 ⋅ Poprawnie: 48/118 [40%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Promień koła ma długość 3, a kąt wycinka tego koła ma miarę 75^{\circ}. Oblicz pole powierzchni tego wycinka i zapisz wynik w postaci p\cdot\pi.

Podaj liczbę p.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10678 ⋅ Poprawnie: 417/517 [80%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Oblicz pole powierzchni rombu o boku długości 36 i kącie rozwartym 120^{\circ}.
Odpowiedź:
P= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10666 ⋅ Poprawnie: 258/455 [56%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Przyprostokątna trójkąta o długości 8 jest jednym z ramion kąta ostrego tego trójkąta o mierze 30^{\circ}

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11389 ⋅ Poprawnie: 387/549 [70%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Podstawa trójkąta równoramiennego ma długość 40, a jego wysokość długość 21.

Oblicz długość wysokości opuszczonej na ramię tego trójkąta.

Odpowiedź:
h_c=
(wpisz dwie liczby całkowite)
Zadanie 6.  3 pkt ⋅ Numer: pr-20945 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Dwa boki trójkąta mają długość |AC|=2, |BC|=7, a kąt ACB ma miarę 120^{\circ}. Przez punkt C poprowadzono prostą prostopadłą do boku AC, która przecięła bok AB w punkcie D.

Oblicz długość odcinka CD.

Odpowiedź:
|CD|= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Oblicz długość odcinka DB.
Odpowiedź:
|DB|= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20905 ⋅ Poprawnie: 3/99 [3%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Pole powierzchni trójkąta równoramiennego jest równe 240, a sinus kąta kąta przy podstawie jest równy \frac{12}{13}.

Oblicz długość obwodu tego trójkąta.

Odpowiedź:
L= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20774 ⋅ Poprawnie: 18/104 [17%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Odcinki DE, FG i AB są równoległe, a pola wielokątów DEC, FGED i ABGF pozostają w stosunku a:b:c.

Oblicz \frac{|DE|}{|FG|}.

Dane
a=4
b=5
c=16
Odpowiedź:
\frac{|DE|}{|FG|}=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Oblicz \frac{|FG|}{|AB|}.
Odpowiedź:
\frac{|FG|}{|AB|}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20918 ⋅ Poprawnie: 2/4 [50%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Dwa koła mają promień o długości 1 i są tak położone, że do okręgu każdego z nich należy środek drugiego z kół:

Oblicz pole obszaru wspólnego tych kół.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pp-20887 ⋅ Poprawnie: 58/165 [35%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Oblicz długość promienia okręgu na rysunku wiedząc, że |AC|-|AB|=12\sqrt{2} oraz |BC|=20:
Odpowiedź:
R= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30025 ⋅ Poprawnie: 38/219 [17%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 «« W trójkącie ABC dane są długości boków AC, BC i kąt między tymi bokami o mierze 60^{\circ}. Dwusieczna kąta BCA przecina bok AB w punkcie D.

Oblicz |CD|.

Dane
|AC|=7
|BC|=2
Odpowiedź:
|CD|= \cdot
(wpisz trzy liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pr-30380 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (4 pkt)
 « W trójkącie na rysunku dane są długości odcinków: |AD|=4, |DB|=10, |BC|=8\sqrt{2} i |AC|=10:

Oblicz \sin\sphericalangle{ADC}.

Odpowiedź:
\sin\sphericalangle{ADC}= (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm