Podgląd testu : lo2@sp-16-trojkaty-pole-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10586 ⋅ Poprawnie: 104/233 [44%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Najkrótsze wysokości dwóch trójkątów podobnych pozostają w stosunku
4:15 . Pola tych trójkątów mogą być równe:
Odpowiedzi:
A. 20 i \frac{1125}{4}
B. 1 i \frac{75}{4}
C. 5 i \frac{225}{4}
D. 5 i \frac{75}{4}
Zadanie 2. 1 pkt ⋅ Numer: pp-11598 ⋅ Poprawnie: 48/118 [40%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Promień koła ma długość
7 , a kąt wycinka tego koła ma miarę
117^{\circ} . Oblicz pole powierzchni tego wycinka i zapisz wynik w postaci
p\cdot\pi .
Podaj liczbę p .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 3. 1 pkt ⋅ Numer: pp-10647 ⋅ Poprawnie: 380/531 [71%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
W trójkącie równoramiennym ramię o długości
14 tworzy z podstawą kąt o mierze
67,5^{\circ} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-10666 ⋅ Poprawnie: 258/455 [56%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Przyprostokątna trójkąta o długości
8 jest jednym
z ramion kąta ostrego tego trójkąta o mierze
60^{\circ}
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-11389 ⋅ Poprawnie: 387/549 [70%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
» Podstawa trójkąta równoramiennego ma długość
12 , a jego wysokość długość
8 .
Oblicz długość wysokości opuszczonej na ramię tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20904 ⋅ Poprawnie: 5/8 [62%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Podstawą trójkąta równoramiennego
ABC jest bok
AB .
Środkowe
AL i
BK przecinają się w punkcie
S i tworzą kąt
ASB o mierze
60^{\circ} . Wiadomo, że pole powierzchni trójkąta
ABS
jest równe
81\sqrt{3} .
Oblicz pole powierzchni trójkąta ABC .
Odpowiedź:
Zadanie 7. 2 pkt ⋅ Numer: pp-21026 ⋅ Poprawnie: 2/92 [2%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Pole powierzchni trójkąta równoramiennego jest równe
120 , a cosinus
kąta przy podstawie jest równy
\frac{8}{17} .
Oblicz długość obwodu tego trójkąta.
Odpowiedź:
L=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20912 ⋅ Poprawnie: 21/34 [61%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
W trójkącie ostrokątnym równoramiennym
ABC ,
|AC|=|BC| ,
poprowadzono wysokości
CD i
BE . Stosunek pól powierzchni
trójkątów
ABE i
ADC jest równy
P_{ABE}:P_{ADC}=\frac{256}{289} , a obwód tego trójkąta ma długość
100 .
Oblicz pole powierzchni trójkąta ABC .
Odpowiedź:
P_{\triangle ABC}=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20918 ⋅ Poprawnie: 2/4 [50%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Dwa koła mają promień o długości
9 i są tak położone, że do okręgu każdego z nich
należy środek drugiego z kół:
Oblicz pole obszaru wspólnego tych kół.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 2 pkt ⋅ Numer: pr-20565 ⋅ Poprawnie: 83/65 [127%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Dany jest trójkąt:
Wiedząc, że x=6 , oblicz \frac{\cos^2\alpha}{2\cos^2\beta-1} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30381 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (4 pkt)
«« W trójkąt prostokątny wpisano okrąg o promieniu długości
140 . Tangens kąta ostrego tego trójkąta jest równy
0,75 .
Oblicz odległość wierzchołka kąta prostego trójkąta od punktu styczności
tego okręgu z przeciwprostokątną tego trójkąta.
Odpowiedź:
Zadanie 12. 4 pkt ⋅ Numer: pr-30379 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 12.1 (2 pkt)
«« Pole powierzchni trójkąta o kącie ostrym
30^{\circ} jest
równe
\sqrt{3} , a promień okręgu na nim opisanego
ma długość
2 .
Podaj długość najdłuższego boku tego trójkąta.
Odpowiedź:
a_{max}=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (1 pkt)
Podaj długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
R=
(wpisz liczbę całkowitą)
Podpunkt 12.3 (1 pkt)
Podaj długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
Rozwiąż