Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-16-trojkaty-pole-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10515 ⋅ Poprawnie: 92/170 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Obwody dwóch trójkątów podobnych, których pola pozostają w stosunku 4:25, mogą być równe:
Odpowiedzi:
A. 2:\frac{25}{2} B. 2:\frac{4}{5}
C. 5:\frac{4}{5} D. 15:4
Zadanie 2.  1 pkt ⋅ Numer: pp-11600 ⋅ Poprawnie: 68/105 [64%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Punkt O jest środkiem koła na rysunku, a promień r tego koła ma długość 27. Kąt środkowy koła \alpha oparty jest na łuku o długości 24\pi:

Oblicz pole powierzchni zaznaczonego na rysunku odcinka koła.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10669 ⋅ Poprawnie: 411/603 [68%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Dany jest trójkąt ABC, w którym |AB|=5, |BC|=10 oraz \sin\sphericalangle ABC=\frac{\sqrt{3}}{2}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle ABC}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10666 ⋅ Poprawnie: 259/456 [56%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Przyprostokątna trójkąta o długości 2 jest jednym z ramion kąta ostrego tego trójkąta o mierze 30^{\circ}

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10679 ⋅ Poprawnie: 172/233 [73%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Pole powierzchni rombu o obwodzie długości 16 jest równe 4. Kąt ostry tego rombu ma miarę \alpha.

Wówczas:

Odpowiedzi:
A. 14^{\circ} \lessdot \alpha \lessdot 15^{\circ} B. 60^{\circ} \lessdot \alpha \lessdot 61^{\circ}
C. 29^{\circ} \lessdot \alpha \lessdot 30^{\circ} D. 75^{\circ} \lessdot \alpha \lessdot 76^{\circ}
Zadanie 6.  2 pkt ⋅ Numer: pr-20944 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Dwa boki trójkąta mają długość 3 i 5. Kąt \gamma zawarty między tymi bokami ma miarę 60^{\circ}.

Oblicz długość dwusiecznej kąta \gamma zawartej wewnątrz tego trójkąta.

Odpowiedź:
d= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20910 ⋅ Poprawnie: 38/57 [66%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Dwa boki trójkąta mają długość 17 i 21, a promień okręgu opisanego na tym trójkącie ma długość \frac{85}{8}. Pole powierzcni tego trójkąta jest równe 84.

Oblicz długość trzeciego boku tego trójkąta.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20757 ⋅ Poprawnie: 16/88 [18%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Dany jest trójkąt równoramienny o podstawie AB:

Oblicz \sin\sphericalangle DAB.

Dane
k=3
Odpowiedź:
\sin\sphericalangle DAB= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Oblicz \frac{P_{\triangle AES}}{P_{\triangle SDC}} .
Odpowiedź:
\frac{P_{\triangle AES}}{P_{\triangle SDC}}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20762 ⋅ Poprawnie: 25/217 [11%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 «« Dany jest okrąg:

Oblicz pole powierzchni zielonego obszaru.

Dane
d=2
\alpha=60^{\circ}
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pp-20883 ⋅ Poprawnie: 111/300 [37%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Kąt ostry DAB równoległoboku ABCD, w którym |AB|=2 i |AD|=4, ma miarę 30^{\circ}.

Oblicz długość krótszej przekątnej tego równoległoboku.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Oblicz długość dłuższej przekątnej tego równoległoboku.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pr-30003 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Na bokach AB i AC trójkąta ABC obrano punkty odpowiednio M i L, takie, że |MB|=2|AM| oraz |LC|=3|AL|. Proste CM i BL przecięły się w punkcie S. Przez punkty A i S poprowadzono prostą, która przecięła bok BC w punkcie K. Pole powierzchni trójkąta ABC jest równe 24. Oblicz pola powierzchni trójkątów AMS, MBS, ASL i LSC.

Podaj najmniejsze z tych pól.

Odpowiedź:
P_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Podaj największe z tych pól.
Odpowiedź:
P_{max}=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pr-30346 ⋅ Poprawnie: 72/65 [110%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 ««« W trójkącie ABC dane są: |\sphericalangle BCA|=120^{\circ}, |AC|=b i |BC|=a oraz dwusieczna CD.

Oblicz |CD|.

Dane
a=3
b=4
Odpowiedź:
|CD|=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Oblicz długość promienia okręgu opisanego na trójkącie DBC.
Odpowiedź:
R_{\triangle DBC}= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm