Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-16-trojkaty-pole-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10591 ⋅ Poprawnie: 305/384 [79%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Trójkąt ABC jest podobny do trójkąta A_1B_1C_1 w skali k=\frac{12}{5}. Stosunek pola trójkąta ABC do pola trójkąta A_1B_1C_1 jest równy:
Odpowiedź:
\frac{P_{\triangle ABC}}{P_{\triangle A_1B_1C_1}}=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11598 ⋅ Poprawnie: 48/118 [40%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Promień koła ma długość 9, a kąt wycinka tego koła ma miarę 60^{\circ}. Oblicz pole powierzchni tego wycinka i zapisz wynik w postaci p\cdot\pi.

Podaj liczbę p.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10655 ⋅ Poprawnie: 365/620 [58%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Bok rombu ma długość 4, a jego kąt ostry miarę \alpha taką, że \cos\alpha=\frac{\sqrt{3}}{6}.

Oblicz pole powierzchni tego rombu.

Odpowiedź:
P= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10654 ⋅ Poprawnie: 235/356 [66%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oblicz pole powierzchni równoległoboku o bokach długości \frac{4}{11} i 5 oraz kącie ostrym o mierze 45^{\circ}.
Odpowiedź:
P= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11512 ⋅ Poprawnie: 483/859 [56%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz pole powierzchni prostokąta,którego przekątne mają długość 8 i przecinają się pod kątem o mierze 60^{\circ}.
Odpowiedź:
P= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20904 ⋅ Poprawnie: 5/8 [62%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Podstawą trójkąta równoramiennego ABC jest bok AB. Środkowe AL i BK przecinają się w punkcie S i tworzą kąt ASB o mierze 60^{\circ}. Wiadomo, że pole powierzchni trójkąta ABS jest równe 9\sqrt{3}.

Oblicz pole powierzchni trójkąta ABC.

Odpowiedź:
P_{\triangle ABC}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20910 ⋅ Poprawnie: 38/57 [66%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Dwa boki trójkąta mają długość 25 i 29, a promień okręgu opisanego na tym trójkącie ma długość \frac{145}{8}. Pole powierzcni tego trójkąta jest równe 60.

Oblicz długość trzeciego boku tego trójkąta.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20774 ⋅ Poprawnie: 18/104 [17%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Odcinki DE, FG i AB są równoległe, a pola wielokątów DEC, FGED i ABGF pozostają w stosunku a:b:c.

Oblicz \frac{|DE|}{|FG|}.

Dane
a=1
b=3
c=21
Odpowiedź:
\frac{|DE|}{|FG|}=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Oblicz \frac{|FG|}{|AB|}.
Odpowiedź:
\frac{|FG|}{|AB|}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20765 ⋅ Poprawnie: 47/195 [24%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Punkt O jest środkiem okręgu. Oblicz pole powierzchni niebieskiego obszaru:
Dane
r=6
\alpha=30^{\circ}
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pr-20565 ⋅ Poprawnie: 83/65 [127%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Dany jest trójkąt:

Wiedząc, że x=3, oblicz \frac{\cos^2\alpha}{2\cos^2\beta-1}.

Odpowiedź:
\frac{\cos^2\alpha}{2\cos^2\beta-1}=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30398 ⋅ Poprawnie: 11/47 [23%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Dwa boki trójkąta ostrokątnego mają długość 6 i 9, a jego pole powierzchni jest równe \frac{27\sqrt{3}}{2}.

Oblicz miarę stopniową kąta zawartego między tymi bokami.

Odpowiedź:
\alpha= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Oblicz długość trzeciego boku tego trójkąta.
Odpowiedź:
c= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 11.3 (1 pkt)
 Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
R= (liczba zapisana dziesiętnie)
Podpunkt 11.4 (1 pkt)
 Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
r= (liczba zapisana dziesiętnie)
Zadanie 12.  4 pkt ⋅ Numer: pr-30794 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 W prostokącie ABCD dane są długości boków |AB|=13 i |AD|=12. Na boku CD zaznaczono punkt E taki, że |DE|=8, zaś na odcinku EB punkt M taki, że |EM|=12 (zobacz rysunek).

Wykorzystując podane poniżej długości odcinków oblicz pole powierzchni trójkąta ABM.

Odpowiedź:
P_{ABM}= (wpisz liczbę całkowitą)
Podpunkt 12.2 (1 pkt)
 Oblicz długość odcinka AM.
Odpowiedź:
|AM|= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.3 (2 pkt)
 Oblicz długość promienia okręgu opisanego na trójkącie ABM.
Odpowiedź:
R= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm