Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-16-trojkaty-pole-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10591 ⋅ Poprawnie: 305/384 [79%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Trójkąt ABC jest podobny do trójkąta A_1B_1C_1 w skali k=\frac{14}{3}. Stosunek pola trójkąta ABC do pola trójkąta A_1B_1C_1 jest równy:
Odpowiedź:
\frac{P_{\triangle ABC}}{P_{\triangle A_1B_1C_1}}=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11600 ⋅ Poprawnie: 68/105 [64%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Punkt O jest środkiem koła na rysunku, a promień r tego koła ma długość 20. Kąt środkowy koła \alpha oparty jest na łuku o długości 7\pi:

Oblicz pole powierzchni zaznaczonego na rysunku odcinka koła.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10678 ⋅ Poprawnie: 417/518 [80%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Oblicz pole powierzchni rombu o boku długości 8 i kącie rozwartym 120^{\circ}.
Odpowiedź:
P= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10656 ⋅ Poprawnie: 354/511 [69%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Przekątne równoległoboku mają długość 4 i 8, a kąt między tymi przekątnymi ma miarę 30^{\circ}.

Oblicz pole powierzchni tego równoległoboku.

Odpowiedź:
P=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10667 ⋅ Poprawnie: 258/335 [77%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Każde z ramion trójkąta równoramiennego ma długość 16. Kąt zawarty między ramionami tego trójkąta ma miarę 120^{\circ}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  3 pkt ⋅ Numer: pr-20945 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Dwa boki trójkąta mają długość |AC|=3, |BC|=4, a kąt ACB ma miarę 120^{\circ}. Przez punkt C poprowadzono prostą prostopadłą do boku AC, która przecięła bok AB w punkcie D.

Oblicz długość odcinka CD.

Odpowiedź:
|CD|= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Oblicz długość odcinka DB.
Odpowiedź:
|DB|= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-21026 ⋅ Poprawnie: 2/92 [2%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Pole powierzchni trójkąta równoramiennego jest równe 480, a cosinus kąta przy podstawie jest równy \frac{8}{17}.

Oblicz długość obwodu tego trójkąta.

Odpowiedź:
L= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20756 ⋅ Poprawnie: 57/207 [27%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Dane są punkty na okręgu:

Oblicz P_{\triangle ASD}.

Dane
|AS|=4
|SB|=7
|SC|=8
Odpowiedź:
P_{\triangle ASD}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20763 ⋅ Poprawnie: 11/49 [22%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Punkt O jest środkiem okręgu, a niebieski trójkąt jest równoboczny:

Oblicz pole powierzchni części koła leżącej poza trójkątem.

Dane
r=8\sqrt{2}=11.31370849898476
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pp-20892 ⋅ Poprawnie: 98/220 [44%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Dany jest trójkąt, w którym |AB|=4\sqrt{6}, |BC|=4\sqrt{3}, |AC|=2\sqrt{6}+6\sqrt{2} i \alpha=30^{\circ}:

Oblicz miarę stopniową największego kąta tego trójkąta.

Odpowiedź:
\beta_{max}\ [^{\circ}]= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30381 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (4 pkt)
 «« W trójkąt prostokątny wpisano okrąg o promieniu długości 60. Tangens kąta ostrego tego trójkąta jest równy 0,75.

Oblicz odległość wierzchołka kąta prostego trójkąta od punktu styczności tego okręgu z przeciwprostokątną tego trójkąta.

Odpowiedź:
d= \cdot
(wpisz trzy liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pr-30346 ⋅ Poprawnie: 72/65 [110%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 ««« W trójkącie ABC dane są: |\sphericalangle BCA|=120^{\circ}, |AC|=b i |BC|=a oraz dwusieczna CD.

Oblicz |CD|.

Dane
a=2
b=4
Odpowiedź:
|CD|=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Oblicz długość promienia okręgu opisanego na trójkącie DBC.
Odpowiedź:
R_{\triangle DBC}= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm