Podgląd testu : lo2@sp-16-trojkaty-pole-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10587 ⋅ Poprawnie: 429/614 [69%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Trójkąty
ABC i
A'B'C' są podobne, a ich pola powierzchni są odpowiednio,
równe
2 cm
2 i
144 cm
2 .
Wyznacz skalę tego podobieństwa
\frac{|A'B'|}{|AB|} .
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-11599 ⋅ Poprawnie: 43/82 [52%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Pole powierzchni wycinka koła jest równe
95\pi , a łuk tego wycinka ma długość
\frac{1}{3}\pi .
Oblicz długość promienia tego koła.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 3. 1 pkt ⋅ Numer: pp-10655 ⋅ Poprawnie: 364/618 [58%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Bok rombu ma długość
2 , a jego kąt ostry miarę
\alpha taką, że
\cos\alpha=\frac{\sqrt{2}}{3} .
Oblicz pole powierzchni tego rombu.
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-10673 ⋅ Poprawnie: 230/347 [66%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Przekątne równoległoboku o długości
2
i
\frac{4}{3} przecinają się pod kątem rozwartym o mierze
150^{\circ} .
Oblicz pole powierzchni tego równoległoboku.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11389 ⋅ Poprawnie: 387/549 [70%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
» Podstawa trójkąta równoramiennego ma długość
32 , a jego wysokość długość
12 .
Oblicz długość wysokości opuszczonej na ramię tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pr-20567 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (2 pkt)
Dany jest trójkąt
ABC , w którym:
|AC|=2 ,
|BC|=4 oraz
P_{\triangle DBC}-P_{\triangle ADC}=\frac{2\sqrt{3}}{3} :
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 7. 2 pkt ⋅ Numer: pp-21029 ⋅ Poprawnie: 16/25 [64%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Podstawa trójkąta równoramiennego ma długość
72 , a pole
powierzchni tego trójkąta jest równe
972 .
Oblicz długość obwodu tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Wyznacz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20903 ⋅ Poprawnie: 19/36 [52%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
W trapezie
ABCD ,
AB\parallel CD , poprowadzono przekątne,
które przecięły się w punkcie
E . Pola powierzchni trójkątów
ABE i
BCE są równe odpowiednio
45 i
6 .
Oblicz pole powierzchni trójkąta CDE .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20766 ⋅ Poprawnie: 19/105 [18%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
W wycinek kołowy o kącie środkowym
\alpha
wpisano okrąg o polu powierzchni
P :
Oblicz pole powierzchni tego wycinka.
Dane
\alpha=120^{\circ}
P=64\pi=201.06192982974677
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 2 pkt ⋅ Numer: pr-20746 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Dany jest trójkąt:
Oblicz \cos\sphericalangle BCA .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pp-30025 ⋅ Poprawnie: 38/219 [17%]
Rozwiąż
Podpunkt 11.1 (4 pkt)
«« W trójkącie
ABC dane są długości boków
AC ,
BC i kąt
między tymi bokami o mierze
60^{\circ} .
Dwusieczna kąta
BCA przecina bok
AB w punkcie
D .
Oblicz |CD| .
Dane
|AC|=10
|BC|=2
Odpowiedź:
Zadanie 12. 4 pkt ⋅ Numer: pr-30346 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 12.1 (2 pkt)
««« W trójkącie
ABC dane są:
|\sphericalangle BCA|=120^{\circ} ,
|AC|=b i
|BC|=a oraz
dwusieczna
CD .
Oblicz |CD| .
Dane
a=8
b=2
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
Oblicz długość promienia okręgu opisanego na trójkącie
DBC .
Odpowiedź:
Rozwiąż