Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-16-trojkaty-pole-pr-3

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10515  
Podpunkt 1.1 (1 pkt)
 « Obwody dwóch trójkątów podobnych, których pola pozostają w stosunku 9:100, mogą być równe:
Odpowiedzi:
A. 6:\frac{27}{10} B. 3:\frac{9}{10}
C. 3:\frac{100}{3} D. 10:\frac{9}{10}
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11601  
Podpunkt 2.1 (1 pkt)
 Stosunek pola powierzchni trójkąta do pola powierzchni koła wpisanego w ten trójkąt jest równy 2:\pi, a średnica tego koła ma długość 18.

Oblicz długość obwodu tego trójkąta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10669  
Podpunkt 3.1 (1 pkt)
 Dany jest trójkąt ABC, w którym |AB|=5, |BC|=13 oraz \sin\sphericalangle ABC=\frac{12}{13}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle ABC}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10666  
Podpunkt 4.1 (1 pkt)
 « Przyprostokątna trójkąta o długości 4 jest jednym z ramion kąta ostrego tego trójkąta o mierze 60^{\circ}

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11389  
Podpunkt 5.1 (1 pkt)
 » Podstawa trójkąta równoramiennego ma długość 32, a jego wysokość długość 12.

Oblicz długość wysokości opuszczonej na ramię tego trójkąta.

Odpowiedź:
h_c=
(wpisz dwie liczby całkowite)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20284  
Podpunkt 6.1 (2 pkt)
 » We wnętrzu trójkąta równobocznego o boku długości 6\sqrt{2} zaznaczono dowolny punkt.

Oblicz sumę odległości tego punktu od wszystkich boków tego trójkąta.

Odpowiedź:
d= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-21026  
Podpunkt 7.1 (1 pkt)
 Pole powierzchni trójkąta równoramiennego jest równe 480, a cosinus kąta przy podstawie jest równy \frac{8}{17}.

Oblicz długość obwodu tego trójkąta.

Odpowiedź:
L= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20774  
Podpunkt 8.1 (1 pkt)
 « Odcinki DE, FG i AB są równoległe, a pola wielokątów DEC, FGED i ABGF pozostają w stosunku a:b:c.

Oblicz \frac{|DE|}{|FG|}.

Dane
a=1
b=8
c=7
Odpowiedź:
\frac{|DE|}{|FG|}=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Oblicz \frac{|FG|}{|AB|}.
Odpowiedź:
\frac{|FG|}{|AB|}=
(wpisz dwie liczby całkowite)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20762  
Podpunkt 9.1 (2 pkt)
 «« Dany jest okrąg:

Oblicz pole powierzchni zielonego obszaru.

Dane
d=5
\alpha=60^{\circ}
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20884  
Podpunkt 10.1 (1 pkt)
 Dwa boki trójkąta mają długość 12 i 6, a \alpha jest kątem zawartym między nimi, przy czym \sin\alpha=\frac{\sqrt{143}}{12}.

Wyznacz najmniejszą możliwą długość trzeciego boku tego trójkąta.

Odpowiedź:
c_{min}= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Wyznacz największą możliwą długość trzeciego boku tego trójkąta.
Odpowiedź:
c_{max}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 11.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30381  
Podpunkt 11.1 (4 pkt)
 «« W trójkąt prostokątny wpisano okrąg o promieniu długości 140. Tangens kąta ostrego tego trójkąta jest równy 0,75.

Oblicz odległość wierzchołka kąta prostego trójkąta od punktu styczności tego okręgu z przeciwprostokątną tego trójkąta.

Odpowiedź:
d= \cdot
(wpisz trzy liczby całkowite)
Zadanie 12.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30794  
Podpunkt 12.1 (1 pkt)
 W prostokącie ABCD dane są długości boków |AB|=39 i |AD|=36. Na boku CD zaznaczono punkt E taki, że |DE|=24, zaś na odcinku EB punkt M taki, że |EM|=36 (zobacz rysunek).

Wykorzystując podane poniżej długości odcinków oblicz pole powierzchni trójkąta ABM.

Odpowiedź:
P_{ABM}= (wpisz liczbę całkowitą)
Podpunkt 12.2 (1 pkt)
 Oblicz długość odcinka AM.
Odpowiedź:
|AM|= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.3 (2 pkt)
 Oblicz długość promienia okręgu opisanego na trójkącie ABM.
Odpowiedź:
R= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm