Dwa boki trójkąta mają długość 10 i 17, a promień
okręgu opisanego na tym trójkącie ma długość \frac{85}{8}. Pole powierzcni
tego trójkąta jest równe 84.
Oblicz długość trzeciego boku tego trójkąta.
Odpowiedź:
c=(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 8.2 pkt ⋅ Numer: pp-20758 ⋅ Poprawnie: 20/152 [13%]
Dwa boki trójkąta mają długość 7 i
6. Dowolny punkt boku trzeciego połączono
z wierzchołkiem kąta naprzeciwległego odcinkiem, który podzielił
ten trójkąta na dwa mniejsze trójkąty.
Oblicz stosunek długości promieni okręgów opisanych na otrzymanych
trójkątach. Podaj wartość tego stosunku należącą do przedziału
\langle 1,+\infty).
Odpowiedź:
r_1:r_2=
(wpisz dwie liczby całkowite)
Zadanie 11.4 pkt ⋅ Numer: pr-30003 ⋅ Poprawnie: 0/0
« Na bokach AB i AC trójkąta
ABC obrano punkty odpowiednio
M i L, takie, że
|MB|=2|AM| oraz |LC|=3|AL|.
Proste CM i BL przecięły
się w punkcie S. Przez punkty
A i S poprowadzono prostą,
która przecięła bok BC w punkcie
K. Pole powierzchni trójkąta
ABC jest równe 288.
Oblicz pola powierzchni trójkątów AMS,
MBS, ASL i
LSC.
Podaj najmniejsze z tych pól.
Odpowiedź:
P_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Podaj największe z tych pól.
Odpowiedź:
P_{max}=
(wpisz dwie liczby całkowite)
Zadanie 12.4 pkt ⋅ Numer: pr-30380 ⋅ Poprawnie: 0/0