Podgląd testu : lo2@sp-16-trojkaty-pole-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10587 ⋅ Poprawnie: 430/615 [69%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Trójkąty
ABC i
A'B'C' są podobne, a ich pola powierzchni są odpowiednio,
równe
8 cm
2 i
75 cm
2 .
Wyznacz skalę tego podobieństwa
\frac{|A'B'|}{|AB|} .
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-11602 ⋅ Poprawnie: 5/11 [45%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
W trójkącie prostokątnym stosunek długości przyprostokątnej do długości przeciwprostokątnej jest równy
28:53 .
Oblicz stosunek pola powierzchni koła wpisanego w ten trójkąt do pola powierzchni koła opisanego
na tym trójkącie.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 3. 1 pkt ⋅ Numer: pp-10647 ⋅ Poprawnie: 380/532 [71%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
W trójkącie równoramiennym ramię o długości
8\sqrt{2} tworzy z podstawą kąt o mierze
67,5^{\circ} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-10666 ⋅ Poprawnie: 259/456 [56%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Przyprostokątna trójkąta o długości
10 jest jednym
z ramion kąta ostrego tego trójkąta o mierze
30^{\circ}
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-10667 ⋅ Poprawnie: 258/335 [77%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Każde z ramion trójkąta równoramiennego ma długość
10 .
Kąt zawarty między ramionami tego trójkąta ma miarę
150^{\circ} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 6. 2 pkt ⋅ Numer: pp-20746 ⋅ Poprawnie: 48/156 [30%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Jeden z kątów trójkąta równoramiennego ma miarę
\alpha taką, że
\cos\alpha=-\frac{\sqrt{3}}{2}
a pole powierzchni tego trójkąta jest równe
25\sqrt{3} .
Oblicz \alpha .
Odpowiedź:
\alpha\ [^{\circ}]=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Oblicz długość ramienia tego trójkąta.
Odpowiedź:
c=
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pp-21032 ⋅ Poprawnie: 25/36 [69%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Dwa boki trójkąta mają długość
13 i
14 , a promień
okręgu opisanego na tym trójkącie ma długość
\frac{65}{8} . Pole powierzcni
tego trójkąta jest równe
84 .
Oblicz długość trzeciego boku tego trójkąta.
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20756 ⋅ Poprawnie: 57/207 [27%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Dane są punkty na okręgu:
Oblicz P_{\triangle ASD} .
Dane
|AS|=17
|SB|=4
|SC|=19
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20919 ⋅ Poprawnie: 1/5 [20%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Dwa koła styczne zewnętrznie wpisano w kąt, którego miara jest równa
60^{\circ} .
Pole powierzchni mniejszego z kół jest równe
6 .
Oblicz pole powierzchni większego koła.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 2 pkt ⋅ Numer: pp-20884 ⋅ Poprawnie: 94/163 [57%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Dwa boki trójkąta mają długość
6 i
3 , a
\alpha jest kątem
zawartym między nimi, przy czym
\sin\alpha=\frac{\sqrt{35}}{6} .
Wyznacz najmniejszą możliwą długość trzeciego boku tego trójkąta.
Odpowiedź:
c_{min}=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Wyznacz największą możliwą długość trzeciego boku tego trójkąta.
Odpowiedź:
c_{max}=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pp-30020 ⋅ Poprawnie: 35/120 [29%]
Rozwiąż
Podpunkt 11.1 (4 pkt)
« Każdy bok trójkąta podzielono dwoma punktami na odcinki, których długości
mają się do siebie jak
a:b:a . Pole powierzchni
tego trójkąta jest równe
P .
Wyznacz pole sześciokąta, którego wierzchołkami są punkty podziałów boków
trójkąta.
Dane
a=4
b=1
P=81
Odpowiedź:
P=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pr-30346 ⋅ Poprawnie: 72/65 [110%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
««« W trójkącie
ABC dane są:
|\sphericalangle BCA|=120^{\circ} ,
|AC|=b i
|BC|=a oraz
dwusieczna
CD .
Oblicz |CD| .
Dane
a=8
b=2
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
Oblicz długość promienia okręgu opisanego na trójkącie
DBC .
Odpowiedź:
Rozwiąż