Matury CKEMatma z CKESprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-16-trojkaty-pole-pr-3

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10586  
Podpunkt 1.1 (1 pkt)
 « Najkrótsze wysokości dwóch trójkątów podobnych pozostają w stosunku 4:11. Pola tych trójkątów mogą być równe:
Odpowiedzi:
A. 1 i \frac{55}{4} B. 5 i \frac{55}{4}
C. 20 i \frac{605}{4} D. 5 i \frac{121}{4}
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11601  
Podpunkt 2.1 (1 pkt)
 Stosunek pola powierzchni trójkąta do pola powierzchni koła wpisanego w ten trójkąt jest równy 15:\pi, a średnica tego koła ma długość 4.

Oblicz długość obwodu tego trójkąta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10655  
Podpunkt 3.1 (1 pkt)
 « Bok rombu ma długość 7, a jego kąt ostry miarę \alpha taką, że \cos\alpha=\frac{\sqrt{3}}{5}.

Oblicz pole powierzchni tego rombu.

Odpowiedź:
P= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10673  
Podpunkt 4.1 (1 pkt)
 » Przekątne równoległoboku o długości 7 i \frac{13}{11} przecinają się pod kątem rozwartym o mierze 150^{\circ}.

Oblicz pole powierzchni tego równoległoboku.

Odpowiedź:
P=
(wpisz dwie liczby całkowite)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10679  
Podpunkt 5.1 (1 pkt)
 Pole powierzchni rombu o obwodzie długości 56 jest równe 49. Kąt ostry tego rombu ma miarę \alpha.

Wówczas:

Odpowiedzi:
A. 14^{\circ} \lessdot \alpha \lessdot 15^{\circ} B. 75^{\circ} \lessdot \alpha \lessdot 76^{\circ}
C. 29^{\circ} \lessdot \alpha \lessdot 30^{\circ} D. 60^{\circ} \lessdot \alpha \lessdot 61^{\circ}
Zadanie 6.  (3 pkt) [ Dodaj do testu ]  Numer zadania: pr-20879  
Podpunkt 6.1 (1 pkt)
 (1 pkt) W trójkącie równoramiennym ABC punkt E dzieli wysokość CD tego trójkąta w stosunku |CE|:|ED|=5:1. Przez punkt E poprowadzono prostopadłą do boku BC, która przecięła ten bok w punkcie F (zobacz rysunek):

Wiedząc, że \tan\alpha=\frac{15}{8}, oblicz o ile procent ramię trójkąta BC jest dłuższe od wysokości CD.
Wynik zapisz bez znaku procenta.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (2 pkt)
 (2 pkt) Oblicz jakim procentem pola powierzchni trójkąta ABC jest pole powierzchni czworokąta BDFE.
Wynik zapisz bez znaku procenta.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20906  
Podpunkt 7.1 (2 pkt)
 « Pole powierzchni trójkąta jest równe 1170, a promień okręgu wpisanego w ten trójkąt ma długość 15.

Wiedząc, że długości boków tego trójkąta są kolejnymi liczbami naturalnymi, oblicz długość najkrótszej wysokości tego trójkąta.

Odpowiedź:
h_{min}=
(wpisz dwie liczby całkowite)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20914  
Podpunkt 8.1 (2 pkt)
 W trójkącie prostrokątnym ABC stosunek przyprostokątnych jest równy |AB|:|AC|=40:9, Punkt D dzieli przyprostokątną AB na dwa odcinki takie, że |AD|:|DB|=8:7. Punkt E należy do przeciwprostokątnej BC i DE\perp BC.

Oblicz jakim procentem pola powierzchni trójkąta ABC jest pole powierzchni trójkąta DBE. Wynik zapisz bez znaku procenta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20764  
Podpunkt 9.1 (2 pkt)
 » Punkt O jest środkiem okręgu, z którego wycięto wycinek kołowy:

Oblicz pole powierzchni tego wycinka.

Dane
r=8
R=24
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20885  
Podpunkt 10.1 (2 pkt)
 « Dany jest trójkąt ABC, w którym |AB|=2\sqrt{2}, |BC|=\sqrt{38} i |AC|=5\sqrt{2}.

Oblicz miarę kąta CAB.

Odpowiedź:
|\sphericalangle CAB|= (wpisz liczbę całkowitą)
Zadanie 11.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30003  
Podpunkt 11.1 (2 pkt)
 « Na bokach AB i AC trójkąta ABC obrano punkty odpowiednio M i L, takie, że |MB|=2|AM| oraz |LC|=3|AL|. Proste CM i BL przecięły się w punkcie S. Przez punkty A i S poprowadzono prostą, która przecięła bok BC w punkcie K. Pole powierzchni trójkąta ABC jest równe 216. Oblicz pola powierzchni trójkątów AMS, MBS, ASL i LSC.

Podaj najmniejsze z tych pól.

Odpowiedź:
P_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Podaj największe z tych pól.
Odpowiedź:
P_{max}=
(wpisz dwie liczby całkowite)
Zadanie 12.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30379  
Podpunkt 12.1 (2 pkt)
 «« Pole powierzchni trójkąta o kącie ostrym 30^{\circ} jest równe \frac{33\sqrt{3}}{4}, a promień okręgu na nim opisanego ma długość 7.

Podaj długość najdłuższego boku tego trójkąta.

Odpowiedź:
a_{max}= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (1 pkt)
 Podaj długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
R= (wpisz liczbę całkowitą)
Podpunkt 12.3 (1 pkt)
 Podaj długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
r= + \cdot
(wpisz cztery liczby całkowite)


Masz pytania? Napisz: k42195@poczta.fm