(1 pkt)
W trójkącie równoramiennym ABC punkt
E dzieli wysokość CD tego trójkąta
w stosunku |CE|:|ED|=3:1. Przez punkt E
poprowadzono prostopadłą do boku BC, która przecięła ten bok
w punkcie F (zobacz rysunek):
Wiedząc, że \sin\alpha=\frac{21}{29}, oblicz
o ile procent ramię trójkąta BC
jest dłuższe od wysokości CD.
Wynik zapisz bez znaku procenta.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (2 pkt)
(2 pkt)
Oblicz jakim procentem pola powierzchni trójkąta ABC
jest pole powierzchni czworokąta BDFE.
Wynik zapisz bez znaku procenta.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7.2 pkt ⋅ Numer: pp-21027 ⋅ Poprawnie: 38/65 [58%]
» W ostrokątnym trójkącie równoramiennym ABC,
|AC|=|BC|, wysokość CD przecięła
wysokość AE w punkcie S.
Wysokość AE dzieli ramię BC tego trójkąta
w stosunku |BE|:|EC|=1:2.
Oblicz sinus kąta EAB.
Odpowiedź:
\sin\sphericalangle EAB=
\cdot√
(wpisz trzy liczby całkowite)
Podpunkt 8.2 (1 pkt)
Wyznacz stosunek pola powierzchni trójkąta ADC do pola powierzchni
trójkąta CSE.
Odpowiedź:
\frac{P_{\triangle ADC}}{P_{\triangle CSE}}}=
(wpisz dwie liczby całkowite)
Zadanie 9.2 pkt ⋅ Numer: pp-20766 ⋅ Poprawnie: 77/170 [45%]