Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-16-trojkaty-pole-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10586 ⋅ Poprawnie: 104/233 [44%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Najkrótsze wysokości dwóch trójkątów podobnych pozostają w stosunku 3:15. Pola tych trójkątów mogą być równe:
Odpowiedzi:
A. 4 i 20 B. 4 i 75
C. 12 i 300 D. 1 i 20
Zadanie 2.  1 pkt ⋅ Numer: pp-11699 ⋅ Poprawnie: 1/4 [25%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 W trójkącie prostokątnym stosunek długości przyprostokątnej do długości przeciwprostokątnej jest równy 20:52.

Oblicz stosunek pola powierzchni koła opisanego na tym trójkącie do pola powierzchni koła wpisanego w ten trójkąt.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10647 ⋅ Poprawnie: 380/532 [71%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 W trójkącie równoramiennym ramię o długości 10 tworzy z podstawą kąt o mierze 67,5^{\circ}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10656 ⋅ Poprawnie: 354/511 [69%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Przekątne równoległoboku mają długość 8 i 16, a kąt między tymi przekątnymi ma miarę 30^{\circ}.

Oblicz pole powierzchni tego równoległoboku.

Odpowiedź:
P=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11389 ⋅ Poprawnie: 395/557 [70%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Podstawa trójkąta równoramiennego ma długość 60, a jego wysokość długość 16.

Oblicz długość wysokości opuszczonej na ramię tego trójkąta.

Odpowiedź:
h_c=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-21080 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Dwa boki trójkąta mają długość 9 i 11. Kąt \gamma zawarty między tymi bokami ma miarę 90^{\circ}.

Oblicz długość dwusiecznej kąta \gamma zawartej wewnątrz tego trójkąta.

Odpowiedź:
d= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-21030 ⋅ Poprawnie: 1/3 [33%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 W trójkącie równoramiennym podstawa ma długość 96, a sinus kąta przy podstawie jest równy \frac{5}{13}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
R=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20757 ⋅ Poprawnie: 16/88 [18%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Dany jest trójkąt równoramienny o podstawie AB:

Oblicz \sin\sphericalangle DAB.

Dane
k=4
Odpowiedź:
\sin\sphericalangle DAB= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Oblicz \frac{P_{\triangle AES}}{P_{\triangle SDC}} .
Odpowiedź:
\frac{P_{\triangle AES}}{P_{\triangle SDC}}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20765 ⋅ Poprawnie: 47/195 [24%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Punkt O jest środkiem okręgu. Oblicz pole powierzchni niebieskiego obszaru:
Dane
r=14
\alpha=45^{\circ}
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pp-20886 ⋅ Poprawnie: 128/201 [63%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Oblicz długość niebieskiego odcinka na rysunku wiedząc, że: |AD|=30, |DB|=6, |AC|=34, |BC|=2\sqrt{73}:
Odpowiedź:
|CD|= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30398 ⋅ Poprawnie: 11/47 [23%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Dwa boki trójkąta ostrokątnego mają długość 9 i 12, a jego pole powierzchni jest równe 27\sqrt{3}.

Oblicz miarę stopniową kąta zawartego między tymi bokami.

Odpowiedź:
\alpha= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Oblicz długość trzeciego boku tego trójkąta.
Odpowiedź:
c= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 11.3 (1 pkt)
 Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
R= (liczba zapisana dziesiętnie)
Podpunkt 11.4 (1 pkt)
 Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
r= (liczba zapisana dziesiętnie)
Zadanie 12.  4 pkt ⋅ Numer: pr-30380 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (4 pkt)
 « W trójkącie na rysunku dane są długości odcinków: |AD|=3, |DB|=\frac{15}{2}, |BC|=6\sqrt{2} i |AC|=\frac{15}{2}:

Oblicz \sin\sphericalangle{ADC}.

Odpowiedź:
\sin\sphericalangle{ADC}= (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm