Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-16-trojkaty-pole-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10515 ⋅ Poprawnie: 92/170 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Obwody dwóch trójkątów podobnych, których pola pozostają w stosunku 25:64, mogą być równe:
Odpowiedzi:
A. 10:\frac{75}{8} B. 5:\frac{64}{5}
C. 8:\frac{25}{8} D. 5:\frac{25}{8}
Zadanie 2.  1 pkt ⋅ Numer: pp-11699 ⋅ Poprawnie: 1/4 [25%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 W trójkącie prostokątnym stosunek długości przyprostokątnej do długości przeciwprostokątnej jest równy 39:89.

Oblicz stosunek pola powierzchni koła opisanego na tym trójkącie do pola powierzchni koła wpisanego w ten trójkąt.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10669 ⋅ Poprawnie: 411/603 [68%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Dany jest trójkąt ABC, w którym |AB|=4, |BC|=10 oraz \sin\sphericalangle ABC=\frac{\sqrt{21}}{5}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle ABC}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10673 ⋅ Poprawnie: 232/362 [64%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Przekątne równoległoboku o długości 8 i \frac{8}{11} przecinają się pod kątem rozwartym o mierze 150^{\circ}.

Oblicz pole powierzchni tego równoległoboku.

Odpowiedź:
P=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11389 ⋅ Poprawnie: 395/557 [70%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Podstawa trójkąta równoramiennego ma długość 96, a jego wysokość długość 20.

Oblicz długość wysokości opuszczonej na ramię tego trójkąta.

Odpowiedź:
h_c=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20284 ⋅ Poprawnie: 18/39 [46%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » We wnętrzu trójkąta równobocznego o boku długości 2\sqrt{2} zaznaczono dowolny punkt.

Oblicz sumę odległości tego punktu od wszystkich boków tego trójkąta.

Odpowiedź:
d= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20910 ⋅ Poprawnie: 38/57 [66%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Dwa boki trójkąta mają długość 14 i 15, a promień okręgu opisanego na tym trójkącie ma długość \frac{65}{8}. Pole powierzcni tego trójkąta jest równe 84.

Oblicz długość trzeciego boku tego trójkąta.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20756 ⋅ Poprawnie: 57/207 [27%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Dane są punkty na okręgu:

Oblicz P_{\triangle ASD}.

Dane
|AS|=20
|SB|=3
|SC|=2
Odpowiedź:
P_{\triangle ASD}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20918 ⋅ Poprawnie: 2/4 [50%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Dwa koła mają promień o długości 2 i są tak położone, że do okręgu każdego z nich należy środek drugiego z kół:

Oblicz pole obszaru wspólnego tych kół.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pr-20770 ⋅ Poprawnie: 77/65 [118%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Dwa boki trójkąta mają długość 6 i 7. Dowolny punkt boku trzeciego połączono z wierzchołkiem kąta naprzeciwległego odcinkiem, który podzielił ten trójkąta na dwa mniejsze trójkąty.

Oblicz stosunek długości promieni okręgów opisanych na otrzymanych trójkątach. Podaj wartość tego stosunku należącą do przedziału \langle 1,+\infty).

Odpowiedź:
r_1:r_2=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30398 ⋅ Poprawnie: 11/47 [23%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Dwa boki trójkąta ostrokątnego mają długość 10 i 16, a jego pole powierzchni jest równe 40\sqrt{3}.

Oblicz miarę stopniową kąta zawartego między tymi bokami.

Odpowiedź:
\alpha= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Oblicz długość trzeciego boku tego trójkąta.
Odpowiedź:
c= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 11.3 (1 pkt)
 Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
R= (liczba zapisana dziesiętnie)
Podpunkt 11.4 (1 pkt)
 Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
r= (liczba zapisana dziesiętnie)
Zadanie 12.  4 pkt ⋅ Numer: pr-30794 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 W prostokącie ABCD dane są długości boków |AB|=13 i |AD|=12. Na boku CD zaznaczono punkt E taki, że |DE|=8, zaś na odcinku EB punkt M taki, że |EM|=12 (zobacz rysunek).

Wykorzystując podane poniżej długości odcinków oblicz pole powierzchni trójkąta ABM.

Odpowiedź:
P_{ABM}= (wpisz liczbę całkowitą)
Podpunkt 12.2 (1 pkt)
 Oblicz długość odcinka AM.
Odpowiedź:
|AM|= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.3 (2 pkt)
 Oblicz długość promienia okręgu opisanego na trójkącie ABM.
Odpowiedź:
R= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm