Podgląd testu : lo2@sp-16-trojkaty-pole-pr-3
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10591 ⋅ Poprawnie: 305/384 [79%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Trójkąt
ABC jest podobny do trójkąta
A_1B_1C_1 w skali
k=\frac{13}{7}. Stosunek pola trójkąta
ABC do pola trójkąta
A_1B_1C_1
jest równy:
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11598 ⋅ Poprawnie: 48/118 [40%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Promień koła ma długość
6, a kąt wycinka tego koła ma miarę
186^{\circ}. Oblicz pole powierzchni tego wycinka i zapisz wynik w postaci
p\cdot\pi.
Podaj liczbę p.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10655 ⋅ Poprawnie: 365/620 [58%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
« Bok rombu ma długość
6, a jego kąt ostry miarę
\alpha taką, że
\cos\alpha=\frac{\sqrt{5}}{5}.
Oblicz pole powierzchni tego rombu.
Odpowiedź:
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10654 ⋅ Poprawnie: 235/356 [66%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Oblicz pole powierzchni równoległoboku o bokach długości
\frac{13}{2} i
10 oraz kącie ostrym o mierze
60^{\circ}.
Odpowiedź:
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11389 ⋅ Poprawnie: 395/557 [70%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
» Podstawa trójkąta równoramiennego ma długość
48, a jego wysokość długość
7.
Oblicz długość wysokości opuszczonej na ramię tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20284 ⋅ Poprawnie: 18/39 [46%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
» We wnętrzu trójkąta równobocznego o boku długości
6\sqrt{2}
zaznaczono dowolny punkt.
Oblicz sumę odległości tego punktu od wszystkich boków tego trójkąta.
Odpowiedź:
|
Zadanie 7. 2 pkt ⋅ Numer: pp-21026 ⋅ Poprawnie: 2/92 [2%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Pole powierzchni trójkąta równoramiennego jest równe
360, a cosinus
kąta przy podstawie jest równy
\frac{9}{41}.
Oblicz długość obwodu tego trójkąta.
Odpowiedź:
L=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20758 ⋅ Poprawnie: 20/152 [13%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
« Dany jest trójkąt:
Oblicz |DE|.
Dane
|AC|=28
P_{\triangle DBE}:P_{ADEC}=277:1067=0.25960637300843
Odpowiedź:
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20763 ⋅ Poprawnie: 11/49 [22%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
Punkt
O jest środkiem okręgu, a niebieski trójkąt
jest równoboczny:
Oblicz pole powierzchni części koła leżącej poza trójkątem.
Dane
r=7\sqrt{7}=18.52025917745213
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 10. 2 pkt ⋅ Numer: pr-20738 ⋅ Poprawnie: 0/1 [0%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
» W trójkącie ostrokątnym
ABC dane są:
długość boku
|AB|=26 oraz tangens kąta przy
wierzchołku
C:
\tan\gamma=\frac{24}{7}.
Oblicz długość promienia koła opisanego na tym trójkącie.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 11. 4 pkt ⋅ Numer: pp-30020 ⋅ Poprawnie: 35/120 [29%] |
Rozwiąż |
Podpunkt 11.1 (4 pkt)
« Każdy bok trójkąta podzielono dwoma punktami na odcinki, których długości
mają się do siebie jak
a:b:a. Pole powierzchni
tego trójkąta jest równe
P.
Wyznacz pole sześciokąta, którego wierzchołkami są punkty podziałów boków
trójkąta.
Dane
a=4
b=3
P=121
Odpowiedź:
P=
(wpisz liczbę całkowitą)
|
Zadanie 12. 4 pkt ⋅ Numer: pr-30379 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 12.1 (2 pkt)
«« Pole powierzchni trójkąta o kącie ostrym
30^{\circ} jest
równe
\frac{49\sqrt{3}}{4}, a promień okręgu na nim opisanego
ma długość
7.
Podaj długość najdłuższego boku tego trójkąta.
Odpowiedź:
a_{max}=
\cdot√
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (1 pkt)
Podaj długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
R=
(wpisz liczbę całkowitą)
Podpunkt 12.3 (1 pkt)
Podaj długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź: