Podgląd testu : lo2@sp-16-trojkaty-pole-pr-3
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10591 ⋅ Poprawnie: 305/384 [79%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Trójkąt
ABC jest podobny do trójkąta
A_1B_1C_1 w skali
k=\frac{5}{3}. Stosunek pola trójkąta
ABC do pola trójkąta
A_1B_1C_1
jest równy:
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11699 ⋅ Poprawnie: 1/4 [25%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
W trójkącie prostokątnym stosunek długości przyprostokątnej do długości przeciwprostokątnej jest równy
10:26.
Oblicz stosunek pola powierzchni koła opisanego na tym trójkącie do pola powierzchni koła wpisanego
w ten trójkąt.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10647 ⋅ Poprawnie: 380/531 [71%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
W trójkącie równoramiennym ramię o długości
7\sqrt{3} tworzy z podstawą kąt o mierze
67,5^{\circ}.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10654 ⋅ Poprawnie: 235/355 [66%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Oblicz pole powierzchni równoległoboku o bokach długości
\frac{3}{4} i
4 oraz kącie ostrym o mierze
45^{\circ}.
Odpowiedź:
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10667 ⋅ Poprawnie: 258/335 [77%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Każde z ramion trójkąta równoramiennego ma długość
34.
Kąt zawarty między ramionami tego trójkąta ma miarę
120^{\circ}.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20281 ⋅ Poprawnie: 19/60 [31%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
« W okrąg o obwodzie
\frac{5}{8}\pi wpisano ośmiokąt foremny.
Oblicz pole powierzchni tego ośmiokąta.
Odpowiedź:
|
Zadanie 7. 2 pkt ⋅ Numer: pr-20749 ⋅ Poprawnie: 61/65 [93%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Oblicz długości boków trójkąta równoramiennego o polu powierzchni równym
P i kącie między ramionami o mierze
45^{\circ}.
Podaj długość ramienia tego trójkąta.
Dane
P=81\sqrt{2}=114.55129855222070
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj długość podstawy tego trójkąta.
Odpowiedź:
a=
(liczba zapisana dziesiętnie)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20760 ⋅ Poprawnie: 15/85 [17%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
» Trójkąt
ABC jest ostrokątny i równoramienny o
podstawie
AB:
Oblicz P_{ABC}.
Dane
|AB|+|BC|+|AC|=400
\frac{P_{\triangle ABE}}{P_{\triangle ADC}}=\frac{36}{25}=1.44000000000000
Odpowiedź:
P_{\triangle ABC}=
(wpisz liczbę całkowitą)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20763 ⋅ Poprawnie: 11/49 [22%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
Punkt
O jest środkiem okręgu, a niebieski trójkąt
jest równoboczny:
Oblicz pole powierzchni części koła leżącej poza trójkątem.
Dane
r=5\sqrt{7}=13.22875655532295
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 10. 2 pkt ⋅ Numer: pp-20887 ⋅ Poprawnie: 58/165 [35%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
» Oblicz długość promienia okręgu na rysunku wiedząc, że
|AC|-|AB|=36\sqrt{2} oraz
|BC|=60:
Odpowiedź:
R=
(wpisz liczbę całkowitą)
|
Zadanie 11. 4 pkt ⋅ Numer: pp-30020 ⋅ Poprawnie: 35/120 [29%] |
Rozwiąż |
Podpunkt 11.1 (4 pkt)
« Każdy bok trójkąta podzielono dwoma punktami na odcinki, których długości
mają się do siebie jak
a:b:a. Pole powierzchni
tego trójkąta jest równe
P.
Wyznacz pole sześciokąta, którego wierzchołkami są punkty podziałów boków
trójkąta.
Dane
a=1
b=2
P=16
Odpowiedź:
P=
(wpisz liczbę całkowitą)
|
Zadanie 12. 4 pkt ⋅ Numer: pr-30346 ⋅ Poprawnie: 72/65 [110%] |
Rozwiąż |
Podpunkt 12.1 (2 pkt)
««« W trójkącie
ABC dane są:
|\sphericalangle BCA|=120^{\circ},
|AC|=b i
|BC|=a oraz
dwusieczna
CD.
Oblicz |CD|.
Dane
a=2
b=6
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
Oblicz długość promienia okręgu opisanego na trójkącie
DBC.
Odpowiedź: