Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-16-trojkaty-pole-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10515 ⋅ Poprawnie: 92/170 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Obwody dwóch trójkątów podobnych, których pola pozostają w stosunku 4:25, mogą być równe:
Odpowiedzi:
A. 5:\frac{4}{5} B. 2:\frac{4}{5}
C. 4:\frac{12}{5} D. 2:\frac{25}{2}
Zadanie 2.  1 pkt ⋅ Numer: pp-11601 ⋅ Poprawnie: 9/11 [81%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Stosunek pola powierzchni trójkąta do pola powierzchni koła wpisanego w ten trójkąt jest równy 22:\pi, a średnica tego koła ma długość 4.

Oblicz długość obwodu tego trójkąta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10655 ⋅ Poprawnie: 365/620 [58%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Bok rombu ma długość 3, a jego kąt ostry miarę \alpha taką, że \cos\alpha=\frac{\sqrt{2}}{2}.

Oblicz pole powierzchni tego rombu.

Odpowiedź:
P= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10673 ⋅ Poprawnie: 232/362 [64%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Przekątne równoległoboku o długości 8 i \frac{5}{2} przecinają się pod kątem rozwartym o mierze 150^{\circ}.

Oblicz pole powierzchni tego równoległoboku.

Odpowiedź:
P=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11512 ⋅ Poprawnie: 483/859 [56%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz pole powierzchni prostokąta,którego przekątne mają długość 2 i przecinają się pod kątem o mierze 30^{\circ}.
Odpowiedź:
P= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-20944 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Dwa boki trójkąta mają długość 3 i 13. Kąt \gamma zawarty między tymi bokami ma miarę 60^{\circ}.

Oblicz długość dwusiecznej kąta \gamma zawartej wewnątrz tego trójkąta.

Odpowiedź:
d= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20907 ⋅ Poprawnie: 42/115 [36%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Podstawa trójkąta równoramiennego ma długość 28, a pole powierzchni tego trójkąta jest równe 672.

Oblicz długość ramienia tego trójkąta.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Wyznacz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
R=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20946 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » W ostrokątnym trójkącie równoramiennym ABC, |AC|=|BC|, wysokość CD przecięła wysokość AE w punkcie S. Wysokość AE dzieli ramię BC tego trójkąta w stosunku |BE|:|EC|=1:2.

Oblicz sinus kąta EAB.

Odpowiedź:
\sin\sphericalangle EAB= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Wyznacz stosunek pola powierzchni trójkąta ADC do pola powierzchni trójkąta CSE.
Odpowiedź:
\frac{P_{\triangle ADC}}{P_{\triangle CSE}}}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20766 ⋅ Poprawnie: 77/170 [45%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 W wycinek kołowy o kącie środkowym \alpha wpisano okrąg o polu powierzchni P:

Oblicz pole powierzchni tego wycinka.

Dane
\alpha=120^{\circ}
P=64\pi=201.06192982974677
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pp-20887 ⋅ Poprawnie: 58/165 [35%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Oblicz długość promienia okręgu na rysunku wiedząc, że |AC|-|AB|=12\sqrt{2} oraz |BC|=20:
Odpowiedź:
R= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30381 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (4 pkt)
 «« W trójkąt prostokątny wpisano okrąg o promieniu długości 20. Tangens kąta ostrego tego trójkąta jest równy 0,75.

Oblicz odległość wierzchołka kąta prostego trójkąta od punktu styczności tego okręgu z przeciwprostokątną tego trójkąta.

Odpowiedź:
d= \cdot
(wpisz trzy liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pr-30379 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
 «« Pole powierzchni trójkąta o kącie ostrym 30^{\circ} jest równe 2\sqrt{3}, a promień okręgu na nim opisanego ma długość 2.

Podaj długość najdłuższego boku tego trójkąta.

Odpowiedź:
a_{max}= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (1 pkt)
 Podaj długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
R= (wpisz liczbę całkowitą)
Podpunkt 12.3 (1 pkt)
 Podaj długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
r= + \cdot
(wpisz cztery liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm