Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-16-trojkaty-pole-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10515 ⋅ Poprawnie: 92/170 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Obwody dwóch trójkątów podobnych, których pola pozostają w stosunku 16:121, mogą być równe:
Odpowiedzi:
A. 4:\frac{16}{11} B. 11:\frac{16}{11}
C. 33:8 D. 4:\frac{121}{4}
Zadanie 2.  1 pkt ⋅ Numer: pp-11602 ⋅ Poprawnie: 5/11 [45%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 W trójkącie prostokątnym stosunek długości przyprostokątnej do długości przeciwprostokątnej jest równy 3:5.

Oblicz stosunek pola powierzchni koła wpisanego w ten trójkąt do pola powierzchni koła opisanego na tym trójkącie.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10655 ⋅ Poprawnie: 365/619 [58%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Bok rombu ma długość 9, a jego kąt ostry miarę \alpha taką, że \cos\alpha=\frac{\sqrt{7}}{3}.

Oblicz pole powierzchni tego rombu.

Odpowiedź:
P= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10656 ⋅ Poprawnie: 354/511 [69%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Przekątne równoległoboku mają długość 4 i 16, a kąt między tymi przekątnymi ma miarę 30^{\circ}.

Oblicz pole powierzchni tego równoległoboku.

Odpowiedź:
P=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10667 ⋅ Poprawnie: 258/335 [77%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Każde z ramion trójkąta równoramiennego ma długość 58. Kąt zawarty między ramionami tego trójkąta ma miarę 120^{\circ}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-20567 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Dany jest trójkąt ABC, w którym: |AC|=11, |BC|=22 oraz P_{\triangle DBC}-P_{\triangle ADC}=\frac{121\sqrt{3}}{6}:

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle ABC}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-21027 ⋅ Poprawnie: 38/65 [58%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Pole powierzchni trójkąta równoramiennego jest równe 972, a tangens kąta kąta przy podstawie jest równy \frac{4}{3}.

Oblicz długość obwodu tego trójkąta.

Odpowiedź:
L= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20756 ⋅ Poprawnie: 57/207 [27%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Dane są punkty na okręgu:

Oblicz P_{\triangle ASD}.

Dane
|AS|=19
|SB|=21
|SC|=8
Odpowiedź:
P_{\triangle ASD}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20761 ⋅ Poprawnie: 65/213 [30%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » Łuk \stackrel{\frown}{\ AB\ } ma długość l:

Oblicz pole powierzchni wycinka kołowego wyznaczonego przez ten łuk.

Dane
l=6\pi=18.84955592153876
\alpha=15^{\circ}
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pp-20891 ⋅ Poprawnie: 90/153 [58%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « W trójkącie ABC, w którym |AB|=48, |AC|=40 i \cos\alpha=\frac{3}{5}, promień okręgu opisanego na tym trójkącie ma długość 25:

Oblicz sumę sinusów wszystkich kątów tego trójkąta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pr-30381 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (4 pkt)
 «« W trójkąt prostokątny wpisano okrąg o promieniu długości 200. Tangens kąta ostrego tego trójkąta jest równy 0,75.

Oblicz odległość wierzchołka kąta prostego trójkąta od punktu styczności tego okręgu z przeciwprostokątną tego trójkąta.

Odpowiedź:
d= \cdot
(wpisz trzy liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pr-30379 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
 «« Pole powierzchni trójkąta o kącie ostrym 30^{\circ} jest równe \frac{9\sqrt{3}}{4}, a promień okręgu na nim opisanego ma długość 3.

Podaj długość najdłuższego boku tego trójkąta.

Odpowiedź:
a_{max}= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (1 pkt)
 Podaj długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
R= (wpisz liczbę całkowitą)
Podpunkt 12.3 (1 pkt)
 Podaj długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
r= + \cdot
(wpisz cztery liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm