Podgląd testu : lo2@sp-16-trojkaty-pole-pr-3
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10591 ⋅ Poprawnie: 305/384 [79%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Trójkąt
ABC jest podobny do trójkąta
A_1B_1C_1 w skali
k=\frac{8}{3}. Stosunek pola trójkąta
ABC do pola trójkąta
A_1B_1C_1
jest równy:
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11601 ⋅ Poprawnie: 9/11 [81%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Stosunek pola powierzchni trójkąta do pola powierzchni koła wpisanego w ten trójkąt jest równy
7:\pi, a średnica tego koła ma długość
6.
Oblicz długość obwodu tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10678 ⋅ Poprawnie: 417/517 [80%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
» Oblicz pole powierzchni rombu o boku długości
30 i kącie rozwartym
120^{\circ}.
Odpowiedź:
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10656 ⋅ Poprawnie: 354/511 [69%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
« Przekątne równoległoboku mają długość
2 i
10,
a kąt między tymi przekątnymi ma miarę
30^{\circ}.
Oblicz pole powierzchni tego równoległoboku.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11389 ⋅ Poprawnie: 387/549 [70%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
» Podstawa trójkąta równoramiennego ma długość
48, a jego wysokość długość
7.
Oblicz długość wysokości opuszczonej na ramię tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 6. 2 pkt ⋅ Numer: pr-20444 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
» Środkowe
AM i
CN trójkąta
ABC mają długość
|AM|=6 i
|CN|=15 i
przecinają się pod kątem prostym.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
P_{\triangle ABC}=
(wpisz liczbę całkowitą)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-21027 ⋅ Poprawnie: 38/65 [58%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
« Pole powierzchni trójkąta równoramiennego jest równe
960, a tangens kąta
kąta przy podstawie jest równy
\frac{12}{5}.
Oblicz długość obwodu tego trójkąta.
Odpowiedź:
L=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20757 ⋅ Poprawnie: 16/88 [18%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
» Dany jest trójkąt równoramienny o podstawie
AB:
Oblicz \sin\sphericalangle DAB.
Dane
k=5
Odpowiedź:
Podpunkt 8.2 (1 pkt)
Oblicz
\frac{P_{\triangle AES}}{P_{\triangle SDC}}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20762 ⋅ Poprawnie: 25/217 [11%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
«« Dany jest okrąg:
Oblicz pole powierzchni zielonego obszaru.
Dane
d=9
\alpha=60^{\circ}
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 10. 2 pkt ⋅ Numer: pr-20745 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
« Dany jest trójkąt
ABC, w którym
d=4 i
|AC|=8:
Oblicz \sin\alpha.
Odpowiedź:
Podpunkt 10.2 (1 pkt)
Odpowiedź:
|
Zadanie 11. 4 pkt ⋅ Numer: pp-30025 ⋅ Poprawnie: 38/219 [17%] |
Rozwiąż |
Podpunkt 11.1 (4 pkt)
«« W trójkącie
ABC dane są długości boków
AC,
BC i kąt
między tymi bokami o mierze
60^{\circ}.
Dwusieczna kąta
BCA przecina bok
AB w punkcie
D.
Oblicz |CD|.
Dane
|AC|=6
|BC|=3
Odpowiedź:
|
Zadanie 12. 4 pkt ⋅ Numer: pr-30379 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 12.1 (2 pkt)
«« Pole powierzchni trójkąta o kącie ostrym
30^{\circ} jest
równe
10\sqrt{3}, a promień okręgu na nim opisanego
ma długość
14.
Podaj długość najdłuższego boku tego trójkąta.
Odpowiedź:
a_{max}=
\cdot√
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (1 pkt)
Podaj długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
R=
(wpisz liczbę całkowitą)
Podpunkt 12.3 (1 pkt)
Podaj długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź: