Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-16-trojkaty-pole-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10587 ⋅ Poprawnie: 430/615 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Trójkąty ABC i A'B'C' są podobne, a ich pola powierzchni są odpowiednio, równe 8 cm2 i 16 cm2.

Wyznacz skalę tego podobieństwa \frac{|A'B'|}{|AB|}.

Odpowiedź:
\frac{|A'B'|}{|AB|}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11601 ⋅ Poprawnie: 9/11 [81%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Stosunek pola powierzchni trójkąta do pola powierzchni koła wpisanego w ten trójkąt jest równy 4:\pi, a średnica tego koła ma długość 10.

Oblicz długość obwodu tego trójkąta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10678 ⋅ Poprawnie: 417/517 [80%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Oblicz pole powierzchni rombu o boku długości 42 i kącie rozwartym 120^{\circ}.
Odpowiedź:
P= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10656 ⋅ Poprawnie: 354/511 [69%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Przekątne równoległoboku mają długość 4 i 6, a kąt między tymi przekątnymi ma miarę 30^{\circ}.

Oblicz pole powierzchni tego równoległoboku.

Odpowiedź:
P=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11512 ⋅ Poprawnie: 483/859 [56%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz pole powierzchni prostokąta,którego przekątne mają długość 10 i przecinają się pod kątem o mierze 30^{\circ}.
Odpowiedź:
P= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20281 ⋅ Poprawnie: 19/60 [31%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « W okrąg o obwodzie \frac{8}{11}\pi wpisano ośmiokąt foremny.

Oblicz pole powierzchni tego ośmiokąta.

Odpowiedź:
P= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20749 ⋅ Poprawnie: 61/65 [93%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Oblicz długości boków trójkąta równoramiennego o polu powierzchni równym P i kącie między ramionami o mierze 45^{\circ}.

Podaj długość ramienia tego trójkąta.

Dane
P=121\sqrt{2}=171.11984104714450
Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj długość podstawy tego trójkąta.
Odpowiedź:
a= (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20946 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » W ostrokątnym trójkącie równoramiennym ABC, |AC|=|BC|, wysokość CD przecięła wysokość AE w punkcie S. Wysokość AE dzieli ramię BC tego trójkąta w stosunku |BE|:|EC|=1:2.

Oblicz sinus kąta EAB.

Odpowiedź:
\sin\sphericalangle EAB= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Wyznacz stosunek pola powierzchni trójkąta ADC do pola powierzchni trójkąta CSE.
Odpowiedź:
\frac{P_{\triangle ADC}}{P_{\triangle CSE}}}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20764 ⋅ Poprawnie: 18/55 [32%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » Punkt O jest środkiem okręgu, z którego wycięto wycinek kołowy:

Oblicz pole powierzchni tego wycinka.

Dane
r=9
R=27
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pp-20886 ⋅ Poprawnie: 128/201 [63%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Oblicz długość niebieskiego odcinka na rysunku wiedząc, że: |AD|=180, |DB|=6, |AC|=181, |BC|=\sqrt{397}:
Odpowiedź:
|CD|= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30020 ⋅ Poprawnie: 35/120 [29%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 « Każdy bok trójkąta podzielono dwoma punktami na odcinki, których długości mają się do siebie jak a:b:a. Pole powierzchni tego trójkąta jest równe P.

Wyznacz pole sześciokąta, którego wierzchołkami są punkty podziałów boków trójkąta.

Dane
a=3
b=2
P=64
Odpowiedź:
P= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30346 ⋅ Poprawnie: 72/65 [110%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 ««« W trójkącie ABC dane są: |\sphericalangle BCA|=120^{\circ}, |AC|=b i |BC|=a oraz dwusieczna CD.

Oblicz |CD|.

Dane
a=7
b=4
Odpowiedź:
|CD|=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Oblicz długość promienia okręgu opisanego na trójkącie DBC.
Odpowiedź:
R_{\triangle DBC}= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm