Podgląd testu : lo2@sp-16-trojkaty-pole-pr-3
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10587 ⋅ Poprawnie: 430/615 [69%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Trójkąty
ABC i
A'B'C' są podobne, a ich pola powierzchni są odpowiednio,
równe
10 cm
2 i
32 cm
2.
Wyznacz skalę tego podobieństwa
\frac{|A'B'|}{|AB|}.
Odpowiedź:
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11600 ⋅ Poprawnie: 68/105 [64%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
« Punkt
O jest środkiem koła na rysunku, a promień
r tego
koła ma długość
30. Kąt środkowy koła
\alpha
oparty jest na łuku o długości
21\pi:
Oblicz pole powierzchni zaznaczonego na rysunku odcinka koła.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10647 ⋅ Poprawnie: 380/532 [71%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
W trójkącie równoramiennym ramię o długości
20 tworzy z podstawą kąt o mierze
67,5^{\circ}.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10666 ⋅ Poprawnie: 259/456 [56%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
« Przyprostokątna trójkąta o długości
12 jest jednym
z ramion kąta ostrego tego trójkąta o mierze
60^{\circ}
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10667 ⋅ Poprawnie: 258/335 [77%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Każde z ramion trójkąta równoramiennego ma długość
42.
Kąt zawarty między ramionami tego trójkąta ma miarę
120^{\circ}.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20284 ⋅ Poprawnie: 18/39 [46%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
» We wnętrzu trójkąta równobocznego o boku długości
7\sqrt{2}
zaznaczono dowolny punkt.
Oblicz sumę odległości tego punktu od wszystkich boków tego trójkąta.
Odpowiedź:
|
Zadanie 7. 2 pkt ⋅ Numer: pp-21026 ⋅ Poprawnie: 2/92 [2%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Pole powierzchni trójkąta równoramiennego jest równe
768, a cosinus
kąta przy podstawie jest równy
\frac{3}{5}.
Oblicz długość obwodu tego trójkąta.
Odpowiedź:
L=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20759 ⋅ Poprawnie: 16/126 [12%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
Trójkąt
ABC jest równoramienny o podstawie
AB, a odcinek
DE jest
równoległy do podstawy
AB:
Oblicz P_{DEC}.
Dane
|AC|=|BC|=85
|AB|=26
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20761 ⋅ Poprawnie: 65/213 [30%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
» Łuk
\stackrel{\frown}{\ AB\ } ma długość
l:
Oblicz pole powierzchni wycinka kołowego wyznaczonego przez ten łuk.
Dane
l=6\pi=18.84955592153876
\alpha=12^{\circ}
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 10. 2 pkt ⋅ Numer: pp-20884 ⋅ Poprawnie: 94/163 [57%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Dwa boki trójkąta mają długość
14 i
7, a
\alpha jest kątem
zawartym między nimi, przy czym
\sin\alpha=\frac{\sqrt{195}}{14}.
Wyznacz najmniejszą możliwą długość trzeciego boku tego trójkąta.
Odpowiedź:
c_{min}=
\cdot√
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Wyznacz największą możliwą długość trzeciego boku tego trójkąta.
Odpowiedź:
c_{max}=
\cdot√
(wpisz dwie liczby całkowite)
|
Zadanie 11. 4 pkt ⋅ Numer: pr-30381 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 11.1 (4 pkt)
«« W trójkąt prostokątny wpisano okrąg o promieniu długości
140. Tangens kąta ostrego tego trójkąta jest równy
0,75.
Oblicz odległość wierzchołka kąta prostego trójkąta od punktu styczności
tego okręgu z przeciwprostokątną tego trójkąta.
Odpowiedź:
|
Zadanie 12. 4 pkt ⋅ Numer: pr-30346 ⋅ Poprawnie: 72/65 [110%] |
Rozwiąż |
Podpunkt 12.1 (2 pkt)
««« W trójkącie
ABC dane są:
|\sphericalangle BCA|=120^{\circ},
|AC|=b i
|BC|=a oraz
dwusieczna
CD.
Oblicz |CD|.
Dane
a=9
b=8
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
Oblicz długość promienia okręgu opisanego na trójkącie
DBC.
Odpowiedź: