Podgląd testu : lo2@sp-16-trojkaty-pole-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10591 ⋅ Poprawnie: 305/384 [79%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Trójkąt
ABC jest podobny do trójkąta
A_1B_1C_1 w skali
k=\frac{7}{3} . Stosunek pola trójkąta
ABC do pola trójkąta
A_1B_1C_1
jest równy:
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11598 ⋅ Poprawnie: 48/118 [40%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Promień koła ma długość
3 , a kąt wycinka tego koła ma miarę
76^{\circ} . Oblicz pole powierzchni tego wycinka i zapisz wynik w postaci
p\cdot\pi .
Podaj liczbę p .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 3. 1 pkt ⋅ Numer: pp-10647 ⋅ Poprawnie: 380/531 [71%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
W trójkącie równoramiennym ramię o długości
5\sqrt{2} tworzy z podstawą kąt o mierze
67,5^{\circ} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-10656 ⋅ Poprawnie: 354/511 [69%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Przekątne równoległoboku mają długość
2 i
14 ,
a kąt między tymi przekątnymi ma miarę
30^{\circ} .
Oblicz pole powierzchni tego równoległoboku.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10679 ⋅ Poprawnie: 172/233 [73%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Pole powierzchni rombu o obwodzie długości
40 jest równe
25 . Kąt ostry tego rombu ma miarę
\alpha .
Wówczas:
Odpowiedzi:
A. 75^{\circ} \lessdot \alpha \lessdot 76^{\circ}
B. 14^{\circ} \lessdot \alpha \lessdot 15^{\circ}
C. 60^{\circ} \lessdot \alpha \lessdot 61^{\circ}
D. 29^{\circ} \lessdot \alpha \lessdot 30^{\circ}
Zadanie 6. 2 pkt ⋅ Numer: pr-20567 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (2 pkt)
Dany jest trójkąt
ABC , w którym:
|AC|=3 ,
|BC|=6 oraz
P_{\triangle DBC}-P_{\triangle ADC}=\frac{3\sqrt{3}}{2} :
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 7. 2 pkt ⋅ Numer: pp-21031 ⋅ Poprawnie: 1/5 [20%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
W trójkącie równoramiennym podstawa ma długość
120 , a tangens
kąta przy podstawie jest równy
\frac{11}{60} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
P_{\triangle}=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20757 ⋅ Poprawnie: 16/88 [18%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
» Dany jest trójkąt równoramienny o podstawie
AB :
Oblicz \sin\sphericalangle DAB .
Dane
k=4
Odpowiedź:
Podpunkt 8.2 (1 pkt)
Oblicz
\frac{P_{\triangle AES}}{P_{\triangle SDC}}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20762 ⋅ Poprawnie: 25/217 [11%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
«« Dany jest okrąg:
Oblicz pole powierzchni zielonego obszaru.
Dane
d=7
\alpha=60^{\circ}
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 2 pkt ⋅ Numer: pr-20745 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Dany jest trójkąt
ABC , w którym
d=4 i
|AC|=8 :
Oblicz \sin\alpha .
Odpowiedź:
Podpunkt 10.2 (1 pkt)
Odpowiedź:
Zadanie 11. 4 pkt ⋅ Numer: pr-30003 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Na bokach
AB i
AC trójkąta
ABC obrano punkty odpowiednio
M i
L , takie, że
|MB|=2|AM| oraz
|LC|=3|AL| .
Proste
CM i
BL przecięły
się w punkcie
S . Przez punkty
A i
S poprowadzono prostą,
która przecięła bok
BC w punkcie
K . Pole powierzchni trójkąta
ABC jest równe
132 .
Oblicz pola powierzchni trójkątów
AMS ,
MBS ,
ASL i
LSC .
Podaj najmniejsze z tych pól.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Podaj największe z tych pól.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 4 pkt ⋅ Numer: pr-30379 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 12.1 (2 pkt)
«« Pole powierzchni trójkąta o kącie ostrym
30^{\circ} jest
równe
8\sqrt{3} , a promień okręgu na nim opisanego
ma długość
4 .
Podaj długość najdłuższego boku tego trójkąta.
Odpowiedź:
a_{max}=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (1 pkt)
Podaj długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
R=
(wpisz liczbę całkowitą)
Podpunkt 12.3 (1 pkt)
Podaj długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
Rozwiąż