Podgląd testu : lo2@sp-16-trojkaty-pole-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10587 ⋅ Poprawnie: 430/615 [69%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Trójkąty
ABC i
A'B'C' są podobne, a ich pola powierzchni są odpowiednio,
równe
7 cm
2 i
18 cm
2 .
Wyznacz skalę tego podobieństwa
\frac{|A'B'|}{|AB|} .
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-11598 ⋅ Poprawnie: 48/118 [40%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Promień koła ma długość
3 , a kąt wycinka tego koła ma miarę
75^{\circ} . Oblicz pole powierzchni tego wycinka i zapisz wynik w postaci
p\cdot\pi .
Podaj liczbę p .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 3. 1 pkt ⋅ Numer: pp-10678 ⋅ Poprawnie: 417/517 [80%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
» Oblicz pole powierzchni rombu o boku długości
36 i kącie rozwartym
120^{\circ} .
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-10666 ⋅ Poprawnie: 258/455 [56%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Przyprostokątna trójkąta o długości
8 jest jednym
z ramion kąta ostrego tego trójkąta o mierze
30^{\circ}
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-11389 ⋅ Poprawnie: 387/549 [70%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
» Podstawa trójkąta równoramiennego ma długość
40 , a jego wysokość długość
21 .
Oblicz długość wysokości opuszczonej na ramię tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 3 pkt ⋅ Numer: pr-20945 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (2 pkt)
« Dwa boki trójkąta mają długość
|AC|=2 ,
|BC|=7 ,
a kąt
ACB ma miarę
120^{\circ} .
Przez punkt
C poprowadzono prostą prostopadłą do boku
AC , która przecięła bok
AB w punkcie
D .
Oblicz długość odcinka CD .
Odpowiedź:
Podpunkt 6.2 (1 pkt)
Oblicz długość odcinka
DB .
Odpowiedź:
Zadanie 7. 2 pkt ⋅ Numer: pp-20905 ⋅ Poprawnie: 3/99 [3%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Pole powierzchni trójkąta równoramiennego jest równe
240 , a sinus kąta
kąta przy podstawie jest równy
\frac{12}{13} .
Oblicz długość obwodu tego trójkąta.
Odpowiedź:
L=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20774 ⋅ Poprawnie: 18/104 [17%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Odcinki
DE ,
FG i
AB
są równoległe, a pola wielokątów
DEC ,
FGED i
ABGF
pozostają w stosunku
a:b:c .
Oblicz \frac{|DE|}{|FG|} .
Dane
a=4
b=5
c=16
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Oblicz
\frac{|FG|}{|AB|} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20918 ⋅ Poprawnie: 2/4 [50%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Dwa koła mają promień o długości
1 i są tak położone, że do okręgu każdego z nich
należy środek drugiego z kół:
Oblicz pole obszaru wspólnego tych kół.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 2 pkt ⋅ Numer: pp-20887 ⋅ Poprawnie: 58/165 [35%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Oblicz długość promienia okręgu na rysunku wiedząc, że
|AC|-|AB|=12\sqrt{2} oraz
|BC|=20 :
Odpowiedź:
R=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pp-30025 ⋅ Poprawnie: 38/219 [17%]
Rozwiąż
Podpunkt 11.1 (4 pkt)
«« W trójkącie
ABC dane są długości boków
AC ,
BC i kąt
między tymi bokami o mierze
60^{\circ} .
Dwusieczna kąta
BCA przecina bok
AB w punkcie
D .
Oblicz |CD| .
Dane
|AC|=7
|BC|=2
Odpowiedź:
Zadanie 12. 4 pkt ⋅ Numer: pr-30380 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 12.1 (4 pkt)
« W trójkącie na rysunku dane są długości odcinków:
|AD|=4 ,
|DB|=10 ,
|BC|=8\sqrt{2} i
|AC|=10 :
Oblicz \sin\sphericalangle{ADC} .
Odpowiedź:
\sin\sphericalangle{ADC}=
(liczba zapisana dziesiętnie)
Rozwiąż