Podgląd testu : lo2@sp-16-trojkaty-pole-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10587 ⋅ Poprawnie: 430/615 [69%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Trójkąty
ABC i
A'B'C' są podobne, a ich pola powierzchni są odpowiednio,
równe
7 cm
2 i
32 cm
2 .
Wyznacz skalę tego podobieństwa
\frac{|A'B'|}{|AB|} .
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-11602 ⋅ Poprawnie: 5/11 [45%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
W trójkącie prostokątnym stosunek długości przyprostokątnej do długości przeciwprostokątnej jest równy
5:13 .
Oblicz stosunek pola powierzchni koła wpisanego w ten trójkąt do pola powierzchni koła opisanego
na tym trójkącie.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 3. 1 pkt ⋅ Numer: pp-10655 ⋅ Poprawnie: 365/620 [58%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Bok rombu ma długość
6 , a jego kąt ostry miarę
\alpha taką, że
\cos\alpha=\frac{\sqrt{2}}{6} .
Oblicz pole powierzchni tego rombu.
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-10666 ⋅ Poprawnie: 259/456 [56%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Przyprostokątna trójkąta o długości
8 jest jednym
z ramion kąta ostrego tego trójkąta o mierze
30^{\circ}
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-10679 ⋅ Poprawnie: 172/233 [73%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Pole powierzchni rombu o obwodzie długości
56 jest równe
49 . Kąt ostry tego rombu ma miarę
\alpha .
Wówczas:
Odpowiedzi:
A. 75^{\circ} \lessdot \alpha \lessdot 76^{\circ}
B. 14^{\circ} \lessdot \alpha \lessdot 15^{\circ}
C. 29^{\circ} \lessdot \alpha \lessdot 30^{\circ}
D. 60^{\circ} \lessdot \alpha \lessdot 61^{\circ}
Zadanie 6. 2 pkt ⋅ Numer: pr-20567 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (2 pkt)
Dany jest trójkąt
ABC , w którym:
|AC|=2 ,
|BC|=4 oraz
P_{\triangle DBC}-P_{\triangle ADC}=\frac{2\sqrt{3}}{3} :
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 7. 2 pkt ⋅ Numer: pp-21030 ⋅ Poprawnie: 1/3 [33%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
W trójkącie równoramiennym podstawa ma długość
84 , a sinus
kąta przy podstawie jest równy
\frac{20}{29} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
P_{\triangle}=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20760 ⋅ Poprawnie: 15/85 [17%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
» Trójkąt
ABC jest ostrokątny i równoramienny o
podstawie
AB :
Oblicz P_{ABC} .
Dane
|AB|+|BC|+|AC|=400
\frac{P_{\triangle ABE}}{P_{\triangle ADC}}=\frac{36}{25}=1.44000000000000
Odpowiedź:
P_{\triangle ABC}=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20918 ⋅ Poprawnie: 2/4 [50%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Dwa koła mają promień o długości
1 i są tak położone, że do okręgu każdego z nich
należy środek drugiego z kół:
Oblicz pole obszaru wspólnego tych kół.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 2 pkt ⋅ Numer: pp-20891 ⋅ Poprawnie: 90/153 [58%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« W trójkącie
ABC , w którym
|AB|=40 ,
|AC|=29 i
\cos\alpha=\frac{20}{29} , promień okręgu opisanego
na tym trójkącie ma długość
\frac{841}{42} :
Oblicz sumę sinusów wszystkich kątów tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 11. 4 pkt ⋅ Numer: pr-30003 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Na bokach
AB i
AC trójkąta
ABC obrano punkty odpowiednio
M i
L , takie, że
|MB|=2|AM| oraz
|LC|=3|AL| .
Proste
CM i
BL przecięły
się w punkcie
S . Przez punkty
A i
S poprowadzono prostą,
która przecięła bok
BC w punkcie
K . Pole powierzchni trójkąta
ABC jest równe
228 .
Oblicz pola powierzchni trójkątów
AMS ,
MBS ,
ASL i
LSC .
Podaj najmniejsze z tych pól.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Podaj największe z tych pól.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 4 pkt ⋅ Numer: pr-30380 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 12.1 (4 pkt)
« W trójkącie na rysunku dane są długości odcinków:
|AD|=4 ,
|DB|=10 ,
|BC|=8\sqrt{2} i
|AC|=10 :
Oblicz \sin\sphericalangle{ADC} .
Odpowiedź:
\sin\sphericalangle{ADC}=
(liczba zapisana dziesiętnie)
Rozwiąż