Podstawą trójkąta równoramiennego ABC jest bok AB.
Środkowe AL i BK przecinają się w punkcie
S i tworzą kąt ASB o mierze
60^{\circ}. Wiadomo, że pole powierzchni trójkąta ABS
jest równe 144\sqrt{3}.
Oblicz pole powierzchni trójkąta ABC.
Odpowiedź:
P_{\triangle ABC}=
\cdot√
(wpisz trzy liczby całkowite)
Zadanie 7.2 pkt ⋅ Numer: pr-20568 ⋅ Poprawnie: 76/65 [116%]
W trapezie ABCD, AB\parallel CD, poprowadzono przekątne,
które przecięły się w punkcie E. Pola powierzchni trójkątów
ABE i BCE są równe odpowiednio
48 i 30.
Oblicz pole powierzchni trójkąta CDE.
Odpowiedź:
P_{\triangle CDE}=
(wpisz dwie liczby całkowite)
Zadanie 9.2 pkt ⋅ Numer: pp-20763 ⋅ Poprawnie: 11/49 [22%]
« Na bokach AB i AC trójkąta
ABC obrano punkty odpowiednio
M i L, takie, że
|MB|=2|AM| oraz |LC|=3|AL|.
Proste CM i BL przecięły
się w punkcie S. Przez punkty
A i S poprowadzono prostą,
która przecięła bok BC w punkcie
K. Pole powierzchni trójkąta
ABC jest równe 288.
Oblicz pola powierzchni trójkątów AMS,
MBS, ASL i
LSC.
Podaj najmniejsze z tych pól.
Odpowiedź:
P_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Podaj największe z tych pól.
Odpowiedź:
P_{max}=
(wpisz dwie liczby całkowite)
Zadanie 12.4 pkt ⋅ Numer: pr-30346 ⋅ Poprawnie: 72/65 [110%]