Podgląd testu : lo2@sp-16-trojkaty-pole-pr-3
Zadanie 1. (1 pkt) |
[ ⇒ Dodaj do testu ] Numer zadania: pp-10591
|
Podpunkt 1.1 (1 pkt)
Trójkąt
ABC jest podobny do trójkąta
A_1B_1C_1 w skali
k=\frac{8}{5}. Stosunek pola trójkąta
ABC do pola trójkąta
A_1B_1C_1
jest równy:
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. (1 pkt) |
[ ⇒ Dodaj do testu ] Numer zadania: pp-11699
|
Podpunkt 2.1 (1 pkt)
W trójkącie prostokątnym stosunek długości przyprostokątnej do długości przeciwprostokątnej jest równy
15:113.
Oblicz stosunek pola powierzchni koła opisanego na tym trójkącie do pola powierzchni koła wpisanego
w ten trójkąt.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 3. (1 pkt) |
[ ⇒ Dodaj do testu ] Numer zadania: pp-10655
|
Podpunkt 3.1 (1 pkt)
« Bok rombu ma długość
3, a jego kąt ostry miarę
\alpha taką, że
\cos\alpha=\frac{\sqrt{7}}{6}.
Oblicz pole powierzchni tego rombu.
Odpowiedź:
Zadanie 4. (1 pkt) |
[ ⇒ Dodaj do testu ] Numer zadania: pp-10654
|
Podpunkt 4.1 (1 pkt)
Oblicz pole powierzchni równoległoboku o bokach długości
\frac{13}{11} i
3 oraz kącie ostrym o mierze
30^{\circ}.
Odpowiedź:
Zadanie 5. (1 pkt) |
[ ⇒ Dodaj do testu ] Numer zadania: pp-11389
|
Podpunkt 5.1 (1 pkt)
» Podstawa trójkąta równoramiennego ma długość
120, a jego wysokość długość
11.
Oblicz długość wysokości opuszczonej na ramię tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. (2 pkt) |
[ ⇒ Dodaj do testu ] Numer zadania: pr-21080
|
Podpunkt 6.1 (2 pkt)
Dwa boki trójkąta mają długość
13 i
15.
Kąt
\gamma zawarty między tymi bokami ma miarę
90^{\circ}.
Oblicz długość dwusiecznej kąta \gamma zawartej wewnątrz tego trójkąta.
Odpowiedź:
Zadanie 7. (2 pkt) |
[ ⇒ Dodaj do testu ] Numer zadania: pp-20908
|
Podpunkt 7.1 (1 pkt)
W trójkącie równoramiennym podstawa ma długość
56, a cosinus
kąta przy podstawie jest równy
\frac{28}{53}.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
P_{\triangle}=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. (2 pkt) |
[ ⇒ Dodaj do testu ] Numer zadania: pp-20757
|
Podpunkt 8.1 (1 pkt)
» Dany jest trójkąt równoramienny o podstawie
AB:
Oblicz \sin\sphericalangle DAB.
Dane
k=6
Odpowiedź:
Podpunkt 8.2 (1 pkt)
Oblicz
\frac{P_{\triangle AES}}{P_{\triangle SDC}}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. (2 pkt) |
[ ⇒ Dodaj do testu ] Numer zadania: pp-20765
|
Podpunkt 9.1 (2 pkt)
« Punkt
O jest środkiem okręgu. Oblicz pole
powierzchni niebieskiego obszaru:
Dane
r=20
\alpha=45^{\circ}
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. (2 pkt) |
[ ⇒ Dodaj do testu ] Numer zadania: pp-20887
|
Podpunkt 10.1 (2 pkt)
» Oblicz długość promienia okręgu na rysunku wiedząc, że
|AC|-|AB|=54\sqrt{2} oraz
|BC|=90:
Odpowiedź:
R=
(wpisz liczbę całkowitą)
Zadanie 11. (4 pkt) |
[ ⇒ Dodaj do testu ] Numer zadania: pp-30398
|
Podpunkt 11.1 (1 pkt)
« Dwa boki trójkąta ostrokątnego mają długość
3 i
4, a jego
pole powierzchni jest równe
3\sqrt{3}.
Oblicz miarę stopniową kąta zawartego między tymi bokami.
Odpowiedź:
\alpha=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Oblicz długość trzeciego boku tego trójkąta.
Odpowiedź:
c=
\cdot√
(wpisz dwie liczby całkowite)
Podpunkt 11.3 (1 pkt)
Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
R=
(liczba zapisana dziesiętnie)
Podpunkt 11.4 (1 pkt)
Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
r=
(liczba zapisana dziesiętnie)
Zadanie 12. (4 pkt) |
[ ⇒ Dodaj do testu ] Numer zadania: pr-30346
|
Podpunkt 12.1 (2 pkt)
««« W trójkącie
ABC dane są:
|\sphericalangle BCA|=120^{\circ},
|AC|=b i
|BC|=a oraz
dwusieczna
CD.
Oblicz |CD|.
Dane
a=6
b=10
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
Oblicz długość promienia okręgu opisanego na trójkącie
DBC.
Odpowiedź: