Podgląd testu : lo2@sp-16-trojkaty-pole-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10515 ⋅ Poprawnie: 92/170 [54%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Obwody dwóch trójkątów podobnych, których pola pozostają w stosunku
36:49 , mogą być równe:
Odpowiedzi:
A. 7:\frac{36}{7}
B. 21:12
C. 6:\frac{36}{7}
D. 6:\frac{49}{6}
Zadanie 2. 1 pkt ⋅ Numer: pp-11599 ⋅ Poprawnie: 43/82 [52%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Pole powierzchni wycinka koła jest równe
74\pi , a łuk tego wycinka ma długość
\frac{6}{11}\pi .
Oblicz długość promienia tego koła.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 3. 1 pkt ⋅ Numer: pp-10669 ⋅ Poprawnie: 411/603 [68%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Dany jest trójkąt
ABC , w którym
|AB|=9 ,
|BC|=12
oraz
\sin\sphericalangle ABC=\frac{\sqrt{7}}{4} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-10673 ⋅ Poprawnie: 233/362 [64%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Przekątne równoległoboku o długości
6
i
\frac{12}{11} przecinają się pod kątem rozwartym o mierze
150^{\circ} .
Oblicz pole powierzchni tego równoległoboku.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10667 ⋅ Poprawnie: 258/335 [77%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Każde z ramion trójkąta równoramiennego ma długość
24 .
Kąt zawarty między ramionami tego trójkąta ma miarę
150^{\circ} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 6. 2 pkt ⋅ Numer: pp-20751 ⋅ Poprawnie: 52/141 [36%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
« Pole powierzchni trójkąta prostokątnego jest równe
36 ,
a jeden z jego kątów ostrych spełnia warunek
\tan\alpha=\frac{1}{2} .
Oblicz długość wysokości opuszczonej na przeciwprostokątna tego trójkąta.
Odpowiedź:
Zadanie 7. 2 pkt ⋅ Numer: pp-20908 ⋅ Poprawnie: 38/71 [53%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
W trójkącie równoramiennym podstawa ma długość
80 , a cosinus
kąta przy podstawie jest równy
\frac{40}{41} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
P_{\triangle}=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pr-20946 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
» W ostrokątnym trójkącie równoramiennym
ABC ,
|AC|=|BC| , wysokość
CD przecięła
wysokość
AE w punkcie
S .
Wysokość
AE dzieli ramię
BC tego trójkąta
w stosunku
|BE|:|EC|=1:2 .
Oblicz sinus kąta EAB .
Odpowiedź:
Podpunkt 8.2 (1 pkt)
Wyznacz stosunek pola powierzchni trójkąta
ADC do pola powierzchni
trójkąta
CSE .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20761 ⋅ Poprawnie: 65/213 [30%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
» Łuk
\stackrel{\frown}{\ AB\ } ma długość
l :
Oblicz pole powierzchni wycinka kołowego wyznaczonego przez ten łuk.
Dane
l=4\pi=12.56637061435917
\alpha=18^{\circ}
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 2 pkt ⋅ Numer: pp-20807 ⋅ Poprawnie: 90/174 [51%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
«« Punkt
D należy do podstawy
AB trójkąta równoramiennego
ABC i dzieli tę podstawę w stosunku
|AD|:|DB|=9:1 . Odcinek
CD jest 10 razy dłuższy od odcinka
DB .
Oblicz \cos\sphericalangle ADC .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pp-30025 ⋅ Poprawnie: 38/219 [17%]
Rozwiąż
Podpunkt 11.1 (4 pkt)
«« W trójkącie
ABC dane są długości boków
AC ,
BC i kąt
między tymi bokami o mierze
60^{\circ} .
Dwusieczna kąta
BCA przecina bok
AB w punkcie
D .
Oblicz |CD| .
Dane
|AC|=8
|BC|=5
Odpowiedź:
Zadanie 12. 4 pkt ⋅ Numer: pr-30380 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 12.1 (4 pkt)
« W trójkącie na rysunku dane są długości odcinków:
|AD|=4 ,
|DB|=10 ,
|BC|=8\sqrt{2} i
|AC|=10 :
Oblicz \sin\sphericalangle{ADC} .
Odpowiedź:
\sin\sphericalangle{ADC}=
(liczba zapisana dziesiętnie)
Rozwiąż