Podgląd testu : lo2@sp-16-trojkaty-pole-pr-3
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10515 ⋅ Poprawnie: 92/170 [54%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
« Obwody dwóch trójkątów podobnych, których pola pozostają w stosunku
9:100, mogą być równe:
Odpowiedzi:
|
A. 30:6
|
B. 6:\frac{27}{10}
|
|
C. 3:\frac{9}{10}
|
D. 10:\frac{9}{10}
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11600 ⋅ Poprawnie: 68/105 [64%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
« Punkt
O jest środkiem koła na rysunku, a promień
r tego
koła ma długość
30. Kąt środkowy koła
\alpha
oparty jest na łuku o długości
9\pi:
Oblicz pole powierzchni zaznaczonego na rysunku odcinka koła.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10669 ⋅ Poprawnie: 411/603 [68%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Dany jest trójkąt
ABC, w którym
|AB|=5,
|BC|=15
oraz
\sin\sphericalangle ABC=\frac{2\sqrt{2}}{3}.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10673 ⋅ Poprawnie: 233/362 [64%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
» Przekątne równoległoboku o długości
12
i
\frac{3}{10} przecinają się pod kątem rozwartym o mierze
150^{\circ}.
Oblicz pole powierzchni tego równoległoboku.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10679 ⋅ Poprawnie: 172/233 [73%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Pole powierzchni rombu o obwodzie długości
40 jest równe
25. Kąt ostry tego rombu ma miarę
\alpha.
Wówczas:
Odpowiedzi:
|
A. 75^{\circ} \lessdot \alpha \lessdot 76^{\circ}
|
B. 60^{\circ} \lessdot \alpha \lessdot 61^{\circ}
|
|
C. 29^{\circ} \lessdot \alpha \lessdot 30^{\circ}
|
D. 14^{\circ} \lessdot \alpha \lessdot 15^{\circ}
|
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20281 ⋅ Poprawnie: 19/60 [31%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
« W okrąg o obwodzie
\frac{1}{8}\pi wpisano ośmiokąt foremny.
Oblicz pole powierzchni tego ośmiokąta.
Odpowiedź:
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20906 ⋅ Poprawnie: 31/71 [43%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
« Pole powierzchni trójkąta jest równe
84, a promień
okręgu wpisanego w ten trójkąt ma długość
4.
Wiedząc, że długości boków tego trójkąta są kolejnymi liczbami naturalnymi, oblicz długość
najkrótszej wysokości tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20759 ⋅ Poprawnie: 16/126 [12%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
Trójkąt
ABC jest równoramienny o podstawie
AB, a odcinek
DE jest
równoległy do podstawy
AB:
Oblicz P_{DEC}.
Dane
|AC|=|BC|=40
|AB|=48
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20763 ⋅ Poprawnie: 11/49 [22%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
Punkt
O jest środkiem okręgu, a niebieski trójkąt
jest równoboczny:
Oblicz pole powierzchni części koła leżącej poza trójkątem.
Dane
r=4\sqrt{11}=13.26649916142160
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 10. 2 pkt ⋅ Numer: pr-20745 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
« Dany jest trójkąt
ABC, w którym
d=4 i
|AC|=8:
Oblicz \sin\alpha.
Odpowiedź:
Podpunkt 10.2 (1 pkt)
Odpowiedź:
|
Zadanie 11. 4 pkt ⋅ Numer: pr-30381 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 11.1 (4 pkt)
«« W trójkąt prostokątny wpisano okrąg o promieniu długości
200. Tangens kąta ostrego tego trójkąta jest równy
0,75.
Oblicz odległość wierzchołka kąta prostego trójkąta od punktu styczności
tego okręgu z przeciwprostokątną tego trójkąta.
Odpowiedź:
|
Zadanie 12. 4 pkt ⋅ Numer: pr-30348 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 12.1 (4 pkt)
» Odcinki na rysunku maja długość:
a=112,
b=98 i
c=42:
Oblicz obwód trójkąta na rysunku.
Odpowiedź:
L=
(wpisz liczbę całkowitą)