Podstawą trójkąta równoramiennego ABC jest bok AB.
Środkowe AL i BK przecinają się w punkcie
S i tworzą kąt ASB o mierze
60^{\circ}. Wiadomo, że pole powierzchni trójkąta ABS
jest równe 9\sqrt{3}.
Oblicz pole powierzchni trójkąta ABC.
Odpowiedź:
P_{\triangle ABC}=
\cdot√
(wpisz trzy liczby całkowite)
Zadanie 7.2 pkt ⋅ Numer: pp-20910 ⋅ Poprawnie: 38/57 [66%]
Dwa boki trójkąta mają długość 25 i 29, a promień
okręgu opisanego na tym trójkącie ma długość \frac{145}{8}. Pole powierzcni
tego trójkąta jest równe 60.
Oblicz długość trzeciego boku tego trójkąta.
Odpowiedź:
c=(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 8.2 pkt ⋅ Numer: pp-20774 ⋅ Poprawnie: 18/104 [17%]
W prostokącie ABCD dane są długości boków |AB|=13
i |AD|=12. Na boku CD zaznaczono punkt
E taki, że |DE|=8, zaś na odcinku EB punkt
M taki, że |EM|=12 (zobacz rysunek).
Wykorzystując podane poniżej długości odcinków oblicz pole powierzchni
trójkąta ABM.
Odpowiedź:
P_{ABM}=(wpisz liczbę całkowitą)
Podpunkt 12.2 (1 pkt)
Oblicz długość odcinka AM.
Odpowiedź:
|AM|=
\cdot√
(wpisz trzy liczby całkowite)
Podpunkt 12.3 (2 pkt)
Oblicz długość promienia okręgu opisanego na trójkącie
ABM.
Odpowiedź:
R=
\cdot√
(wpisz trzy liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat