Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-16-trojkaty-pole-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10515 ⋅ Poprawnie: 92/170 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Obwody dwóch trójkątów podobnych, których pola pozostają w stosunku 49:64, mogą być równe:
Odpowiedzi:
A. 7:\frac{49}{8} B. 8:\frac{49}{8}
C. 24:14 D. 7:\frac{64}{7}
Zadanie 2.  1 pkt ⋅ Numer: pp-11600 ⋅ Poprawnie: 68/105 [64%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Punkt O jest środkiem koła na rysunku, a promień r tego koła ma długość 15. Kąt środkowy koła \alpha oparty jest na łuku o długości 2\pi:

Oblicz pole powierzchni zaznaczonego na rysunku odcinka koła.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10655 ⋅ Poprawnie: 365/620 [58%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Bok rombu ma długość 6, a jego kąt ostry miarę \alpha taką, że \cos\alpha=\frac{\sqrt{6}}{6}.

Oblicz pole powierzchni tego rombu.

Odpowiedź:
P= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10673 ⋅ Poprawnie: 233/362 [64%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Przekątne równoległoboku o długości 10 i \frac{11}{8} przecinają się pod kątem rozwartym o mierze 150^{\circ}.

Oblicz pole powierzchni tego równoległoboku.

Odpowiedź:
P=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11512 ⋅ Poprawnie: 483/859 [56%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz pole powierzchni prostokąta,którego przekątne mają długość 22 i przecinają się pod kątem o mierze 60^{\circ}.
Odpowiedź:
P= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20279 ⋅ Poprawnie: 104/190 [54%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Dwa boki trójkąta mają długości \frac{2}{3} i \frac{1}{2}, a pole powierzchni tego trójkąta jest równe \frac{1}{9}.

Wyznacz z dokładnością do jednego stopnia miarę kąta zawartego między tymi bokami.

Odpowiedź:
\alpha\ [^{\circ}]= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20905 ⋅ Poprawnie: 3/99 [3%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Pole powierzchni trójkąta równoramiennego jest równe 1680, a sinus kąta kąta przy podstawie jest równy \frac{35}{37}.

Oblicz długość obwodu tego trójkąta.

Odpowiedź:
L= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20759 ⋅ Poprawnie: 16/126 [12%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Trójkąt ABC jest równoramienny o podstawie AB, a odcinek DE jest równoległy do podstawy AB:

Oblicz P_{DEC}.

Dane
|AC|=|BC|=61
|AB|=22
Odpowiedź:
P_{\triangle DEC}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20764 ⋅ Poprawnie: 18/55 [32%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » Punkt O jest środkiem okręgu, z którego wycięto wycinek kołowy:

Oblicz pole powierzchni tego wycinka.

Dane
r=6
R=18
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pp-20887 ⋅ Poprawnie: 58/165 [35%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Oblicz długość promienia okręgu na rysunku wiedząc, że |AC|-|AB|=42\sqrt{2} oraz |BC|=70:
Odpowiedź:
R= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30020 ⋅ Poprawnie: 35/120 [29%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 « Każdy bok trójkąta podzielono dwoma punktami na odcinki, których długości mają się do siebie jak a:b:a. Pole powierzchni tego trójkąta jest równe P.

Wyznacz pole sześciokąta, którego wierzchołkami są punkty podziałów boków trójkąta.

Dane
a=2
b=3
P=49
Odpowiedź:
P= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30346 ⋅ Poprawnie: 72/65 [110%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 ««« W trójkącie ABC dane są: |\sphericalangle BCA|=120^{\circ}, |AC|=b i |BC|=a oraz dwusieczna CD.

Oblicz |CD|.

Dane
a=4
b=8
Odpowiedź:
|CD|=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Oblicz długość promienia okręgu opisanego na trójkącie DBC.
Odpowiedź:
R_{\triangle DBC}= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm