(1 pkt)
W trójkącie równoramiennym ABC punkt
E dzieli wysokość CD tego trójkąta
w stosunku |CE|:|ED|=5:1. Przez punkt E
poprowadzono prostopadłą do boku BC, która przecięła ten bok
w punkcie F (zobacz rysunek):
Wiedząc, że \cos\alpha=\frac{5}{13}, oblicz
o ile procent ramię trójkąta BC
jest dłuższe od wysokości CD.
Wynik zapisz bez znaku procenta.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (2 pkt)
(2 pkt)
Oblicz jakim procentem pola powierzchni trójkąta ABC
jest pole powierzchni czworokąta BDFE.
Wynik zapisz bez znaku procenta.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7.2 pkt ⋅ Numer: pp-21028 ⋅ Poprawnie: 23/40 [57%]
W trójkącie prostrokątnym ABC stosunek przyprostokątnych jest równy
|AB|:|AC|=15:8, Punkt D dzieli
przyprostokątną AB na dwa odcinki takie, że |AD|:|DB|=1:8.
Punkt E należy do przeciwprostokątnej BC i
DE\perp BC.
Oblicz jakim procentem pola powierzchni trójkąta ABC jest pole powierzchni
trójkąta DBE. Wynik zapisz bez znaku procenta.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9.2 pkt ⋅ Numer: pp-20761 ⋅ Poprawnie: 65/213 [30%]