Podgląd testu : lo2@sp-17-wielomiany-pp-2
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11471 ⋅ Poprawnie: 371/684 [54%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
«« Wielomian
P(x)=(m-4)x^2+\sqrt{2}x^4-\sqrt{2}+1 spełnia
warunek
4\cdot P(1)+3\sqrt{2}=P(\sqrt{2}) gdy
m=..........
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11551 ⋅ Poprawnie: 60/126 [47%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
« Dany jest wielomian
W(x)=P(x)+Q(x), gdzie
\begin{cases}
P(x)=(16m^4-4)x^5-6mx^3+5 \\
Q(x)=(3m^2-6)x^5-4mx^3+8
\end{cases}
.
Wyznacz iloczyn tych wszystkich wartości parametru m, dla
których st.P(x)=3 lub st.Q(x)=3.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11556 ⋅ Poprawnie: 537/607 [88%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Suma wielomianów W(x)=-2x^3+5x^2-3 oraz
P(x)=2x^3+12x wynosi:
Odpowiedzi:
|
A. 4x^6+5x^2+12x-3
|
B. 5x^2+12x-3
|
|
C. 4x^3+5x^2+12x-3
|
D. 4x^3+12x^2-3
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11682 ⋅ Poprawnie: 116/250 [46%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
« Wielomian określony wzorem
P(x)=4x^3-3x^2-2x+1 przy
dzieleniu przez dwumian
x-0,5 daje resztę
r.
Wyznacz liczbę r.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11680 ⋅ Poprawnie: 45/79 [56%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Wyznacz resztę z dzielenia wielomianu określonego wzorem
W(x)=2\frac{2}{3}x^3-2x^2-2x-0,25 przez
dwumian
x+0,75.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 6. 1 pkt ⋅ Numer: pp-11681 ⋅ Poprawnie: 71/158 [44%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
« Wielomian określony wzorem
W(x)=x^5-3x^4+mx^3+6 przy
dzieleniu przez dwumian
x+1 daje resztę
0.
Wyznacz liczbę m.
Odpowiedź:
m=
(wpisz liczbę całkowitą)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-11683 ⋅ Poprawnie: 54/81 [66%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
Przy dzieleniu przez
P(x)=x-1 wielomian
W(x)=x^4+2x^3-5x^2-6mx+9 daje resztę
-20.
Oblicz m.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 1 pkt ⋅ Numer: pp-11679 ⋅ Poprawnie: 126/272 [46%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
Wyznacz tę wartość parametru
m, dla której wielomian
P(x)=6x^3-3x^2-5x+m-1 dzieli się bez reszty przez
dwumian
x-1.
Odpowiedź:
m=
(wpisz liczbę całkowitą)
|
Zadanie 9. 1 pkt ⋅ Numer: pp-11672 ⋅ Poprawnie: 149/202 [73%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
Wyrażenie
(3x+2)^3-(x-4)(x+4)
zapisane w postaci sumy algebraicznej ma postać
27x^3+mx^2+nx+24,
gdzie
m,n\in\mathbb{Z}.
Podaj liczby m i n.
Odpowiedzi:
|
Zadanie 10. 1 pkt ⋅ Numer: pp-11673 ⋅ Poprawnie: 100/138 [72%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Iloczyn wyrażenia
3x-4 przez wyrażenie
-9x^2-12x-16
jest równy
ax^3+bx+c, gdzie
a,b,c\in\mathbb{Z}.
Podaj liczby a, b i
c.
Odpowiedzi:
|
Zadanie 11. 1 pkt ⋅ Numer: pp-11674 ⋅ Poprawnie: 81/127 [63%] |
Rozwiąż |
Podpunkt 11.1 (1 pkt)
« Wyrażenie
27x^3+27y^3 jest równe
\left(3x+ay)\left(bx^2+cxy+9y^2\right).
Podaj liczby a, b i
c.
Odpowiedzi:
|
Zadanie 12. 1 pkt ⋅ Numer: pp-11678 ⋅ Poprawnie: 64/75 [85%] |
Rozwiąż |
Podpunkt 12.1 (1 pkt)
Wyrażenie
(\sqrt{7}-x)(x^2+7+\sqrt{7}x) jest równe
m\sqrt{n}+kx^3, gdzie
m,n,k\in\mathbb{Z}.
Podaj liczby m, n i
k.
Odpowiedzi: