Podgląd testu : lo2@sp-17-wielomiany-pp-5
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11551 ⋅ Poprawnie: 60/126 [47%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
« Dany jest wielomian
W(x)=P(x)+Q(x), gdzie
\begin{cases}
P(x)=(16m^4-4)x^5-6mx^3+5 \\
Q(x)=(7m^2-21)x^5-4mx^3+8
\end{cases}
.
Wyznacz iloczyn tych wszystkich wartości parametru m, dla
których st.P(x)=3 lub st.Q(x)=3.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11556 ⋅ Poprawnie: 537/607 [88%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Suma wielomianów W(x)=-2x^3+5x^2-3 oraz
P(x)=2x^3+12x wynosi:
Odpowiedzi:
|
A. 4x^3+5x^2+12x-3
|
B. 5x^2+12x-3
|
|
C. 4x^3+12x^2-3
|
D. 4x^6+5x^2+12x-3
|
|
Zadanie 3. 2 pkt ⋅ Numer: pp-11683 ⋅ Poprawnie: 54/81 [66%] |
Rozwiąż |
Podpunkt 3.1 (2 pkt)
Przy dzieleniu przez
P(x)=x-1 wielomian
W(x)=x^4+2x^3-5x^2-6mx+9 daje resztę
-2.
Oblicz m.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11679 ⋅ Poprawnie: 126/272 [46%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Wyznacz tę wartość parametru
m, dla której wielomian
P(x)=6x^3+4x^2-5x+m-1 dzieli się bez reszty przez
dwumian
x-1.
Odpowiedź:
m=
(wpisz liczbę całkowitą)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11674 ⋅ Poprawnie: 81/127 [63%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
« Wyrażenie
27x^3+27y^3 jest równe
\left(3x+ay)\left(bx^2+cxy+9y^2\right).
Podaj liczby a, b i
c.
Odpowiedzi:
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20966 ⋅ Poprawnie: 14/38 [36%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
« Liczba
p jest resztą z dzielenia wielomianu
W(x)=6x^3-4x^2 przez
x+3,
a liczba
q resztą z dzielnia tego wielomianu przez
x-2.
Oblicz |2p-q|.
Odpowiedź:
|2p-q|=
(wpisz liczbę całkowitą)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20996 ⋅ Poprawnie: 65/184 [35%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Pierwiastkiem wielomianu
W(x)=
-3x^3+22x^2-39x+20
jest liczba
5.
Wyznacz pozostałe pierwiastki tego wielomianu.
Podaj najmniejszy pierwiastek całkowity tego wielomianu.
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj najmniejszy pierwiastek niecałkowity tego wielomianu.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20988 ⋅ Poprawnie: 12/12 [100%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
Wielomian
W(x)=-x^4-2x^3+8x^2-5x-20 jest podzielny przez
wielomian
P(x)=ax+b, a wynikiem tego dzielenia jest wielomian
Q(x)=x^3-2x^2+5.
Wyznacz liczby a i b.
Odpowiedzi:
|
Zadanie 9. 2 pkt ⋅ Numer: pp-21040 ⋅ Poprawnie: 54/68 [79%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
Wielomiany
W(x)=(x^2-ax)^2-(x^2+bx)^2 oraz
P(x)=6x^3-3x^2
są równe.
Wyznacz liczby a i b.
Odpowiedzi:
|
Zadanie 10. 2 pkt ⋅ Numer: pp-21002 ⋅ Poprawnie: 26/66 [39%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
Iloczyn trzech liczb
a,
b i
c takich, że liczba
b jest o
3 większa od liczby
a, a
liczba
c jest o
1 mniejsza od
liczby
b, jest równy
90.
Wyznacz te liczby.
Odpowiedzi:
|
Zadanie 11. 4 pkt ⋅ Numer: pp-30399 ⋅ Poprawnie: 18/56 [32%] |
Rozwiąż |
Podpunkt 11.1 (2 pkt)
« Liczby
-2 i
-\frac{1}{2} są pierwiastkami
wielomianu
W(x)=2x^3+(a+b+2)x^2+(2a+5b+1)x-8.
Wyznacz parametry a i b.
Odpowiedzi:
Podpunkt 11.2 (2 pkt)
Wyznacz trzeci pierwiastek tego wielomianu.
Odpowiedź:
x_3=
(wpisz liczbę całkowitą)