Podgląd testu : lo2@sp-17-wielomiany-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-11472 ⋅ Poprawnie: 319/582 [54%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wielomian
P(x)=q-8+2x+px^2-2x^4 spełnia
warunki
\begin{cases}
P(-1)+P(1)=0 \\
P(-\sqrt{2})=-P(\sqrt{2})
\end{cases}
.
Podaj liczby p i q .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11552 ⋅ Poprawnie: 537/640 [83%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Pomnożono dwa wielomiany
G(x)=6+3x^2 i
H(x)=-2x^3+6x^2-8 i otrzymano wynik
P(x) .
Podaj stopień wielomianu P(x) .
Odpowiedź:
st.P(x)=
(wpisz liczbę całkowitą)
Zadanie 3. 2 pkt ⋅ Numer: pp-11683 ⋅ Poprawnie: 54/81 [66%]
Rozwiąż
Podpunkt 3.1 (2 pkt)
Przy dzieleniu przez
P(x)=x-1 wielomian
W(x)=x^4+2x^3-5x^2-6mx+9 daje resztę
-20 .
Oblicz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-11679 ⋅ Poprawnie: 126/272 [46%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wyznacz tę wartość parametru
m , dla której wielomian
P(x)=6x^3-x^2-5x+m-1 dzieli się bez reszty przez
dwumian
x-1 .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11675 ⋅ Poprawnie: 102/159 [64%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Zapisz wyrażenie
(2x-3)^3 w postaci
a_1x^3+b_1x^2+c_1x+d_1 .
Podaj liczby b_1 i c_1 .
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pp-20971 ⋅ Poprawnie: 17/42 [40%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
r=3
» Wielomian
W(x)=x^4+a^2x^3+ax^2-x+3 przy
dzieleniu przez dwumian
x-1 daje resztę
3 .
Podaj najmniejsze możliwe a .
Odpowiedź:
a_{min}=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe
a .
Odpowiedź:
a_{max}=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20997 ⋅ Poprawnie: 12/17 [70%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Wielomian
W(x)=4x^3+6(m-5)x^2+(4m-18)x-12
jest podzielny przez dwumian
P(x)=x+2 .
Wyznacz parametr m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj najmniejszy i największy pierwiastek tego wielomianu.
Odpowiedzi:
Zadanie 8. 3 pkt ⋅ Numer: pp-20978 ⋅ Poprawnie: 55/89 [61%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Rozwiąż równanie
x^3+6x^2-20x-120=0 .
Podaj rozwiązanie całkowite tego równania.
Odpowiedź:
x_{Z}=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj najmniejsze rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
min_{\not\in\mathbb{Z}}=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 8.3 (1 pkt)
Podaj największe rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
max_{\not\in\mathbb{Z}}=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20964 ⋅ Poprawnie: 8/10 [80%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Wyrażenie
\frac{4\cdot xy}{xy+3y^2}:\frac{x^2}{x^2+6xy+9y^2}
można przekształcić do postaci
a+b\cdot \frac{y}{x} , gdzie
a i
b są
liczbami całkowitymi.
Podaj liczbę a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-21006 ⋅ Poprawnie: 16/23 [69%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Podstawą pudełka w kształcie prostopadłościanu o objętości
V=0.9 litrów jest kwadrat, którego krawędź jest
o
1 dłuższa od wysokości
h tego prostopadłościanu.
Wyznacz długość krawędzi podstawy a i wysokości
tego prostopadłościanu.
Odpowiedzi:
Zadanie 11. 4 pkt ⋅ Numer: pp-30400 ⋅ Poprawnie: 8/14 [57%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
Wielomian
W(x)=-6x^3+bx^2+cx+32 jest podzielny przez
trójmian
P(x)=-6x^2-2x+4 .
Podaj wartość parametru b .
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Podaj wartość parametru
c .
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
Podaj najmniejszy pierwiastek całkowity tego wielomianu.
Odpowiedź:
x_{min\{Z\}}=
(wpisz liczbę całkowitą)
Rozwiąż