Podgląd testu : lo2@sp-17-wielomiany-pp-5
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11551 ⋅ Poprawnie: 60/126 [47%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
« Dany jest wielomian
W(x)=P(x)+Q(x), gdzie
\begin{cases}
P(x)=(16m^4-4)x^5-6mx^3+5 \\
Q(x)=(6m^2-18)x^5-4mx^3+8
\end{cases}
.
Wyznacz iloczyn tych wszystkich wartości parametru m, dla
których st.P(x)=3 lub st.Q(x)=3.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11552 ⋅ Poprawnie: 537/640 [83%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Pomnożono dwa wielomiany
G(x)=6+3x^2 i
H(x)=-2x^3+6x^2-8 i otrzymano wynik
P(x).
Podaj stopień wielomianu P(x).
Odpowiedź:
st.P(x)=
(wpisz liczbę całkowitą)
|
Zadanie 3. 2 pkt ⋅ Numer: pp-11683 ⋅ Poprawnie: 54/81 [66%] |
Rozwiąż |
Podpunkt 3.1 (2 pkt)
Przy dzieleniu przez
P(x)=x-1 wielomian
W(x)=x^4+2x^3-5x^2-6mx+9 daje resztę
4.
Oblicz m.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11679 ⋅ Poprawnie: 126/272 [46%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Wyznacz tę wartość parametru
m, dla której wielomian
P(x)=6x^3+2x^2-5x+m-1 dzieli się bez reszty przez
dwumian
x-1.
Odpowiedź:
m=
(wpisz liczbę całkowitą)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11678 ⋅ Poprawnie: 64/75 [85%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Wyrażenie
(\sqrt{11}-x)(x^2+11+\sqrt{11}x) jest równe
m\sqrt{n}+kx^3, gdzie
m,n,k\in\mathbb{Z}.
Podaj liczby m, n i
k.
Odpowiedzi:
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20993 ⋅ Poprawnie: 18/31 [58%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
« Wielomian
W(x)=
-2x^4-5x^3+5x^2+3x-2
jest podzielny przez dwumian
P(x)=-2x+1, a wynikiem tego dzielenia jest wielomian
Q(x)=ax^3+bx^2+cx+d.
Wyznacz współczynniki a i b
Odpowiedzi:
Podpunkt 6.2 (1 pkt)
Wyznacz współczynniki
c i
d
Odpowiedzi:
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20998 ⋅ Poprawnie: 21/89 [23%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Wyznacz wszystkie pierwiastki wielomianu
P(x)=x^3-4x^2-3x+12.
Podaj najmniejszy z jego pierwiastków.
Odpowiedź:
Podpunkt 7.2 (1 pkt)
Podaj największy z jego pierwiastków.
Odpowiedź:
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20985 ⋅ Poprawnie: 8/12 [66%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
Wielomian
W(x)=-3x^3+(3a+b+11)x^2-(4a+9b+53)x+30 jest podzielny przez
wielomian
P(x)=-3x+5, a wynikiem tego dzielenia jest wielomian
Q(x)=x^2-4x+6.
Wyznacz liczbę a.
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20981 ⋅ Poprawnie: 21/61 [34%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
Wielomiany
W(x)-F(x), gdzie
W(x)=x^3+(a-2)x^2+3x+1 i
F(x)=2x^2+(b+1)x-4, oraz
H(x)=x^3-7x^2+8x+5 są równe.
Wyznacz liczby a i b.
Odpowiedzi:
|
Zadanie 10. 2 pkt ⋅ Numer: pp-21002 ⋅ Poprawnie: 26/66 [39%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
Iloczyn trzech liczb
a,
b i
c takich, że liczba
b jest o
4 większa od liczby
a, a
liczba
c jest o
1 mniejsza od
liczby
b, jest równy
-4.
Wyznacz te liczby.
Odpowiedzi:
|
Zadanie 11. 4 pkt ⋅ Numer: pp-30400 ⋅ Poprawnie: 8/14 [57%] |
Rozwiąż |
Podpunkt 11.1 (2 pkt)
Wielomian
W(x)=-3x^3+bx^2+cx+20 jest podzielny przez
trójmian
P(x)=-3x^2+17x-10.
Podaj wartość parametru b.
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Podaj wartość parametru
c.
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
Podaj najmniejszy pierwiastek całkowity tego wielomianu.
Odpowiedź:
x_{min\{Z\}}=
(wpisz liczbę całkowitą)