Podgląd testu : lo2@sp-17-wielomiany-pp-5
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11472 ⋅ Poprawnie: 319/582 [54%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Wielomian
P(x)=q+2+2x+px^2-2x^4 spełnia
warunki
\begin{cases}
P(-1)+P(1)=0 \\
P(-\sqrt{2})=-P(\sqrt{2})
\end{cases}
.
Podaj liczby p i q.
Odpowiedzi:
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11552 ⋅ Poprawnie: 537/640 [83%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Pomnożono dwa wielomiany
G(x)=6+3x^2 i
H(x)=-2x^3+6x^2-8 i otrzymano wynik
P(x).
Podaj stopień wielomianu P(x).
Odpowiedź:
st.P(x)=
(wpisz liczbę całkowitą)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11682 ⋅ Poprawnie: 116/250 [46%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
« Wielomian określony wzorem
P(x)=4x^3-3x^2-5x+1 przy
dzieleniu przez dwumian
x-0,5 daje resztę
r.
Wyznacz liczbę r.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11679 ⋅ Poprawnie: 126/272 [46%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Wyznacz tę wartość parametru
m, dla której wielomian
P(x)=6x^3-6x^2-5x+m-1 dzieli się bez reszty przez
dwumian
x-1.
Odpowiedź:
m=
(wpisz liczbę całkowitą)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11676 ⋅ Poprawnie: 72/101 [71%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Oblicz wartość wyrażenia algebraicznego
w=(3\sqrt{7}-1)^3.
Odpowiedź:
w=
+
\cdot
√
(wpisz trzy liczby całkowite)
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20969 ⋅ Poprawnie: 34/61 [55%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
« Wielomian
W(x)=x^3+2x^2+mx-5
przy dzieleniu przez dwumian
x-2 daje resztę
20.
Oblicz wartość parametru m.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20997 ⋅ Poprawnie: 12/17 [70%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Wielomian
W(x)=4x^3+6(m+1)x^2+(4m+6)x-12
jest podzielny przez dwumian
P(x)=x+2.
Wyznacz parametr m.
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj najmniejszy i największy pierwiastek tego wielomianu.
Odpowiedzi:
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20984 ⋅ Poprawnie: 74/156 [47%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
« Wielomian
W(x)=-10x^3+17x^2+ax+b jest podzielny przez
wielomian
P(x)=1-2x, a wynikiem tego dzielenia jest wielomian
Q(x)=5x^2-6x+6.
Wyznacz współczynnik a.
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-21039 ⋅ Poprawnie: 17/22 [77%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
«Wielomiany
W(x)-F(x), gdzie
W(x)=2x^3+(a-4)x^2+5x-3 i
F(x)=x^3-5x^2+(b+4)x+4, oraz
H(x)=x^3+2x^2+4x-7 są równe.
Wyznacz liczby a i b.
Odpowiedzi:
|
Zadanie 10. 2 pkt ⋅ Numer: pp-21009 ⋅ Poprawnie: 24/62 [38%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
Iloczyn trzech kolejnych liczb nieparzystych jest o
2041 większy od różnicy kwadratów liczby największej i najmniejszej.
Znajdź te liczby.
Podaj najmniejszą z tych liczb.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
|
Zadanie 11. 4 pkt ⋅ Numer: pp-30400 ⋅ Poprawnie: 8/14 [57%] |
Rozwiąż |
Podpunkt 11.1 (2 pkt)
Wielomian
W(x)=3x^3+bx^2+cx+72 jest podzielny przez
trójmian
P(x)=3x^2-20x+12.
Podaj wartość parametru b.
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Podaj wartość parametru
c.
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
Podaj najmniejszy pierwiastek całkowity tego wielomianu.
Odpowiedź:
x_{min\{Z\}}=
(wpisz liczbę całkowitą)