Podgląd testu : lo2@sp-17-wielomiany-pp-5
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11551 ⋅ Poprawnie: 60/126 [47%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
« Dany jest wielomian
W(x)=P(x)+Q(x), gdzie
\begin{cases}
P(x)=(16m^4-4)x^5-6mx^3+5 \\
Q(x)=(11m^2-22)x^5-4mx^3+8
\end{cases}
.
Wyznacz iloczyn tych wszystkich wartości parametru m, dla
których st.P(x)=3 lub st.Q(x)=3.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11552 ⋅ Poprawnie: 537/640 [83%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Pomnożono dwa wielomiany
G(x)=6+3x^2 i
H(x)=-2x^3+6x^2-8 i otrzymano wynik
P(x).
Podaj stopień wielomianu P(x).
Odpowiedź:
st.P(x)=
(wpisz liczbę całkowitą)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11682 ⋅ Poprawnie: 116/250 [46%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
« Wielomian określony wzorem
P(x)=4x^3-3x^2-4x+1 przy
dzieleniu przez dwumian
x-0,5 daje resztę
r.
Wyznacz liczbę r.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11679 ⋅ Poprawnie: 126/272 [46%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Wyznacz tę wartość parametru
m, dla której wielomian
P(x)=6x^3-6x^2-5x+m-1 dzieli się bez reszty przez
dwumian
x-1.
Odpowiedź:
m=
(wpisz liczbę całkowitą)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11677 ⋅ Poprawnie: 44/61 [72%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Zapisz wyrażenie
(3x-7)^2x+(7-3x)x^2-(3x-7) w postaci iloczynu
dwóch wyrażeń w postaci
(a_1x^2+b_1x+c_1)(ax+d_1).
Podaj sumę a_1+b_1+c_1.
Odpowiedź:
a_1+b_1+c_1=
(wpisz liczbę całkowitą)
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20994 ⋅ Poprawnie: 29/73 [39%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
W wyniku podzielenia wielomianu
W(x)=
-x^3+4x^2-4x-4
przez dwumian
P(x)=x-1, otrzymamy wynik dzielenia
Q(x)=ax^2+bx+c i resztę
r.
Wyznacz współczynniki a, b i c.
Odpowiedzi:
Podpunkt 6.2 (1 pkt)
Podaj resztę
r z tego dzielenia.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20995 ⋅ Poprawnie: 57/176 [32%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Wielomian
W(x)=
5x^3-\frac{35}{2}x^2-\frac{175}{2}x+250
jest podzielny przez dwumian
P(x)=x-5.
Wyznacz pierwiastki tego wielomianu.
Podaj najmniejszy pierwiastek tego wielomianu.
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj pierwiastek niecałkowity tego wielomianu.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20989 ⋅ Poprawnie: 7/11 [63%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
Wielomian
W(x)=(8x^3-27)(9x-6) jest podzielny przez
wielomian
P(x)=4x^2+6x+9, a wynikiem tego dzielenia jest wielomian
Q(x)=ax^2+bx+c.
Wyznacz liczby a, b i c.
Odpowiedzi:
|
Zadanie 9. 2 pkt ⋅ Numer: pp-21040 ⋅ Poprawnie: 54/68 [79%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
Wielomiany
W(x)=(x^2-ax)^2-(x^2+bx)^2 oraz
P(x)=-2x^3-9x^2
są równe.
Wyznacz liczby a i b.
Odpowiedzi:
|
Zadanie 10. 2 pkt ⋅ Numer: pp-21009 ⋅ Poprawnie: 24/62 [38%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
Iloczyn trzech kolejnych liczb nieparzystych jest o
4709 większy od różnicy kwadratów liczby największej i najmniejszej.
Znajdź te liczby.
Podaj najmniejszą z tych liczb.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
|
Zadanie 11. 4 pkt ⋅ Numer: pp-30400 ⋅ Poprawnie: 8/14 [57%] |
Rozwiąż |
Podpunkt 11.1 (2 pkt)
Wielomian
W(x)=9x^3+bx^2+cx+288 jest podzielny przez
trójmian
P(x)=9x^2-78x+48.
Podaj wartość parametru b.
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Podaj wartość parametru
c.
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
Podaj najmniejszy pierwiastek całkowity tego wielomianu.
Odpowiedź:
x_{min\{Z\}}=
(wpisz liczbę całkowitą)