Podgląd testu : lo2@sp-17-wielomiany-pp-5
Zadanie 1. (1 pkt) |
[ ⇒ Dodaj do testu ] Numer zadania: pp-11551
|
Podpunkt 1.1 (1 pkt)
« Dany jest wielomian
W(x)=P(x)+Q(x), gdzie
\begin{cases}
P(x)=(16m^4-4)x^5-6mx^3+5 \\
Q(x)=(4m^2-16)x^5-4mx^3+8
\end{cases}
.
Wyznacz iloczyn tych wszystkich wartości parametru m, dla
których st.P(x)=3 lub st.Q(x)=3.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 2. (1 pkt) |
[ ⇒ Dodaj do testu ] Numer zadania: pp-11552
|
Podpunkt 2.1 (1 pkt)
Pomnożono dwa wielomiany
G(x)=6+3x^2 i
H(x)=-2x^3+6x^2-8 i otrzymano wynik
P(x).
Podaj stopień wielomianu P(x).
Odpowiedź:
st.P(x)=
(wpisz liczbę całkowitą)
Zadanie 3. (2 pkt) |
[ ⇒ Dodaj do testu ] Numer zadania: pp-11683
|
Podpunkt 3.1 (2 pkt)
Przy dzieleniu przez
P(x)=x-1 wielomian
W(x)=x^4+2x^3-5x^2-6mx+9 daje resztę
-20.
Oblicz m.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. (1 pkt) |
[ ⇒ Dodaj do testu ] Numer zadania: pp-11679
|
Podpunkt 4.1 (1 pkt)
Wyznacz tę wartość parametru
m, dla której wielomian
P(x)=6x^3-2x^2-5x+m-1 dzieli się bez reszty przez
dwumian
x-1.
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 5. (1 pkt) |
[ ⇒ Dodaj do testu ] Numer zadania: pp-11678
|
Podpunkt 5.1 (1 pkt)
Wyrażenie
(\sqrt{2}-x)(x^2+2+\sqrt{2}x) jest równe
m\sqrt{n}+kx^3, gdzie
m,n,k\in\mathbb{Z}.
Podaj liczby m, n i
k.
Odpowiedzi:
Zadanie 6. (2 pkt) |
[ ⇒ Dodaj do testu ] Numer zadania: pp-20971
|
Podpunkt 6.1 (1 pkt)
r=59
» Wielomian
W(x)=x^4+a^2x^3+ax^2-x+3 przy
dzieleniu przez dwumian
x-1 daje resztę
59.
Podaj najmniejsze możliwe a.
Odpowiedź:
a_{min}=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe
a.
Odpowiedź:
a_{max}=
(wpisz liczbę całkowitą)
Zadanie 7. (2 pkt) |
[ ⇒ Dodaj do testu ] Numer zadania: pp-20996
|
Podpunkt 7.1 (1 pkt)
Pierwiastkiem wielomianu
W(x)=
-6x^3+46x^2-90x+50
jest liczba
5.
Wyznacz pozostałe pierwiastki tego wielomianu.
Podaj najmniejszy pierwiastek całkowity tego wielomianu.
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj najmniejszy pierwiastek niecałkowity tego wielomianu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. (3 pkt) |
[ ⇒ Dodaj do testu ] Numer zadania: pp-20979
|
Podpunkt 8.1 (1 pkt)
Rozwiąż równanie
-x^3-2x^2+28x+56=0.
Podaj rozwiązanie całkowite tego równania.
Odpowiedź:
x_{\mathbb{Z}}=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj najmniejsze rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
min_{\not\in\mathbb{Z}}=
\cdot√
(wpisz dwie liczby całkowite)
Podpunkt 8.3 (1 pkt)
Podaj największe rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
max_{\not\in\mathbb{Z}}=
\cdot√
(wpisz dwie liczby całkowite)
Zadanie 9. (2 pkt) |
[ ⇒ Dodaj do testu ] Numer zadania: pp-20964
|
Podpunkt 9.1 (1 pkt)
Wyrażenie
\frac{4\cdot xy}{xy+3y^2}:\frac{x^2}{x^2+6xy+9y^2}
można przekształcić do postaci
a+b\cdot \frac{y}{x}, gdzie
a i
b są
liczbami całkowitymi.
Podaj liczbę a.
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 10. (2 pkt) |
[ ⇒ Dodaj do testu ] Numer zadania: pp-21002
|
Podpunkt 10.1 (2 pkt)
Iloczyn trzech liczb
a,
b i
c takich, że liczba
b jest o
3 większa od liczby
a, a
liczba
c jest o
1 mniejsza od
liczby
b, jest równy
-2.
Wyznacz te liczby.
Odpowiedzi:
Zadanie 11. (4 pkt) |
[ ⇒ Dodaj do testu ] Numer zadania: pp-30399
|
Podpunkt 11.1 (2 pkt)
« Liczby
-2 i
-\frac{1}{2} są pierwiastkami
wielomianu
W(x)=2x^3+(a+b-2)x^2+(2a+5b-7)x-8.
Wyznacz parametry a i b.
Odpowiedzi:
Podpunkt 11.2 (2 pkt)
Wyznacz trzeci pierwiastek tego wielomianu.
Odpowiedź:
x_3=
(wpisz liczbę całkowitą)