Podgląd testu : lo2@sp-17-wielomiany-pp-5
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11471 ⋅ Poprawnie: 371/684 [54%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
«« Wielomian
P(x)=(m-4)x^2+\sqrt{2}x^4-\sqrt{2}+1 spełnia
warunek
4\cdot P(1)+3\sqrt{2}=P(\sqrt{2}) gdy
m=..........
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11556 ⋅ Poprawnie: 537/607 [88%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Suma wielomianów W(x)=-2x^3+5x^2-3 oraz
P(x)=2x^3+12x wynosi:
Odpowiedzi:
|
A. 5x^2+12x-3
|
B. 4x^3+5x^2+12x-3
|
|
C. 4x^3+12x^2-3
|
D. 4x^6+5x^2+12x-3
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11680 ⋅ Poprawnie: 45/79 [56%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Wyznacz resztę z dzielenia wielomianu określonego wzorem
W(x)=2\frac{2}{3}x^3-2x^2-4x-0,25 przez
dwumian
x+0,75.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11679 ⋅ Poprawnie: 126/272 [46%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Wyznacz tę wartość parametru
m, dla której wielomian
P(x)=6x^3-6x^2-5x+m-1 dzieli się bez reszty przez
dwumian
x-1.
Odpowiedź:
m=
(wpisz liczbę całkowitą)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11674 ⋅ Poprawnie: 81/127 [63%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
« Wyrażenie
8x^3+y^3 jest równe
\left(2x+ay)\left(bx^2+cxy+y^2\right).
Podaj liczby a, b i
c.
Odpowiedzi:
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20968 ⋅ Poprawnie: 14/57 [24%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Wielomian
W(x)=x^3+ax^2+bx+1 dla argumentu
2 przyjmuje wartość
9
oraz przy dzieleniu przez dwumian
x-3 daje
resztę
-2.
Podaj a.
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-21000 ⋅ Poprawnie: 28/35 [80%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
Wyznacz całkowite pierwiastki wielomianu
W(x)=
x^3+x^2-x-1.
Podaj najmniejszy i największy pierwiastek całkowity tego wielomianu.
Odpowiedzi:
|
Zadanie 8. 3 pkt ⋅ Numer: pp-20978 ⋅ Poprawnie: 55/89 [61%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
Rozwiąż równanie
x^3+3x^2-12x-36=0.
Podaj rozwiązanie całkowite tego równania.
Odpowiedź:
x_{Z}=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj najmniejsze rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
min_{\not\in\mathbb{Z}}=
\cdot√
(wpisz dwie liczby całkowite)
Podpunkt 8.3 (1 pkt)
Podaj największe rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
max_{\not\in\mathbb{Z}}=
\cdot√
(wpisz dwie liczby całkowite)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20980 ⋅ Poprawnie: 90/162 [55%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
Wielomiany
W(x)=2ax(2x-b)^2 oraz
P(x)=-16x^3-64x^2-64x
są równe.
Wyznacz liczby a i b.
Odpowiedzi:
|
Zadanie 10. 2 pkt ⋅ Numer: pp-21009 ⋅ Poprawnie: 24/62 [38%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
Iloczyn trzech kolejnych liczb nieparzystych jest o
621 większy od różnicy kwadratów liczby największej i najmniejszej.
Znajdź te liczby.
Podaj najmniejszą z tych liczb.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
|
Zadanie 11. 4 pkt ⋅ Numer: pp-30400 ⋅ Poprawnie: 8/14 [57%] |
Rozwiąż |
Podpunkt 11.1 (2 pkt)
Wielomian
W(x)=6x^3+bx^2+cx+12 jest podzielny przez
trójmian
P(x)=6x^2-22x+12.
Podaj wartość parametru b.
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Podaj wartość parametru
c.
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
Podaj najmniejszy pierwiastek całkowity tego wielomianu.
Odpowiedź:
x_{min\{Z\}}=
(wpisz liczbę całkowitą)