Podgląd testu : lo2@sp-17-wielomiany-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-11551 ⋅ Poprawnie: 60/126 [47%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Dany jest wielomian
W(x)=P(x)+Q(x) , gdzie
\begin{cases}
P(x)=(16m^4-4)x^5-6mx^3+5 \\
Q(x)=(14m^2-28)x^5-4mx^3+8
\end{cases}
.
Wyznacz iloczyn tych wszystkich wartości parametru m , dla
których st.P(x)=3 lub st.Q(x)=3 .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 2. 1 pkt ⋅ Numer: pp-11556 ⋅ Poprawnie: 537/607 [88%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Suma wielomianów W(x)=-2x^3+5x^2-3 oraz
P(x)=2x^3+12x wynosi:
Odpowiedzi:
A. 4x^3+12x^2-3
B. 4x^6+5x^2+12x-3
C. 4x^3+5x^2+12x-3
D. 5x^2+12x-3
Zadanie 3. 1 pkt ⋅ Numer: pp-11680 ⋅ Poprawnie: 45/79 [56%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wyznacz resztę z dzielenia wielomianu określonego wzorem
W(x)=2\frac{2}{3}x^3-2x^2+3x-0,25 przez
dwumian
x+0,75 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-11679 ⋅ Poprawnie: 126/272 [46%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wyznacz tę wartość parametru
m , dla której wielomian
P(x)=6x^3+5x^2-5x+m-1 dzieli się bez reszty przez
dwumian
x-1 .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11677 ⋅ Poprawnie: 44/61 [72%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Zapisz wyrażenie
(8x-7)^2x+(7-8x)x^2-(8x-7) w postaci iloczynu
dwóch wyrażeń w postaci
(a_1x^2+b_1x+c_1)(ax+d_1) .
Podaj sumę a_1+b_1+c_1 .
Odpowiedź:
a_1+b_1+c_1=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20968 ⋅ Poprawnie: 14/57 [24%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Wielomian
W(x)=x^3+ax^2+bx+1 dla argumentu
2 przyjmuje wartość
9
oraz przy dzieleniu przez dwumian
x-3 daje
resztę
16 .
Podaj a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20973 ⋅ Poprawnie: 84/156 [53%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Oblicz sumę wszystkich pierwiastków wielomianu
P(x)=(18x^3-26x^2+8x)(x^2-11) .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20985 ⋅ Poprawnie: 8/12 [66%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Wielomian
W(x)=-3x^3+(3a+b+22)x^2-(4a+9b+83)x+30 jest podzielny przez
wielomian
P(x)=-3x+5 , a wynikiem tego dzielenia jest wielomian
Q(x)=x^2-4x+6 .
Wyznacz liczbę a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-21039 ⋅ Poprawnie: 17/22 [77%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
«Wielomiany
W(x)-F(x) , gdzie
W(x)=2x^3+(a+3)x^2+5x-3 i
F(x)=x^3-5x^2+(b+5)x+4 , oraz
H(x)=x^3+2x^2+4x-7 są równe.
Wyznacz liczby a i b .
Odpowiedzi:
Zadanie 10. 2 pkt ⋅ Numer: pp-21007 ⋅ Poprawnie: 24/62 [38%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Krawędzie akwarium w kształcie prostopadłościanu wychodzące z jednego wierzchołka mają długość
3 ,
5 i
2 . Inne
akwarium prostopadłościenne, którego każda krawędz jest dłuższa o ten sam odcinek od odpowiednich
krawędzi pierwszego akwarium, ma pojemność o
110
większą od pierwszego akwarium.
Wyznacz długość dwóch najkrótszych boków nowe zbudowanego akwarium.
Odpowiedzi:
Zadanie 11. 4 pkt ⋅ Numer: pp-30400 ⋅ Poprawnie: 8/14 [57%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
Wielomian
W(x)=-9x^3+bx^2+cx+210 jest podzielny przez
trójmian
P(x)=-9x^2+69x-42 .
Podaj wartość parametru b .
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Podaj wartość parametru
c .
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
Podaj najmniejszy pierwiastek całkowity tego wielomianu.
Odpowiedź:
x_{min\{Z\}}=
(wpisz liczbę całkowitą)
Rozwiąż