Podgląd testu : lo2@sp-17-wielomiany-pp-5
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11551 ⋅ Poprawnie: 60/126 [47%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
« Dany jest wielomian
W(x)=P(x)+Q(x), gdzie
\begin{cases}
P(x)=(16m^4-4)x^5-6mx^3+5 \\
Q(x)=(2m^2-8)x^5-4mx^3+8
\end{cases}
.
Wyznacz iloczyn tych wszystkich wartości parametru m, dla
których st.P(x)=3 lub st.Q(x)=3.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11556 ⋅ Poprawnie: 537/607 [88%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Suma wielomianów W(x)=-2x^3+5x^2-3 oraz
P(x)=2x^3+12x wynosi:
Odpowiedzi:
|
A. 4x^3+5x^2+12x-3
|
B. 4x^3+12x^2-3
|
|
C. 5x^2+12x-3
|
D. 4x^6+5x^2+12x-3
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11682 ⋅ Poprawnie: 116/250 [46%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
« Wielomian określony wzorem
P(x)=4x^3-3x^2+x+1 przy
dzieleniu przez dwumian
x-0,5 daje resztę
r.
Wyznacz liczbę r.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11679 ⋅ Poprawnie: 126/272 [46%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Wyznacz tę wartość parametru
m, dla której wielomian
P(x)=6x^3+2x^2-5x+m-1 dzieli się bez reszty przez
dwumian
x-1.
Odpowiedź:
m=
(wpisz liczbę całkowitą)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11674 ⋅ Poprawnie: 81/127 [63%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
« Wyrażenie
27x^3+64y^3 jest równe
\left(3x+ay)\left(bx^2+cxy+16y^2\right).
Podaj liczby a, b i
c.
Odpowiedzi:
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20990 ⋅ Poprawnie: 48/76 [63%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
Wielomian
W(x)=2x^3+3x^2+15x+7
jest podzielny przez dwumian
P(x)=x+\frac{1}{2}, a wynikiem tego dzielenia jest wielomian
Q(x)=ax^2+bx+c.
Wyznacz współczynniki a, b i c.
Odpowiedzi:
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20973 ⋅ Poprawnie: 84/156 [53%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
« Oblicz sumę wszystkich pierwiastków wielomianu
P(x)=(18x^3-7x^2+0x)(x^2-15).
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20987 ⋅ Poprawnie: 5/9 [55%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
Wielomian
W(x)=4x^3+4x^2+9x+4 jest podzielny przez
wielomian
P(x)=ax+b, a wynikiem tego dzielenia jest wielomian
Q(x)=2x^2+x+4.
Wyznacz liczby a i b.
Odpowiedzi:
|
Zadanie 9. 2 pkt ⋅ Numer: pp-21040 ⋅ Poprawnie: 54/68 [79%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
Wielomiany
W(x)=(x^2-ax)^2-(x^2+bx)^2 oraz
P(x)=-14x^3+21x^2
są równe.
Wyznacz liczby a i b.
Odpowiedzi:
|
Zadanie 10. 2 pkt ⋅ Numer: pp-21009 ⋅ Poprawnie: 24/62 [38%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
Iloczyn trzech kolejnych liczb nieparzystych jest o
2041 większy od różnicy kwadratów liczby największej i najmniejszej.
Znajdź te liczby.
Podaj najmniejszą z tych liczb.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
|
Zadanie 11. 4 pkt ⋅ Numer: pp-30399 ⋅ Poprawnie: 18/56 [32%] |
Rozwiąż |
Podpunkt 11.1 (2 pkt)
« Liczby
-2 i
-\frac{1}{2} są pierwiastkami
wielomianu
W(x)=2x^3+(a+b+3)x^2+(2a+5b+9)x-8.
Wyznacz parametry a i b.
Odpowiedzi:
Podpunkt 11.2 (2 pkt)
Wyznacz trzeci pierwiastek tego wielomianu.
Odpowiedź:
x_3=
(wpisz liczbę całkowitą)