Podgląd testu : lo2@sp-17-wielomiany-pp-5
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11471 ⋅ Poprawnie: 371/684 [54%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
«« Wielomian
P(x)=(m+8)x^2+\sqrt{2}x^4-\sqrt{2}+1 spełnia
warunek
4\cdot P(1)+3\sqrt{2}=P(\sqrt{2}) gdy
m=..........
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11552 ⋅ Poprawnie: 537/640 [83%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Pomnożono dwa wielomiany
G(x)=6+3x^2 i
H(x)=-2x^3+6x^2-8 i otrzymano wynik
P(x).
Podaj stopień wielomianu P(x).
Odpowiedź:
st.P(x)=
(wpisz liczbę całkowitą)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11681 ⋅ Poprawnie: 71/158 [44%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
« Wielomian określony wzorem
W(x)=x^5-3x^4+mx^3+6 przy
dzieleniu przez dwumian
x-1 daje resztę
10.
Wyznacz liczbę m.
Odpowiedź:
m=
(wpisz liczbę całkowitą)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11679 ⋅ Poprawnie: 126/272 [46%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Wyznacz tę wartość parametru
m, dla której wielomian
P(x)=6x^3+6x^2-5x+m-1 dzieli się bez reszty przez
dwumian
x-1.
Odpowiedź:
m=
(wpisz liczbę całkowitą)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11672 ⋅ Poprawnie: 149/202 [73%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Wyrażenie
(3x+4)^3-(x-7)(x+7)
zapisane w postaci sumy algebraicznej ma postać
27x^3+mx^2+nx+113,
gdzie
m,n\in\mathbb{Z}.
Podaj liczby m i n.
Odpowiedzi:
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20990 ⋅ Poprawnie: 48/76 [63%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
Wielomian
W(x)=8x^3+12x^2-4x-4
jest podzielny przez dwumian
P(x)=x+\frac{1}{2}, a wynikiem tego dzielenia jest wielomian
Q(x)=ax^2+bx+c.
Wyznacz współczynniki a, b i c.
Odpowiedzi:
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20997 ⋅ Poprawnie: 12/17 [70%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Wielomian
W(x)=4x^3+6(m+1)x^2+(4m+6)x-12
jest podzielny przez dwumian
P(x)=x+2.
Wyznacz parametr m.
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj najmniejszy i największy pierwiastek tego wielomianu.
Odpowiedzi:
|
Zadanie 8. 3 pkt ⋅ Numer: pp-20979 ⋅ Poprawnie: 23/44 [52%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
Rozwiąż równanie
-x^3+6x^2+32x-192=0.
Podaj rozwiązanie całkowite tego równania.
Odpowiedź:
x_{\mathbb{Z}}=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj najmniejsze rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
min_{\not\in\mathbb{Z}}=
\cdot√
(wpisz dwie liczby całkowite)
Podpunkt 8.3 (1 pkt)
Podaj największe rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
max_{\not\in\mathbb{Z}}=
\cdot√
(wpisz dwie liczby całkowite)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20980 ⋅ Poprawnie: 90/162 [55%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
Wielomiany
W(x)=2ax(2x-b)^2 oraz
P(x)=8x^3-32x^2+32x
są równe.
Wyznacz liczby a i b.
Odpowiedzi:
|
Zadanie 10. 2 pkt ⋅ Numer: pp-21002 ⋅ Poprawnie: 26/66 [39%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
Iloczyn trzech liczb
a,
b i
c takich, że liczba
b jest o
4 większa od liczby
a, a
liczba
c jest o
1 mniejsza od
liczby
b, jest równy
20.
Wyznacz te liczby.
Odpowiedzi:
|
Zadanie 11. 4 pkt ⋅ Numer: pp-30399 ⋅ Poprawnie: 18/56 [32%] |
Rozwiąż |
Podpunkt 11.1 (2 pkt)
« Liczby
-2 i
-\frac{1}{2} są pierwiastkami
wielomianu
W(x)=2x^3+(a+b+5)x^2+(2a+5b+22)x-8.
Wyznacz parametry a i b.
Odpowiedzi:
Podpunkt 11.2 (2 pkt)
Wyznacz trzeci pierwiastek tego wielomianu.
Odpowiedź:
x_3=
(wpisz liczbę całkowitą)