Podgląd testu : lo2@sp-17-wielomiany-pp-5
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11551 ⋅ Poprawnie: 60/126 [47%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
« Dany jest wielomian
W(x)=P(x)+Q(x), gdzie
\begin{cases}
P(x)=(16m^4-4)x^5-6mx^3+5 \\
Q(x)=(9m^2-27)x^5-4mx^3+8
\end{cases}
.
Wyznacz iloczyn tych wszystkich wartości parametru m, dla
których st.P(x)=3 lub st.Q(x)=3.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11552 ⋅ Poprawnie: 537/640 [83%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Pomnożono dwa wielomiany
G(x)=6+3x^2 i
H(x)=-2x^3+6x^2-8 i otrzymano wynik
P(x).
Podaj stopień wielomianu P(x).
Odpowiedź:
st.P(x)=
(wpisz liczbę całkowitą)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11681 ⋅ Poprawnie: 71/158 [44%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
« Wielomian określony wzorem
W(x)=x^5-3x^4+mx^3+6 przy
dzieleniu przez dwumian
x-1 daje resztę
7.
Wyznacz liczbę m.
Odpowiedź:
m=
(wpisz liczbę całkowitą)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11679 ⋅ Poprawnie: 126/272 [46%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Wyznacz tę wartość parametru
m, dla której wielomian
P(x)=6x^3+6x^2-5x+m-1 dzieli się bez reszty przez
dwumian
x-1.
Odpowiedź:
m=
(wpisz liczbę całkowitą)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11677 ⋅ Poprawnie: 44/61 [72%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Zapisz wyrażenie
(8x-4)^2x+(4-8x)x^2-(8x-4) w postaci iloczynu
dwóch wyrażeń w postaci
(a_1x^2+b_1x+c_1)(ax+d_1).
Podaj sumę a_1+b_1+c_1.
Odpowiedź:
a_1+b_1+c_1=
(wpisz liczbę całkowitą)
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20990 ⋅ Poprawnie: 48/76 [63%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
Wielomian
W(x)=4x^3-12x^2-17x-5
jest podzielny przez dwumian
P(x)=x+\frac{1}{2}, a wynikiem tego dzielenia jest wielomian
Q(x)=ax^2+bx+c.
Wyznacz współczynniki a, b i c.
Odpowiedzi:
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20996 ⋅ Poprawnie: 65/184 [35%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Pierwiastkiem wielomianu
W(x)=
6x^3+38x^2+10x-150
jest liczba
-3.
Wyznacz pozostałe pierwiastki tego wielomianu.
Podaj najmniejszy pierwiastek całkowity tego wielomianu.
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj najmniejszy pierwiastek niecałkowity tego wielomianu.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 3 pkt ⋅ Numer: pp-20977 ⋅ Poprawnie: 62/89 [69%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
« Rozwiąż równanie
x^3-4x^2-2x+8=0.
Podaj rozwiązanie wymierne tego równania.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj najmniejsze rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
Wpisz odpowiedź:
\cdot√
(wpisz dwie liczby całkowite)
Podpunkt 8.3 (1 pkt)
Podaj największe rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
Wpisz odpowiedź:
\cdot√
(wpisz dwie liczby całkowite)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20964 ⋅ Poprawnie: 8/10 [80%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
Wyrażenie
\frac{7\cdot xy}{xy+3y^2}:\frac{x^2}{x^2+6xy+9y^2}
można przekształcić do postaci
a+b\cdot \frac{y}{x}, gdzie
a i
b są
liczbami całkowitymi.
Podaj liczbę a.
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
|
Zadanie 10. 2 pkt ⋅ Numer: pp-21001 ⋅ Poprawnie: 35/88 [39%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
Iloczyn kwadratu liczby
a i kwadratu liczby większej od
a o
3, jest równy
4.
Podaj najmniejszą i największą możliwą wartość liczby a.
Odpowiedzi:
|
Zadanie 11. 4 pkt ⋅ Numer: pp-30400 ⋅ Poprawnie: 8/14 [57%] |
Rozwiąż |
Podpunkt 11.1 (2 pkt)
Wielomian
W(x)=3x^3+bx^2+cx+42 jest podzielny przez
trójmian
P(x)=3x^2-11x+6.
Podaj wartość parametru b.
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Podaj wartość parametru
c.
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
Podaj najmniejszy pierwiastek całkowity tego wielomianu.
Odpowiedź:
x_{min\{Z\}}=
(wpisz liczbę całkowitą)