Podgląd testu : lo2@sp-17-wielomiany-pp-5
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11551 ⋅ Poprawnie: 60/126 [47%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
« Dany jest wielomian
W(x)=P(x)+Q(x), gdzie
\begin{cases}
P(x)=(16m^4-4)x^5-6mx^3+5 \\
Q(x)=(2m^2-18)x^5-4mx^3+8
\end{cases}
.
Wyznacz iloczyn tych wszystkich wartości parametru m, dla
których st.P(x)=3 lub st.Q(x)=3.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11556 ⋅ Poprawnie: 537/607 [88%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Suma wielomianów W(x)=-2x^3+5x^2-3 oraz
P(x)=2x^3+12x wynosi:
Odpowiedzi:
|
A. 4x^3+5x^2+12x-3
|
B. 4x^6+5x^2+12x-3
|
|
C. 4x^3+12x^2-3
|
D. 5x^2+12x-3
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11680 ⋅ Poprawnie: 45/79 [56%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Wyznacz resztę z dzielenia wielomianu określonego wzorem
W(x)=2\frac{2}{3}x^3-2x^2-3x-0,25 przez
dwumian
x+0,75.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11679 ⋅ Poprawnie: 126/272 [46%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Wyznacz tę wartość parametru
m, dla której wielomian
P(x)=6x^3-4x^2-5x+m-1 dzieli się bez reszty przez
dwumian
x-1.
Odpowiedź:
m=
(wpisz liczbę całkowitą)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11675 ⋅ Poprawnie: 102/159 [64%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
« Zapisz wyrażenie
(2x-4)^3 w postaci
a_1x^3+b_1x^2+c_1x+d_1.
Podaj liczby b_1 i c_1.
Odpowiedzi:
|
Zadanie 6. 4 pkt ⋅ Numer: pp-20967 ⋅ Poprawnie: 16/47 [34%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
Dany jest wielomian
P(x)=x^3+ax^2+bx+1.
Wiadomo, że
P(1)=0 oraz,
że reszta z dzielenia wielomianu
P(x) przez
dwumian
x+2 jest
równa
21.
Podaj a.
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (2 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20974 ⋅ Poprawnie: 19/57 [33%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
« Wielomian
W(x) jest stopnia trzeciego i przy
dzieleniu przez dwumian
x-2 daje resztę
-28. Pierwiastkami tego wielomianu są liczby
-5,
3 oraz
4.
Oblicz W(0).
Odpowiedź:
W(1)=
(wpisz liczbę całkowitą)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20989 ⋅ Poprawnie: 7/11 [63%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
Wielomian
W(x)=(8x^3-27)(9x-4) jest podzielny przez
wielomian
P(x)=4x^2+6x+9, a wynikiem tego dzielenia jest wielomian
Q(x)=ax^2+bx+c.
Wyznacz liczby a, b i c.
Odpowiedzi:
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20981 ⋅ Poprawnie: 21/61 [34%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
Wielomiany
W(x)-F(x), gdzie
W(x)=x^3+(a+5)x^2+3x+1 i
F(x)=2x^2+(b-3)x-4, oraz
H(x)=x^3-7x^2+8x+5 są równe.
Wyznacz liczby a i b.
Odpowiedzi:
|
Zadanie 10. 2 pkt ⋅ Numer: pp-21001 ⋅ Poprawnie: 35/88 [39%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
Iloczyn kwadratu liczby
a i kwadratu liczby większej od
a o
1, jest równy
1764.
Podaj najmniejszą i największą możliwą wartość liczby a.
Odpowiedzi:
|
Zadanie 11. 4 pkt ⋅ Numer: pp-30399 ⋅ Poprawnie: 18/56 [32%] |
Rozwiąż |
Podpunkt 11.1 (2 pkt)
« Liczby
-2 i
-\frac{1}{2} są pierwiastkami
wielomianu
W(x)=2x^3+(a+b+3)x^2+(2a+5b-3)x-8.
Wyznacz parametry a i b.
Odpowiedzi:
Podpunkt 11.2 (2 pkt)
Wyznacz trzeci pierwiastek tego wielomianu.
Odpowiedź:
x_3=
(wpisz liczbę całkowitą)