Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11472 ⋅ Poprawnie: 319/582 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wielomian P(x)=q+7+2x+px^2-2x^4 spełnia warunki \begin{cases} P(-1)+P(1)=0 \\ P(-\sqrt{2})=-P(\sqrt{2}) \end{cases} .

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11552 ⋅ Poprawnie: 537/640 [83%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
Pomnożono dwa wielomiany G(x)=6+3x^2 i H(x)=-2x^3+6x^2-8 i otrzymano wynik P(x).

Podaj stopień wielomianu P(x).

Odpowiedź:
st.P(x)= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11682 ⋅ Poprawnie: 116/250 [46%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Wielomian określony wzorem P(x)=4x^3-3x^2+3x+1 przy dzieleniu przez dwumian x-0,5 daje resztę r.

Wyznacz liczbę r.

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11679 ⋅ Poprawnie: 126/272 [46%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz tę wartość parametru m, dla której wielomian P(x)=6x^3+4x^2-5x+m-1 dzieli się bez reszty przez dwumian x-1.
Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11676 ⋅ Poprawnie: 72/101 [71%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz wartość wyrażenia algebraicznego w=(3\sqrt{5}-1)^3.
Odpowiedź:
w= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20966 ⋅ Poprawnie: 14/38 [36%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Liczba p jest resztą z dzielenia wielomianu W(x)=6x^3-4x^2 przez x+3, a liczba q resztą z dzielnia tego wielomianu przez x-3.

Oblicz |2p-q|.

Odpowiedź:
|2p-q|= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20995 ⋅ Poprawnie: 57/176 [32%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wielomian W(x)= -2x^3-5x^2+50x+125 jest podzielny przez dwumian P(x)=x-5. Wyznacz pierwiastki tego wielomianu.

Podaj najmniejszy pierwiastek tego wielomianu.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj pierwiastek niecałkowity tego wielomianu.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20985 ⋅ Poprawnie: 8/12 [66%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wielomian W(x)=-3x^3+(3a+b-29)x^2-(4a+9b-77)x+30 jest podzielny przez wielomian P(x)=-3x+5, a wynikiem tego dzielenia jest wielomian Q(x)=x^2-4x+6.

Wyznacz liczbę a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Wyznacz liczbę b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20981 ⋅ Poprawnie: 21/61 [34%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Wielomiany W(x)-F(x), gdzie W(x)=x^3+(a+3)x^2+3x+1 i F(x)=2x^2+(b+3)x-4, oraz H(x)=x^3-7x^2+8x+5 są równe.

Wyznacz liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-21009 ⋅ Poprawnie: 24/62 [38%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Iloczyn trzech kolejnych liczb nieparzystych jest o 3195 większy od różnicy kwadratów liczby największej i najmniejszej. Znajdź te liczby.

Podaj najmniejszą z tych liczb.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30400 ⋅ Poprawnie: 8/14 [57%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Wielomian W(x)=-9x^3+bx^2+cx-120 jest podzielny przez trójmian P(x)=-9x^2+42x-24.

Podaj wartość parametru b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Podaj wartość parametru c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
 Podaj najmniejszy pierwiastek całkowity tego wielomianu.
Odpowiedź:
x_{min\{Z\}}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm