Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11472 ⋅ Poprawnie: 279/533 [52%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wielomian P(x)=q-6+2x+px^2-2x^4 spełnia warunki \begin{cases} P(-1)+P(1)=0 \\ P(-\sqrt{2})=-P(\sqrt{2}) \end{cases} .

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11552 ⋅ Poprawnie: 456/572 [79%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
Pomnożono dwa wielomiany G(x)=6+3x^2 i H(x)=-2x^3+6x^2-8 i otrzymano wynik P(x).

Podaj stopień wielomianu P(x).

Odpowiedź:
st.P(x)= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11682 ⋅ Poprawnie: 116/250 [46%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Wielomian określony wzorem P(x)=4x^3-3x^2+x+1 przy dzieleniu przez dwumian x-0,5 daje resztę r.

Wyznacz liczbę r.

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11679 ⋅ Poprawnie: 126/272 [46%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz tę wartość parametru m, dla której wielomian P(x)=6x^3+x^2-5x+m-1 dzieli się bez reszty przez dwumian x-1.
Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11678 ⋅ Poprawnie: 64/75 [85%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wyrażenie (\sqrt{5}-x)(x^2+5+\sqrt{5}x) jest równe m\sqrt{n}+kx^3, gdzie m,n,k\in\mathbb{Z}.

Podaj liczby m, n i k.

Odpowiedzi:
m= (wpisz liczbę całkowitą)
n= (wpisz liczbę całkowitą)
k= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20972 ⋅ Poprawnie: 12/15 [80%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Wielomian W(x)=x^3+m^2x^2-\frac{5}{2}x-2 przy dzieleniu przez wielomian P(x)=x+\left(\frac{1}{3}\right)^{\log_{3}{2}} daje resztę r=\frac{3}{8}.

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20996 ⋅ Poprawnie: 65/184 [35%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Pierwiastkiem wielomianu W(x)= -3x^3+5x^2+34x-24 jest liczba 4. Wyznacz pozostałe pierwiastki tego wielomianu.

Podaj najmniejszy pierwiastek całkowity tego wielomianu.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj najmniejszy pierwiastek niecałkowity tego wielomianu.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8.  3 pkt ⋅ Numer: pp-20978 ⋅ Poprawnie: 55/89 [61%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Rozwiąż równanie x^3+5x^2-28x-140=0.

Podaj rozwiązanie całkowite tego równania.

Odpowiedź:
x_{Z}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj najmniejsze rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
min_{\not\in\mathbb{Z}}= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 8.3 (1 pkt)
 Podaj największe rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
max_{\not\in\mathbb{Z}}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20981 ⋅ Poprawnie: 21/61 [34%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Wielomiany W(x)-F(x), gdzie W(x)=x^3+(a-3)x^2+3x+1 i F(x)=2x^2+(b+1)x-4, oraz H(x)=x^3-7x^2+8x+5 są równe.

Wyznacz liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-21006 ⋅ Poprawnie: 16/23 [69%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Podstawą pudełka w kształcie prostopadłościanu o objętości V=12.5 litrów jest kwadrat, którego krawędź jest o 5 dłuższa od wysokości h tego prostopadłościanu.

Wyznacz długość krawędzi podstawy a i wysokości tego prostopadłościanu.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
h= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30400 ⋅ Poprawnie: 8/14 [57%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Wielomian W(x)=-6x^3+bx^2+cx-20 jest podzielny przez trójmian P(x)=-6x^2+10x-4.

Podaj wartość parametru b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Podaj wartość parametru c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
 Podaj najmniejszy pierwiastek całkowity tego wielomianu.
Odpowiedź:
x_{min\{Z\}}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm