Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11471 ⋅ Poprawnie: 371/684 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 «« Wielomian P(x)=(m-10)x^2+\sqrt{2}x^4-\sqrt{2}+1 spełnia warunek 4\cdot P(1)+3\sqrt{2}=P(\sqrt{2}) gdy m=..........

Podaj brakującą liczbę.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11556 ⋅ Poprawnie: 537/607 [88%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
Suma wielomianów W(x)=-2x^3+5x^2-3 oraz P(x)=2x^3+12x wynosi:
Odpowiedzi:
A. 4x^6+5x^2+12x-3 B. 4x^3+5x^2+12x-3
C. 4x^3+12x^2-3 D. 5x^2+12x-3
Zadanie 3.  1 pkt ⋅ Numer: pp-11681 ⋅ Poprawnie: 71/158 [44%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Wielomian określony wzorem W(x)=x^5-3x^4+mx^3+6 przy dzieleniu przez dwumian x+1 daje resztę 0.

Wyznacz liczbę m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11679 ⋅ Poprawnie: 126/272 [46%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz tę wartość parametru m, dla której wielomian P(x)=6x^3+2x^2-5x+m-1 dzieli się bez reszty przez dwumian x-1.
Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11674 ⋅ Poprawnie: 81/127 [63%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Wyrażenie 8x^3+64y^3 jest równe \left(2x+ay)\left(bx^2+cxy+16y^2\right).

Podaj liczby a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20993 ⋅ Poprawnie: 18/31 [58%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Wielomian W(x)= 8x^4-6x^3+7x^2+5x-4 jest podzielny przez dwumian P(x)=-2x+1, a wynikiem tego dzielenia jest wielomian Q(x)=ax^3+bx^2+cx+d.

Wyznacz współczynniki a i b

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Wyznacz współczynniki c i d
Odpowiedzi:
c= (wpisz liczbę całkowitą)
d= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20995 ⋅ Poprawnie: 57/176 [32%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wielomian W(x)= -2x^3-9x^2-x+12 jest podzielny przez dwumian P(x)=x-1. Wyznacz pierwiastki tego wielomianu.

Podaj najmniejszy pierwiastek tego wielomianu.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj pierwiastek niecałkowity tego wielomianu.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8.  3 pkt ⋅ Numer: pp-20979 ⋅ Poprawnie: 23/44 [52%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Rozwiąż równanie -x^3+3x^2+20x-60=0.

Podaj rozwiązanie całkowite tego równania.

Odpowiedź:
x_{\mathbb{Z}}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj najmniejsze rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
min_{\not\in\mathbb{Z}}= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 8.3 (1 pkt)
 Podaj największe rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
max_{\not\in\mathbb{Z}}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20964 ⋅ Poprawnie: 8/10 [80%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wyrażenie \frac{6\cdot xy}{xy+3y^2}:\frac{x^2}{x^2+6xy+9y^2} można przekształcić do postaci a+b\cdot \frac{y}{x}, gdzie a i b są liczbami całkowitymi.

Podaj liczbę a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj liczbę b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-21007 ⋅ Poprawnie: 24/62 [38%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Krawędzie akwarium w kształcie prostopadłościanu wychodzące z jednego wierzchołka mają długość 3, 5 i 2. Inne akwarium prostopadłościenne, którego każda krawędz jest dłuższa o ten sam odcinek od odpowiednich krawędzi pierwszego akwarium, ma pojemność o 110 większą od pierwszego akwarium.

Wyznacz długość dwóch najkrótszych boków nowe zbudowanego akwarium.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30400 ⋅ Poprawnie: 8/14 [57%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Wielomian W(x)=-9x^3+bx^2+cx-24 jest podzielny przez trójmian P(x)=-9x^2+24x-12.

Podaj wartość parametru b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Podaj wartość parametru c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
 Podaj najmniejszy pierwiastek całkowity tego wielomianu.
Odpowiedź:
x_{min\{Z\}}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm