Podgląd testu : lo2@sp-17-wielomiany-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-11472 ⋅ Poprawnie: 313/576 [54%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wielomian
P(x)=q+12+2x+px^2-2x^4 spełnia
warunki
\begin{cases}
P(-1)+P(1)=0 \\
P(-\sqrt{2})=-P(\sqrt{2})
\end{cases}
.
Podaj liczby p i q .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11552 ⋅ Poprawnie: 528/634 [83%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Pomnożono dwa wielomiany
G(x)=6+3x^2 i
H(x)=-2x^3+6x^2-8 i otrzymano wynik
P(x) .
Podaj stopień wielomianu P(x) .
Odpowiedź:
st.P(x)=
(wpisz liczbę całkowitą)
Zadanie 3. 2 pkt ⋅ Numer: pp-11683 ⋅ Poprawnie: 54/81 [66%]
Rozwiąż
Podpunkt 3.1 (2 pkt)
Przy dzieleniu przez
P(x)=x-1 wielomian
W(x)=x^4+2x^3-5x^2-6mx+9 daje resztę
-17 .
Oblicz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-11679 ⋅ Poprawnie: 126/272 [46%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wyznacz tę wartość parametru
m , dla której wielomian
P(x)=6x^3-7x^2-5x+m-1 dzieli się bez reszty przez
dwumian
x-1 .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11673 ⋅ Poprawnie: 100/138 [72%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Iloczyn wyrażenia
5x-1 przez wyrażenie
-25x^2-5x-1
jest równy
ax^3+bx+c , gdzie
a,b,c\in\mathbb{Z} .
Podaj liczby a , b i
c .
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pp-20991 ⋅ Poprawnie: 33/47 [70%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Wielomian
W(x)=
-20x^4-11x^3-8x^2+11x-2
jest podzielny przez dwumian
P(x)=x-\frac{1}{4} , a wynikiem tego dzielenia jest wielomian
Q(x)=ax^3+bx^2+cx+d .
Wyznacz współczynniki a , b i c .
Odpowiedzi:
Zadanie 7. 2 pkt ⋅ Numer: pp-20998 ⋅ Poprawnie: 21/89 [23%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Wyznacz wszystkie pierwiastki wielomianu
P(x)=2x^3+5x^2-4x-10 .
Podaj najmniejszy z jego pierwiastków.
Odpowiedź:
Podpunkt 7.2 (1 pkt)
Podaj największy z jego pierwiastków.
Odpowiedź:
Zadanie 8. 2 pkt ⋅ Numer: pp-20989 ⋅ Poprawnie: 7/11 [63%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Wielomian
W(x)=(8x^3-27)(9x-7) jest podzielny przez
wielomian
P(x)=4x^2+6x+9 , a wynikiem tego dzielenia jest wielomian
Q(x)=ax^2+bx+c .
Wyznacz liczby a , b i c .
Odpowiedzi:
Zadanie 9. 2 pkt ⋅ Numer: pp-20981 ⋅ Poprawnie: 21/61 [34%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Wielomiany
W(x)-F(x) , gdzie
W(x)=x^3+(a+5)x^2+3x+1 i
F(x)=2x^2+(b-5)x-4 , oraz
H(x)=x^3-7x^2+8x+5 są równe.
Wyznacz liczby a i b .
Odpowiedzi:
Zadanie 10. 2 pkt ⋅ Numer: pp-21006 ⋅ Poprawnie: 16/23 [69%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Podstawą pudełka w kształcie prostopadłościanu o objętości
V=2.4 litrów jest kwadrat, którego krawędź jest
o
14 dłuższa od wysokości
h tego prostopadłościanu.
Wyznacz długość krawędzi podstawy a i wysokości
tego prostopadłościanu.
Odpowiedzi:
Zadanie 11. 4 pkt ⋅ Numer: pp-30400 ⋅ Poprawnie: 8/14 [57%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
Wielomian
W(x)=-6x^3+bx^2+cx-24 jest podzielny przez
trójmian
P(x)=-6x^2+22x-12 .
Podaj wartość parametru b .
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Podaj wartość parametru
c .
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
Podaj najmniejszy pierwiastek całkowity tego wielomianu.
Odpowiedź:
x_{min\{Z\}}=
(wpisz liczbę całkowitą)
Rozwiąż