Podgląd testu : lo2@sp-17-wielomiany-pp-5
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11551 ⋅ Poprawnie: 60/126 [47%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
« Dany jest wielomian
W(x)=P(x)+Q(x), gdzie
\begin{cases}
P(x)=(16m^4-4)x^5-6mx^3+5 \\
Q(x)=(2m^2-10)x^5-4mx^3+8
\end{cases}
.
Wyznacz iloczyn tych wszystkich wartości parametru m, dla
których st.P(x)=3 lub st.Q(x)=3.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11552 ⋅ Poprawnie: 537/640 [83%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Pomnożono dwa wielomiany
G(x)=6+3x^2 i
H(x)=-2x^3+6x^2-8 i otrzymano wynik
P(x).
Podaj stopień wielomianu P(x).
Odpowiedź:
st.P(x)=
(wpisz liczbę całkowitą)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11681 ⋅ Poprawnie: 71/158 [44%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
« Wielomian określony wzorem
W(x)=x^5-3x^4+mx^3+6 przy
dzieleniu przez dwumian
x+2 daje resztę
-34.
Wyznacz liczbę m.
Odpowiedź:
m=
(wpisz liczbę całkowitą)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11679 ⋅ Poprawnie: 126/272 [46%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Wyznacz tę wartość parametru
m, dla której wielomian
P(x)=6x^3-5x^2-5x+m-1 dzieli się bez reszty przez
dwumian
x-1.
Odpowiedź:
m=
(wpisz liczbę całkowitą)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11678 ⋅ Poprawnie: 64/75 [85%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Wyrażenie
(\sqrt{2}-x)(x^2+2+\sqrt{2}x) jest równe
m\sqrt{n}+kx^3, gdzie
m,n,k\in\mathbb{Z}.
Podaj liczby m, n i
k.
Odpowiedzi:
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20969 ⋅ Poprawnie: 34/61 [55%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
« Wielomian
W(x)=x^3+3x^2+mx-4
przy dzieleniu przez dwumian
x-2 daje resztę
7.
Oblicz wartość parametru m.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20997 ⋅ Poprawnie: 12/17 [70%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Wielomian
W(x)=4x^3+6(m+2)x^2+(4m+10)x-12
jest podzielny przez dwumian
P(x)=x+2.
Wyznacz parametr m.
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj najmniejszy i największy pierwiastek tego wielomianu.
Odpowiedzi:
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20975 ⋅ Poprawnie: 147/310 [47%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
Rozwiąż równanie
x^3-2x^2+3x-6=0.
Podaj najmniejsze rozwiązanie tego równania.
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj największe rozwiązanie tego równania.
Odpowiedź:
x_{max}=
(wpisz liczbę całkowitą)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20964 ⋅ Poprawnie: 8/10 [80%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
Wyrażenie
\frac{3\cdot xy}{xy+3y^2}:\frac{x^2}{x^2+6xy+9y^2}
można przekształcić do postaci
a+b\cdot \frac{y}{x}, gdzie
a i
b są
liczbami całkowitymi.
Podaj liczbę a.
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
|
Zadanie 10. 2 pkt ⋅ Numer: pp-21009 ⋅ Poprawnie: 24/62 [38%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
Iloczyn trzech kolejnych liczb nieparzystych jest o
2041 większy od różnicy kwadratów liczby największej i najmniejszej.
Znajdź te liczby.
Podaj najmniejszą z tych liczb.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
|
Zadanie 11. 4 pkt ⋅ Numer: pp-30400 ⋅ Poprawnie: 8/14 [57%] |
Rozwiąż |
Podpunkt 11.1 (2 pkt)
Wielomian
W(x)=3x^3+bx^2+cx-80 jest podzielny przez
trójmian
P(x)=3x^2+13x-10.
Podaj wartość parametru b.
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Podaj wartość parametru
c.
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
Podaj najmniejszy pierwiastek całkowity tego wielomianu.
Odpowiedź:
x_{min\{Z\}}=
(wpisz liczbę całkowitą)