Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11472 ⋅ Poprawnie: 319/582 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wielomian P(x)=q+2+2x+px^2-2x^4 spełnia warunki \begin{cases} P(-1)+P(1)=0 \\ P(-\sqrt{2})=-P(\sqrt{2}) \end{cases} .

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11552 ⋅ Poprawnie: 537/640 [83%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
Pomnożono dwa wielomiany G(x)=6+3x^2 i H(x)=-2x^3+6x^2-8 i otrzymano wynik P(x).

Podaj stopień wielomianu P(x).

Odpowiedź:
st.P(x)= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11682 ⋅ Poprawnie: 116/250 [46%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Wielomian określony wzorem P(x)=4x^3-3x^2-5x+1 przy dzieleniu przez dwumian x-0,5 daje resztę r.

Wyznacz liczbę r.

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11679 ⋅ Poprawnie: 126/272 [46%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz tę wartość parametru m, dla której wielomian P(x)=6x^3-6x^2-5x+m-1 dzieli się bez reszty przez dwumian x-1.
Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11676 ⋅ Poprawnie: 72/101 [71%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz wartość wyrażenia algebraicznego w=(3\sqrt{7}-1)^3.
Odpowiedź:
w= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20969 ⋅ Poprawnie: 34/61 [55%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Wielomian W(x)=x^3+2x^2+mx-5 przy dzieleniu przez dwumian x-2 daje resztę 20.

Oblicz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20997 ⋅ Poprawnie: 12/17 [70%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wielomian W(x)=4x^3+6(m+1)x^2+(4m+6)x-12 jest podzielny przez dwumian P(x)=x+2.

Wyznacz parametr m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj najmniejszy i największy pierwiastek tego wielomianu.
Odpowiedzi:
x_{min}=
(wpisz liczbę całkowitą)

x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20984 ⋅ Poprawnie: 74/156 [47%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Wielomian W(x)=-10x^3+17x^2+ax+b jest podzielny przez wielomian P(x)=1-2x, a wynikiem tego dzielenia jest wielomian Q(x)=5x^2-6x+6.

Wyznacz współczynnik a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Wyznacz współczynnik b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-21039 ⋅ Poprawnie: 17/22 [77%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 «Wielomiany W(x)-F(x), gdzie W(x)=2x^3+(a-4)x^2+5x-3 i F(x)=x^3-5x^2+(b+4)x+4, oraz H(x)=x^3+2x^2+4x-7 są równe.

Wyznacz liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-21009 ⋅ Poprawnie: 24/62 [38%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Iloczyn trzech kolejnych liczb nieparzystych jest o 2041 większy od różnicy kwadratów liczby największej i najmniejszej. Znajdź te liczby.

Podaj najmniejszą z tych liczb.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30400 ⋅ Poprawnie: 8/14 [57%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Wielomian W(x)=3x^3+bx^2+cx+72 jest podzielny przez trójmian P(x)=3x^2-20x+12.

Podaj wartość parametru b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Podaj wartość parametru c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
 Podaj najmniejszy pierwiastek całkowity tego wielomianu.
Odpowiedź:
x_{min\{Z\}}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm