Matury CKEMatma z CKESprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pr-1

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11471  
Podpunkt 1.1 (1 pkt)
 «« Wielomian P(x)=(m-2)x^2+\sqrt{2}x^4-\sqrt{2}+1 spełnia warunek 4\cdot P(1)+3\sqrt{2}=P(\sqrt{2}) gdy m=..........

Podaj brakującą liczbę.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11680  
Podpunkt 2.1 (1 pkt)
 Wyznacz resztę z dzielenia wielomianu określonego wzorem W(x)=2\frac{2}{3}x^3-2x^2-x-0,25 przez dwumian x+0,75.
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11672  
Podpunkt 3.1 (1 pkt)
 Wyrażenie (3x+2)^3-(x-5)(x+5) zapisane w postaci sumy algebraicznej ma postać 27x^3+mx^2+nx+33, gdzie m,n\in\mathbb{Z}.

Podaj liczby m i n.

Odpowiedzi:
m= (wpisz liczbę całkowitą)
n= (wpisz liczbę całkowitą)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10116  
Podpunkt 4.1 (1 pkt)
 Wyznacz dziedzinę funkcji określonej wzorem f(x)=\frac{1}{\sqrt{x^3-18x^2+81x}}. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10128  
Podpunkt 5.1 (1 pkt)
 « Dana jest funkcja g(x)=5x^3-2x^2, x\in\mathbb{R}. Funkcja f(x)=\frac{|g(x)|}{g(x)} przyjmuje wartość równą -1 wtedy i tylko wtedy gdy:
Odpowiedzi:
A. x\in\left(\frac{2}{5},+\infty\right) B. x\in(-\infty,0)\cup\left(0,\frac{2}{5}\right)
C. x\in\left(0,\frac{2}{5}\right) D. x\in\left(-\infty,\frac{2}{5}\right)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20210  
Podpunkt 6.1 (1 pkt)
 « Wyznacz te wartości parametru m, dla których wielomian W(x)=x^9-(m-1)^3x^8+(m^2-2m)x^5+2(m)x^2+(m-1)x przy dzieleniu przez wielomian P(x)=x+1 daje resztę 1.

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20997  
Podpunkt 7.1 (1 pkt)
 Wielomian W(x)=4x^3+6(m-1)x^2+(4m-2)x-12 jest podzielny przez dwumian P(x)=x+2.

Wyznacz parametr m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj najmniejszy i największy pierwiastek tego wielomianu.
Odpowiedzi:
x_{min}=
(wpisz liczbę całkowitą)

x_{max}=
(dwie liczby całkowite)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20986  
Podpunkt 8.1 (1 pkt)
 Wielomian W(x)=-6x^4+(a-b)x^3-21x^2+(2a-3b+1)x-15 jest podzielny przez wielomian P(x)=3x^2-2x+5, a wynikiem tego dzielenia jest wielomian Q(x)=-2x^2+x-3.

Wyznacz liczbę a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Wyznacz liczbę b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-21007  
Podpunkt 9.1 (2 pkt)
 Krawędzie akwarium w kształcie prostopadłościanu wychodzące z jednego wierzchołka mają długość 3, 5 i 2. Inne akwarium prostopadłościenne, którego każda krawędz jest dłuższa o ten sam odcinek od odpowiednich krawędzi pierwszego akwarium, ma pojemność o 1050 większą od pierwszego akwarium.

Wyznacz długość dwóch najkrótszych boków nowe zbudowanego akwarium.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 10.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-21027  
Podpunkt 10.1 (1 pkt)
 Wykres funkcji określonej wzorem y=\frac{1}{5}x^4 przesunięto o wektor o współrzędnych [-1,-5] i otrzymano wykres funkcji wielomianowej określonej wzorem y=W(x).

W postaci iloczynowej wielomianu W(x) występuje nierozkładalny czynnik postaci x^2+bx+c. Podaj liczby b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Podpunkt 10.2 (0.5 pkt)
 Podaj najmniejszy pierwiastek wielomianu W(x).
Odpowiedź:
x_{min}= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 10.3 (0.5 pkt)
 Podaj największy pierwiastek wielomianu W(x).
Odpowiedź:
x_{max}= + \cdot
(wpisz trzy liczby całkowite)


Masz pytania? Napisz: k42195@poczta.fm