Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11552 ⋅ Poprawnie: 537/640 [83%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
Pomnożono dwa wielomiany G(x)=6+3x^2 i H(x)=-2x^3+6x^2-8 i otrzymano wynik P(x).

Podaj stopień wielomianu P(x).

Odpowiedź:
st.P(x)= (wpisz liczbę całkowitą)
Zadanie 2.  2 pkt ⋅ Numer: pp-11683 ⋅ Poprawnie: 54/81 [66%] Rozwiąż 
Podpunkt 2.1 (2 pkt)
 Przy dzieleniu przez P(x)=x-1 wielomian W(x)=x^4+2x^3-5x^2-6mx+9 daje resztę 1.

Oblicz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11672 ⋅ Poprawnie: 149/202 [73%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wyrażenie (3x+1)^3-(x-5)(x+5) zapisane w postaci sumy algebraicznej ma postać 27x^3+mx^2+nx+26, gdzie m,n\in\mathbb{Z}.

Podaj liczby m i n.

Odpowiedzi:
m= (wpisz liczbę całkowitą)
n= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10301 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Reszta z dzielenia wielomianu W(x)=x^{25}+x^{21}+x^{17}+x^{13}+x^{9}+x przez dwumian P(x)=x^2-1 jest równa:
Odpowiedzi:
A. 3x-1 B. 6x-1
C. 6x+1 D. 6x
Zadanie 5.  1 pkt ⋅ Numer: pr-10127 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz iloczyn wszystkich pierwiastków rzeczywistych wielomianu określonego wzorem W(x)=x^4-2x^2-15.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20966 ⋅ Poprawnie: 14/38 [36%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Liczba p jest resztą z dzielenia wielomianu W(x)=6x^3-4x^2 przez x+3, a liczba q resztą z dzielnia tego wielomianu przez x+4.

Oblicz |2p-q|.

Odpowiedź:
|2p-q|= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20211 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Wyznacz wszystkie pierwiastki wielomianu W(x) wiedząc, że przy dzieleniu przez dwumian x-1 wielomian ten daje iloraz równy 2(x^2-4x-8) oraz resztę równą 24.

Podaj najmniejszy pierwiastek tego wielomianu.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj największy pierwiastek tego wielomianu.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20191 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Wyznacz resztę z dzielenia wielomianu W(x)=x^3+(m+2)x^2+2(-4-m)(m+6)x przez dwumian P(x)=x-(6+m).
Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-21009 ⋅ Poprawnie: 24/62 [38%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Iloczyn trzech kolejnych liczb nieparzystych jest o 1199 większy od różnicy kwadratów liczby największej i najmniejszej. Znajdź te liczby.

Podaj najmniejszą z tych liczb.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pr-20197 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
Wielomian P(x)=(x^2-3x+1)^{2017} przy dzieleniu przez trójmian Q(x)=-x^2+4x-3 daje resztę R(x)=ax+b.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm