«« Wielomian W(x)=\sqrt{6}x^3-\sqrt{3}x^2-2\sqrt{3}
przy dzieleniu przez dwumian x-
\frac{m}{3}
daje
resztę, która jest liczbą wymierną. Wynika z tego, że liczba
m jest równa:
Odpowiedzi:
A.3\sqrt{6}
B.3\sqrt{2}
C.9\sqrt{2}
D.6\sqrt{2}
Zadanie 3.1 pkt ⋅ Numer: pp-11672 ⋅ Poprawnie: 149/202 [73%]
Uczniowe pewnej klasy podzielili się na trzy wieloosobowe grupy. W drugiej grupie
jest o 6 osób więcej niż w pierwzej, zaś w trzeciej
grupie o 11 osób więcej niż w pierwszej. Iloczyn
liczby uczniów grupy drugiej i trzeciej jest o 86
większy od sześcianu liczby uczniów pierwszej grupy.
Ilu uczniów liczy ta klasa?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 10.2 pkt ⋅ Numer: pr-21015 ⋅ Poprawnie: 48/33 [145%]
Wyznacz zbiór wszystkich wartości parametru m\in\mathbb{R}, dla których
równanie (x+8)\left[4x^2+(3m+49)x+20m+156\right]=0
ma dokładnie jedno rozwiązanie.
Podaj największe możliwe m.
Odpowiedź:
m_{max}=(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych
tych przedziałów.
Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat