Podgląd testu : lo2@sp-17-wielomiany-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11551 ⋅ Poprawnie: 60/126 [47%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Dany jest wielomian
W(x)=P(x)+Q(x) , gdzie
\begin{cases}
P(x)=(16m^4-4)x^5-6mx^3+5 \\
Q(x)=(7m^2-21)x^5-4mx^3+8
\end{cases}
.
Wyznacz iloczyn tych wszystkich wartości parametru m , dla
których st.P(x)=3 lub st.Q(x)=3 .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 2. 1 pkt ⋅ Numer: pp-11679 ⋅ Poprawnie: 126/272 [46%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wyznacz tę wartość parametru
m , dla której wielomian
P(x)=6x^3+3x^2-5x+m-1 dzieli się bez reszty przez
dwumian
x-1 .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11677 ⋅ Poprawnie: 44/61 [72%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Zapisz wyrażenie
(7x-4)^2x+(4-7x)x^2-(7x-4) w postaci iloczynu
dwóch wyrażeń w postaci
(a_1x^2+b_1x+c_1)(ax+d_1) .
Podaj sumę a_1+b_1+c_1 .
Odpowiedź:
a_1+b_1+c_1=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pr-10116 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wyznacz dziedzinę funkcji określonej wzorem
f(x)=\frac{1}{\sqrt{x^3-12x^2+36x}} .
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pr-10127 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Oblicz iloczyn wszystkich pierwiastków rzeczywistych wielomianu określonego wzorem
W(x)=x^4+4x^2-21 .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pr-20210 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Wyznacz te wartości parametru
m , dla których
wielomian
W(x)=x^9-(m-3)^3x^8+(m^2-6m+8)x^5+2(m-2)x^2+(m-3)x
przy dzieleniu przez wielomian
P(x)=x+1 daje resztę
1 .
Podaj najmniejsze możliwe m .
Odpowiedź:
m_{min}=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe
m .
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pr-21010 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (2 pkt)
Wyznacz wszystkie pierwiastki wielomianu
W(x)=
12x^3-20x^2-x+6 .
Podaj najmniejszy i największy pierwiastek tego wielomianu.
Odpowiedzi:
Zadanie 8. 2 pkt ⋅ Numer: pp-21040 ⋅ Poprawnie: 17/22 [77%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Wielomiany
W(x)=(x^2-ax)^2-(x^2+bx)^2 oraz
P(x)=-2x^3+3x^2
są równe.
Wyznacz liczby a i b .
Odpowiedzi:
Zadanie 9. 2 pkt ⋅ Numer: pp-21001 ⋅ Poprawnie: 35/88 [39%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Iloczyn kwadratu liczby
a i kwadratu liczby większej od
a o
2 , jest równy
9 .
Podaj najmniejszą i największą możliwą wartość liczby a .
Odpowiedzi:
Zadanie 10. 2 pkt ⋅ Numer: pr-20181 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Liczba
-2 jest pierwiastkiem wielomianu
H(x)=x^4+bx^3+cx^2+dx-8 o krotności trzy.
Podaj b .
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Rozwiąż