Podgląd testu : lo2@sp-17-wielomiany-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11472 ⋅ Poprawnie: 319/582 [54%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wielomian
P(x)=q+4+2x+px^2-2x^4 spełnia
warunki
\begin{cases}
P(-1)+P(1)=0 \\
P(-\sqrt{2})=-P(\sqrt{2})
\end{cases}
.
Podaj liczby p i q .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11681 ⋅ Poprawnie: 71/158 [44%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Wielomian określony wzorem
W(x)=x^5-3x^4+mx^3+6 przy
dzieleniu przez dwumian
x-1 daje resztę
2 .
Wyznacz liczbę m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11672 ⋅ Poprawnie: 149/202 [73%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wyrażenie
(3x+2)^3-(x-6)(x+6)
zapisane w postaci sumy algebraicznej ma postać
27x^3+mx^2+nx+44 ,
gdzie
m,n\in\mathbb{Z} .
Podaj liczby m i n .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pr-10478 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (0.2 pkt)
Wyznacz dziedzinę funkcji określonej wzorem
f(x)=\sqrt{x^3-9x^2} .
Rozwiązanie zapisz w postaci sumy przedziałów.
Suma ta ma posatać:
Odpowiedzi:
A. (p,q)
B. \{p\}\cup\langle q,+\infty)
C. \langle p,+\infty)
D. (-\infty,p\rangle\cup\{q\}
E. \langle p,q\rangle
F. (-\infty,p\rangle
Podpunkt 4.2 (0.8 pkt)
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pr-10127 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Oblicz iloczyn wszystkich pierwiastków rzeczywistych wielomianu określonego wzorem
W(x)=x^4+x^2-30 .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 6. 4 pkt ⋅ Numer: pp-20967 ⋅ Poprawnie: 16/47 [34%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Dany jest wielomian
P(x)=x^3+ax^2+bx+1 .
Wiadomo, że
P(3)=100 oraz,
że reszta z dzielenia wielomianu
P(x) przez
dwumian
x-1 jest
równa
12 .
Podaj a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (2 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20996 ⋅ Poprawnie: 65/184 [35%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Pierwiastkiem wielomianu
W(x)=
-3x^3+25x^2-36x-36
jest liczba
6 .
Wyznacz pozostałe pierwiastki tego wielomianu.
Podaj najmniejszy pierwiastek całkowity tego wielomianu.
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj najmniejszy pierwiastek niecałkowity tego wielomianu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pr-20229 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (1 pkt)
» Wyznacz te wartości parametru
m , dla których
wielomian
Q(x)=x^3+(2m+1)x^2+(8m-8)x ma dokładnie jeden
pierwiastek.
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-21006 ⋅ Poprawnie: 16/23 [69%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Podstawą pudełka w kształcie prostopadłościanu o objętości
V=0.8 litrów jest kwadrat, którego krawędź jest
o
2 dłuższa od wysokości
h tego prostopadłościanu.
Wyznacz długość krawędzi podstawy a i wysokości
tego prostopadłościanu.
Odpowiedzi:
Zadanie 10. 2 pkt ⋅ Numer: pr-20182 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
» Dziedziną funkcji
h(x)=\sqrt{\left(x^2+2bx-ax-2ab\right)\left(x^2-x-6\right)}
jest zbiór
\mathbb{R} .
Podaj najmniejsze możliwe a .
Odpowiedź:
a_{min}=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj największe możliwe
b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż