« Wielomian
W(x)=x^3+m^2x^2-\frac{7}{2}x-\frac{13}{8}
przy dzieleniu
przez wielomian
P(x)=x+\left(\frac{1}{3}\right)^{\log_{3}{2}}
daje resztę r=\frac{3}{8}.
Podaj najmniejsze możliwe m.
Odpowiedź:
m_{min}=
\cdot√
(wpisz trzy liczby całkowite)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe m.
Odpowiedź:
m_{max}=
\cdot√
(wpisz trzy liczby całkowite)
Zadanie 7.2 pkt ⋅ Numer: pp-20997 ⋅ Poprawnie: 12/17 [70%]
Suma objętości trzech sześcianów jest równa 684.
Krawędź drugiego z tych sześcianów jest o 1 dłuższa
od krawędzi pierwszego sześcianu, a krawędź trzeciego sześcianu jest o
1 krótsza od krawędzi pierwszego sześcianu.
Wyznacz długość krawędzi najmniejszego z tych sześcianów.
Odpowiedź:
a_{min}=(wpisz liczbę całkowitą)
Zadanie 10.2 pkt ⋅ Numer: pr-21028 ⋅ Poprawnie: 0/0
Jedynym miejscem zerowym funkcji wielomianowej określonej wzorem y=W(x)
jest liczba -5, która jest pierwiastkiem dwukrotnym wielomianu
W(x) o stopniu równym cztery. Do wykresu tej funkcji należą punkty o współrzędnych
A=(0,50 ), B=(4,1782)
oraz C=(-4,14 ).
Zapisz wzór wielomianu W(x) w postaci ogólnej
W(x)=ax^4+bx^3+cx^2+dx+e. Podaj liczby b i c.
Odpowiedzi:
b
=
(wpisz liczbę całkowitą)
c
=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj liczby d i e.
Odpowiedzi:
d
=
(wpisz liczbę całkowitą)
e
=
(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat