Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11552 ⋅ Poprawnie: 537/640 [83%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
Pomnożono dwa wielomiany G(x)=6+3x^2 i H(x)=-2x^3+6x^2-8 i otrzymano wynik P(x).

Podaj stopień wielomianu P(x).

Odpowiedź:
st.P(x)= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11682 ⋅ Poprawnie: 116/250 [46%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wielomian określony wzorem P(x)=4x^3-3x^2-5x+1 przy dzieleniu przez dwumian x-0,5 daje resztę r.

Wyznacz liczbę r.

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11677 ⋅ Poprawnie: 44/61 [72%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zapisz wyrażenie (3x-2)^2x+(2-3x)x^2-(3x-2) w postaci iloczynu dwóch wyrażeń w postaci (a_1x^2+b_1x+c_1)(ax+d_1).

Podaj sumę a_1+b_1+c_1.

Odpowiedź:
a_1+b_1+c_1= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10115 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (0.2 pkt)
 Wyznacz dziedzinę funkcji określonej wzorem g(x)=\sqrt{x^3-81x}. Rozwiązanie zapisz w postaci sumy przedziałów.

Suma ta ma postać:

Odpowiedzi:
A. \langle p,q\rangle B. (p, q)\cup(r,+\infty)
C. (-\infty,p)\cup(q,r) D. (-\infty,p\rangle\cup\langle q,r\rangle
E. \langle p, q\rangle\cup\langle r,+\infty) F. (p,q)
Podpunkt 4.2 (0.8 pkt)
 Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10128 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Dana jest funkcja g(x)=5x^3-9x^2, x\in\mathbb{R}. Funkcja f(x)=\frac{|g(x)|}{g(x)} przyjmuje wartość równą -1 wtedy i tylko wtedy gdy:
Odpowiedzi:
A. x\in(-\infty,0)\cup\left(0,\frac{9}{5}\right) B. x\in\left(0,\frac{9}{5}\right)
C. x\in\left(\frac{9}{5},+\infty\right) D. x\in\left(-\infty,\frac{9}{5}\right)
Zadanie 6.  2 pkt ⋅ Numer: pp-20991 ⋅ Poprawnie: 33/47 [70%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Wielomian W(x)= -16x^4-16x^3-15x^2+25x-5 jest podzielny przez dwumian P(x)=x-\frac{1}{4}, a wynikiem tego dzielenia jest wielomian Q(x)=ax^3+bx^2+cx+d.

Wyznacz współczynniki a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-21007 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wielomian W(x)=x^3+12x^2+ax+48 ma trzy pierwiastki x_1, x_2 i x_3 takie, że x_2=x_1+b i x_3=x_1+2b, gdzie b\ > 0.

Wyznacz wartości parametrów a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Wyznacz najmniejszy i największy pierwiastek tego wielomianu.
Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20987 ⋅ Poprawnie: 5/9 [55%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Wielomian W(x)=-12x^3-20x^2-31x-28 jest podzielny przez wielomian P(x)=ax+b, a wynikiem tego dzielenia jest wielomian Q(x)=2x^2+x+4.

Wyznacz liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-21004 ⋅ Poprawnie: 15/17 [88%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 W pewnej liczbie naturalnej trzycyfrowej cyfra dziesiątek jest 2 razy większa od cyfry setek, zaś cyfra jedności jest o 1 mniejsza od cyfry setek. Wyznacz tę liczbę trzycyfrową więdząc, że różnica sześcianu cyfry setek i iloczynu cyfry dziesiątek przez cyfrę jedności jest równa 4.

Podaj tę liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pr-20232 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Wielomian P(x)=2x^4+3x^3+6x^2+4x+3 przedstaw w postaci \left(2x^2+b_1x+c_1\right)\left(x^2+b_2x+c_2\right), gdzie b_1,c_1,b_2,c_2\in\mathbb{C}.

Podaj mniejszą z liczb b_1 i b_2.

Odpowiedź:
min(b_1, b_2)= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj większą z liczb b_1 i b_2.
Odpowiedź:
max(b_1, b_2)= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm