Podgląd testu : lo2@sp-17-wielomiany-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11551 ⋅ Poprawnie: 60/126 [47%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Dany jest wielomian
W(x)=P(x)+Q(x) , gdzie
\begin{cases}
P(x)=(16m^4-4)x^5-6mx^3+5 \\
Q(x)=(2m^2-16)x^5-4mx^3+8
\end{cases}
.
Wyznacz iloczyn tych wszystkich wartości parametru m , dla
których st.P(x)=3 lub st.Q(x)=3 .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 2. 1 pkt ⋅ Numer: pr-10123 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wielomian W(x)=2x^3-x-q dzieli się bez reszty przez
dwumian x-p+1 . Wynika z tego, że liczba
q jest równa:
Odpowiedzi:
A. 2(p-1)^3-p+1
B. 2(p+1)^3+p-1
C. 2(p-1)^3+p-1
D. 2(p+1)^3-p+1
Zadanie 3. 1 pkt ⋅ Numer: pp-11674 ⋅ Poprawnie: 81/127 [63%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Wyrażenie
8x^3+125y^3 jest równe
\left(2x+ay)\left(bx^2+cxy+25y^2\right) .
Podaj liczby a , b i
c .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pr-10478 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (0.2 pkt)
Wyznacz dziedzinę funkcji określonej wzorem
f(x)=\sqrt{x^3-15x^2} .
Rozwiązanie zapisz w postaci sumy przedziałów.
Suma ta ma posatać:
Odpowiedzi:
A. \{p\}\cup\langle q,+\infty)
B. (p,q)
C. (-\infty,p\rangle
D. (-\infty,p\rangle\cup\{q\}
E. \langle p,q\rangle
F. \langle p,+\infty)
Podpunkt 4.2 (0.8 pkt)
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pr-10127 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Oblicz iloczyn wszystkich pierwiastków rzeczywistych wielomianu określonego wzorem
W(x)=x^4+7x^2-18 .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20990 ⋅ Poprawnie: 48/76 [63%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Wielomian
W(x)=-10x^3-15x^2+x+3
jest podzielny przez dwumian
P(x)=x+\frac{1}{2} , a wynikiem tego dzielenia jest wielomian
Q(x)=ax^2+bx+c .
Wyznacz współczynniki a , b i c .
Odpowiedzi:
Zadanie 7. 2 pkt ⋅ Numer: pr-21005 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (2 pkt)
Wielomian
W(x)=-x^4+bx^3+cx^2+dx+e jest podzielny przez
wielomian
P(x)=x^3-4x^2+x+6 . Suma współczynników wielomianu
W(x) jest równa
20 ,
a reszta z dzielenia wielomianu
W(x) przez dwumian
Q(x)=x+2 jest równa
-160 .
Wyznacz wartości współczynników b , c i d .
Odpowiedzi:
Zadanie 8. 2 pkt ⋅ Numer: pr-20194 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (1 pkt)
» Wyznacz te wartości parametrów
m i
n , dla których wielomian
P(x)=x^9+\frac{m+6}{4}x+2n-4 jest podzielny przez
wielomian
Q(x)=1-x^2 .
Podaj m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-21001 ⋅ Poprawnie: 35/88 [39%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Iloczyn kwadratu liczby
a i kwadratu liczby większej od
a o
3 , jest równy
16 .
Podaj najmniejszą i największą możliwą wartość liczby a .
Odpowiedzi:
Zadanie 10. 2 pkt ⋅ Numer: pr-20182 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
» Dziedziną funkcji
h(x)=\sqrt{\left(x^2+2bx-ax-2ab\right)\left(x^2-x-30\right)}
jest zbiór
\mathbb{R} .
Podaj najmniejsze możliwe a .
Odpowiedź:
a_{min}=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj największe możliwe
b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż