Podgląd testu : lo2@sp-17-wielomiany-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11551 ⋅ Poprawnie: 60/126 [47%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Dany jest wielomian
W(x)=P(x)+Q(x) , gdzie
\begin{cases}
P(x)=(16m^4-4)x^5-6mx^3+5 \\
Q(x)=(6m^2-12)x^5-4mx^3+8
\end{cases}
.
Wyznacz iloczyn tych wszystkich wartości parametru m , dla
których st.P(x)=3 lub st.Q(x)=3 .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 2. 1 pkt ⋅ Numer: pr-10122 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 2.1 (1 pkt)
«« Wielomian
W(x)=\sqrt{6}x^3-\sqrt{3}x^2-2\sqrt{3}
przy dzieleniu przez dwumian
x-
\frac{m}{5}
daje
resztę, która jest liczbą wymierną. Wynika z tego, że liczba
m jest równa:
Odpowiedzi:
A. 5\sqrt{3}
B. 5\sqrt{6}
C. 5\sqrt{2}
D. 10\sqrt{2}
Zadanie 3. 1 pkt ⋅ Numer: pp-11673 ⋅ Poprawnie: 100/138 [72%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Iloczyn wyrażenia
3x-5 przez wyrażenie
-9x^2-15x-25
jest równy
ax^3+bx+c , gdzie
a,b,c\in\mathbb{Z} .
Podaj liczby a , b i
c .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pr-10477 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wyznacz dziedzinę funkcji określonej wzorem
g(x)=\frac{1}{\sqrt{x^3+32x^2+256x}} .
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pr-10129 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Dany jest wielomian
Q(x)=-15x^3-px^2-qx-6 , gdzie
p,q\in\mathbb{C} .
Pierwiastkiem wielomianu Q(x) nie może być liczba:
Odpowiedzi:
A. \frac{3}{4}
B. -\frac{2}{5}
C. \frac{2}{3}
D. -1
Zadanie 6. 2 pkt ⋅ Numer: pp-20994 ⋅ Poprawnie: 29/73 [39%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
W wyniku podzielenia wielomianu
W(x)=
-x^3+6x^2-x-8
przez dwumian
P(x)=x-1 , otrzymamy wynik dzielenia
Q(x)=ax^2+bx+c i resztę
r .
Wyznacz współczynniki a , b i c .
Odpowiedzi:
Podpunkt 6.2 (1 pkt)
Podaj resztę
r z tego dzielenia.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pr-21004 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (2 pkt)
Liczby
-5 ,
6 i
8 są pierwiastkami wielomianu
W(x)=ax^3+bx^2+cx+d ,
a reszta z dzielenia tego wielominau przez dwumian
P(x)=x+1 jest równa
-252 .
Wyznacz wartości współczynników b i c .
Odpowiedzi:
Zadanie 8. 2 pkt ⋅ Numer: pr-20229 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (1 pkt)
» Wyznacz te wartości parametru
m , dla których
wielomian
Q(x)=x^3+(2m-1)x^2+(8m-16)x ma dokładnie jeden
pierwiastek.
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-21005 ⋅ Poprawnie: 17/37 [45%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Suma objętości trzech sześcianów jest równa
434 .
Krawędź drugiego z tych sześcianów jest o
3 dłuższa
od krawędzi pierwszego sześcianu, a krawędź trzeciego sześcianu jest o
1 krótsza od krawędzi pierwszego sześcianu.
Wyznacz długość krawędzi najmniejszego z tych sześcianów.
Odpowiedź:
a_{min}=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pr-20219 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
» Wyznacz resztę z dzielenia wielomianu
W(x)=x^{2017}-2x^{2016}+2x^{2015}-1 przez
wielomian
P(x)=x^3-x .
Zapisz resztę w postaci R(x)=ax^2+bx+c . Podaj
a+b .
Odpowiedź:
a+b=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj b+c .
Odpowiedź:
b+c=
(wpisz liczbę całkowitą)
Rozwiąż