Podgląd testu : lo2@sp-17-wielomiany-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11551 ⋅ Poprawnie: 60/126 [47%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Dany jest wielomian
W(x)=P(x)+Q(x) , gdzie
\begin{cases}
P(x)=(16m^4-4)x^5-6mx^3+5 \\
Q(x)=(3m^2-6)x^5-4mx^3+8
\end{cases}
.
Wyznacz iloczyn tych wszystkich wartości parametru m , dla
których st.P(x)=3 lub st.Q(x)=3 .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 2. 1 pkt ⋅ Numer: pr-10123 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wielomian W(x)=2x^3-x-q dzieli się bez reszty przez
dwumian x-p+1 . Wynika z tego, że liczba
q jest równa:
Odpowiedzi:
A. 2(p+1)^3+p-1
B. 2(p-1)^3+p-1
C. 2(p+1)^3-p+1
D. 2(p-1)^3-p+1
Zadanie 3. 1 pkt ⋅ Numer: pp-11674 ⋅ Poprawnie: 81/127 [63%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Wyrażenie
8x^3+y^3 jest równe
\left(2x+ay)\left(bx^2+cxy+y^2\right) .
Podaj liczby a , b i
c .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pr-10115 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (0.2 pkt)
Wyznacz dziedzinę funkcji określonej wzorem
g(x)=\sqrt{x^3-4x} .
Rozwiązanie zapisz w postaci sumy przedziałów.
Suma ta ma postać:
Odpowiedzi:
A. (p,q)
B. (-\infty,p\rangle\cup\langle q,r\rangle
C. \langle p, q\rangle\cup\langle r,+\infty)
D. (p, q)\cup(r,+\infty)
E. (-\infty,p)\cup(q,r)
F. \langle p,q\rangle
Podpunkt 4.2 (0.8 pkt)
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pr-10126 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Liczba wymierna
p jest pierwiastkiem
wielomianu
W(x)=2x^3+9x^2+11x+14 .
Liczba p może należeć do przedziału:
Odpowiedzi:
A. (-4,-3)
B. (3,7)
C. (-7,-4)
D. (0,4)
Zadanie 6. 2 pkt ⋅ Numer: pp-20970 ⋅ Poprawnie: 8/14 [57%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
«« Reszta z dzielenia wielomianu
W(x)=x^3+3x^2-\frac{1}{2}m^2x-2m przez dwumian
P(x)=x+2 przyjmuje najmniejszą możliwą wartość.
Wyznacz m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Ile jest równa ta najmniejsza możliwa wartość?
Odpowiedź:
W_{min}(x)=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20974 ⋅ Poprawnie: 19/57 [33%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Wielomian
W(x) jest stopnia trzeciego i przy
dzieleniu przez dwumian
x-2 daje resztę
-36 . Pierwiastkami tego wielomianu są liczby
-1 ,
4 oraz
5 .
Oblicz W(0) .
Odpowiedź:
W(1)=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pr-20195 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (1 pkt)
Wielomian
P(x)=2x^3+ax^2+bx-8 dzieli się przez
wielomian
Q(x)=x^2-4x+4 .
Podaj a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-21002 ⋅ Poprawnie: 26/66 [39%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Iloczyn trzech liczb
a ,
b i
c takich, że liczba
b jest o
3 większa od liczby
a , a
liczba
c jest o
1 mniejsza od
liczby
b , jest równy
-72 .
Wyznacz te liczby.
Odpowiedzi:
Zadanie 10. 2 pkt ⋅ Numer: pr-21022 ⋅ Poprawnie: 50/33 [151%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Wyznacz zbiór wszystkich wartości parametru
m\in\mathbb{R} , dla których
równanie
x^3-6x^2+(8m-53)x+10m-60=0
ma trzy różne rozwiązania, z których jedno jest średnią arytmetyczną pozostałych.
Podaj najmniejsze możliwe m .
Odpowiedź:
m_{min}=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj największe możliwe
m .
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Rozwiąż