Podgląd testu : lo2@sp-17-wielomiany-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11556 ⋅ Poprawnie: 537/607 [88%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Suma wielomianów W(x)=-2x^3+5x^2-3 oraz
P(x)=2x^3+12x wynosi:
Odpowiedzi:
A. 4x^3+12x^2-3
B. 4x^6+5x^2+12x-3
C. 4x^3+5x^2+12x-3
D. 5x^2+12x-3
Zadanie 2. 1 pkt ⋅ Numer: pp-11680 ⋅ Poprawnie: 45/79 [56%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wyznacz resztę z dzielenia wielomianu określonego wzorem
W(x)=2\frac{2}{3}x^3-2x^2+5x-0,25 przez
dwumian
x+0,75 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11674 ⋅ Poprawnie: 81/127 [63%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Wyrażenie
8x^3+125y^3 jest równe
\left(2x+ay)\left(bx^2+cxy+25y^2\right) .
Podaj liczby a , b i
c .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pr-10115 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (0.2 pkt)
Wyznacz dziedzinę funkcji określonej wzorem
g(x)=\sqrt{x^3-25x} .
Rozwiązanie zapisz w postaci sumy przedziałów.
Suma ta ma postać:
Odpowiedzi:
A. (p, q)\cup(r,+\infty)
B. (p,q)
C. (-\infty,p\rangle\cup\langle q,r\rangle
D. \langle p,q\rangle
E. \langle p, q\rangle\cup\langle r,+\infty)
F. (-\infty,p)\cup(q,r)
Podpunkt 4.2 (0.8 pkt)
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pr-10114 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Liczba
-3 jest pierwiastkiem wielomianu określonego wzorem
W(x)=\left(x^2+px+p+9\right)\left(x^2+x-30\right) .
Wyznacz pierwiastek dwukrotny tego wielomianu.
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20972 ⋅ Poprawnie: 12/15 [80%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Wielomian
W(x)=x^3+m^2x^2+5x+\frac{15}{8}
przy dzieleniu
przez wielomian
P(x)=x+\left(\frac{1}{3}\right)^{\log_{3}{2}}
daje resztę
r=\frac{3}{8} .
Podaj najmniejsze możliwe m .
Odpowiedź:
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe
m .
Odpowiedź:
Zadanie 7. 2 pkt ⋅ Numer: pr-21004 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (2 pkt)
Liczby
-6 ,
6 i
8 są pierwiastkami wielomianu
W(x)=ax^3+bx^2+cx+d ,
a reszta z dzielenia tego wielominau przez dwumian
P(x)=x+1 jest równa
-315 .
Wyznacz wartości współczynników b i c .
Odpowiedzi:
Zadanie 8. 3 pkt ⋅ Numer: pp-20977 ⋅ Poprawnie: 62/89 [69%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Rozwiąż równanie
x^3+6x^2-10x-60=0 .
Podaj rozwiązanie wymierne tego równania.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj najmniejsze rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
Wpisz odpowiedź:
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 8.3 (1 pkt)
Podaj największe rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
Wpisz odpowiedź:
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-21005 ⋅ Poprawnie: 17/37 [45%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Suma objętości trzech sześcianów jest równa
251 .
Krawędź drugiego z tych sześcianów jest o
3 dłuższa
od krawędzi pierwszego sześcianu, a krawędź trzeciego sześcianu jest o
1 krótsza od krawędzi pierwszego sześcianu.
Wyznacz długość krawędzi najmniejszego z tych sześcianów.
Odpowiedź:
a_{min}=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pr-20180 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Liczba
-3 jest pierwiastkiem dwukrotnym wielomianu
H(x)=x^3+bx^2+cx-18 .
Podaj b .
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Rozwiąż