Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11551 ⋅ Poprawnie: 60/126 [47%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Dany jest wielomian W(x)=P(x)+Q(x), gdzie \begin{cases} P(x)=(16m^4-4)x^5-6mx^3+5 \\ Q(x)=(2m^2-10)x^5-4mx^3+8 \end{cases} .

Wyznacz iloczyn tych wszystkich wartości parametru m, dla których st.P(x)=3 lub st.Q(x)=3.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pp-11682 ⋅ Poprawnie: 116/250 [46%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wielomian określony wzorem P(x)=4x^3-3x^2-4x+1 przy dzieleniu przez dwumian x-0,5 daje resztę r.

Wyznacz liczbę r.

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11673 ⋅ Poprawnie: 100/138 [72%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Iloczyn wyrażenia 5x-2 przez wyrażenie -25x^2-10x-4 jest równy ax^3+bx+c, gdzie a,b,c\in\mathbb{Z}.

Podaj liczby a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10116 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz dziedzinę funkcji określonej wzorem f(x)=\frac{1}{\sqrt{x^3-26x^2+169x}}. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10129 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Dany jest wielomian Q(x)=51x^3-px^2-qx+14, gdzie p,q\in\mathbb{C}.

Pierwiastkiem wielomianu Q(x) nie może być liczba:

Odpowiedzi:
A. \frac{7}{3} B. \frac{2}{17}
C. \frac{2}{3} D. \frac{7}{6}
Zadanie 6.  2 pkt ⋅ Numer: pp-20971 ⋅ Poprawnie: 17/42 [40%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 r=5 » Wielomian W(x)=x^4+a^2x^3+ax^2-x+3 przy dzieleniu przez dwumian x-1 daje resztę 5.

Podaj najmniejsze możliwe a.

Odpowiedź:
a_{min}= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj największe możliwe a.
Odpowiedź:
a_{max}= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20997 ⋅ Poprawnie: 12/17 [70%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wielomian W(x)=4x^3+6(m+4)x^2+(4m+18)x-12 jest podzielny przez dwumian P(x)=x+2.

Wyznacz parametr m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj najmniejszy i największy pierwiastek tego wielomianu.
Odpowiedzi:
x_{min}=
(wpisz liczbę całkowitą)

x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20989 ⋅ Poprawnie: 7/11 [63%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Wielomian W(x)=(8x^3-27)(8x-5) jest podzielny przez wielomian P(x)=4x^2+6x+9, a wynikiem tego dzielenia jest wielomian Q(x)=ax^2+bx+c.

Wyznacz liczby a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-21001 ⋅ Poprawnie: 35/88 [39%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Iloczyn kwadratu liczby a i kwadratu liczby większej od a o 1, jest równy 144.

Podaj najmniejszą i największą możliwą wartość liczby a.

Odpowiedzi:
a_{min}= (wpisz liczbę całkowitą)
a_{max}= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pr-21028 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Jedynym miejscem zerowym funkcji wielomianowej określonej wzorem y=W(x) jest liczba -3, która jest pierwiastkiem dwukrotnym wielomianu W(x) o stopniu równym cztery. Do wykresu tej funkcji należą punkty o współrzędnych A=(0,9 ), B=(-4,21) oraz C=(-1,12 ).

Zapisz wzór wielomianu W(x) w postaci ogólnej W(x)=ax^4+bx^3+cx^2+dx+e. Podaj liczby b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj liczby d i e.
Odpowiedzi:
d= (wpisz liczbę całkowitą)
e= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm