Podgląd testu : lo2@sp-17-wielomiany-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11552 ⋅ Poprawnie: 537/640 [83%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Pomnożono dwa wielomiany
G(x)=6+3x^2 i
H(x)=-2x^3+6x^2-8 i otrzymano wynik
P(x) .
Podaj stopień wielomianu P(x) .
Odpowiedź:
st.P(x)=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11681 ⋅ Poprawnie: 71/158 [44%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Wielomian określony wzorem
W(x)=x^5-3x^4+mx^3+6 przy
dzieleniu przez dwumian
x+2 daje resztę
-34 .
Wyznacz liczbę m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11675 ⋅ Poprawnie: 102/159 [64%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Zapisz wyrażenie
(3x-2)^3 w postaci
a_1x^3+b_1x^2+c_1x+d_1 .
Podaj liczby b_1 i c_1 .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pr-10115 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (0.2 pkt)
Wyznacz dziedzinę funkcji określonej wzorem
g(x)=\sqrt{x^3-121x} .
Rozwiązanie zapisz w postaci sumy przedziałów.
Suma ta ma postać:
Odpowiedzi:
A. (-\infty,p)\cup(q,r)
B. \langle p,q\rangle
C. \langle p, q\rangle\cup\langle r,+\infty)
D. (p, q)\cup(r,+\infty)
E. (p,q)
F. (-\infty,p\rangle\cup\langle q,r\rangle
Podpunkt 4.2 (0.8 pkt)
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pr-10128 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Dana jest funkcja
g(x)=6x^3-2x^2 ,
x\in\mathbb{R} . Funkcja
f(x)=\frac{|g(x)|}{g(x)} przyjmuje wartość równą
-1 wtedy i tylko wtedy gdy:
Odpowiedzi:
A. x\in\left(0,\frac{1}{3}\right)
B. x\in\left(-\infty,\frac{1}{3}\right)
C. x\in\left(\frac{1}{3},+\infty\right)
D. x\in(-\infty,0)\cup\left(0,\frac{1}{3}\right)
Zadanie 6. 2 pkt ⋅ Numer: pr-20196 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (1 pkt)
Wyznacz te wartości parametrów
b i
c wielomianu
P(x)=x^3+bx^2+cx+1 , dla których
P(3)=7 oraz reszta z dzielenia wielomianu
P(x) przez dwumian
x+1
jest równa
-1 .
Podaj b .
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pr-20211 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (1 pkt)
» Wyznacz wszystkie pierwiastki wielomianu
W(x)
wiedząc, że przy dzieleniu przez dwumian
x-1
wielomian ten daje iloraz równy
2(x^2-2x-6) oraz
resztę równą
12 .
Podaj najmniejszy pierwiastek tego wielomianu.
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj największy pierwiastek tego wielomianu.
Odpowiedź:
x_{max}=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pr-20227 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (2 pkt)
Liczba
\sqrt[3]{\sqrt{5}+2}-\sqrt[3]{\sqrt{5}-2} jest
całkowita.
Podaj jej wartość.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-21009 ⋅ Poprawnie: 24/62 [38%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Iloczyn trzech kolejnych liczb nieparzystych jest o
2041 większy od różnicy kwadratów liczby największej i najmniejszej.
Znajdź te liczby.
Podaj najmniejszą z tych liczb.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pr-20470 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
«« Dany jest zbiór
P=\{k\in \mathbb{C}: (k^2-11k+28)(k^2-72k+1040)\leqslant 0\}
.
Wyznacz ilość wszystkich liczb nie większych od 10 , należących
do zbioru P .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Wyznacz ilość wszystkich liczb większych od
10 , należących
do zbioru
P .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Rozwiąż