Podgląd testu : lo2@sp-17-wielomiany-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11471 ⋅ Poprawnie: 371/684 [54%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
«« Wielomian
P(x)=(m+7)x^2+\sqrt{2}x^4-\sqrt{2}+1 spełnia
warunek
4\cdot P(1)+3\sqrt{2}=P(\sqrt{2}) gdy
m=......... .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11682 ⋅ Poprawnie: 116/250 [46%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Wielomian określony wzorem
P(x)=4x^3-3x^2+3x+1 przy
dzieleniu przez dwumian
x-0,5 daje resztę
r .
Wyznacz liczbę r .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11673 ⋅ Poprawnie: 100/138 [72%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Iloczyn wyrażenia
4x-1 przez wyrażenie
-16x^2-4x-1
jest równy
ax^3+bx+c , gdzie
a,b,c\in\mathbb{Z} .
Podaj liczby a , b i
c .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pr-10478 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (0.2 pkt)
Wyznacz dziedzinę funkcji określonej wzorem
f(x)=\sqrt{x^3-13x^2} .
Rozwiązanie zapisz w postaci sumy przedziałów.
Suma ta ma posatać:
Odpowiedzi:
A. \{p\}\cup\langle q,+\infty)
B. (-\infty,p\rangle
C. \langle p,q\rangle
D. (-\infty,p\rangle\cup\{q\}
E. \langle p,+\infty)
F. (p,q)
Podpunkt 4.2 (0.8 pkt)
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pr-10128 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Dana jest funkcja
g(x)=5x^3+7x^2 ,
x\in\mathbb{R} . Funkcja
f(x)=\frac{|g(x)|}{g(x)} przyjmuje wartość równą
-1 wtedy i tylko wtedy gdy:
Odpowiedzi:
A. x\in\left(0,\frac{7}{5}\right)
B. x\in\left(-\infty,-\frac{7}{5}\right)
C. x\in\left(-\infty,\frac{7}{5}\right)
D. x\in\left(-\infty,-\frac{7}{5}\right)\cup\left(-\frac{7}{5},0\right)
Zadanie 6. 2 pkt ⋅ Numer: pp-20970 ⋅ Poprawnie: 8/14 [57%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
«« Reszta z dzielenia wielomianu
W(x)=x^3-9x^2-\frac{1}{2}m^2x+8m przez dwumian
P(x)=x+2 przyjmuje najmniejszą możliwą wartość.
Wyznacz m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Ile jest równa ta najmniejsza możliwa wartość?
Odpowiedź:
W_{min}(x)=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pr-21008 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (1 pkt)
Wielomian
W(x)=x^3-8x^2+ax+b ma trzy pierwiastki
x_1 ,
x_2 i
x_3 takie,
że
x_2-x_1=2 i
x_3-x_1=3 .
Wyznacz najmniejszy i największy pierwiastek tego wielomianu.
Odpowiedzi:
Podpunkt 7.2 (1 pkt)
Wyznacz wartości parametrów
a i
b .
Odpowiedzi:
Zadanie 8. 2 pkt ⋅ Numer: pp-20988 ⋅ Poprawnie: 12/12 [100%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Wielomian
W(x)=4x^4-5x^3-6x^2+20x+15 jest podzielny przez
wielomian
P(x)=ax+b , a wynikiem tego dzielenia jest wielomian
Q(x)=x^3-2x^2+5 .
Wyznacz liczby a i b .
Odpowiedzi:
Zadanie 9. 2 pkt ⋅ Numer: pp-21003 ⋅ Poprawnie: 23/57 [40%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Uczniowe pewnej klasy podzielili się na trzy wieloosobowe grupy. W drugiej grupie
jest o
9 osób więcej niż w pierwzej, zaś w trzeciej
grupie o
12 osób więcej niż w pierwszej. Iloczyn
liczby uczniów grupy drugiej i trzeciej jest o
113
większy od sześcianu liczby uczniów pierwszej grupy.
Ilu uczniów liczy ta klasa?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pr-20181 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Liczba
-2 jest pierwiastkiem wielomianu
H(x)=x^4+bx^3+cx^2+dx-8 o krotności trzy.
Podaj b .
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Rozwiąż