Podgląd testu : lo2@sp-17-wielomiany-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11552 ⋅ Poprawnie: 537/640 [83%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Pomnożono dwa wielomiany
G(x)=6+3x^2 i
H(x)=-2x^3+6x^2-8 i otrzymano wynik
P(x) .
Podaj stopień wielomianu P(x) .
Odpowiedź:
st.P(x)=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pr-10123 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wielomian W(x)=2x^3-x-q dzieli się bez reszty przez
dwumian x-p+1 . Wynika z tego, że liczba
q jest równa:
Odpowiedzi:
A. 2(p+1)^3+p-1
B. 2(p-1)^3-p+1
C. 2(p+1)^3-p+1
D. 2(p-1)^3+p-1
Zadanie 3. 1 pkt ⋅ Numer: pp-11677 ⋅ Poprawnie: 44/61 [72%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Zapisz wyrażenie
(4x-3)^2x+(3-4x)x^2-(4x-3) w postaci iloczynu
dwóch wyrażeń w postaci
(a_1x^2+b_1x+c_1)(ax+d_1) .
Podaj sumę a_1+b_1+c_1 .
Odpowiedź:
a_1+b_1+c_1=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pr-10116 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wyznacz dziedzinę funkcji określonej wzorem
f(x)=\frac{1}{\sqrt{x^3-22x^2+121x}} .
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pr-10129 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Dany jest wielomian
Q(x)=-187x^3-px^2-qx+6 , gdzie
p,q\in\mathbb{C} .
Pierwiastkiem wielomianu Q(x) nie może być liczba:
Odpowiedzi:
A. -\frac{2}{11}
B. \frac{3}{17}
C. \frac{1}{2}
D. \frac{2}{17}
Zadanie 6. 2 pkt ⋅ Numer: pp-20991 ⋅ Poprawnie: 33/47 [70%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Wielomian
W(x)=
-12x^4+19x^3-12x^2+14x-3
jest podzielny przez dwumian
P(x)=x-\frac{1}{4} , a wynikiem tego dzielenia jest wielomian
Q(x)=ax^3+bx^2+cx+d .
Wyznacz współczynniki a , b i c .
Odpowiedzi:
Zadanie 7. 2 pkt ⋅ Numer: pp-20974 ⋅ Poprawnie: 19/57 [33%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Wielomian
W(x) jest stopnia trzeciego i przy
dzieleniu przez dwumian
x-2 daje resztę
20 . Pierwiastkami tego wielomianu są liczby
-3 ,
3 oraz
4 .
Oblicz W(-1) .
Odpowiedź:
W(1)=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20975 ⋅ Poprawnie: 147/310 [47%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Rozwiąż równanie
x^3-2x^2+3x-6=0 .
Podaj najmniejsze rozwiązanie tego równania.
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj największe rozwiązanie tego równania.
Odpowiedź:
x_{max}=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-21006 ⋅ Poprawnie: 16/23 [69%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Podstawą pudełka w kształcie prostopadłościanu o objętości
V=2.5 litrów jest kwadrat, którego krawędź jest
o
21 dłuższa od wysokości
h tego prostopadłościanu.
Wyznacz długość krawędzi podstawy a i wysokości
tego prostopadłościanu.
Odpowiedzi:
Zadanie 10. 2 pkt ⋅ Numer: pr-20206 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
Wielomian
W(x)=2x^4-12x^3-16x^2+10x+11
przy dzieleniu przez wielomian
P(x)=x^2-1
daje resztę
ax+b .
Podaj a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Rozwiąż