Podgląd testu : lo2@sp-17-wielomiany-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11551 ⋅ Poprawnie: 60/126 [47%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Dany jest wielomian
W(x)=P(x)+Q(x) , gdzie
\begin{cases}
P(x)=(16m^4-4)x^5-6mx^3+5 \\
Q(x)=(5m^2-15)x^5-4mx^3+8
\end{cases}
.
Wyznacz iloczyn tych wszystkich wartości parametru m , dla
których st.P(x)=3 lub st.Q(x)=3 .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 2. 1 pkt ⋅ Numer: pp-11679 ⋅ Poprawnie: 126/272 [46%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wyznacz tę wartość parametru
m , dla której wielomian
P(x)=6x^3+x^2-5x+m-1 dzieli się bez reszty przez
dwumian
x-1 .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11678 ⋅ Poprawnie: 64/75 [85%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wyrażenie
(\sqrt{2}-x)(x^2+2+\sqrt{2}x) jest równe
m\sqrt{n}+kx^3 , gdzie
m,n,k\in\mathbb{Z} .
Podaj liczby m , n i
k .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pr-10477 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wyznacz dziedzinę funkcji określonej wzorem
g(x)=\frac{1}{\sqrt{x^3+20x^2+100x}} .
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pr-10476 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Wielomian
W(x)=x^3+ax^2+36x ma pierwiastek
dwukrotny.
Wyznacz dodatnią wartość parametru a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20969 ⋅ Poprawnie: 34/61 [55%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
« Wielomian
W(x)=x^3-1x^2+mx+1
przy dzieleniu przez dwumian
x-1 daje resztę
-\frac{5}{2} .
Oblicz wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pr-21006 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (1 pkt)
Wielomian
W(x)=x^3+ax^2+bx-8 ma trzy pierwiastki
x_1 ,
x_2 i
x_3 takie,
że
\frac{x_2}{x_1}=2 i
\frac{x_3}{x_1}=4 .
Podaj wartości parametrów a i b .
Odpowiedzi:
Podpunkt 7.2 (1 pkt)
Wyznacz najmniejszy i największy pierwiastek tego wielomianu.
Odpowiedzi:
Zadanie 8. 2 pkt ⋅ Numer: pr-20229 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (1 pkt)
» Wyznacz te wartości parametru
m , dla których
wielomian
Q(x)=x^3+(2m+1)x^2+(8m-8)x ma dokładnie jeden
pierwiastek.
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-21002 ⋅ Poprawnie: 26/66 [39%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Iloczyn trzech liczb
a ,
b i
c takich, że liczba
b jest o
4 większa od liczby
a , a
liczba
c jest o
1 mniejsza od
liczby
b , jest równy
-6 .
Wyznacz te liczby.
Odpowiedzi:
Zadanie 10. 2 pkt ⋅ Numer: pr-21028 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
Jedynym miejscem zerowym funkcji wielomianowej określonej wzorem
y=W(x)
jest liczba
-3 , która jest pierwiastkiem dwukrotnym wielomianu
W(x) o stopniu równym cztery. Do wykresu tej funkcji należą punkty o współrzędnych
A=(0,54 ) ,
B=(3,432)
oraz
C=(2,200 ) .
Zapisz wzór wielomianu W(x) w postaci ogólnej
W(x)=ax^4+bx^3+cx^2+dx+e . Podaj liczby b i c .
Odpowiedzi:
Podpunkt 10.2 (1 pkt)
Odpowiedzi:
Rozwiąż