« Wielomian
W(x)=x^3+m^2x^2+\frac{11}{2}x+\frac{5}{2}
przy dzieleniu
przez wielomian
P(x)=x+\left(\frac{1}{3}\right)^{\log_{3}{2}}
daje resztę r=\frac{3}{8}.
Podaj najmniejsze możliwe m.
Odpowiedź:
m_{min}=
\cdot√
(wpisz trzy liczby całkowite)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe m.
Odpowiedź:
m_{max}=
\cdot√
(wpisz trzy liczby całkowite)
Zadanie 7.2 pkt ⋅ Numer: pr-21005 ⋅ Poprawnie: 0/0
Wielomian W(x)=x^4+bx^3+cx^2+dx+e jest podzielny przez
wielomian P(x)=x^3-4x^2+x+6. Suma współczynników wielomianu
W(x) jest równa 32,
a reszta z dzielenia wielomianu W(x) przez dwumian
Q(x)=x+2 jest równa -100.
Wyznacz wartości współczynników b, c i d.
Odpowiedzi:
b
=
(wpisz liczbę całkowitą)
c
=
(wpisz liczbę całkowitą)
d
=
(wpisz liczbę całkowitą)
Zadanie 8.3 pkt ⋅ Numer: pp-20977 ⋅ Poprawnie: 62/89 [69%]