Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pr-1

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11472  
Podpunkt 1.1 (1 pkt)
 Wielomian P(x)=q-11+2x+px^2-2x^4 spełnia warunki \begin{cases} P(-1)+P(1)=0 \\ P(-\sqrt{2})=-P(\sqrt{2}) \end{cases} .

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11680  
Podpunkt 2.1 (1 pkt)
 Wyznacz resztę z dzielenia wielomianu określonego wzorem W(x)=2\frac{2}{3}x^3-2x^2+x-0,25 przez dwumian x+0,75.
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11676  
Podpunkt 3.1 (1 pkt)
 Oblicz wartość wyrażenia algebraicznego w=(2\sqrt{3}-1)^3.
Odpowiedź:
w= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10117  
Podpunkt 4.1 (1 pkt)
 « Wyznacz rozwiązanie nierówności (x-1)^2(x-2)(x-8)\leqslant 0. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10128  
Podpunkt 5.1 (1 pkt)
 « Dana jest funkcja g(x)=x^3+3x^2, x\in\mathbb{R}. Funkcja f(x)=\frac{|g(x)|}{g(x)} przyjmuje wartość równą -1 wtedy i tylko wtedy gdy:
Odpowiedzi:
A. x\in\left(-\infty,-3\right)\cup\left(-3,0\right) B. x\in\left(0,3\right)
C. x\in\left(-\infty,-3\right) D. x\in\left(-\infty,3\right)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20971  
Podpunkt 6.1 (1 pkt)
 r=15 » Wielomian W(x)=x^4+a^2x^3+ax^2-x+3 przy dzieleniu przez dwumian x-1 daje resztę 15.

Podaj najmniejsze możliwe a.

Odpowiedź:
a_{min}= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj największe możliwe a.
Odpowiedź:
a_{max}= (wpisz liczbę całkowitą)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20997  
Podpunkt 7.1 (1 pkt)
 Wielomian W(x)=4x^3+6(m-7)x^2+(4m-26)x-12 jest podzielny przez dwumian P(x)=x+2.

Wyznacz parametr m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj najmniejszy i największy pierwiastek tego wielomianu.
Odpowiedzi:
x_{min}=
(wpisz liczbę całkowitą)

x_{max}=
(dwie liczby całkowite)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20980  
Podpunkt 8.1 (2 pkt)
 Wielomiany W(x)=2ax(2x-b)^2 oraz P(x)=-40x^3+40x^2-10x są równe.

Wyznacz liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-21005  
Podpunkt 9.1 (2 pkt)
 Suma objętości trzech sześcianów jest równa 160. Krawędź drugiego z tych sześcianów jest o 2 dłuższa od krawędzi pierwszego sześcianu, a krawędź trzeciego sześcianu jest o 1 krótsza od krawędzi pierwszego sześcianu.

Wyznacz długość krawędzi najmniejszego z tych sześcianów.

Odpowiedź:
a_{min}= (wpisz liczbę całkowitą)
Zadanie 10.  (3 pkt) [ Dodaj do testu ]  Numer zadania: pr-20214  
Podpunkt 10.1 (1 pkt)
 Wielomian W(x)=-4x^3+19x^2-11x+m+3 przy dzieleniu przez dwumian x+1 daje resztę 30.

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj największy pierwiastek tego wielomianu, który jest liczbą całkowitą.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
 Podaj pierwiastek tego wielomianu, który nie jest liczbą całkowitą.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm