Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11551 ⋅ Poprawnie: 60/126 [47%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Dany jest wielomian W(x)=P(x)+Q(x), gdzie \begin{cases} P(x)=(16m^4-4)x^5-6mx^3+5 \\ Q(x)=(2m^2-16)x^5-4mx^3+8 \end{cases} .

Wyznacz iloczyn tych wszystkich wartości parametru m, dla których st.P(x)=3 lub st.Q(x)=3.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pr-10123 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
Wielomian W(x)=2x^3-x-q dzieli się bez reszty przez dwumian x-p+1. Wynika z tego, że liczba q jest równa:
Odpowiedzi:
A. 2(p-1)^3-p+1 B. 2(p+1)^3+p-1
C. 2(p-1)^3+p-1 D. 2(p+1)^3-p+1
Zadanie 3.  1 pkt ⋅ Numer: pp-11674 ⋅ Poprawnie: 81/127 [63%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Wyrażenie 8x^3+125y^3 jest równe \left(2x+ay)\left(bx^2+cxy+25y^2\right).

Podaj liczby a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10478 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (0.2 pkt)
 Wyznacz dziedzinę funkcji określonej wzorem f(x)=\sqrt{x^3-15x^2}. Rozwiązanie zapisz w postaci sumy przedziałów.

Suma ta ma posatać:

Odpowiedzi:
A. \{p\}\cup\langle q,+\infty) B. (p,q)
C. (-\infty,p\rangle D. (-\infty,p\rangle\cup\{q\}
E. \langle p,q\rangle F. \langle p,+\infty)
Podpunkt 4.2 (0.8 pkt)
 Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10127 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz iloczyn wszystkich pierwiastków rzeczywistych wielomianu określonego wzorem W(x)=x^4+7x^2-18.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20990 ⋅ Poprawnie: 48/76 [63%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Wielomian W(x)=-10x^3-15x^2+x+3 jest podzielny przez dwumian P(x)=x+\frac{1}{2}, a wynikiem tego dzielenia jest wielomian Q(x)=ax^2+bx+c.

Wyznacz współczynniki a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-21005 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Wielomian W(x)=-x^4+bx^3+cx^2+dx+e jest podzielny przez wielomian P(x)=x^3-4x^2+x+6. Suma współczynników wielomianu W(x) jest równa 20, a reszta z dzielenia wielomianu W(x) przez dwumian Q(x)=x+2 jest równa -160.

Wyznacz wartości współczynników b, c i d.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
d= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20194 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Wyznacz te wartości parametrów m i n, dla których wielomian P(x)=x^9+\frac{m+6}{4}x+2n-4 jest podzielny przez wielomian Q(x)=1-x^2.

Podaj m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj n.
Odpowiedź:
n=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-21001 ⋅ Poprawnie: 35/88 [39%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Iloczyn kwadratu liczby a i kwadratu liczby większej od a o 3, jest równy 16.

Podaj najmniejszą i największą możliwą wartość liczby a.

Odpowiedzi:
a_{min}= (wpisz liczbę całkowitą)
a_{max}= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pr-20182 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » Dziedziną funkcji h(x)=\sqrt{\left(x^2+2bx-ax-2ab\right)\left(x^2-x-30\right)} jest zbiór \mathbb{R}.

Podaj najmniejsze możliwe a.

Odpowiedź:
a_{min}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj największe możliwe b.
Odpowiedź:
b_{max}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm