Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11556 ⋅ Poprawnie: 537/607 [88%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
Suma wielomianów W(x)=-2x^3+5x^2-3 oraz P(x)=2x^3+12x wynosi:
Odpowiedzi:
A. 4x^6+5x^2+12x-3 B. 4x^3+12x^2-3
C. 4x^3+5x^2+12x-3 D. 5x^2+12x-3
Zadanie 2.  2 pkt ⋅ Numer: pp-11683 ⋅ Poprawnie: 54/81 [66%] Rozwiąż 
Podpunkt 2.1 (2 pkt)
 Przy dzieleniu przez P(x)=x-1 wielomian W(x)=x^4+2x^3-5x^2-6mx+9 daje resztę 1.

Oblicz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11674 ⋅ Poprawnie: 81/127 [63%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Wyrażenie 8x^3+27y^3 jest równe \left(2x+ay)\left(bx^2+cxy+9y^2\right).

Podaj liczby a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10115 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (0.2 pkt)
 Wyznacz dziedzinę funkcji określonej wzorem g(x)=\sqrt{x^3-4x}. Rozwiązanie zapisz w postaci sumy przedziałów.

Suma ta ma postać:

Odpowiedzi:
A. \langle p,q\rangle B. \langle p, q\rangle\cup\langle r,+\infty)
C. (-\infty,p)\cup(q,r) D. (p, q)\cup(r,+\infty)
E. (p,q) F. (-\infty,p\rangle\cup\langle q,r\rangle
Podpunkt 4.2 (0.8 pkt)
 Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10126 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Liczba wymierna p jest pierwiastkiem wielomianu W(x)=2x^3+x^2+3x-2.

Liczba p może należeć do przedziału:

Odpowiedzi:
A. (0,1) B. (1,1)
C. (-1,-1) D. (0,0)
Zadanie 6.  2 pkt ⋅ Numer: pp-20990 ⋅ Poprawnie: 48/76 [63%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Wielomian W(x)=2x^3+7x^2+13x+5 jest podzielny przez dwumian P(x)=x+\frac{1}{2}, a wynikiem tego dzielenia jest wielomian Q(x)=ax^2+bx+c.

Wyznacz współczynniki a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-21000 ⋅ Poprawnie: 28/35 [80%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Wyznacz całkowite pierwiastki wielomianu W(x)= -2x^3+4x^2+14x+8.

Podaj najmniejszy i największy pierwiastek całkowity tego wielomianu.

Odpowiedzi:
x_{min\{Z\}}= (wpisz liczbę całkowitą)
x_{max\{Z\}}= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20229 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Wyznacz te wartości parametru m, dla których wielomian Q(x)=x^3+(2m-13)x^2+(8m-64)x ma dokładnie jeden pierwiastek.

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Odpowiedź:
l=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-21001 ⋅ Poprawnie: 35/88 [39%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Iloczyn kwadratu liczby a i kwadratu liczby większej od a o 2, jest równy 576.

Podaj najmniejszą i największą możliwą wartość liczby a.

Odpowiedzi:
a_{min}= (wpisz liczbę całkowitą)
a_{max}= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pr-20219 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
» Wyznacz resztę z dzielenia wielomianu W(x)=x^{2017}-2x^{2016}+2x^{2015}-1 przez wielomian P(x)=x^3-x.

Zapisz resztę w postaci R(x)=ax^2+bx+c. Podaj a+b.

Odpowiedź:
a+b= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj b+c.
Odpowiedź:
b+c= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm