Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11552 ⋅ Poprawnie: 454/570 [79%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
Pomnożono dwa wielomiany G(x)=6+3x^2 i H(x)=-2x^3+6x^2-8 i otrzymano wynik P(x).

Podaj stopień wielomianu P(x).

Odpowiedź:
st.P(x)= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11682 ⋅ Poprawnie: 116/250 [46%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wielomian określony wzorem P(x)=4x^3-3x^2+5x+1 przy dzieleniu przez dwumian x-0,5 daje resztę r.

Wyznacz liczbę r.

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11672 ⋅ Poprawnie: 149/202 [73%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wyrażenie (4x+4)^3-(x-5)(x+5) zapisane w postaci sumy algebraicznej ma postać 64x^3+mx^2+nx+89, gdzie m,n\in\mathbb{Z}.

Podaj liczby m i n.

Odpowiedzi:
m= (wpisz liczbę całkowitą)
n= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10115 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (0.2 pkt)
 Wyznacz dziedzinę funkcji określonej wzorem g(x)=\sqrt{x^3-144x}. Rozwiązanie zapisz w postaci sumy przedziałów.

Suma ta ma postać:

Odpowiedzi:
A. (p, q)\cup(r,+\infty) B. (-\infty,p\rangle\cup\langle q,r\rangle
C. (p,q) D. \langle p,q\rangle
E. \langle p, q\rangle\cup\langle r,+\infty) F. (-\infty,p)\cup(q,r)
Podpunkt 4.2 (0.8 pkt)
 Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10129 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Dany jest wielomian Q(x)=221x^3-px^2-qx-35, gdzie p,q\in\mathbb{C}.

Pierwiastkiem wielomianu Q(x) nie może być liczba:

Odpowiedzi:
A. \frac{7}{17} B. -\frac{5}{13}
C. -\frac{5}{17} D. \frac{7}{6}
Zadanie 6.  2 pkt ⋅ Numer: pr-20210 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Wyznacz te wartości parametru m, dla których wielomian W(x)=x^9-(m+3)^3x^8+(m^2+6m+8)x^5+2(m+4)x^2+(m+3)x przy dzieleniu przez wielomian P(x)=x+1 daje resztę 1.

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20995 ⋅ Poprawnie: 57/176 [32%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wielomian W(x)= 2x^3+7x^2-7x-30 jest podzielny przez dwumian P(x)=x-2. Wyznacz pierwiastki tego wielomianu.

Podaj najmniejszy pierwiastek tego wielomianu.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj pierwiastek niecałkowity tego wielomianu.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20986 ⋅ Poprawnie: 6/8 [75%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wielomian W(x)=-6x^4+(a-b-1)x^3-21x^2+(2a-3b-4)x-15 jest podzielny przez wielomian P(x)=3x^2-2x+5, a wynikiem tego dzielenia jest wielomian Q(x)=-2x^2+x-3.

Wyznacz liczbę a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Wyznacz liczbę b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-21007 ⋅ Poprawnie: 24/62 [38%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Krawędzie akwarium w kształcie prostopadłościanu wychodzące z jednego wierzchołka mają długość 3, 5 i 2. Inne akwarium prostopadłościenne, którego każda krawędz jest dłuższa o ten sam odcinek od odpowiednich krawędzi pierwszego akwarium, ma pojemność o 1818 większą od pierwszego akwarium.

Wyznacz długość dwóch najkrótszych boków nowe zbudowanego akwarium.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pr-20190 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » Liczba 2 jest pierwiastkiem trzykrotnym wielomianu W(x)=x^4+ax^3+2mx^2+bx+n-1.

Podaj m.

Dane
a=-10
b=-56
Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj n.
Odpowiedź:
c= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm