Podgląd testu : lo2@sp-17-wielomiany-pr-1
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11472 ⋅ Poprawnie: 319/582 [54%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Wielomian
P(x)=q+4+2x+px^2-2x^4 spełnia
warunki
\begin{cases}
P(-1)+P(1)=0 \\
P(-\sqrt{2})=-P(\sqrt{2})
\end{cases}
.
Podaj liczby p i q.
Odpowiedzi:
|
Zadanie 2. 2 pkt ⋅ Numer: pp-11683 ⋅ Poprawnie: 54/81 [66%] |
Rozwiąż |
Podpunkt 2.1 (2 pkt)
Przy dzieleniu przez
P(x)=x-1 wielomian
W(x)=x^4+2x^3-5x^2-6mx+9 daje resztę
4.
Oblicz m.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11673 ⋅ Poprawnie: 100/138 [72%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Iloczyn wyrażenia
3x-4 przez wyrażenie
-9x^2-12x-16
jest równy
ax^3+bx+c, gdzie
a,b,c\in\mathbb{Z}.
Podaj liczby a, b i
c.
Odpowiedzi:
|
Zadanie 4. 1 pkt ⋅ Numer: pr-10477 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Wyznacz dziedzinę funkcji określonej wzorem
g(x)=\frac{1}{\sqrt{x^3+22x^2+121x}}.
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
|
Zadanie 5. 1 pkt ⋅ Numer: pr-11604 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
« Wielomian
W(x)=ax^3+6x^2+9x ma pierwiastek
dwukrotny.
Wyznacz dodatnią wartość parametru a.
Odpowiedź:
a=
(wpisz liczbę całkowitą)
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20994 ⋅ Poprawnie: 29/73 [39%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
W wyniku podzielenia wielomianu
W(x)=
-4x^3+5x^2+2x-8
przez dwumian
P(x)=x-1, otrzymamy wynik dzielenia
Q(x)=ax^2+bx+c i resztę
r.
Wyznacz współczynniki a, b i c.
Odpowiedzi:
Podpunkt 6.2 (1 pkt)
Podaj resztę
r z tego dzielenia.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20995 ⋅ Poprawnie: 57/176 [32%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Wielomian
W(x)=
-x^3-\frac{1}{2}x^2+\frac{25}{2}x-6
jest podzielny przez dwumian
P(x)=x-3.
Wyznacz pierwiastki tego wielomianu.
Podaj najmniejszy pierwiastek tego wielomianu.
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj pierwiastek niecałkowity tego wielomianu.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20984 ⋅ Poprawnie: 74/156 [47%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
« Wielomian
W(x)=-10x^3-x^2+ax+b jest podzielny przez
wielomian
P(x)=1-2x, a wynikiem tego dzielenia jest wielomian
Q(x)=5x^2+3x-5.
Wyznacz współczynnik a.
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-21001 ⋅ Poprawnie: 35/88 [39%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
Iloczyn kwadratu liczby
a i kwadratu liczby większej od
a o
2, jest równy
1.
Podaj najmniejszą i największą możliwą wartość liczby a.
Odpowiedzi:
|
Zadanie 10. 2 pkt ⋅ Numer: pr-20230 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Jednym z pierwiastków wielomianu
W(x)=(m-1)x^3+x^2-3(m)x-m jest liczba
2. Wyznacz wartość parametru
m oraz pozostałe pierwiastki.
Podaj m.
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj najmniejszy pierwiastek tego wielomianu.
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)