Podgląd testu : lo2@sp-17-wielomiany-pr-1
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11556 ⋅ Poprawnie: 537/607 [88%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Suma wielomianów W(x)=-2x^3+5x^2-3 oraz
P(x)=2x^3+12x wynosi:
Odpowiedzi:
|
A. 5x^2+12x-3
|
B. 4x^3+12x^2-3
|
|
C. 4x^3+5x^2+12x-3
|
D. 4x^6+5x^2+12x-3
|
|
Zadanie 2. 2 pkt ⋅ Numer: pp-11683 ⋅ Poprawnie: 54/81 [66%] |
Rozwiąż |
Podpunkt 2.1 (2 pkt)
Przy dzieleniu przez
P(x)=x-1 wielomian
W(x)=x^4+2x^3-5x^2-6mx+9 daje resztę
19.
Oblicz m.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11673 ⋅ Poprawnie: 100/138 [72%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Iloczyn wyrażenia
3x-5 przez wyrażenie
-9x^2-15x-25
jest równy
ax^3+bx+c, gdzie
a,b,c\in\mathbb{Z}.
Podaj liczby a, b i
c.
Odpowiedzi:
|
Zadanie 4. 1 pkt ⋅ Numer: pr-10301 ⋅ Poprawnie: 1/1 [100%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Reszta z dzielenia wielomianu
W(x)=x^{67}+x^{63}+x^{59}+x^{55}+x^{51}+x
przez dwumian
P(x)=x^2-1 jest równa:
Odpowiedzi:
|
A. 6x+1
|
B. 6x
|
|
C. 6x-1
|
D. 3x+1
|
|
Zadanie 5. 1 pkt ⋅ Numer: pr-10128 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
« Dana jest funkcja
g(x)=4x^3+12x^2,
x\in\mathbb{R}. Funkcja
f(x)=\frac{|g(x)|}{g(x)} przyjmuje wartość równą
-1 wtedy i tylko wtedy gdy:
Odpowiedzi:
|
A. x\in\left(-\infty,3\right)
|
B. x\in\left(-\infty,-3\right)
|
|
C. x\in\left(-\infty,-3\right)\cup\left(-3,0\right)
|
D. x\in\left(0,3\right)
|
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20994 ⋅ Poprawnie: 29/73 [39%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
W wyniku podzielenia wielomianu
W(x)=
3x^3-5x^2+4x+1
przez dwumian
P(x)=x-1, otrzymamy wynik dzielenia
Q(x)=ax^2+bx+c i resztę
r.
Wyznacz współczynniki a, b i c.
Odpowiedzi:
Podpunkt 6.2 (1 pkt)
Podaj resztę
r z tego dzielenia.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20999 ⋅ Poprawnie: 23/58 [39%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
Wyznacz całkowite pierwiastki wielomianu
W(x)=
x^3+\frac{77}{6}x^2+\frac{203}{6}x-6.
Podaj najmniejszy i największy pierwiastek całkowity tego wielomianu.
Odpowiedzi:
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20989 ⋅ Poprawnie: 7/11 [63%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
Wielomian
W(x)=(8x^3-27)(5x+8) jest podzielny przez
wielomian
P(x)=4x^2+6x+9, a wynikiem tego dzielenia jest wielomian
Q(x)=ax^2+bx+c.
Wyznacz liczby a, b i c.
Odpowiedzi:
|
Zadanie 9. 2 pkt ⋅ Numer: pp-21002 ⋅ Poprawnie: 26/66 [39%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
Iloczyn trzech liczb
a,
b i
c takich, że liczba
b jest o
4 większa od liczby
a, a
liczba
c jest o
1 mniejsza od
liczby
b, jest równy
-6.
Wyznacz te liczby.
Odpowiedzi:
|
Zadanie 10. 2 pkt ⋅ Numer: pr-21013 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
Liczba
6 jest pierwiastkiem dwukrotnym wielomianu
W(x)=x^3+mx^2+nx+36.
Wyznacz wartości parametrów m i n.
Odpowiedzi: