«« Wielomian W(x)=\sqrt{6}x^3-\sqrt{3}x^2-2\sqrt{3}
przy dzieleniu przez dwumian x-
m
daje
resztę, która jest liczbą wymierną. Wynika z tego, że liczba
m jest równa:
Odpowiedzi:
A.3\sqrt{2}
B.\sqrt{2}
C.\sqrt{6}
D.\sqrt{3}
Zadanie 3.1 pkt ⋅ Numer: pp-11677 ⋅ Poprawnie: 44/61 [72%]
« Wyznacz te wartości parametru m, dla których
wielomian
W(x)=x^9-(m+3)^3x^8+(m^2+6m+8)x^5+2(m+4)x^2+(m+3)x
przy dzieleniu przez wielomian P(x)=x+1 daje resztę
1.
Podaj najmniejsze możliwe m.
Odpowiedź:
m_{min}=(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe m.
Odpowiedź:
m_{max}=(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pr-20211 ⋅ Poprawnie: 0/0
» Wyznacz wszystkie pierwiastki wielomianu W(x)
wiedząc, że przy dzieleniu przez dwumian x-1
wielomian ten daje iloraz równy
2(x^2-x-10) oraz
resztę równą 16.
Podaj najmniejszy pierwiastek tego wielomianu.
Odpowiedź:
x_{min}=(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj największy pierwiastek tego wielomianu.
Odpowiedź:
x_{max}=(wpisz liczbę całkowitą)
Zadanie 8.2 pkt ⋅ Numer: pr-20229 ⋅ Poprawnie: 0/0
Podstawą pudełka w kształcie prostopadłościanu o objętości
V=2.0 litrów jest kwadrat, którego krawędź jest
o 15 dłuższa od wysokości h tego prostopadłościanu.
Wyznacz długość krawędzi podstawy a i wysokości
tego prostopadłościanu.
Odpowiedzi:
a
=
(wpisz liczbę całkowitą)
h
=
(wpisz liczbę całkowitą)
Zadanie 10.2 pkt ⋅ Numer: pr-20178 ⋅ Poprawnie: 0/0
» Wielomian Q(x)=ax^3+bx^2+cx+d dla argumentu
0 przyjmuje wartość 16.
Liczba x_1=-4 jest jego pierwiastkiem, zaś liczba
x_2=2 jest pierwiastkiem dwukrotnym wielomianu
Q(x).
Wyznacz b.
Odpowiedź:
b=(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj c.
Odpowiedź:
c=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat