Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11472 ⋅ Poprawnie: 319/582 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wielomian P(x)=q+3+2x+px^2-2x^4 spełnia warunki \begin{cases} P(-1)+P(1)=0 \\ P(-\sqrt{2})=-P(\sqrt{2}) \end{cases} .

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11681 ⋅ Poprawnie: 71/158 [44%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wielomian określony wzorem W(x)=x^5-3x^4+mx^3+6 przy dzieleniu przez dwumian x-2 daje resztę -2.

Wyznacz liczbę m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11672 ⋅ Poprawnie: 149/202 [73%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wyrażenie (3x+3)^3-(x-6)(x+6) zapisane w postaci sumy algebraicznej ma postać 27x^3+mx^2+nx+63, gdzie m,n\in\mathbb{Z}.

Podaj liczby m i n.

Odpowiedzi:
m= (wpisz liczbę całkowitą)
n= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10478 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (0.2 pkt)
 Wyznacz dziedzinę funkcji określonej wzorem f(x)=\sqrt{x^3-9x^2}. Rozwiązanie zapisz w postaci sumy przedziałów.

Suma ta ma posatać:

Odpowiedzi:
A. (p,q) B. (-\infty,p\rangle\cup\{q\}
C. \{p\}\cup\langle q,+\infty) D. \langle p,+\infty)
E. (-\infty,p\rangle F. \langle p,q\rangle
Podpunkt 4.2 (0.8 pkt)
 Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10126 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Liczba wymierna p jest pierwiastkiem wielomianu W(x)=2x^3+x^2+3x-2.

Liczba p może należeć do przedziału:

Odpowiedzi:
A. (0,1) B. (0,0)
C. (1,1) D. (-1,-1)
Zadanie 6.  2 pkt ⋅ Numer: pp-20994 ⋅ Poprawnie: 29/73 [39%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 W wyniku podzielenia wielomianu W(x)= 4x^3-3x^2-2x-4 przez dwumian P(x)=x-1, otrzymamy wynik dzielenia Q(x)=ax^2+bx+c i resztę r.

Wyznacz współczynniki a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj resztę r z tego dzielenia.
Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20998 ⋅ Poprawnie: 21/89 [23%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wyznacz wszystkie pierwiastki wielomianu P(x)=5x^3-x^2-15x+3.

Podaj najmniejszy z jego pierwiastków.

Odpowiedź:
x_{min}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj największy z jego pierwiastków.
Odpowiedź:
x_{max}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20964 ⋅ Poprawnie: 8/10 [80%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wyrażenie \frac{5\cdot xy}{xy+3y^2}:\frac{x^2}{x^2+6xy+9y^2} można przekształcić do postaci a+b\cdot \frac{y}{x}, gdzie a i b są liczbami całkowitymi.

Podaj liczbę a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj liczbę b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-21001 ⋅ Poprawnie: 35/88 [39%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Iloczyn kwadratu liczby a i kwadratu liczby większej od a o 2, jest równy 9.

Podaj najmniejszą i największą możliwą wartość liczby a.

Odpowiedzi:
a_{min}= (wpisz liczbę całkowitą)
a_{max}= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pr-21017 ⋅ Poprawnie: 42/33 [127%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Wyznacz zbiór wszystkich wartości parametru m\in\mathbb{R}, dla których równanie (2x+3)\left[(m+6)x^2+(m+4)x-2\right]=0 ma mniej niż trzy rozwiązania.

Podaj najmniejsze i największe m spełniające warunki zadania.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj m spełniające warunki zadania, które nie jest liczbą całkowitą.
Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm