Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11556 ⋅ Poprawnie: 454/537 [84%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
Suma wielomianów W(x)=-2x^3+5x^2-3 oraz P(x)=2x^3+12x wynosi:
Odpowiedzi:
A. 5x^2+12x-3 B. 4x^6+5x^2+12x-3
C. 4x^3+12x^2-3 D. 4x^3+5x^2+12x-3
Zadanie 2.  1 pkt ⋅ Numer: pr-10123 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
Wielomian W(x)=2x^3-x-q dzieli się bez reszty przez dwumian x-p+1. Wynika z tego, że liczba q jest równa:
Odpowiedzi:
A. 2(p+1)^3-p+1 B. 2(p-1)^3+p-1
C. 2(p-1)^3-p+1 D. 2(p+1)^3+p-1
Zadanie 3.  1 pkt ⋅ Numer: pp-11677 ⋅ Poprawnie: 44/61 [72%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zapisz wyrażenie (3x-4)^2x+(4-3x)x^2-(3x-4) w postaci iloczynu dwóch wyrażeń w postaci (a_1x^2+b_1x+c_1)(ax+d_1).

Podaj sumę a_1+b_1+c_1.

Odpowiedź:
a_1+b_1+c_1= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10117 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Wyznacz rozwiązanie nierówności (x+5)^2(x+4)(x-3)\leqslant 0. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10114 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Liczba 5 jest pierwiastkiem wielomianu określonego wzorem W(x)=\left(x^2+px+p-19\right)\left(x^2-6x-40\right).

Wyznacz pierwiastek dwukrotny tego wielomianu.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pr-20205 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Wielomian W(x)=\sqrt{(a+1)^2}x^3+x^2+|a|x+3 przy dzieleniu przez dwumian x+1 daje resztę -18.

Podaj najmniejsze możliwe a.

Odpowiedź:
a_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj największe możliwe a.
Odpowiedź:
a_{max}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20974 ⋅ Poprawnie: 19/57 [33%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Wielomian W(x) jest stopnia trzeciego i przy dzieleniu przez dwumian x-2 daje resztę 144. Pierwiastkami tego wielomianu są liczby -4, -2 oraz 5.

Oblicz W(1).

Odpowiedź:
W(1)= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20194 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Wyznacz te wartości parametrów m i n, dla których wielomian P(x)=x^9+\frac{m+6}{4}x+2n-2 jest podzielny przez wielomian Q(x)=1-x^2.

Podaj m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj n.
Odpowiedź:
n=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-21004 ⋅ Poprawnie: 15/17 [88%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 W pewnej liczbie naturalnej trzycyfrowej cyfra dziesiątek jest 2 razy większa od cyfry setek, zaś cyfra jedności jest o 2 mniejsza od cyfry setek. Wyznacz tę liczbę trzycyfrową więdząc, że różnica sześcianu cyfry setek i iloczynu cyfry dziesiątek przez cyfrę jedności jest równa 21.

Podaj tę liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pr-20188 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » Rozwiąż nierówność x^3+224\leqslant 7(x+2)^2.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Podaj ten z końców tych przedziałów, który jest liczbą całkowitą.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm