Podgląd testu : lo2@sp-17-wielomiany-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11556 ⋅ Poprawnie: 537/607 [88%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Suma wielomianów W(x)=-2x^3+5x^2-3 oraz
P(x)=2x^3+12x wynosi:
Odpowiedzi:
A. 5x^2+12x-3
B. 4x^3+5x^2+12x-3
C. 4x^6+5x^2+12x-3
D. 4x^3+12x^2-3
Zadanie 2. 1 pkt ⋅ Numer: pr-10123 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wielomian W(x)=2x^3-x-q dzieli się bez reszty przez
dwumian x-p+1 . Wynika z tego, że liczba
q jest równa:
Odpowiedzi:
A. 2(p-1)^3+p-1
B. 2(p+1)^3+p-1
C. 2(p+1)^3-p+1
D. 2(p-1)^3-p+1
Zadanie 3. 1 pkt ⋅ Numer: pp-11674 ⋅ Poprawnie: 81/127 [63%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Wyrażenie
64x^3+125y^3 jest równe
\left(4x+ay)\left(bx^2+cxy+25y^2\right) .
Podaj liczby a , b i
c .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pr-10117 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Wyznacz rozwiązanie nierówności
(x+1)^2(x-2)(x-7)\leqslant 0 .
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pr-10476 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Wielomian
W(x)=36x^3+ax^2+49x ma pierwiastek
dwukrotny.
Wyznacz dodatnią wartość parametru a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 6. 4 pkt ⋅ Numer: pp-20967 ⋅ Poprawnie: 16/47 [34%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Dany jest wielomian
P(x)=x^3+ax^2+bx+1 .
Wiadomo, że
P(1)=8 oraz,
że reszta z dzielenia wielomianu
P(x) przez
dwumian
x+4 jest
równa
-67 .
Podaj a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (2 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20998 ⋅ Poprawnie: 21/89 [23%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Wyznacz wszystkie pierwiastki wielomianu
P(x)=6x^3-5x^2-12x+10 .
Podaj najmniejszy z jego pierwiastków.
Odpowiedź:
Podpunkt 7.2 (1 pkt)
Podaj największy z jego pierwiastków.
Odpowiedź:
Zadanie 8. 2 pkt ⋅ Numer: pr-20227 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (2 pkt)
Liczba
\sqrt[3]{\sqrt{5}+2}-\sqrt[3]{\sqrt{5}-2} jest
całkowita.
Podaj jej wartość.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-21001 ⋅ Poprawnie: 35/88 [39%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Iloczyn kwadratu liczby
a i kwadratu liczby większej od
a o
3 , jest równy
2916 .
Podaj najmniejszą i największą możliwą wartość liczby a .
Odpowiedzi:
Zadanie 10. 2 pkt ⋅ Numer: pr-21020 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Wyznacz zbiór wszystkich wartości parametru
m\in\mathbb{R} , dla których
równanie
x^3-2(m+9)x^2+(2m^2+35m+153)x=0
ma trzy różne rozwiązania, z których dwa są dodatnie. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Rozwiąż