«« Wielomian W(x)=\sqrt{6}x^3-\sqrt{3}x^2-2\sqrt{3}
przy dzieleniu przez dwumian x-
\frac{m}{4}
daje
resztę, która jest liczbą wymierną. Wynika z tego, że liczba
m jest równa:
Odpowiedzi:
A.12\sqrt{2}
B.4\sqrt{3}
C.4\sqrt{2}
D.4\sqrt{6}
Zadanie 3.1 pkt ⋅ Numer: pp-11673 ⋅ Poprawnie: 100/138 [72%]
« Liczby -8 i -5 są pierwiastkami
wielomianu W(x) stopnia trzeciego o krotnościach odpowiednio 2 i
1. Do wykresu funkcji wielomianowej określonej wzorem
y=W(x) należy punkt
A=\left(-3,\frac{50}{3}\right).
Zapisz wzór wielomianu W(x) w postaci ogólnej
W(x)=ax^3+bx^2+cx+d. Podaj liczby b i c.
Odpowiedzi:
b
=
(wpisz liczbę całkowitą)
c
=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Prosta o równaniu y=-\frac{2}{3}x-\frac{16}{3} przecina wykres tej funkcji wielomianowej w trzech
punktach o rzędnych x_1\lessdot x_2\lessdot x_3.
Podaj liczby x_1, x_2 i
x_3.
Odpowiedzi:
x_1
=
(wpisz liczbę całkowitą)
x_2
=
(wpisz liczbę całkowitą)
x_3
=
(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat