Podgląd testu : lo2@sp-17-wielomiany-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11552 ⋅ Poprawnie: 537/640 [83%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Pomnożono dwa wielomiany
G(x)=6+3x^2 i
H(x)=-2x^3+6x^2-8 i otrzymano wynik
P(x) .
Podaj stopień wielomianu P(x) .
Odpowiedź:
st.P(x)=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pr-10123 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wielomian W(x)=2x^3-x-q dzieli się bez reszty przez
dwumian x-p+1 . Wynika z tego, że liczba
q jest równa:
Odpowiedzi:
A. 2(p+1)^3+p-1
B. 2(p-1)^3+p-1
C. 2(p+1)^3-p+1
D. 2(p-1)^3-p+1
Zadanie 3. 1 pkt ⋅ Numer: pp-11674 ⋅ Poprawnie: 81/127 [63%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Wyrażenie
64x^3+y^3 jest równe
\left(4x+ay)\left(bx^2+cxy+y^2\right) .
Podaj liczby a , b i
c .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pr-10115 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (0.2 pkt)
Wyznacz dziedzinę funkcji określonej wzorem
g(x)=\sqrt{x^3-225x} .
Rozwiązanie zapisz w postaci sumy przedziałów.
Suma ta ma postać:
Odpowiedzi:
A. (-\infty,p\rangle\cup\langle q,r\rangle
B. (p,q)
C. \langle p,q\rangle
D. (p, q)\cup(r,+\infty)
E. (-\infty,p)\cup(q,r)
F. \langle p, q\rangle\cup\langle r,+\infty)
Podpunkt 4.2 (0.8 pkt)
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pr-10128 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Dana jest funkcja
g(x)=9x^3-11x^2 ,
x\in\mathbb{R} . Funkcja
f(x)=\frac{|g(x)|}{g(x)} przyjmuje wartość równą
-1 wtedy i tylko wtedy gdy:
Odpowiedzi:
A. x\in\left(-\infty,\frac{11}{9}\right)
B. x\in\left(\frac{11}{9},+\infty\right)
C. x\in\left(0,\frac{11}{9}\right)
D. x\in(-\infty,0)\cup\left(0,\frac{11}{9}\right)
Zadanie 6. 2 pkt ⋅ Numer: pp-20968 ⋅ Poprawnie: 14/57 [24%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Wielomian
W(x)=x^3+ax^2+bx+1 dla argumentu
2 przyjmuje wartość
9
oraz przy dzieleniu przez dwumian
x-3 daje
resztę
-26 .
Podaj a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-21000 ⋅ Poprawnie: 28/35 [80%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Wyznacz całkowite pierwiastki wielomianu
W(x)=
-3x^3-9x^2+72x+240 .
Podaj najmniejszy i największy pierwiastek całkowity tego wielomianu.
Odpowiedzi:
Zadanie 8. 2 pkt ⋅ Numer: pp-20981 ⋅ Poprawnie: 21/61 [34%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Wielomiany
W(x)-F(x) , gdzie
W(x)=x^3+(a+5)x^2+3x+1 i
F(x)=2x^2+(b-5)x-4 , oraz
H(x)=x^3-7x^2+8x+5 są równe.
Wyznacz liczby a i b .
Odpowiedzi:
Zadanie 9. 2 pkt ⋅ Numer: pp-21007 ⋅ Poprawnie: 24/62 [38%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Krawędzie akwarium w kształcie prostopadłościanu wychodzące z jednego wierzchołka mają długość
3 ,
5 i
2 . Inne
akwarium prostopadłościenne, którego każda krawędz jest dłuższa o ten sam odcinek od odpowiednich
krawędzi pierwszego akwarium, ma pojemność o
3540
większą od pierwszego akwarium.
Wyznacz długość dwóch najkrótszych boków nowe zbudowanego akwarium.
Odpowiedzi:
Zadanie 10. 2 pkt ⋅ Numer: pr-20231 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Wielomian
P(x)=x^4-x^3+4x^2+3x+5 przedstaw w postaci
\left(x^2+b_1x+c_1\right)\left(x^2+b_2x+c_2\right) , gdzie
b_1,c_1,b_2,c_2\in\mathbb{C} .
Podaj mniejszą z liczb b_1 i
b_2 .
Odpowiedź:
min(b_1, b_2)=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj większą z liczb
b_1 i.
b_2 .
Odpowiedź:
max(b_1, b_2)=
(wpisz liczbę całkowitą)
Rozwiąż