Podgląd testu : lo2@sp-17-wielomiany-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11471 ⋅ Poprawnie: 371/684 [54%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
«« Wielomian
P(x)=(m+7)x^2+\sqrt{2}x^4-\sqrt{2}+1 spełnia
warunek
4\cdot P(1)+3\sqrt{2}=P(\sqrt{2}) gdy
m=......... .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11679 ⋅ Poprawnie: 126/272 [46%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wyznacz tę wartość parametru
m , dla której wielomian
P(x)=6x^3+7x^2-5x+m-1 dzieli się bez reszty przez
dwumian
x-1 .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11677 ⋅ Poprawnie: 44/61 [72%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Zapisz wyrażenie
(9x-3)^2x+(3-9x)x^2-(9x-3) w postaci iloczynu
dwóch wyrażeń w postaci
(a_1x^2+b_1x+c_1)(ax+d_1) .
Podaj sumę a_1+b_1+c_1 .
Odpowiedź:
a_1+b_1+c_1=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pr-10115 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (0.2 pkt)
Wyznacz dziedzinę funkcji określonej wzorem
g(x)=\sqrt{x^3-169x} .
Rozwiązanie zapisz w postaci sumy przedziałów.
Suma ta ma postać:
Odpowiedzi:
A. (p,q)
B. \langle p,q\rangle
C. (-\infty,p)\cup(q,r)
D. (p, q)\cup(r,+\infty)
E. (-\infty,p\rangle\cup\langle q,r\rangle
F. \langle p, q\rangle\cup\langle r,+\infty)
Podpunkt 4.2 (0.8 pkt)
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pr-10129 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Dany jest wielomian
Q(x)=-119x^3-px^2-qx+6 , gdzie
p,q\in\mathbb{C} .
Pierwiastkiem wielomianu Q(x) nie może być liczba:
Odpowiedzi:
A. \frac{2}{17}
B. -\frac{2}{7}
C. \frac{1}{2}
D. \frac{3}{17}
Zadanie 6. 2 pkt ⋅ Numer: pp-20969 ⋅ Poprawnie: 34/61 [55%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
« Wielomian
W(x)=x^3-5x^2+mx+6
przy dzieleniu przez dwumian
x-3 daje resztę
\frac{3}{2} .
Oblicz wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-21000 ⋅ Poprawnie: 28/35 [80%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Wyznacz całkowite pierwiastki wielomianu
W(x)=
3x^3+21x^2+24x-48 .
Podaj najmniejszy i największy pierwiastek całkowity tego wielomianu.
Odpowiedzi:
Zadanie 8. 2 pkt ⋅ Numer: pr-21003 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (2 pkt)
Wielomian
W(x)=(x^2+9x+19)^2-(x^2+14x+46)^2
jest podzielny przez wielomian
P(x)=ax+b , a wynikiem tego dzielenia
jest wielomian
Q(x)=-5x^2-52x-135 .
Wyznacz współczynniki a i b .
Odpowiedzi:
Zadanie 9. 2 pkt ⋅ Numer: pp-21006 ⋅ Poprawnie: 16/23 [69%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Podstawą pudełka w kształcie prostopadłościanu o objętości
V=5.2 litrów jest kwadrat, którego krawędź jest
o
7 dłuższa od wysokości
h tego prostopadłościanu.
Wyznacz długość krawędzi podstawy a i wysokości
tego prostopadłościanu.
Odpowiedzi:
Zadanie 10. 2 pkt ⋅ Numer: pr-21019 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Wyznacz wszystkie wartości parametru
m\in\mathbb{R} , dla których
równanie
x^4+(m+9)x^2+m^2+14m+40=0
ma trzy różne rozwiązania.
Podaj najmniejsze możliwe m .
Odpowiedź:
m_{min}=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj największe możliwe
m .
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Rozwiąż