Podgląd testu : lo2@sp-17-wielomiany-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11552 ⋅ Poprawnie: 537/640 [83%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Pomnożono dwa wielomiany
G(x)=6+3x^2 i
H(x)=-2x^3+6x^2-8 i otrzymano wynik
P(x) .
Podaj stopień wielomianu P(x) .
Odpowiedź:
st.P(x)=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11682 ⋅ Poprawnie: 116/250 [46%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Wielomian określony wzorem
P(x)=4x^3-3x^2-5x+1 przy
dzieleniu przez dwumian
x-0,5 daje resztę
r .
Wyznacz liczbę r .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11676 ⋅ Poprawnie: 72/101 [71%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Oblicz wartość wyrażenia algebraicznego
w=(2\sqrt{3}-1)^3 .
Odpowiedź:
w=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pr-10478 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (0.2 pkt)
Wyznacz dziedzinę funkcji określonej wzorem
f(x)=\sqrt{x^3-3x^2} .
Rozwiązanie zapisz w postaci sumy przedziałów.
Suma ta ma posatać:
Odpowiedzi:
A. \langle p,q\rangle
B. \langle p,+\infty)
C. (p,q)
D. (-\infty,p\rangle\cup\{q\}
E. \{p\}\cup\langle q,+\infty)
F. (-\infty,p\rangle
Podpunkt 4.2 (0.8 pkt)
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pr-10476 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Wielomian
W(x)=25x^3+ax^2+36x ma pierwiastek
dwukrotny.
Wyznacz dodatnią wartość parametru a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 6. 4 pkt ⋅ Numer: pp-20967 ⋅ Poprawnie: 16/47 [34%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Dany jest wielomian
P(x)=x^3+ax^2+bx+1 .
Wiadomo, że
P(-2)=-7 oraz,
że reszta z dzielenia wielomianu
P(x) przez
dwumian
x+4 jest
równa
-71 .
Podaj a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (2 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20995 ⋅ Poprawnie: 57/176 [32%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Wielomian
W(x)=
-x^3+\frac{15}{2}x^2-\frac{33}{2}x+10
jest podzielny przez dwumian
P(x)=x-4 .
Wyznacz pierwiastki tego wielomianu.
Podaj najmniejszy pierwiastek tego wielomianu.
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj pierwiastek niecałkowity tego wielomianu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pr-21003 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (2 pkt)
Wielomian
W(x)=(x^2-13x+41)^2-(x^2-8x+13)^2
jest podzielny przez wielomian
P(x)=ax+b , a wynikiem tego dzielenia
jest wielomian
Q(x)=-5x^2+58x-168 .
Wyznacz współczynniki a i b .
Odpowiedzi:
Zadanie 9. 2 pkt ⋅ Numer: pp-21005 ⋅ Poprawnie: 17/37 [45%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Suma objętości trzech sześcianów jest równa
405 .
Krawędź drugiego z tych sześcianów jest o
1 dłuższa
od krawędzi pierwszego sześcianu, a krawędź trzeciego sześcianu jest o
1 krótsza od krawędzi pierwszego sześcianu.
Wyznacz długość krawędzi najmniejszego z tych sześcianów.
Odpowiedź:
a_{min}=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pr-20177 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
Liczba
x_0=3 jest pierwiastkiem drukrotnym wielomianu
P(x)=ax^3+bx^2+cx+d , a przy dzieleniu przez
dwumian
x+4 wielomian
P(x)
daje resztę zero. Wiedząc, że
P(0)=-72 wyznacz wszystkie
współczynniki tego wielomianu.
Podaj b .
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Rozwiąż