Podgląd testu : lo2@sp-17-wielomiany-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11551 ⋅ Poprawnie: 60/126 [47%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Dany jest wielomian
W(x)=P(x)+Q(x) , gdzie
\begin{cases}
P(x)=(16m^4-4)x^5-6mx^3+5 \\
Q(x)=(6m^2-30)x^5-4mx^3+8
\end{cases}
.
Wyznacz iloczyn tych wszystkich wartości parametru m , dla
których st.P(x)=3 lub st.Q(x)=3 .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 2. 2 pkt ⋅ Numer: pp-11683 ⋅ Poprawnie: 54/81 [66%]
Rozwiąż
Podpunkt 2.1 (2 pkt)
Przy dzieleniu przez
P(x)=x-1 wielomian
W(x)=x^4+2x^3-5x^2-6mx+9 daje resztę
-17 .
Oblicz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11678 ⋅ Poprawnie: 64/75 [85%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wyrażenie
(\sqrt{3}-x)(x^2+3+\sqrt{3}x) jest równe
m\sqrt{n}+kx^3 , gdzie
m,n,k\in\mathbb{Z} .
Podaj liczby m , n i
k .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pr-10115 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (0.2 pkt)
Wyznacz dziedzinę funkcji określonej wzorem
g(x)=\sqrt{x^3-100x} .
Rozwiązanie zapisz w postaci sumy przedziałów.
Suma ta ma postać:
Odpowiedzi:
A. \langle p, q\rangle\cup\langle r,+\infty)
B. (p, q)\cup(r,+\infty)
C. (-\infty,p\rangle\cup\langle q,r\rangle
D. \langle p,q\rangle
E. (p,q)
F. (-\infty,p)\cup(q,r)
Podpunkt 4.2 (0.8 pkt)
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pr-10126 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Liczba wymierna
p jest pierwiastkiem
wielomianu
W(x)=2x^3+11x^2+13x+18 .
Liczba p może należeć do przedziału:
Odpowiedzi:
A. (4,9)
B. (-9,-5)
C. (0,5)
D. (-5,-4)
Zadanie 6. 2 pkt ⋅ Numer: pp-20966 ⋅ Poprawnie: 14/38 [36%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
« Liczba
p jest resztą z dzielenia wielomianu
W(x)=6x^3-4x^2 przez
x+3 ,
a liczba
q resztą z dzielnia tego wielomianu przez
x-2 .
Oblicz |2p-q| .
Odpowiedź:
|2p-q|=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pr-21008 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (1 pkt)
Wielomian
W(x)=x^3+3x^2+ax+b ma trzy pierwiastki
x_1 ,
x_2 i
x_3 takie,
że
x_2-x_1=8 i
x_3-x_1=10 .
Wyznacz najmniejszy i największy pierwiastek tego wielomianu.
Odpowiedzi:
Podpunkt 7.2 (1 pkt)
Wyznacz wartości parametrów
a i
b .
Odpowiedzi:
Zadanie 8. 2 pkt ⋅ Numer: pp-20986 ⋅ Poprawnie: 6/8 [75%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Wielomian
W(x)=-6x^4+(a-b+10)x^3-21x^2+(2a-3b+27)x-15 jest podzielny przez
wielomian
P(x)=3x^2-2x+5 , a wynikiem tego dzielenia jest wielomian
Q(x)=-2x^2+x-3 .
Wyznacz liczbę a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-21004 ⋅ Poprawnie: 15/17 [88%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
W pewnej liczbie naturalnej trzycyfrowej cyfra dziesiątek jest 3 razy większa
od cyfry setek, zaś cyfra jedności jest o
2 mniejsza
od cyfry setek. Wyznacz tę liczbę trzycyfrową więdząc, że różnica sześcianu cyfry
setek i iloczynu cyfry dziesiątek przez cyfrę jedności jest równa
18 .
Podaj tę liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pr-20208 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
» Wielomian
W(x)=2x^4-10x^3-46x^2-9x-54
przy dzieleniu przez wielomian
P(x)=2x^2+2 daje
resztę
ax+b .
Podaj a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Rozwiąż