Podgląd testu : lo2@sp-17-wielomiany-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11472 ⋅ Poprawnie: 319/582 [54%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wielomian
P(x)=q-7+2x+px^2-2x^4 spełnia
warunki
\begin{cases}
P(-1)+P(1)=0 \\
P(-\sqrt{2})=-P(\sqrt{2})
\end{cases}
.
Podaj liczby p i q .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pr-10123 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wielomian W(x)=2x^3-x-q dzieli się bez reszty przez
dwumian x-p+1 . Wynika z tego, że liczba
q jest równa:
Odpowiedzi:
A. 2(p+1)^3+p-1
B. 2(p-1)^3-p+1
C. 2(p+1)^3-p+1
D. 2(p-1)^3+p-1
Zadanie 3. 1 pkt ⋅ Numer: pp-11673 ⋅ Poprawnie: 100/138 [72%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Iloczyn wyrażenia
2x-5 przez wyrażenie
-4x^2-10x-25
jest równy
ax^3+bx+c , gdzie
a,b,c\in\mathbb{Z} .
Podaj liczby a , b i
c .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pr-10115 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (0.2 pkt)
Wyznacz dziedzinę funkcji określonej wzorem
g(x)=\sqrt{x^3-25x} .
Rozwiązanie zapisz w postaci sumy przedziałów.
Suma ta ma postać:
Odpowiedzi:
A. (-\infty,p\rangle\cup\langle q,r\rangle
B. \langle p,q\rangle
C. (-\infty,p)\cup(q,r)
D. (p,q)
E. (p, q)\cup(r,+\infty)
F. \langle p, q\rangle\cup\langle r,+\infty)
Podpunkt 4.2 (0.8 pkt)
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pr-10129 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Dany jest wielomian
Q(x)=55x^3-px^2-qx-10 , gdzie
p,q\in\mathbb{C} .
Pierwiastkiem wielomianu Q(x) nie może być liczba:
Odpowiedzi:
A. -\frac{2}{5}
B. -\frac{2}{11}
C. \frac{5}{4}
D. 1
Zadanie 6. 2 pkt ⋅ Numer: pp-20992 ⋅ Poprawnie: 21/36 [58%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Wielomian
W(x)=
10x^4-21x^3-x^2+23x-12
jest podzielny przez dwumian
P(x)=2x-3 , a wynikiem tego dzielenia jest wielomian
Q(x)=ax^3+bx^2+cx+d .
Wyznacz współczynniki a i b
Odpowiedzi:
Podpunkt 6.2 (1 pkt)
Wyznacz współczynniki
c i
d
Odpowiedzi:
Zadanie 7. 2 pkt ⋅ Numer: pr-21010 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (2 pkt)
Wyznacz wszystkie pierwiastki wielomianu
W(x)=
12x^3+4x^2-3x-1 .
Podaj najmniejszy i największy pierwiastek tego wielomianu.
Odpowiedzi:
Zadanie 8. 2 pkt ⋅ Numer: pp-20980 ⋅ Poprawnie: 90/162 [55%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Wielomiany
W(x)=2ax(2x-b)^2 oraz
P(x)=-24x^3+120x^2-150x
są równe.
Wyznacz liczby a i b .
Odpowiedzi:
Zadanie 9. 2 pkt ⋅ Numer: pp-21005 ⋅ Poprawnie: 17/37 [45%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Suma objętości trzech sześcianów jest równa
251 .
Krawędź drugiego z tych sześcianów jest o
3 dłuższa
od krawędzi pierwszego sześcianu, a krawędź trzeciego sześcianu jest o
1 krótsza od krawędzi pierwszego sześcianu.
Wyznacz długość krawędzi najmniejszego z tych sześcianów.
Odpowiedź:
a_{min}=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pr-20215 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
Przy dzieleniu przez dwumiany
x+3 i
x-1 wielomian
W(x)
daje reszty odpowienio
1 i
5 . Jaką resztę daje wielomian
W(x) przy dzieleniu przez wielomian
P(x)=x^2+2x-3 .
Zapisz tę resztę w postaci
R(x)=ax+b .
Podaj a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Rozwiąż