« Wielomian
W(x)=x^3+m^2x^2-\frac{1}{2}x-\frac{5}{4}
przy dzieleniu
przez wielomian
P(x)=x+\left(\frac{1}{3}\right)^{\log_{3}{2}}
daje resztę r=\frac{3}{8}.
Podaj najmniejsze możliwe m.
Odpowiedź:
m_{min}=
\cdot√
(wpisz trzy liczby całkowite)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe m.
Odpowiedź:
m_{max}=
\cdot√
(wpisz trzy liczby całkowite)
Zadanie 7.2 pkt ⋅ Numer: pp-20974 ⋅ Poprawnie: 19/57 [33%]
Suma objętości trzech sześcianów jest równa 307.
Krawędź drugiego z tych sześcianów jest o 2 dłuższa
od krawędzi pierwszego sześcianu, a krawędź trzeciego sześcianu jest o
1 krótsza od krawędzi pierwszego sześcianu.
Wyznacz długość krawędzi najmniejszego z tych sześcianów.
Odpowiedź:
a_{min}=(wpisz liczbę całkowitą)
Zadanie 10.2 pkt ⋅ Numer: pr-20215 ⋅ Poprawnie: 0/0
Przy dzieleniu przez dwumiany x+3 i
x-1 wielomian W(x)
daje reszty odpowienio 1 i
-7. Jaką resztę daje wielomian
W(x) przy dzieleniu przez wielomian
P(x)=x^2+2x-3.
Zapisz tę resztę w postaci R(x)=ax+b.
Podaj a.
Odpowiedź:
a=(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj b.
Odpowiedź:
b=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat