Podgląd testu : lo2@sp-17-wielomiany-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11472 ⋅ Poprawnie: 319/582 [54%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wielomian
P(x)=q-3+2x+px^2-2x^4 spełnia
warunki
\begin{cases}
P(-1)+P(1)=0 \\
P(-\sqrt{2})=-P(\sqrt{2})
\end{cases}
.
Podaj liczby p i q .
Odpowiedzi:
Zadanie 2. 2 pkt ⋅ Numer: pp-11683 ⋅ Poprawnie: 54/81 [66%]
Rozwiąż
Podpunkt 2.1 (2 pkt)
Przy dzieleniu przez
P(x)=x-1 wielomian
W(x)=x^4+2x^3-5x^2-6mx+9 daje resztę
-5 .
Oblicz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11672 ⋅ Poprawnie: 149/202 [73%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wyrażenie
(3x+2)^3-(x-5)(x+5)
zapisane w postaci sumy algebraicznej ma postać
27x^3+mx^2+nx+33 ,
gdzie
m,n\in\mathbb{Z} .
Podaj liczby m i n .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pr-10117 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Wyznacz rozwiązanie nierówności
(x+7)^2(x+2)(x-3)\leqslant 0 .
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pr-10126 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Liczba wymierna
p jest pierwiastkiem
wielomianu
W(x)=2x^3-x^2+x-6 .
Liczba p może należeć do przedziału:
Odpowiedzi:
A. (2,3)
B. (1,2)
C. (-1,0)
D. (-3,-2)
Zadanie 6. 2 pkt ⋅ Numer: pp-20969 ⋅ Poprawnie: 34/61 [55%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
« Wielomian
W(x)=x^3-1x^2+mx-2
przy dzieleniu przez dwumian
x-1 daje resztę
-\frac{3}{2} .
Oblicz wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pr-21005 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (2 pkt)
Wielomian
W(x)=-x^4+bx^3+cx^2+dx+e jest podzielny przez
wielomian
P(x)=x^3-4x^2+x+6 . Suma współczynników wielomianu
W(x) jest równa
-32 ,
a reszta z dzielenia wielomianu
W(x) przez dwumian
Q(x)=x+2 jest równa
100 .
Wyznacz wartości współczynników b , c i d .
Odpowiedzi:
Zadanie 8. 2 pkt ⋅ Numer: pp-20981 ⋅ Poprawnie: 21/61 [34%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Wielomiany
W(x)-F(x) , gdzie
W(x)=x^3+(a-1)x^2+3x+1 i
F(x)=2x^2+(b-1)x-4 , oraz
H(x)=x^3-7x^2+8x+5 są równe.
Wyznacz liczby a i b .
Odpowiedzi:
Zadanie 9. 2 pkt ⋅ Numer: pp-21001 ⋅ Poprawnie: 35/88 [39%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Iloczyn kwadratu liczby
a i kwadratu liczby większej od
a o
2 , jest równy
1 .
Podaj najmniejszą i największą możliwą wartość liczby a .
Odpowiedzi:
Zadanie 10. 2 pkt ⋅ Numer: pr-21097 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Wyznacz te wartości
m\in\mathbb{R} , dla których
równanie
|3x+3|=
12m^3+35m^2+24m+4 ma rozwiązanie.
Podaj największą liczbę z przedziału (-\infty,1) , która
spełnia warunki zadania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Podaj najmniejszą liczbę
m , która spełnia warunki zadania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż