Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pr-1

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11551  
Podpunkt 1.1 (1 pkt)
 « Dany jest wielomian W(x)=P(x)+Q(x), gdzie \begin{cases} P(x)=(16m^4-4)x^5-6mx^3+5 \\ Q(x)=(4m^2-12)x^5-4mx^3+8 \end{cases} .

Wyznacz iloczyn tych wszystkich wartości parametru m, dla których st.P(x)=3 lub st.Q(x)=3.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11682  
Podpunkt 2.1 (1 pkt)
 « Wielomian określony wzorem P(x)=4x^3-3x^2-3x+1 przy dzieleniu przez dwumian x-0,5 daje resztę r.

Wyznacz liczbę r.

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11673  
Podpunkt 3.1 (1 pkt)
 Iloczyn wyrażenia 4x-2 przez wyrażenie -16x^2-8x-4 jest równy ax^3+bx+c, gdzie a,b,c\in\mathbb{Z}.

Podaj liczby a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10478  
Podpunkt 4.1 (0.2 pkt)
 Wyznacz dziedzinę funkcji określonej wzorem f(x)=\sqrt{x^3-5x^2}. Rozwiązanie zapisz w postaci sumy przedziałów.

Suma ta ma posatać:

Odpowiedzi:
A. (-\infty,p\rangle B. \langle p,q\rangle
C. \langle p,+\infty) D. \{p\}\cup\langle q,+\infty)
E. (p,q) F. (-\infty,p\rangle\cup\{q\}
Podpunkt 4.2 (0.8 pkt)
 Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10129  
Podpunkt 5.1 (1 pkt)
 « Dany jest wielomian Q(x)=33x^3-px^2-qx+6, gdzie p,q\in\mathbb{C}.

Pierwiastkiem wielomianu Q(x) nie może być liczba:

Odpowiedzi:
A. 1 B. \frac{2}{11}
C. \frac{2}{3} D. \frac{3}{4}
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20969  
Podpunkt 6.1 (2 pkt)
 « Wielomian W(x)=x^3+2x^2+mx-3 przy dzieleniu przez dwumian x-1 daje resztę -\frac{1}{2}.

Oblicz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-21009  
Podpunkt 7.1 (2 pkt)
 Wyznacz wszystkie pierwiastki wielomianu W(x)= 6x^3+5x^2+17x-3.

Podaj najmniejszy i największy pierwiastek tego wielomianu.

Odpowiedzi:
x_{min}= (dwie liczby całkowite)

x_{max}= (dwie liczby całkowite)
Zadanie 8.  (3 pkt) [ Dodaj do testu ]  Numer zadania: pp-20978  
Podpunkt 8.1 (1 pkt)
 Rozwiąż równanie x^3+2x^2-28x-56=0.

Podaj rozwiązanie całkowite tego równania.

Odpowiedź:
x_{Z}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj najmniejsze rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
min_{\not\in\mathbb{Z}}= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 8.3 (1 pkt)
 Podaj największe rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
max_{\not\in\mathbb{Z}}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-21004  
Podpunkt 9.1 (2 pkt)
 W pewnej liczbie naturalnej trzycyfrowej cyfra dziesiątek jest 2 razy większa od cyfry setek, zaś cyfra jedności jest o 2 mniejsza od cyfry setek. Wyznacz tę liczbę trzycyfrową więdząc, że różnica sześcianu cyfry setek i iloczynu cyfry dziesiątek przez cyfrę jedności jest równa 21.

Podaj tę liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-21014  
Podpunkt 10.1 (1 pkt)
 Równanie (x-1)(mx^2+(-8m+2)x+17m-8)=0 z parametrem m, m\in\mathbb{R}, ma dokładnie dwa rozwiązania.

Podaj najmniejsze i największe możliwe m.

Odpowiedzi:
m_{min}= (wpisz liczbę całkowitą)
m_{max}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj wartość m, która nie jest całkowita.
Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm