Wyznacz zbiór wszystkich wartości parametru m\in\mathbb{R}, dla których
równanie
(x^2+5x+4)\left[x^2+(m+2)x+3m-2\right]=0
ma cztery rozwiązania. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców całkowitych tych przedziałów.
Odpowiedzi:
min
=
(wpisz liczbę całkowitą)
max
=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj najmniejszy z końców liczbowych niecałkowitych tych przedziałów.
Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Zadanie 11.4 pkt ⋅ Numer: pr-30144 ⋅ Poprawnie: 0/0
Wyznacz wszystkie wartości parametru m\in\mathbb{R}, dla których
równanie
x^4+2(m-2)x^2+4m^2+24m+36=0
ma cztery rozwiązania. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców całkowitych tych przedziałów.
Odpowiedzi:
min
=
(wpisz liczbę całkowitą)
max
=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
Podaj największy z końców tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat