Dany jest wielomian
W(x)=2x^3+(m^3-3m^2+3m+1)x^2-11x-2(2m-1), który jest
podzielny przez dwumian x-2 oraz przy dzieleniu
przez dwumian x+1 daje resztę
6.
Wyznacz m.
Odpowiedź:
m=(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Dla wyznaczonej wartości m rozwiąż nierówność
W(x)\geqslant 0.
Podaj największą liczbę ujemną spełniającą tę nierówność.
Odpowiedź:
x_{<0}=
(wpisz dwie liczby całkowite)
Podpunkt 11.3 (1 pkt)
Rozwiązanie nierówności W(x)\geqslant 0
zapisz w postaci sumy przedziałów. Podaj sumę
wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma=
(wpisz dwie liczby całkowite)
Zadanie 12.4 pkt ⋅ Numer: pr-30849 ⋅ Poprawnie: 38/33 [115%]
Wyznacz wszystkie wartości parametru m\in\mathbb{R}, dla których
równanie
x^4+(6-m)x^2-2m+7=0
nie ma rozwiązania. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat