Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11556 ⋅ Poprawnie: 537/607 [88%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
Suma wielomianów W(x)=-2x^3+5x^2-3 oraz P(x)=2x^3+12x wynosi:
Odpowiedzi:
A. 4x^3+5x^2+12x-3 B. 5x^2+12x-3
C. 4x^6+5x^2+12x-3 D. 4x^3+12x^2-3
Zadanie 2.  1 pkt ⋅ Numer: pr-10122 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
 «« Wielomian W(x)=\sqrt{6}x^3-\sqrt{3}x^2-2\sqrt{3} przy dzieleniu przez dwumian x- m daje resztę, która jest liczbą wymierną. Wynika z tego, że liczba m jest równa:
Odpowiedzi:
A. \sqrt{2} B. \sqrt{3}
C. 3\sqrt{2} D. 2\sqrt{2}
Zadanie 3.  1 pkt ⋅ Numer: pp-11674 ⋅ Poprawnie: 81/127 [63%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Wyrażenie 64x^3+y^3 jest równe \left(4x+ay)\left(bx^2+cxy+y^2\right).

Podaj liczby a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10116 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz dziedzinę funkcji określonej wzorem f(x)=\frac{1}{\sqrt{x^3-24x^2+144x}}. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10476 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wielomian W(x)=36x^3+ax^2+25x ma pierwiastek dwukrotny.

Wyznacz dodatnią wartość parametru a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20971 ⋅ Poprawnie: 17/42 [40%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 r=33 » Wielomian W(x)=x^4+a^2x^3+ax^2-x+3 przy dzieleniu przez dwumian x-1 daje resztę 33.

Podaj najmniejsze możliwe a.

Odpowiedź:
a_{min}= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj największe możliwe a.
Odpowiedź:
a_{max}= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20974 ⋅ Poprawnie: 19/57 [33%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Wielomian W(x) jest stopnia trzeciego i przy dzieleniu przez dwumian x-2 daje resztę -252. Pierwiastkami tego wielomianu są liczby -5, -4 oraz 5.

Oblicz W(-2).

Odpowiedź:
W(1)= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20195 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wielomian P(x)=2x^3+ax^2+bx-12 dzieli się przez wielomian Q(x)=x^2-4x+4.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-21002 ⋅ Poprawnie: 26/66 [39%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Iloczyn trzech liczb a, b i c takich, że liczba b jest o 3 większa od liczby a, a liczba c jest o 1 mniejsza od liczby b, jest równy 40.

Wyznacz te liczby.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pr-20177 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Liczba x_0=2 jest pierwiastkiem drukrotnym wielomianu P(x)=ax^3+bx^2+cx+d, a przy dzieleniu przez dwumian x+5 wielomian P(x) daje resztę zero. Wiedząc, że P(0)=40 wyznacz wszystkie współczynniki tego wielomianu.

Podaj b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30161 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Wyznacz te wartości parametru m, dla których wielomian W(x)=(m+2)x^3+(m)x^2-(2m+5)x ma trzy pierwiastki rzeczywiste.

Podaj najmniejsze m, które nie spełnia warunków zadania.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Podaj największe m, które nie spełnia warunków zadania.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30848 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Wyznacz wszystkie wartości parametru m\in\mathbb{R}, dla których równanie x^4+2(m-13)x^2+4m^2-64m+256=0 ma cztery rozwiązania. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców całkowitych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Podaj największy z końców tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm