Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pr-3

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11551  
Podpunkt 1.1 (1 pkt)
 « Dany jest wielomian W(x)=P(x)+Q(x), gdzie \begin{cases} P(x)=(16m^4-4)x^5-6mx^3+5 \\ Q(x)=(3m^2-30)x^5-4mx^3+8 \end{cases} .

Wyznacz iloczyn tych wszystkich wartości parametru m, dla których st.P(x)=3 lub st.Q(x)=3.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10122  
Podpunkt 2.1 (1 pkt)
 «« Wielomian W(x)=\sqrt{6}x^3-\sqrt{3}x^2-2\sqrt{3} przy dzieleniu przez dwumian x- \frac{m}{2} daje resztę, która jest liczbą wymierną. Wynika z tego, że liczba m jest równa:
Odpowiedzi:
A. 2\sqrt{2} B. 2\sqrt{3}
C. 6\sqrt{2} D. 4\sqrt{2}
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11675  
Podpunkt 3.1 (1 pkt)
 « Zapisz wyrażenie (2x-5)^3 w postaci a_1x^3+b_1x^2+c_1x+d_1.

Podaj liczby b_1 i c_1.

Odpowiedzi:
b_1= (wpisz liczbę całkowitą)
c_1= (wpisz liczbę całkowitą)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10478  
Podpunkt 4.1 (0.2 pkt)
 Wyznacz dziedzinę funkcji określonej wzorem f(x)=\sqrt{x^3-5x^2}. Rozwiązanie zapisz w postaci sumy przedziałów.

Suma ta ma posatać:

Odpowiedzi:
A. \{p\}\cup\langle q,+\infty) B. (p,q)
C. \langle p,+\infty) D. (-\infty,p\rangle
E. (-\infty,p\rangle\cup\{q\} F. \langle p,q\rangle
Podpunkt 4.2 (0.8 pkt)
 Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10126  
Podpunkt 5.1 (1 pkt)
 Liczba wymierna p jest pierwiastkiem wielomianu W(x)=2x^3+7x^2+9x+10.

Liczba p może należeć do przedziału:

Odpowiedzi:
A. (-5,-3) B. (2,5)
C. (0,3) D. (-3,-2)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20970  
Podpunkt 6.1 (1 pkt)
 «« Reszta z dzielenia wielomianu W(x)=x^3+7x^2-\frac{1}{2}m^2x+8m przez dwumian P(x)=x+2 przyjmuje najmniejszą możliwą wartość.

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Ile jest równa ta najmniejsza możliwa wartość?
Odpowiedź:
W_{min}(x)= (wpisz liczbę całkowitą)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20998  
Podpunkt 7.1 (1 pkt)
 Wyznacz wszystkie pierwiastki wielomianu P(x)=6x^3+5x^2-18x-15.

Podaj najmniejszy z jego pierwiastków.

Odpowiedź:
x_{min}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj największy z jego pierwiastków.
Odpowiedź:
x_{max}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20985  
Podpunkt 8.1 (1 pkt)
 Wielomian W(x)=-3x^3+(3a+b-9)x^2-(4a+9b+34)x+30 jest podzielny przez wielomian P(x)=-3x+5, a wynikiem tego dzielenia jest wielomian Q(x)=x^2-4x+6.

Wyznacz liczbę a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Wyznacz liczbę b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-21001  
Podpunkt 9.1 (2 pkt)
 Iloczyn kwadratu liczby a i kwadratu liczby większej od a o 1, jest równy 400.

Podaj najmniejszą i największą możliwą wartość liczby a.

Odpowiedzi:
a_{min}= (wpisz liczbę całkowitą)
a_{max}= (wpisz liczbę całkowitą)
Zadanie 10.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-21021  
Podpunkt 10.1 (1 pkt)
 « Wyznacz zbiór wszystkich wartości parametru m\in\mathbb{R}, dla których równanie x^3-(2m-2)x^2-4x=0 ma trzy różne rozwiązania, z których jedno jest średnią arytmetyczną pozostałych.

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)
Zadanie 11.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30165  
Podpunkt 11.1 (2 pkt)
 » Pierwiastki x_1, x_2 i x_3 wielomianu W(x)=x^3+(m^2-48)x^2+32x spełniają warunki: 2x_2=x_3 i x_1+x_2=4.

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 12.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30156  
Podpunkt 12.1 (2 pkt)
 » Liczby x_1, x_2 i x_3 są trzema różnymi pierwiastkami wielomianu W(x)=x^3+6x^2+(4-m)x-2m-8. Wiedząc, że x_1^2+x_2^2+x_3^2=30, wyznacz m.

Podaj największe możliwe m.

Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Dla jakich wartości parametru m suma dwóch pierwiastków wielomianu W(x)=x^3+6x^2+(4-m)x-2m-8 jest równa pierwiastkowi trzeciemu.

Podaj największe możliwe m.

Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm