Podgląd testu : lo2@sp-17-wielomiany-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11552 ⋅ Poprawnie: 537/640 [83%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Pomnożono dwa wielomiany
G(x)=6+3x^2 i
H(x)=-2x^3+6x^2-8 i otrzymano wynik
P(x) .
Podaj stopień wielomianu P(x) .
Odpowiedź:
st.P(x)=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11681 ⋅ Poprawnie: 71/158 [44%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Wielomian określony wzorem
W(x)=x^5-3x^4+mx^3+6 przy
dzieleniu przez dwumian
x+1 daje resztę
-5 .
Wyznacz liczbę m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11676 ⋅ Poprawnie: 72/101 [71%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Oblicz wartość wyrażenia algebraicznego
w=(3\sqrt{5}-1)^3 .
Odpowiedź:
w=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pr-10478 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (0.2 pkt)
Wyznacz dziedzinę funkcji określonej wzorem
f(x)=\sqrt{x^3-13x^2} .
Rozwiązanie zapisz w postaci sumy przedziałów.
Suma ta ma posatać:
Odpowiedzi:
A. \langle p,q\rangle
B. \langle p,+\infty)
C. (-\infty,p\rangle\cup\{q\}
D. (-\infty,p\rangle
E. (p,q)
F. \{p\}\cup\langle q,+\infty)
Podpunkt 4.2 (0.8 pkt)
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pr-10126 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Liczba wymierna
p jest pierwiastkiem
wielomianu
W(x)=2x^3-3x^2-x-10 .
Liczba p może należeć do przedziału:
Odpowiedzi:
A. (3,5)
B. (-5,-3)
C. (-2,0)
D. (2,3)
Zadanie 6. 2 pkt ⋅ Numer: pp-20970 ⋅ Poprawnie: 8/14 [57%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
«« Reszta z dzielenia wielomianu
W(x)=x^3-7x^2-\frac{1}{2}m^2x+8m przez dwumian
P(x)=x+2 przyjmuje najmniejszą możliwą wartość.
Wyznacz m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Ile jest równa ta najmniejsza możliwa wartość?
Odpowiedź:
W_{min}(x)=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pr-21004 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (2 pkt)
Liczby
-6 ,
2 i
7 są pierwiastkami wielomianu
W(x)=ax^3+bx^2+cx+d ,
a reszta z dzielenia tego wielominau przez dwumian
P(x)=x+1 jest równa
-120 .
Wyznacz wartości współczynników b i c .
Odpowiedzi:
Zadanie 8. 2 pkt ⋅ Numer: pp-20964 ⋅ Poprawnie: 8/10 [80%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Wyrażenie
\frac{7\cdot xy}{xy+3y^2}:\frac{x^2}{x^2+6xy+9y^2}
można przekształcić do postaci
a+b\cdot \frac{y}{x} , gdzie
a i
b są
liczbami całkowitymi.
Podaj liczbę a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-21004 ⋅ Poprawnie: 15/17 [88%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
W pewnej liczbie naturalnej trzycyfrowej cyfra dziesiątek jest 3 razy większa
od cyfry setek, zaś cyfra jedności jest o
1 mniejsza
od cyfry setek. Wyznacz tę liczbę trzycyfrową więdząc, że różnica sześcianu cyfry
setek i iloczynu cyfry dziesiątek przez cyfrę jedności jest równa
2 .
Podaj tę liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pr-20190 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
» Liczba
2 jest pierwiastkiem trzykrotnym
wielomianu
W(x)=x^4+ax^3+2mx^2+bx+n-1 .
Podaj m .
Dane
a=-5
b=4
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30148 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
» Stopień wielomianu
W(x) jest większy od
2 . Suma wszystkich współczynników tego wielomianu
jest równa
-4 , a suma współczynników przy potęgach
o parzystych wykładnikach jest równa sumie współczynników przy potęgach
o nieparzystych wykładnikach. Wyznacz resztę
R(x)
z dzielenia tego wielomianu przez wielomian
Q(x)=(x-1)(x+1) .
Zapisz wielomian R(x) w postaci ogólnej
R(x)=ax+b .
Podaj a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pr-30851 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
Wyznacz wszystkie wartości parametru
m\in\mathbb{R} , dla których
równanie
x^3+5mx^2+25mx+125=0
ma dokładnie dwa rozwiązania.
Podaj najmniejsze możliwe m .
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
Podaj największe możliwe
m .
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Rozwiąż