«« Wielomian W(x)=\sqrt{6}x^3-\sqrt{3}x^2-2\sqrt{3}
przy dzieleniu przez dwumian x-
\frac{m}{5}
daje
resztę, która jest liczbą wymierną. Wynika z tego, że liczba
m jest równa:
Odpowiedzi:
A.10\sqrt{2}
B.5\sqrt{6}
C.15\sqrt{2}
D.5\sqrt{2}
Zadanie 3.1 pkt ⋅ Numer: pp-11676 ⋅ Poprawnie: 72/101 [71%]
« Wyznacz te wartości parametru m, dla których
wielomian
W(x)=x^9-(m+3)^3x^8+(m^2+6m+8)x^5+2(m+4)x^2+(m+3)x
przy dzieleniu przez wielomian P(x)=x+1 daje resztę
1.
Podaj najmniejsze możliwe m.
Odpowiedź:
m_{min}=(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe m.
Odpowiedź:
m_{max}=(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pr-21005 ⋅ Poprawnie: 0/0
Wielomian W(x)=x^4+bx^3+cx^2+dx+e jest podzielny przez
wielomian P(x)=x^3-4x^2+x+6. Suma współczynników wielomianu
W(x) jest równa -24,
a reszta z dzielenia wielomianu W(x) przez dwumian
Q(x)=x+2 jest równa 180.
Wyznacz wartości współczynników b, c i d.
Odpowiedzi:
b
=
(wpisz liczbę całkowitą)
c
=
(wpisz liczbę całkowitą)
d
=
(wpisz liczbę całkowitą)
Zadanie 8.2 pkt ⋅ Numer: pp-20986 ⋅ Poprawnie: 6/8 [75%]
Wielomian W(x)=-6x^4+(a-b+1)x^3-21x^2+(2a-3b-4)x-15 jest podzielny przez
wielomian P(x)=3x^2-2x+5, a wynikiem tego dzielenia jest wielomian
Q(x)=-2x^2+x-3.
Wyznacz liczbę a.
Odpowiedź:
a=(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Wyznacz liczbę b.
Odpowiedź:
b=(wpisz liczbę całkowitą)
Zadanie 9.2 pkt ⋅ Numer: pp-21001 ⋅ Poprawnie: 35/88 [39%]
«« Dane jest równanie
(x^3+2x^2+2x+1)(x^2-(2m-13)x+m^2-13m+36)=0
.
Dla jakich wartości parametru m równanie to ma trzy
parami różne pierwiastki?
Podaj najmniejsze możliwe m, które nie spełnia
warunków zadania.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 12.2 (1 pkt)
Podaj największe możliwe m, które nie spełnia
warunków zadania.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 12.3 (1 pkt)
Dla jakich wartości parametru m trzy różne
pierwiastki tego równania spełniają warunek: suma dwóch pierwiastków równania
jest dwa razy większa od pierwiastka trzeciego?
Podaj najmniejsze możliwe m, które spełnia
warunki zadania.
Odpowiedź:
m_{min}=(wpisz liczbę całkowitą)
Podpunkt 12.4 (1 pkt)
Podaj największe możliwe m, które spełnia
warunki zadania.
Odpowiedź:
m_{max}=(wpisz liczbę całkowitą)
Podpunkt 12.5 (1 pkt)
Podaj m spełniające warunki zadania, które nie jest liczbą
całkowitą.
Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat