Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11552 ⋅ Poprawnie: 537/640 [83%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
Pomnożono dwa wielomiany G(x)=6+3x^2 i H(x)=-2x^3+6x^2-8 i otrzymano wynik P(x).

Podaj stopień wielomianu P(x).

Odpowiedź:
st.P(x)= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11680 ⋅ Poprawnie: 45/79 [56%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wyznacz resztę z dzielenia wielomianu określonego wzorem W(x)=2\frac{2}{3}x^3-2x^2+3x-0,25 przez dwumian x+0,75.
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11673 ⋅ Poprawnie: 100/138 [72%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Iloczyn wyrażenia 5x-4 przez wyrażenie -25x^2-20x-16 jest równy ax^3+bx+c, gdzie a,b,c\in\mathbb{Z}.

Podaj liczby a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10116 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz dziedzinę funkcji określonej wzorem f(x)=\frac{1}{\sqrt{x^3-28x^2+196x}}. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10126 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Liczba wymierna p jest pierwiastkiem wielomianu W(x)=2x^3-3x^2-x-10.

Liczba p może należeć do przedziału:

Odpowiedzi:
A. (3,5) B. (2,3)
C. (-5,-3) D. (-2,0)
Zadanie 6.  2 pkt ⋅ Numer: pr-20205 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Wielomian W(x)=\sqrt{(a+1)^2}x^3+x^2+|a|x+3 przy dzieleniu przez dwumian x+1 daje resztę -7.

Podaj najmniejsze możliwe a.

Odpowiedź:
a_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj największe możliwe a.
Odpowiedź:
a_{max}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-21011 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Wyznacz wszystkie pierwiastki wielomianu W(x)= x^3-\frac{29}{6}x^2-\frac{15}{2}x+3.

Podaj najmniejszy i największy pierwiastek tego wielomianu.

Odpowiedzi:
x_{min}= (dwie liczby całkowite)

x_{max}= (dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20193 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wielomian P(x)=x^5+ax^3+12x^2+bx+36 dzieli się przez wielomian Q(x)=12+x+x^3. Wyznacz liczby a i b.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-21005 ⋅ Poprawnie: 17/37 [45%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Suma objętości trzech sześcianów jest równa 1070. Krawędź drugiego z tych sześcianów jest o 3 dłuższa od krawędzi pierwszego sześcianu, a krawędź trzeciego sześcianu jest o 1 krótsza od krawędzi pierwszego sześcianu.

Wyznacz długość krawędzi najmniejszego z tych sześcianów.

Odpowiedź:
a_{min}= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pr-20190 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » Liczba 2 jest pierwiastkiem trzykrotnym wielomianu W(x)=x^4+ax^3+2mx^2+bx+n-1.

Podaj m.

Dane
a=-10
b=-56
Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj n.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30163 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Liczby -4 i 4 są pierwiastkami wielomianu W(x), dla którego zachodzi równość \text{st}.W(x)=4. Wielomian W(x) dzieli się bez reszty przez trójmian P(x)=x^2-\frac{5}{2}x+1, a do jego wykresu należy punkt o współrzędnych \left(-1,-270\right).

Wyznacz W(4).

Odpowiedź:
W(4)= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Wyznacz pozostałe pierwiastki tego wielomianu.
Podaj najmniejszy z nich.
Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 11.3 (1 pkt)
 Podaj największy z nich.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 12.  5 pkt ⋅ Numer: pr-30155 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (1 pkt)
 «« Dane jest równanie (x^3+2x^2+2x+1)(x^2-(2m-15)x+m^2-15m+50)=0 . Dla jakich wartości parametru m równanie to ma trzy parami różne pierwiastki?

Podaj najmniejsze możliwe m, które nie spełnia warunków zadania.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 12.2 (1 pkt)
 Podaj największe możliwe m, które nie spełnia warunków zadania.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 12.3 (1 pkt)
 Dla jakich wartości parametru m trzy różne pierwiastki tego równania spełniają warunek: suma dwóch pierwiastków równania jest dwa razy większa od pierwiastka trzeciego?

Podaj najmniejsze możliwe m, które spełnia warunki zadania.

Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 12.4 (1 pkt)
 Podaj największe możliwe m, które spełnia warunki zadania.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Podpunkt 12.5 (1 pkt)
 Podaj m spełniające warunki zadania, które nie jest liczbą całkowitą.
Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm