Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11471 ⋅ Poprawnie: 371/684 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 «« Wielomian P(x)=(m-4)x^2+\sqrt{2}x^4-\sqrt{2}+1 spełnia warunek 4\cdot P(1)+3\sqrt{2}=P(\sqrt{2}) gdy m=..........

Podaj brakującą liczbę.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Zadanie 2.  2 pkt ⋅ Numer: pp-11683 ⋅ Poprawnie: 54/81 [66%] Rozwiąż 
Podpunkt 2.1 (2 pkt)
 Przy dzieleniu przez P(x)=x-1 wielomian W(x)=x^4+2x^3-5x^2-6mx+9 daje resztę 13.

Oblicz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11676 ⋅ Poprawnie: 72/101 [71%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Oblicz wartość wyrażenia algebraicznego w=(2\sqrt{7}-1)^3.
Odpowiedź:
w= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10478 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (0.2 pkt)
 Wyznacz dziedzinę funkcji określonej wzorem f(x)=\sqrt{x^3-2x^2}. Rozwiązanie zapisz w postaci sumy przedziałów.

Suma ta ma posatać:

Odpowiedzi:
A. \{p\}\cup\langle q,+\infty) B. \langle p,q\rangle
C. \langle p,+\infty) D. (-\infty,p\rangle\cup\{q\}
E. (-\infty,p\rangle F. (p,q)
Podpunkt 4.2 (0.8 pkt)
 Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10126 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Liczba wymierna p jest pierwiastkiem wielomianu W(x)=2x^3+11x^2+13x+18.

Liczba p może należeć do przedziału:

Odpowiedzi:
A. (4,9) B. (-9,-5)
C. (-5,-4) D. (0,5)
Zadanie 6.  2 pkt ⋅ Numer: pp-20971 ⋅ Poprawnie: 17/42 [40%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 r=15 » Wielomian W(x)=x^4+a^2x^3+ax^2-x+3 przy dzieleniu przez dwumian x-1 daje resztę 15.

Podaj najmniejsze możliwe a.

Odpowiedź:
a_{min}= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj największe możliwe a.
Odpowiedź:
a_{max}= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20974 ⋅ Poprawnie: 19/57 [33%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Wielomian W(x) jest stopnia trzeciego i przy dzieleniu przez dwumian x-2 daje resztę 420. Pierwiastkami tego wielomianu są liczby -5, -3 oraz -2.

Oblicz W(0).

Odpowiedź:
W(1)= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20985 ⋅ Poprawnie: 8/12 [66%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wielomian W(x)=-3x^3+(3a+b-28)x^2-(4a+9b-68)x+30 jest podzielny przez wielomian P(x)=-3x+5, a wynikiem tego dzielenia jest wielomian Q(x)=x^2-4x+6.

Wyznacz liczbę a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Wyznacz liczbę b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-21007 ⋅ Poprawnie: 24/62 [38%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Krawędzie akwarium w kształcie prostopadłościanu wychodzące z jednego wierzchołka mają długość 3, 5 i 2. Inne akwarium prostopadłościenne, którego każda krawędz jest dłuższa o ten sam odcinek od odpowiednich krawędzi pierwszego akwarium, ma pojemność o 348 większą od pierwszego akwarium.

Wyznacz długość dwóch najkrótszych boków nowe zbudowanego akwarium.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pr-21015 ⋅ Poprawnie: 48/33 [145%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Wyznacz zbiór wszystkich wartości parametru m\in\mathbb{R}, dla których równanie (x-5)\left[4x^2+(3m-73)x-19m+309\right]=0 ma dokładnie jedno rozwiązanie.

Podaj największe możliwe m.

Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30844 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Dany jest wielomian W(x)= (x-1)\left[x^2+(p-5)x-2p+15\right].
Przedział (a,b) jest zbiorem tych wszystkich wartości parametru p, dla których wielomian ten ma tylko jeden pierwiastek o krotności jeden i nie posiada pierwiastków o innych krotnościach.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Dla p\in\{p_1,p_2,p_3\}, gdzie p_1\lessdot p_2\lessdot p_3, wielomian W(x) ma jeden pierwiastek jednokrotny i jeden pierwiastek dwukrotny.

Podaj liczby p_1, p_2 i p_3.

Odpowiedzi:
p_1= (wpisz liczbę całkowitą)
p_2= (wpisz liczbę całkowitą)
p_3= (wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
 Dla p\in(-\infty,a)\cup(b,c)\cup(d,+\infty) wielomian W(x) ma trzy pierwiastki jednokrotne.

Podaj liczby b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30157 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Dla jakich wartości parametru p, równanie x^2-(p-4)x+p-2=0 ma dwa różne pierwiastki rzeczywiste?

Podaj największą możliwą wartość p, która nie spełnia. warunków zadania.

Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.2 (1 pkt)
 Dla jakich wartości parametru p dwa różne pierwiastki rzeczywiste tego równania spełniają warunek x_1^4+x_2^4= 4p^3-66p^2+328p-444?

Podaj najmniejszą możliwą wartość p.

Odpowiedź:
p_{min}= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.3 (1 pkt)
 Podaj największą możliwą wartość p.
Odpowiedź:
p_{max}= + \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm