«« Wielomian W(x)=\sqrt{6}x^3-\sqrt{3}x^2-2\sqrt{3}
przy dzieleniu przez dwumian x-
\frac{m}{5}
daje
resztę, która jest liczbą wymierną. Wynika z tego, że liczba
m jest równa:
Odpowiedzi:
A.5\sqrt{6}
B.15\sqrt{2}
C.10\sqrt{2}
D.5\sqrt{2}
Zadanie 3.1 pkt ⋅ Numer: pp-11677 ⋅ Poprawnie: 44/61 [72%]
Krawędzie akwarium w kształcie prostopadłościanu wychodzące z jednego wierzchołka mają długość
3, 5 i 2. Inne
akwarium prostopadłościenne, którego każda krawędz jest dłuższa o ten sam odcinek od odpowiednich
krawędzi pierwszego akwarium, ma pojemność o 210
większą od pierwszego akwarium.
Wyznacz długość dwóch najkrótszych boków nowe zbudowanego akwarium.
Odpowiedzi:
min
=
(wpisz liczbę całkowitą)
max
=
(wpisz liczbę całkowitą)
Zadanie 10.2 pkt ⋅ Numer: pr-21027 ⋅ Poprawnie: 0/0
Wykres funkcji określonej wzorem y=\frac{1}{9}x^4 przesunięto o wektor
o współrzędnych [-6,-9] i otrzymano wykres funkcji wielomianowej określonej
wzorem y=W(x).
W postaci iloczynowej wielomianu W(x) występuje nierozkładalny czynnik
postaci x^2+bx+c. Podaj liczby b i c.
Odpowiedzi:
b
=
(wpisz liczbę całkowitą)
c
=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (0.5 pkt)
Podaj najmniejszy pierwiastek wielomianu W(x).
Odpowiedź:
x_{min}=+\cdot√
(wpisz trzy liczby całkowite)
Podpunkt 10.3 (0.5 pkt)
Podaj największy pierwiastek wielomianu W(x).
Odpowiedź:
x_{max}=+\cdot√
(wpisz trzy liczby całkowite)
Zadanie 11.4 pkt ⋅ Numer: pp-30400 ⋅ Poprawnie: 8/14 [57%]
« Wyznacz zbiór wszystkich wartości parametru m\in\mathbb{R}, dla których
równanie
x^3+(4m+13)x^2+(4m+21)x=0
ma trzy różne rozwiązania, z których dwa są ujemne. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat