Podgląd testu : lo2@sp-17-wielomiany-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11552 ⋅ Poprawnie: 537/640 [83%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Pomnożono dwa wielomiany
G(x)=6+3x^2 i
H(x)=-2x^3+6x^2-8 i otrzymano wynik
P(x) .
Podaj stopień wielomianu P(x) .
Odpowiedź:
st.P(x)=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11682 ⋅ Poprawnie: 116/250 [46%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Wielomian określony wzorem
P(x)=4x^3-3x^2-2x+1 przy
dzieleniu przez dwumian
x-0,5 daje resztę
r .
Wyznacz liczbę r .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11675 ⋅ Poprawnie: 102/159 [64%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Zapisz wyrażenie
(3x-2)^3 w postaci
a_1x^3+b_1x^2+c_1x+d_1 .
Podaj liczby b_1 i c_1 .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pr-10117 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Wyznacz rozwiązanie nierówności
(x+8)^2(x+3)(x+2)\leqslant 0 .
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pr-10126 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Liczba wymierna
p jest pierwiastkiem
wielomianu
W(x)=2x^3+9x^2+11x+14 .
Liczba p może należeć do przedziału:
Odpowiedzi:
A. (-7,-4)
B. (-4,-3)
C. (0,4)
D. (3,7)
Zadanie 6. 2 pkt ⋅ Numer: pp-20970 ⋅ Poprawnie: 8/14 [57%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
«« Reszta z dzielenia wielomianu
W(x)=x^3-8x^2-\frac{1}{2}m^2x+8m przez dwumian
P(x)=x+2 przyjmuje najmniejszą możliwą wartość.
Wyznacz m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Ile jest równa ta najmniejsza możliwa wartość?
Odpowiedź:
W_{min}(x)=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pr-21004 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (2 pkt)
Liczby
-6 ,
-5 i
-3 są pierwiastkami wielomianu
W(x)=ax^3+bx^2+cx+d ,
a reszta z dzielenia tego wielominau przez dwumian
P(x)=x+1 jest równa
-80 .
Wyznacz wartości współczynników b i c .
Odpowiedzi:
Zadanie 8. 2 pkt ⋅ Numer: pp-21040 ⋅ Poprawnie: 54/68 [79%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Wielomiany
W(x)=(x^2-ax)^2-(x^2+bx)^2 oraz
P(x)=4x^3+0x^2
są równe.
Wyznacz liczby a i b .
Odpowiedzi:
Zadanie 9. 2 pkt ⋅ Numer: pp-21001 ⋅ Poprawnie: 35/88 [39%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Iloczyn kwadratu liczby
a i kwadratu liczby większej od
a o
2 , jest równy
576 .
Podaj najmniejszą i największą możliwą wartość liczby a .
Odpowiedzi:
Zadanie 10. 2 pkt ⋅ Numer: pr-21012 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Liczba
-2 jest pierwiastkiem trzykrotnym wielomianu
W(x)=x^4+12x^3+48x^2+mx+n .
Wyznacz wartości parametrów m i n .
Odpowiedzi:
Zadanie 11. 4 pkt ⋅ Numer: pr-30350 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
Dany jest wielomian
W(x)=2x^3+(m^3-3m^2+3m+1)x^2-11x-2(2m-1) , który jest
podzielny przez dwumian
x-2 oraz przy dzieleniu
przez dwumian
x+1 daje resztę
6 .
Wyznacz m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Dla wyznaczonej wartości
m rozwiąż nierówność
W(x)\geqslant 0 .
Podaj największą liczbę ujemną spełniającą tę nierówność.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.3 (1 pkt)
Rozwiązanie nierówności W(x)\geqslant 0
zapisz w postaci sumy przedziałów. Podaj sumę
wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 4 pkt ⋅ Numer: pr-30156 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 12.1 (2 pkt)
» Liczby
x_1 ,
x_2 i
x_3 są trzema różnymi pierwiastkami wielomianu
W(x)=x^3+6x^2+(14-m)x-2m+12 . Wiedząc, że
x_1^2+x_2^2+x_3^2=30 , wyznacz
m .
Podaj największe możliwe m .
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
Dla jakich wartości parametru
m
suma dwóch pierwiastków wielomianu
W(x)=x^3+6x^2+(14-m)x-2m+12
jest równa pierwiastkowi trzeciemu.
Podaj największe możliwe m .
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Rozwiąż