« Wyznacz te wartości parametru m, dla których
wielomian
W(x)=x^9-(m-5)^3x^8+(m^2-10m+24)x^5+2(m-4)x^2+(m-5)x
przy dzieleniu przez wielomian P(x)=x+1 daje resztę
1.
Podaj najmniejsze możliwe m.
Odpowiedź:
m_{min}=(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe m.
Odpowiedź:
m_{max}=(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pr-21005 ⋅ Poprawnie: 0/0
Wielomian W(x)=-2x^4+bx^3+cx^2+dx+e jest podzielny przez
wielomian P(x)=x^3-4x^2+x+6. Suma współczynników wielomianu
W(x) jest równa -64,
a reszta z dzielenia wielomianu W(x) przez dwumian
Q(x)=x+2 jest równa 200.
Wyznacz wartości współczynników b, c i d.
Odpowiedzi:
b
=
(wpisz liczbę całkowitą)
c
=
(wpisz liczbę całkowitą)
d
=
(wpisz liczbę całkowitą)
Zadanie 8.2 pkt ⋅ Numer: pr-20192 ⋅ Poprawnie: 0/0
Wyznacz wszystkie wartości parametru m\in\mathbb{R}, dla których
równanie
x^4+(m-6)x^2+(m-4)^2=0
ma dwa rozwiązania x_1 i x_2 takie, że
\frac{1}{\left|x_1\cdot x_2\right|}\lessdot 1.
Podaj najmniejsze możliwe m.
Odpowiedź:
min=(wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
Podaj największe możliwe m.
Odpowiedź:
max=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat