Podgląd testu : lo2@sp-17-wielomiany-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11551 ⋅ Poprawnie: 60/126 [47%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Dany jest wielomian
W(x)=P(x)+Q(x) , gdzie
\begin{cases}
P(x)=(16m^4-4)x^5-6mx^3+5 \\
Q(x)=(11m^2-22)x^5-4mx^3+8
\end{cases}
.
Wyznacz iloczyn tych wszystkich wartości parametru m , dla
których st.P(x)=3 lub st.Q(x)=3 .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 2. 1 pkt ⋅ Numer: pp-11679 ⋅ Poprawnie: 126/272 [46%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wyznacz tę wartość parametru
m , dla której wielomian
P(x)=6x^3+x^2-5x+m-1 dzieli się bez reszty przez
dwumian
x-1 .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11673 ⋅ Poprawnie: 100/138 [72%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Iloczyn wyrażenia
2x-3 przez wyrażenie
-4x^2-6x-9
jest równy
ax^3+bx+c , gdzie
a,b,c\in\mathbb{Z} .
Podaj liczby a , b i
c .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pr-10117 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Wyznacz rozwiązanie nierówności
(x+5)^2(x-4)(x-7)\leqslant 0 .
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pr-10114 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Liczba
5 jest pierwiastkiem wielomianu określonego wzorem
W(x)=\left(x^2+px+p+29\right)\left(x^2-12x+32\right) .
Wyznacz pierwiastek dwukrotny tego wielomianu.
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pr-20205 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Wielomian
W(x)=\sqrt{(a+1)^2}x^3+x^2+|a|x+3
przy dzieleniu przez dwumian
x+1 daje resztę
-11 .
Podaj najmniejsze możliwe a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe
a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20999 ⋅ Poprawnie: 23/58 [39%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Wyznacz całkowite pierwiastki wielomianu
W(x)=
x^3+\frac{5}{6}x^2-\frac{37}{6}x+1 .
Podaj najmniejszy i największy pierwiastek całkowity tego wielomianu.
Odpowiedzi:
Zadanie 8. 2 pkt ⋅ Numer: pp-21039 ⋅ Poprawnie: 17/22 [77%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
«Wielomiany
W(x)-F(x) , gdzie
W(x)=2x^3+(a+5)x^2+5x-3 i
F(x)=x^3-5x^2+(b-5)x+4 , oraz
H(x)=x^3+2x^2+4x-7 są równe.
Wyznacz liczby a i b .
Odpowiedzi:
Zadanie 9. 2 pkt ⋅ Numer: pp-21001 ⋅ Poprawnie: 35/88 [39%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Iloczyn kwadratu liczby
a i kwadratu liczby większej od
a o
2 , jest równy
9 .
Podaj najmniejszą i największą możliwą wartość liczby a .
Odpowiedzi:
Zadanie 10. 2 pkt ⋅ Numer: pr-20178 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
» Wielomian
Q(x)=ax^3+bx^2+cx+d dla argumentu
0 przyjmuje wartość
375 .
Liczba
x_1=-5 jest jego pierwiastkiem, zaś liczba
x_2=5 jest pierwiastkiem dwukrotnym wielomianu
Q(x) .
Wyznacz b .
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30160 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
Dany jest wielomian
W(x)=(m-9)x^3-(m+1)x^2-(m-6)x+m-2 , który dzieli się
bez reszty przez
x+1 . Wyznacz te wartości
parametru
m , dla których wielomian ten ma
dokładnie dwa pierwiastki.
Podaj najmniejsze możliwe m spełniające warunki
zadania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Podaj największe możliwe
m spełniające warunki
zadania.
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pr-30153 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 12.1 (1 pkt)
« Dany jest wielomian
W(x)=(m-3)x^3+x^2+(m^2-6m)x+m-3 . Jednym z
pierwiastków tego wielomianu jest liczba
1 .
Podaj najmniejszą możliwą wartość parametru
m .
Odpowiedź:
m_{min}=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (1 pkt)
Podaj największą możliwą wartość parametru
m .
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Podpunkt 12.3 (2 pkt)
Jednym z pierwiastków tego wielomianu jest liczba
1 ,
a jeden z pozostałych pierwiastków należy do zbioru
\mathbb{W}-\mathbb{C} .
Wyznacz ten pierwiastek.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż