«« Wielomian W(x)=\sqrt{6}x^3-\sqrt{3}x^2-2\sqrt{3}
przy dzieleniu przez dwumian x-
\frac{m}{3}
daje
resztę, która jest liczbą wymierną. Wynika z tego, że liczba
m jest równa:
Odpowiedzi:
A.9\sqrt{2}
B.3\sqrt{6}
C.3\sqrt{2}
D.3\sqrt{3}
Zadanie 3.1 pkt ⋅ Numer: pp-11674 ⋅ Poprawnie: 81/127 [63%]
Krawędzie akwarium w kształcie prostopadłościanu wychodzące z jednego wierzchołka mają długość
3, 5 i 2. Inne
akwarium prostopadłościenne, którego każda krawędz jest dłuższa o ten sam odcinek od odpowiednich
krawędzi pierwszego akwarium, ma pojemność o 110
większą od pierwszego akwarium.
Wyznacz długość dwóch najkrótszych boków nowe zbudowanego akwarium.
Odpowiedzi:
min
=
(wpisz liczbę całkowitą)
max
=
(wpisz liczbę całkowitą)
Zadanie 10.2 pkt ⋅ Numer: pr-21021 ⋅ Poprawnie: 0/1 [0%]
« Wyznacz zbiór wszystkich wartości parametru m\in\mathbb{R}, dla których
równanie
x^3-(2m+4)x^2-4x=0
ma trzy różne rozwiązania, z których jedno jest średnią arytmetyczną pozostałych.
Podaj najmniejsze możliwe m.
Odpowiedź:
m_{min}=(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj największe możliwe m.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)
Zadanie 11.4 pkt ⋅ Numer: pp-30400 ⋅ Poprawnie: 8/14 [57%]