Podgląd testu : lo2@sp-17-wielomiany-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11472 ⋅ Poprawnie: 279/533 [52%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wielomian
P(x)=q+6+2x+px^2-2x^4 spełnia
warunki
\begin{cases}
P(-1)+P(1)=0 \\
P(-\sqrt{2})=-P(\sqrt{2})
\end{cases}
.
Podaj liczby p i q .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11681 ⋅ Poprawnie: 71/158 [44%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Wielomian określony wzorem
W(x)=x^5-3x^4+mx^3+6 przy
dzieleniu przez dwumian
x+1 daje resztę
-2 .
Wyznacz liczbę m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11674 ⋅ Poprawnie: 81/127 [63%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Wyrażenie
27x^3+64y^3 jest równe
\left(3x+ay)\left(bx^2+cxy+16y^2\right) .
Podaj liczby a , b i
c .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pr-10301 ⋅ Poprawnie: 1/1 [100%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Reszta z dzielenia wielomianu
W(x)=x^{55}+x^{51}+x^{47}+x^{43}+x^{39}+x
przez dwumian
P(x)=x^2-1 jest równa:
Odpowiedzi:
A. 3x+1
B. 6x
C. 3x-1
D. 6x+1
Zadanie 5. 1 pkt ⋅ Numer: pr-10127 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Oblicz iloczyn wszystkich pierwiastków rzeczywistych wielomianu określonego wzorem
W(x)=x^4+3x^2-40 .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20972 ⋅ Poprawnie: 12/15 [80%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Wielomian
W(x)=x^3+m^2x^2+\frac{9}{2}x+\frac{19}{8}
przy dzieleniu
przez wielomian
P(x)=x+\left(\frac{1}{3}\right)^{\log_{3}{2}}
daje resztę
r=\frac{3}{8} .
Podaj najmniejsze możliwe m .
Odpowiedź:
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe
m .
Odpowiedź:
Zadanie 7. 2 pkt ⋅ Numer: pr-21007 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (1 pkt)
Wielomian
W(x)=x^3-3x^2+ax+24 ma trzy pierwiastki
x_1 ,
x_2 i
x_3 takie,
że
x_2=x_1+b i
x_3=x_1+2b , gdzie
b\ > 0 .
Wyznacz wartości parametrów a i b .
Odpowiedzi:
Podpunkt 7.2 (1 pkt)
Wyznacz najmniejszy i największy pierwiastek tego wielomianu.
Odpowiedzi:
Zadanie 8. 3 pkt ⋅ Numer: pp-20976 ⋅ Poprawnie: 81/173 [46%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Rozwiąż równanie
4x^3-2x^2-8x+4=0 .
Podaj rozwiązanie wymierne tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Podaj najmniejsze rozwiązanie tego równania, które nie jest liczbą wymierną.
Odpowiedź:
Wpisz odpowiedź:
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 8.3 (1 pkt)
Podaj największe rozwiązanie tego równania, które nie jest liczbą wymierną.
Odpowiedź:
Wpisz odpowiedź:
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-21006 ⋅ Poprawnie: 16/23 [69%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Podstawą pudełka w kształcie prostopadłościanu o objętości
V=5.0 litrów jest kwadrat, którego krawędź jest
o
17 dłuższa od wysokości
h tego prostopadłościanu.
Wyznacz długość krawędzi podstawy a i wysokości
tego prostopadłościanu.
Odpowiedzi:
Zadanie 10. 2 pkt ⋅ Numer: pr-20188 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
» Rozwiąż nierówność
x^3+260\leqslant 4(x+5)^2 .
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców
liczbowych tych przedziałów.
Odpowiedź:
min=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Podaj ten z końców tych przedziałów, który jest liczbą całkowitą.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30165 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
» Pierwiastki
x_1 ,
x_2 i
x_3 wielomianu
W(x)=x^3+(m^2-31)x^2+8x spełniają warunki:
2x_2=x_3 i
x_1+x_2=2 .
Podaj najmniejsze możliwe m .
Odpowiedź:
m_{min}=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj największe możliwe
m .
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pr-30153 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 12.1 (1 pkt)
« Dany jest wielomian
W(x)=(m+3)x^3+x^2+(m^2+6m)x+m+3 . Jednym z
pierwiastków tego wielomianu jest liczba
1 .
Podaj najmniejszą możliwą wartość parametru
m .
Odpowiedź:
m_{min}=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (1 pkt)
Podaj największą możliwą wartość parametru
m .
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Podpunkt 12.3 (2 pkt)
Jednym z pierwiastków tego wielomianu jest liczba
1 ,
a jeden z pozostałych pierwiastków należy do zbioru
\mathbb{W}-\mathbb{C} .
Wyznacz ten pierwiastek.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż