Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11551 ⋅ Poprawnie: 60/126 [47%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Dany jest wielomian W(x)=P(x)+Q(x), gdzie \begin{cases} P(x)=(16m^4-4)x^5-6mx^3+5 \\ Q(x)=(7m^2-28)x^5-4mx^3+8 \end{cases} .

Wyznacz iloczyn tych wszystkich wartości parametru m, dla których st.P(x)=3 lub st.Q(x)=3.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pp-11682 ⋅ Poprawnie: 116/250 [46%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wielomian określony wzorem P(x)=4x^3-3x^2+4x+1 przy dzieleniu przez dwumian x-0,5 daje resztę r.

Wyznacz liczbę r.

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11677 ⋅ Poprawnie: 44/61 [72%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zapisz wyrażenie (5x-7)^2x+(7-5x)x^2-(5x-7) w postaci iloczynu dwóch wyrażeń w postaci (a_1x^2+b_1x+c_1)(ax+d_1).

Podaj sumę a_1+b_1+c_1.

Odpowiedź:
a_1+b_1+c_1= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10115 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (0.2 pkt)
 Wyznacz dziedzinę funkcji określonej wzorem g(x)=\sqrt{x^3-196x}. Rozwiązanie zapisz w postaci sumy przedziałów.

Suma ta ma postać:

Odpowiedzi:
A. \langle p,q\rangle B. (-\infty,p)\cup(q,r)
C. (-\infty,p\rangle\cup\langle q,r\rangle D. \langle p, q\rangle\cup\langle r,+\infty)
E. (p,q) F. (p, q)\cup(r,+\infty)
Podpunkt 4.2 (0.8 pkt)
 Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10114 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Liczba 4 jest pierwiastkiem wielomianu określonego wzorem W(x)=\left(x^2+px+p-21\right)\left(x^2-3x-40\right).

Wyznacz pierwiastek dwukrotny tego wielomianu.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pr-20210 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Wyznacz te wartości parametru m, dla których wielomian W(x)=x^9-(m+4)^3x^8+(m^2+8m+15)x^5+2(m+5)x^2+(m+4)x przy dzieleniu przez wielomian P(x)=x+1 daje resztę 1.

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20974 ⋅ Poprawnie: 19/57 [33%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Wielomian W(x) jest stopnia trzeciego i przy dzieleniu przez dwumian x-2 daje resztę 216. Pierwiastkami tego wielomianu są liczby -4, -2 oraz -1.

Oblicz W(1).

Odpowiedź:
W(1)= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20192 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Wielomian W(x)=9x^4+6x^3+px^2+7x+q dzieli się przez wielomian P(x)=3x^2-x+3. Wyznacz p i q.

Podaj p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-21004 ⋅ Poprawnie: 15/17 [88%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 W pewnej liczbie naturalnej trzycyfrowej cyfra dziesiątek jest 2 razy większa od cyfry setek, zaś cyfra jedności jest o 1 mniejsza od cyfry setek. Wyznacz tę liczbę trzycyfrową więdząc, że różnica sześcianu cyfry setek i iloczynu cyfry dziesiątek przez cyfrę jedności jest równa 15.

Podaj tę liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pr-21028 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Jedynym miejscem zerowym funkcji wielomianowej określonej wzorem y=W(x) jest liczba 3, która jest pierwiastkiem dwukrotnym wielomianu W(x) o stopniu równym cztery. Do wykresu tej funkcji należą punkty o współrzędnych A=(0,54 ), B=(-3,648) oraz C=(-4,1274 ).

Zapisz wzór wielomianu W(x) w postaci ogólnej W(x)=ax^4+bx^3+cx^2+dx+e. Podaj liczby b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj liczby d i e.
Odpowiedzi:
d= (wpisz liczbę całkowitą)
e= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30163 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Liczby -3 i 3 są pierwiastkami wielomianu W(x), dla którego zachodzi równość \text{st}.W(x)=4. Wielomian W(x) dzieli się bez reszty przez trójmian P(x)=x^2-\frac{5}{2}x+1, a do jego wykresu należy punkt o współrzędnych \left(-1,-144\right).

Wyznacz W(4).

Odpowiedź:
W(4)= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Wyznacz pozostałe pierwiastki tego wielomianu.
Podaj najmniejszy z nich.
Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 11.3 (1 pkt)
 Podaj największy z nich.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pr-30850 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Wyznacz wszystkie wartości parametru m\in\mathbb{R}, dla których równanie x^4+(m+7)x^2+(m+9)^2=0 ma dwa rozwiązania x_1 i x_2 takie, że \frac{1}{\left|x_1\cdot x_2\right|}\lessdot 1.

Podaj najmniejsze możliwe m.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Podaj największe możliwe m.
Odpowiedź:
max= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm