Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11556 ⋅ Poprawnie: 537/607 [88%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
Suma wielomianów W(x)=-2x^3+5x^2-3 oraz P(x)=2x^3+12x wynosi:
Odpowiedzi:
A. 5x^2+12x-3 B. 4x^3+12x^2-3
C. 4x^6+5x^2+12x-3 D. 4x^3+5x^2+12x-3
Zadanie 2.  1 pkt ⋅ Numer: pr-10123 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
Wielomian W(x)=2x^3-x-q dzieli się bez reszty przez dwumian x-p+1. Wynika z tego, że liczba q jest równa:
Odpowiedzi:
A. 2(p+1)^3-p+1 B. 2(p+1)^3+p-1
C. 2(p-1)^3-p+1 D. 2(p-1)^3+p-1
Zadanie 3.  1 pkt ⋅ Numer: pp-11672 ⋅ Poprawnie: 149/202 [73%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wyrażenie (4x+1)^3-(x-6)(x+6) zapisane w postaci sumy algebraicznej ma postać 64x^3+mx^2+nx+37, gdzie m,n\in\mathbb{Z}.

Podaj liczby m i n.

Odpowiedzi:
m= (wpisz liczbę całkowitą)
n= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10115 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (0.2 pkt)
 Wyznacz dziedzinę funkcji określonej wzorem g(x)=\sqrt{x^3-225x}. Rozwiązanie zapisz w postaci sumy przedziałów.

Suma ta ma postać:

Odpowiedzi:
A. (-\infty,p\rangle\cup\langle q,r\rangle B. (p, q)\cup(r,+\infty)
C. (-\infty,p)\cup(q,r) D. (p,q)
E. \langle p, q\rangle\cup\langle r,+\infty) F. \langle p,q\rangle
Podpunkt 4.2 (0.8 pkt)
 Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10476 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wielomian W(x)=16x^3+ax^2+9x ma pierwiastek dwukrotny.

Wyznacz dodatnią wartość parametru a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 6.  4 pkt ⋅ Numer: pr-21057 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Dany jest wielomian P(x)=x^4+ax^3+bx^2+11x-10 , który przy dzieleniu przez każdy z dwumianów x-3, x+2 i x-1 daje tę samą resztę. Oblicz a i b.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 6.2 (2 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-21008 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wielomian W(x)=x^3-5x^2+ax+b ma trzy pierwiastki x_1, x_2 i x_3 takie, że x_2-x_1=8 i x_3-x_1=12.

Wyznacz najmniejszy i największy pierwiastek tego wielomianu.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Wyznacz wartości parametrów a i b.
Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20964 ⋅ Poprawnie: 8/10 [80%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wyrażenie \frac{3\cdot xy}{xy+3y^2}:\frac{x^2}{x^2+6xy+9y^2} można przekształcić do postaci a+b\cdot \frac{y}{x}, gdzie a i b są liczbami całkowitymi.

Podaj liczbę a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj liczbę b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-21002 ⋅ Poprawnie: 26/66 [39%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Iloczyn trzech liczb a, b i c takich, że liczba b jest o 3 większa od liczby a, a liczba c jest o 1 mniejsza od liczby b, jest równy 280.

Wyznacz te liczby.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pr-20180 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Liczba -1 jest pierwiastkiem dwukrotnym wielomianu H(x)=x^3+bx^2+cx-3.

Podaj b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30140 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Wyznacz wszystkie wartości parametru m\in\mathbb{R}, dla których równanie x^2-(m-9)x+m^2-14m+45=0 ma dwa różne pierwiastki rzeczywiste.

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (1 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
 Wyznacz wszystkie wartości parametru m\in\mathbb{R}, dla których suma różnych pierwiastków tego równania jest mniejsza od 2m^3-30m^2+150m-253.

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 11.4 (1 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30850 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Wyznacz wszystkie wartości parametru m\in\mathbb{R}, dla których równanie x^4+(m-4)x^2+(m-2)^2=0 ma dwa rozwiązania x_1 i x_2 takie, że \frac{1}{\left|x_1\cdot x_2\right|}\lessdot 1.

Podaj najmniejsze możliwe m.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Podaj największe możliwe m.
Odpowiedź:
max= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm