Wielomian W(x)=-x^4+bx^3+cx^2+dx+e jest podzielny przez
wielomian P(x)=x^3-4x^2+x+6. Suma współczynników wielomianu
W(x) jest równa 12,
a reszta z dzielenia wielomianu W(x) przez dwumian
Q(x)=x+2 jest równa -120.
Wyznacz wartości współczynników b, c i d.
Odpowiedzi:
b
=
(wpisz liczbę całkowitą)
c
=
(wpisz liczbę całkowitą)
d
=
(wpisz liczbę całkowitą)
Zadanie 8.2 pkt ⋅ Numer: pp-20988 ⋅ Poprawnie: 12/12 [100%]
Uczniowe pewnej klasy podzielili się na trzy wieloosobowe grupy. W drugiej grupie
jest o 8 osób więcej niż w pierwzej, zaś w trzeciej
grupie o 13 osób więcej niż w pierwszej. Iloczyn
liczby uczniów grupy drugiej i trzeciej jest o 109
większy od sześcianu liczby uczniów pierwszej grupy.
Ilu uczniów liczy ta klasa?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 10.2 pkt ⋅ Numer: pr-20199 ⋅ Poprawnie: 0/0
Dany jest wielomian
W(x)=2x^3+(m^3-3m^2+3m+1)x^2-11x-2(2m-1), który jest
podzielny przez dwumian x-2 oraz przy dzieleniu
przez dwumian x+1 daje resztę
6.
Wyznacz m.
Odpowiedź:
m=(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Dla wyznaczonej wartości m rozwiąż nierówność
W(x)\geqslant 0.
Podaj największą liczbę ujemną spełniającą tę nierówność.
Odpowiedź:
x_{<0}=
(wpisz dwie liczby całkowite)
Podpunkt 11.3 (1 pkt)
Rozwiązanie nierówności W(x)\geqslant 0
zapisz w postaci sumy przedziałów. Podaj sumę
wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma=
(wpisz dwie liczby całkowite)
Zadanie 12.4 pkt ⋅ Numer: pr-30158 ⋅ Poprawnie: 0/0