» Wyznacz wszystkie pierwiastki wielomianu W(x)
wiedząc, że przy dzieleniu przez dwumian x-1
wielomian ten daje iloraz równy
2(x^2-x-17) oraz
resztę równą 30.
Podaj najmniejszy pierwiastek tego wielomianu.
Odpowiedź:
x_{min}=(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj największy pierwiastek tego wielomianu.
Odpowiedź:
x_{max}=(wpisz liczbę całkowitą)
Zadanie 8.2 pkt ⋅ Numer: pp-21039 ⋅ Poprawnie: 17/22 [77%]
Podstawą pudełka w kształcie prostopadłościanu o objętości
V=10.0 litrów jest kwadrat, którego krawędź jest
o 9 dłuższa od wysokości h tego prostopadłościanu.
Wyznacz długość krawędzi podstawy a i wysokości
tego prostopadłościanu.
Odpowiedzi:
a
=
(wpisz liczbę całkowitą)
h
=
(wpisz liczbę całkowitą)
Zadanie 10.2 pkt ⋅ Numer: pr-21029 ⋅ Poprawnie: 0/0
« Liczby -5 i -2 są pierwiastkami
wielomianu W(x) stopnia trzeciego o krotnościach odpowiednio 2 i
1. Do wykresu funkcji wielomianowej określonej wzorem
y=W(x) należy punkt
A=\left(0,\frac{50}{3}\right).
Zapisz wzór wielomianu W(x) w postaci ogólnej
W(x)=ax^3+bx^2+cx+d. Podaj liczby b i c.
Odpowiedzi:
b
=
(wpisz liczbę całkowitą)
c
=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Prosta o równaniu y=-\frac{2}{3}x-\frac{10}{3} przecina wykres tej funkcji wielomianowej w trzech
punktach o rzędnych x_1\lessdot x_2\lessdot x_3.
Podaj liczby x_1, x_2 i
x_3.
Odpowiedzi:
x_1
=
(wpisz liczbę całkowitą)
x_2
=
(wpisz liczbę całkowitą)
x_3
=
(wpisz liczbę całkowitą)
Zadanie 11.4 pkt ⋅ Numer: pr-30162 ⋅ Poprawnie: 0/0