Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11556 ⋅ Poprawnie: 537/607 [88%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
Suma wielomianów W(x)=-2x^3+5x^2-3 oraz P(x)=2x^3+12x wynosi:
Odpowiedzi:
A. 5x^2+12x-3 B. 4x^3+12x^2-3
C. 4x^6+5x^2+12x-3 D. 4x^3+5x^2+12x-3
Zadanie 2.  2 pkt ⋅ Numer: pp-11683 ⋅ Poprawnie: 54/81 [66%] Rozwiąż 
Podpunkt 2.1 (2 pkt)
 Przy dzieleniu przez P(x)=x-1 wielomian W(x)=x^4+2x^3-5x^2-6mx+9 daje resztę 10.

Oblicz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11677 ⋅ Poprawnie: 44/61 [72%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zapisz wyrażenie (4x-5)^2x+(5-4x)x^2-(4x-5) w postaci iloczynu dwóch wyrażeń w postaci (a_1x^2+b_1x+c_1)(ax+d_1).

Podaj sumę a_1+b_1+c_1.

Odpowiedź:
a_1+b_1+c_1= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10117 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Wyznacz rozwiązanie nierówności (x+8)^2(x-2)(x-7)\leqslant 0. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10127 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz iloczyn wszystkich pierwiastków rzeczywistych wielomianu określonego wzorem W(x)=x^4+6x^2-16.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20991 ⋅ Poprawnie: 33/47 [70%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Wielomian W(x)= 12x^4+13x^3-12x^2+10x-2 jest podzielny przez dwumian P(x)=x-\frac{1}{4}, a wynikiem tego dzielenia jest wielomian Q(x)=ax^3+bx^2+cx+d.

Wyznacz współczynniki a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-21005 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Wielomian W(x)=-x^4+bx^3+cx^2+dx+e jest podzielny przez wielomian P(x)=x^3-4x^2+x+6. Suma współczynników wielomianu W(x) jest równa 12, a reszta z dzielenia wielomianu W(x) przez dwumian Q(x)=x+2 jest równa -120.

Wyznacz wartości współczynników b, c i d.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
d= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-21039 ⋅ Poprawnie: 17/22 [77%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 «Wielomiany W(x)-F(x), gdzie W(x)=2x^3+(a+3)x^2+5x-3 i F(x)=x^3-5x^2+(b+4)x+4, oraz H(x)=x^3+2x^2+4x-7 są równe.

Wyznacz liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-21004 ⋅ Poprawnie: 15/17 [88%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 W pewnej liczbie naturalnej trzycyfrowej cyfra dziesiątek jest 3 razy większa od cyfry setek, zaś cyfra jedności jest o 1 mniejsza od cyfry setek. Wyznacz tę liczbę trzycyfrową więdząc, że różnica sześcianu cyfry setek i iloczynu cyfry dziesiątek przez cyfrę jedności jest równa 2.

Podaj tę liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pr-20197 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
Wielomian P(x)=(x^2-3x+1)^{2017} przy dzieleniu przez trójmian Q(x)=-x^2+4x-3 daje resztę R(x)=ax+b.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30138 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 «« O wielomianie W(x)=2x^3+bx^2+cx+d wiadomo, że liczba -3 jest pierwiastkiem dwukrotnym tego wielomianu oraz że W(x) jest on podzielny przez dwumian x-2. Oblicz współczynniki b, c, d.

Podaj b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
 Rozwiąż nierówność W(x-5) \leqslant 0.

Podaj największą liczbę, która spełnia tę nierówność.

Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30150 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (1 pkt)
 » Dla jakich wartości parametru m równanie x^2+(m-5)x+m-1=0 ma mniej niż dwa rozwiązania rzeczywiste?

Podaj najmniejsze możliwe m spełniające warunki zadania.

Odpowiedź:
m_{min}= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.2 (1 pkt)
 Podaj największe możliwe m spełniające warunki zadania.
Odpowiedź:
m_{max}= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.3 (2 pkt)
 Wyznacz te wartości parametru m, dla których suma trzecich potęg dwóch różnych pierwiastków tego równania jest równa 64.

Podaj najmniejsze m spełniające warunki zadania.

Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm