Podgląd testu : lo2@sp-17-wielomiany-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11472 ⋅ Poprawnie: 319/582 [54%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wielomian
P(x)=q-4+2x+px^2-2x^4 spełnia
warunki
\begin{cases}
P(-1)+P(1)=0 \\
P(-\sqrt{2})=-P(\sqrt{2})
\end{cases}
.
Podaj liczby p i q .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11681 ⋅ Poprawnie: 71/158 [44%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Wielomian określony wzorem
W(x)=x^5-3x^4+mx^3+6 przy
dzieleniu przez dwumian
x-1 daje resztę
8 .
Wyznacz liczbę m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11678 ⋅ Poprawnie: 64/75 [85%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wyrażenie
(\sqrt{11}-x)(x^2+11+\sqrt{11}x) jest równe
m\sqrt{n}+kx^3 , gdzie
m,n,k\in\mathbb{Z} .
Podaj liczby m , n i
k .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pr-10301 ⋅ Poprawnie: 1/1 [100%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Reszta z dzielenia wielomianu
W(x)=x^{53}+x^{49}+x^{45}+x^{41}+x^{37}+x
przez dwumian
P(x)=x^2-1 jest równa:
Odpowiedzi:
A. 6x-1
B. 3x+1
C. 6x
D. 6x+1
Zadanie 5. 1 pkt ⋅ Numer: pr-10127 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Oblicz iloczyn wszystkich pierwiastków rzeczywistych wielomianu określonego wzorem
W(x)=x^4+5x^2-24 .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 6. 4 pkt ⋅ Numer: pr-21057 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (2 pkt)
Dany jest wielomian
P(x)=x^4+ax^3+bx^2-22x+25
, który przy dzieleniu przez każdy z dwumianów
x+3 ,
x-2 i
x+4
daje tę samą resztę. Oblicz
a i
b .
Podaj a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (2 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20997 ⋅ Poprawnie: 12/17 [70%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Wielomian
W(x)=4x^3+6(m-3)x^2+(4m-10)x-12
jest podzielny przez dwumian
P(x)=x+2 .
Wyznacz parametr m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj najmniejszy i największy pierwiastek tego wielomianu.
Odpowiedzi:
Zadanie 8. 2 pkt ⋅ Numer: pp-21039 ⋅ Poprawnie: 17/22 [77%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
«Wielomiany
W(x)-F(x) , gdzie
W(x)=2x^3+(a+2)x^2+5x-3 i
F(x)=x^3-5x^2+(b+3)x+4 , oraz
H(x)=x^3+2x^2+4x-7 są równe.
Wyznacz liczby a i b .
Odpowiedzi:
Zadanie 9. 2 pkt ⋅ Numer: pp-21004 ⋅ Poprawnie: 15/17 [88%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
W pewnej liczbie naturalnej trzycyfrowej cyfra dziesiątek jest 2 razy większa
od cyfry setek, zaś cyfra jedności jest o
1 mniejsza
od cyfry setek. Wyznacz tę liczbę trzycyfrową więdząc, że różnica sześcianu cyfry
setek i iloczynu cyfry dziesiątek przez cyfrę jedności jest równa
15 .
Podaj tę liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pr-21097 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Wyznacz te wartości
m\in\mathbb{R} , dla których
równanie
|1x+3|=
12m^3+26m^2-28m+6 ma rozwiązanie.
Podaj największą liczbę z przedziału (-\infty,1) , która
spełnia warunki zadania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Podaj najmniejszą liczbę
m , która spełnia warunki zadania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30165 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
» Pierwiastki
x_1 ,
x_2 i
x_3 wielomianu
W(x)=x^3+(m^2-25)x^2+18x spełniają warunki:
2x_2=x_3 i
x_1+x_2=3 .
Podaj najmniejsze możliwe m .
Odpowiedź:
m_{min}=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj największe możliwe
m .
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pr-30845 ⋅ Poprawnie: 45/33 [136%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
Wyznacz zbiór wszystkich wartości parametru
m\in\mathbb{R} , dla których
równanie
x^3-(2m+8)x^2+(2m^2+15m+28)x=0
ma trzy różne rozwiązania, z których dwa są dodatnie. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Rozwiąż