Wielomian W(x)=-6x^4+(a-b+3)x^3-21x^2+(2a-3b+2)x-15 jest podzielny przez
wielomian P(x)=3x^2-2x+5, a wynikiem tego dzielenia jest wielomian
Q(x)=-2x^2+x-3.
Wyznacz liczbę a.
Odpowiedź:
a=(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Wyznacz liczbę b.
Odpowiedź:
b=(wpisz liczbę całkowitą)
Zadanie 9.2 pkt ⋅ Numer: pp-21004 ⋅ Poprawnie: 15/17 [88%]
W pewnej liczbie naturalnej trzycyfrowej cyfra dziesiątek jest 3 razy większa
od cyfry setek, zaś cyfra jedności jest o 1 mniejsza
od cyfry setek. Wyznacz tę liczbę trzycyfrową więdząc, że różnica sześcianu cyfry
setek i iloczynu cyfry dziesiątek przez cyfrę jedności jest równa
9.
Podaj tę liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 10.2 pkt ⋅ Numer: pr-21021 ⋅ Poprawnie: 0/1 [0%]
« Wyznacz zbiór wszystkich wartości parametru m\in\mathbb{R}, dla których
równanie
x^3-(2m+10)x^2-4x=0
ma trzy różne rozwiązania, z których jedno jest średnią arytmetyczną pozostałych.
Podaj najmniejsze możliwe m.
Odpowiedź:
m_{min}=(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj największe możliwe m.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)
Zadanie 11.4 pkt ⋅ Numer: pr-30163 ⋅ Poprawnie: 0/0
Liczby -4 i 4 są
pierwiastkami wielomianu W(x), dla którego zachodzi
równość \text{st}.W(x)=4. Wielomian
W(x) dzieli się bez reszty przez trójmian
P(x)=x^2+\frac{5}{2}x-\frac{3}{2}, a do jego wykresu należy punkt
o współrzędnych \left(-1,-90\right).
Wyznacz W(4).
Odpowiedź:
W(4)=(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Wyznacz pozostałe pierwiastki tego wielomianu. Podaj najmniejszy z nich.
Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 11.3 (1 pkt)
Podaj największy z nich.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 12.4 pkt ⋅ Numer: pr-30849 ⋅ Poprawnie: 38/33 [115%]
Wyznacz wszystkie wartości parametru m\in\mathbb{R}, dla których
równanie
x^4+(-5-m)x^2-2m-15=0
nie ma rozwiązania. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat