« Wyznacz te wartości parametru m, dla których
wielomian
W(x)=x^9-(m+4)^3x^8+(m^2+8m+15)x^5+2(m+5)x^2+(m+4)x
przy dzieleniu przez wielomian P(x)=x+1 daje resztę
1.
Podaj najmniejsze możliwe m.
Odpowiedź:
m_{min}=(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe m.
Odpowiedź:
m_{max}=(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pp-20974 ⋅ Poprawnie: 19/57 [33%]
W pewnej liczbie naturalnej trzycyfrowej cyfra dziesiątek jest 2 razy większa
od cyfry setek, zaś cyfra jedności jest o 1 mniejsza
od cyfry setek. Wyznacz tę liczbę trzycyfrową więdząc, że różnica sześcianu cyfry
setek i iloczynu cyfry dziesiątek przez cyfrę jedności jest równa
15.
Podaj tę liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 10.2 pkt ⋅ Numer: pr-21028 ⋅ Poprawnie: 0/0
Jedynym miejscem zerowym funkcji wielomianowej określonej wzorem y=W(x)
jest liczba 3, która jest pierwiastkiem dwukrotnym wielomianu
W(x) o stopniu równym cztery. Do wykresu tej funkcji należą punkty o współrzędnych
A=(0,54 ), B=(-3,648)
oraz C=(-4,1274 ).
Zapisz wzór wielomianu W(x) w postaci ogólnej
W(x)=ax^4+bx^3+cx^2+dx+e. Podaj liczby b i c.
Odpowiedzi:
b
=
(wpisz liczbę całkowitą)
c
=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj liczby d i e.
Odpowiedzi:
d
=
(wpisz liczbę całkowitą)
e
=
(wpisz liczbę całkowitą)
Zadanie 11.4 pkt ⋅ Numer: pr-30163 ⋅ Poprawnie: 0/0
Liczby -3 i 3 są
pierwiastkami wielomianu W(x), dla którego zachodzi
równość \text{st}.W(x)=4. Wielomian
W(x) dzieli się bez reszty przez trójmian
P(x)=x^2-\frac{5}{2}x+1, a do jego wykresu należy punkt
o współrzędnych \left(-1,-144\right).
Wyznacz W(4).
Odpowiedź:
W(4)=(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Wyznacz pozostałe pierwiastki tego wielomianu. Podaj najmniejszy z nich.
Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 11.3 (1 pkt)
Podaj największy z nich.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 12.4 pkt ⋅ Numer: pr-30850 ⋅ Poprawnie: 0/0
Wyznacz wszystkie wartości parametru m\in\mathbb{R}, dla których
równanie
x^4+(m+7)x^2+(m+9)^2=0
ma dwa rozwiązania x_1 i x_2 takie, że
\frac{1}{\left|x_1\cdot x_2\right|}\lessdot 1.
Podaj najmniejsze możliwe m.
Odpowiedź:
min=(wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
Podaj największe możliwe m.
Odpowiedź:
max=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat