Podgląd testu : lo2@sp-17-wielomiany-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11556 ⋅ Poprawnie: 537/607 [88%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Suma wielomianów W(x)=-2x^3+5x^2-3 oraz
P(x)=2x^3+12x wynosi:
Odpowiedzi:
A. 4x^3+5x^2+12x-3
B. 4x^3+12x^2-3
C. 4x^6+5x^2+12x-3
D. 5x^2+12x-3
Zadanie 2. 2 pkt ⋅ Numer: pp-11683 ⋅ Poprawnie: 54/81 [66%]
Rozwiąż
Podpunkt 2.1 (2 pkt)
Przy dzieleniu przez
P(x)=x-1 wielomian
W(x)=x^4+2x^3-5x^2-6mx+9 daje resztę
-2 .
Oblicz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11676 ⋅ Poprawnie: 72/101 [71%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Oblicz wartość wyrażenia algebraicznego
w=(2\sqrt{5}-1)^3 .
Odpowiedź:
w=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pr-10116 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wyznacz dziedzinę funkcji określonej wzorem
f(x)=\frac{1}{\sqrt{x^3-26x^2+169x}} .
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pr-10114 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Liczba
3 jest pierwiastkiem wielomianu określonego wzorem
W(x)=\left(x^2+px+p-9\right)\left(x^2-3x-18\right) .
Wyznacz pierwiastek dwukrotny tego wielomianu.
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20968 ⋅ Poprawnie: 14/57 [24%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Wielomian
W(x)=x^3+ax^2+bx+1 dla argumentu
2 przyjmuje wartość
9
oraz przy dzieleniu przez dwumian
x-3 daje
resztę
-11 .
Podaj a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pr-21008 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (1 pkt)
Wielomian
W(x)=x^3+x^2+ax+b ma trzy pierwiastki
x_1 ,
x_2 i
x_3 takie,
że
x_2-x_1=4 i
x_3-x_1=10 .
Wyznacz najmniejszy i największy pierwiastek tego wielomianu.
Odpowiedzi:
Podpunkt 7.2 (1 pkt)
Wyznacz wartości parametrów
a i
b .
Odpowiedzi:
Zadanie 8. 2 pkt ⋅ Numer: pp-20985 ⋅ Poprawnie: 8/12 [66%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Wielomian
W(x)=-3x^3+(3a+b-16)x^2-(4a+9b-29)x+30 jest podzielny przez
wielomian
P(x)=-3x+5 , a wynikiem tego dzielenia jest wielomian
Q(x)=x^2-4x+6 .
Wyznacz liczbę a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-21004 ⋅ Poprawnie: 15/17 [88%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
W pewnej liczbie naturalnej trzycyfrowej cyfra dziesiątek jest 2 razy większa
od cyfry setek, zaś cyfra jedności jest o
2 mniejsza
od cyfry setek. Wyznacz tę liczbę trzycyfrową więdząc, że różnica sześcianu cyfry
setek i iloczynu cyfry dziesiątek przez cyfrę jedności jest równa
21 .
Podaj tę liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pr-20471 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Liczba
n jest największą liczbą naturalną, dla
której liczba
\frac{n-3}{30\sqrt{2}} należy do zbioru
rozwiązań nierówności
(x^2-15x)(x^2+15x)\lessdot 0 .
Wyznacz n .
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30141 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (1 pkt)
« Wyznacz wszystkie wartości parametru
m , dla
których równanie
x^2-4(m+4)x-m^3-6m^2+1m+34=0
ma dwa różne pierwiastki rzeczywiste.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj największy z końców
liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Podaj środek tego z tych przedziałów, który ma skończoną długość.
Odpowiedź:
s=
(wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
Wyznacz wszystkie wartości parametru
m , dla
których to równanie dwa różne pierwiastki rzeczywiste takie, że
\left(x_1-x_2\right)^2 \lessdot 8m+40 .
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z
końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 11.4 (1 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pr-30153 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 12.1 (1 pkt)
« Dany jest wielomian
W(x)=(m+4)x^3+x^2+(m^2+8m+7)x+m+4 . Jednym z
pierwiastków tego wielomianu jest liczba
1 .
Podaj najmniejszą możliwą wartość parametru
m .
Odpowiedź:
m_{min}=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (1 pkt)
Podaj największą możliwą wartość parametru
m .
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Podpunkt 12.3 (2 pkt)
Jednym z pierwiastków tego wielomianu jest liczba
1 ,
a jeden z pozostałych pierwiastków należy do zbioru
\mathbb{W}-\mathbb{C} .
Wyznacz ten pierwiastek.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż