Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11551 ⋅ Poprawnie: 60/126 [47%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Dany jest wielomian W(x)=P(x)+Q(x), gdzie \begin{cases} P(x)=(16m^4-4)x^5-6mx^3+5 \\ Q(x)=(9m^2-27)x^5-4mx^3+8 \end{cases} .

Wyznacz iloczyn tych wszystkich wartości parametru m, dla których st.P(x)=3 lub st.Q(x)=3.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pr-10123 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
Wielomian W(x)=2x^3-x-q dzieli się bez reszty przez dwumian x-p+1. Wynika z tego, że liczba q jest równa:
Odpowiedzi:
A. 2(p+1)^3-p+1 B. 2(p-1)^3-p+1
C. 2(p+1)^3+p-1 D. 2(p-1)^3+p-1
Zadanie 3.  1 pkt ⋅ Numer: pp-11672 ⋅ Poprawnie: 149/202 [73%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wyrażenie (4x+2)^3-(x-5)(x+5) zapisane w postaci sumy algebraicznej ma postać 64x^3+mx^2+nx+33, gdzie m,n\in\mathbb{Z}.

Podaj liczby m i n.

Odpowiedzi:
m= (wpisz liczbę całkowitą)
n= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10478 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (0.2 pkt)
 Wyznacz dziedzinę funkcji określonej wzorem f(x)=\sqrt{x^3-7x^2}. Rozwiązanie zapisz w postaci sumy przedziałów.

Suma ta ma posatać:

Odpowiedzi:
A. (-\infty,p\rangle B. (-\infty,p\rangle\cup\{q\}
C. (p,q) D. \langle p,+\infty)
E. \langle p,q\rangle F. \{p\}\cup\langle q,+\infty)
Podpunkt 4.2 (0.8 pkt)
 Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10128 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Dana jest funkcja g(x)=9x^3-4x^2, x\in\mathbb{R}. Funkcja f(x)=\frac{|g(x)|}{g(x)} przyjmuje wartość równą -1 wtedy i tylko wtedy gdy:
Odpowiedzi:
A. x\in\left(0,\frac{4}{9}\right) B. x\in(-\infty,0)\cup\left(0,\frac{4}{9}\right)
C. x\in\left(-\infty,\frac{4}{9}\right) D. x\in\left(\frac{4}{9},+\infty\right)
Zadanie 6.  2 pkt ⋅ Numer: pr-20196 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wyznacz te wartości parametrów b i c wielomianu P(x)=x^3+bx^2+cx+1, dla których P(2)=-5 oraz reszta z dzielenia wielomianu P(x) przez dwumian x-3 jest równa -2.

Podaj b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-21011 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Wyznacz wszystkie pierwiastki wielomianu W(x)= x^3-\frac{35}{6}x^2-\frac{7}{6}x+1.

Podaj najmniejszy i największy pierwiastek tego wielomianu.

Odpowiedzi:
x_{min}= (dwie liczby całkowite)

x_{max}= (dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-21039 ⋅ Poprawnie: 17/22 [77%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 «Wielomiany W(x)-F(x), gdzie W(x)=2x^3+(a-1)x^2+5x-3 i F(x)=x^3-5x^2+(b-5)x+4, oraz H(x)=x^3+2x^2+4x-7 są równe.

Wyznacz liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-21007 ⋅ Poprawnie: 24/62 [38%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Krawędzie akwarium w kształcie prostopadłościanu wychodzące z jednego wierzchołka mają długość 3, 5 i 2. Inne akwarium prostopadłościenne, którego każda krawędz jest dłuższa o ten sam odcinek od odpowiednich krawędzi pierwszego akwarium, ma pojemność o 3540 większą od pierwszego akwarium.

Wyznacz długość dwóch najkrótszych boków nowe zbudowanego akwarium.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pr-20208 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » Wielomian W(x)=2x^4-10x^3-46x^2-11x-55 przy dzieleniu przez wielomian P(x)=2x^2+2 daje resztę ax+b.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30165 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 » Pierwiastki x_1, x_2 i x_3 wielomianu W(x)=x^3+(m^2-28)x^2+2x spełniają warunki: 2x_2=x_3 i x_1+x_2=1.

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30159 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Dla jakich wartości parametru m suma wszystkich pierwiastków wielomianu x^3+(m^2+16m+62)x^2-(2m^2+32m+132)x+8=0 ma wartość równą -2?

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 12.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Podpunkt 12.3 (2 pkt)
 Wyznacz najmniejszy dodatni pierwiastek tego wielomianu.
Odpowiedź:
x_{>0}= + \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm