» Wyznacz wszystkie pierwiastki wielomianu W(x)
wiedząc, że przy dzieleniu przez dwumian x-1
wielomian ten daje iloraz równy
2(x^2-2x-18) oraz
resztę równą 60.
Podaj najmniejszy pierwiastek tego wielomianu.
Odpowiedź:
x_{min}=(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj największy pierwiastek tego wielomianu.
Odpowiedź:
x_{max}=(wpisz liczbę całkowitą)
Zadanie 8.2 pkt ⋅ Numer: pp-21039 ⋅ Poprawnie: 17/22 [77%]
Wielomian Q(x) przy dzieleniu przez dwumiany
x-1 i x+2 daje reszty
odpowiednio 3 i 21.
Ponadto wiadomo, że Q(3)=-39. Wyznacz resztę z
dzielenia tego wielomianu przez wielomian
P(x)=x^3-2x^2-5x+6.
Zapisz tę resztę w postaci W(x)=ax^2+bx+c.
Podaj a.
Odpowiedź:
a=(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj b.
Odpowiedź:
b=(wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
Podaj c.
Odpowiedź:
c=(wpisz liczbę całkowitą)
Zadanie 11.4 pkt ⋅ Numer: pr-30142 ⋅ Poprawnie: 0/0
» Wyznacz wszystkie wartości parametrów m,n,
dla których wielomian
W(x)=5x^3+mx^2-171x+n jest podzielny przez dwumian
x+5 oraz zachodzi warunek
W(7)=0.
Podaj m.
Odpowiedź:
m=(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Podaj n.
Odpowiedź:
n=(wpisz liczbę całkowitą)
Podpunkt 11.3 (2 pkt)
Dla wyznaczonych wartości parametrów m,n
rozwiąż nierówność W(x) \lessdot 0.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj środek najmiejszego z tych przedziałów.
Odpowiedź:
s=
(wpisz dwie liczby całkowite)
Zadanie 12.4 pkt ⋅ Numer: pr-30845 ⋅ Poprawnie: 45/33 [136%]
Wyznacz zbiór wszystkich wartości parametru m\in\mathbb{R}, dla których
równanie
x^3-(2m-10)x^2+(2m^2-21m+55)x=0
ma trzy różne rozwiązania, z których dwa są dodatnie. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat