Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11552 ⋅ Poprawnie: 537/640 [83%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
Pomnożono dwa wielomiany G(x)=6+3x^2 i H(x)=-2x^3+6x^2-8 i otrzymano wynik P(x).

Podaj stopień wielomianu P(x).

Odpowiedź:
st.P(x)= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pr-10123 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
Wielomian W(x)=2x^3-x-q dzieli się bez reszty przez dwumian x-p+1. Wynika z tego, że liczba q jest równa:
Odpowiedzi:
A. 2(p-1)^3+p-1 B. 2(p+1)^3+p-1
C. 2(p-1)^3-p+1 D. 2(p+1)^3-p+1
Zadanie 3.  1 pkt ⋅ Numer: pp-11677 ⋅ Poprawnie: 44/61 [72%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zapisz wyrażenie (5x-4)^2x+(4-5x)x^2-(5x-4) w postaci iloczynu dwóch wyrażeń w postaci (a_1x^2+b_1x+c_1)(ax+d_1).

Podaj sumę a_1+b_1+c_1.

Odpowiedź:
a_1+b_1+c_1= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10301 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Reszta z dzielenia wielomianu W(x)=x^{43}+x^{39}+x^{35}+x^{31}+x^{27}+x przez dwumian P(x)=x^2-1 jest równa:
Odpowiedzi:
A. 3x+1 B. 6x-1
C. 3x-1 D. 6x
Zadanie 5.  1 pkt ⋅ Numer: pr-10476 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wielomian W(x)=4x^3+ax^2+9x ma pierwiastek dwukrotny.

Wyznacz dodatnią wartość parametru a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pr-20210 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Wyznacz te wartości parametru m, dla których wielomian W(x)=x^9-(m-3)^3x^8+(m^2-6m+8)x^5+2(m-2)x^2+(m-3)x przy dzieleniu przez wielomian P(x)=x+1 daje resztę 1.

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-21006 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wielomian W(x)=x^3+ax^2+bx+10 ma trzy pierwiastki x_1, x_2 i x_3 takie, że \frac{x_2}{x_1}=-1 i \frac{x_3}{x_1}=-10.

Podaj wartości parametrów a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Wyznacz najmniejszy i największy pierwiastek tego wielomianu.
Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-21001 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wielomiany W(x)=(2x+b)(x^2+3x+1), P(x)=(ax+3)(x+1)^2 oraz H(x)=x^3-8x^2+x-2, spełniają warunek W(x)-P(x)=H(x).

Wyznacz liczbę a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Wyznacz liczbę b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-21005 ⋅ Poprawnie: 17/37 [45%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Suma objętości trzech sześcianów jest równa 160. Krawędź drugiego z tych sześcianów jest o 2 dłuższa od krawędzi pierwszego sześcianu, a krawędź trzeciego sześcianu jest o 1 krótsza od krawędzi pierwszego sześcianu.

Wyznacz długość krawędzi najmniejszego z tych sześcianów.

Odpowiedź:
a_{min}= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pr-21028 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Jedynym miejscem zerowym funkcji wielomianowej określonej wzorem y=W(x) jest liczba 4, która jest pierwiastkiem dwukrotnym wielomianu W(x) o stopniu równym cztery. Do wykresu tej funkcji należą punkty o współrzędnych A=(0,48 ), B=(2,36) oraz C=(-2,180 ).

Zapisz wzór wielomianu W(x) w postaci ogólnej W(x)=ax^4+bx^3+cx^2+dx+e. Podaj liczby b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj liczby d i e.
Odpowiedzi:
d= (wpisz liczbę całkowitą)
e= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30143 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Dany jest wielomian W(x)=x^3+px^2+qx+9, który dzieli się przez dwumian x-1, a przy dzieleniu przez dwumian x+1 daje resztę 16.

Podaj p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Podaj q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
 Rozwiąż nierówność W(x)\geqslant 0.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 11.4 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30151 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
 «« Wyznacz te wartości parametru m, dla których równanie x^7-3(m-5)x^4+(2m^2-20m+54)x=0 ma trzy rozwiązania rzeczywiste.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Wyznacz te wartości parametru m, dla których równanie to ma trzy rozwiązania rzeczywiste, których suma szescianów jest równa co najmniej 16.

Podaj najmniejsze m spełniające warunki zadania.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm