Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11552 ⋅ Poprawnie: 537/640 [83%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
Pomnożono dwa wielomiany G(x)=6+3x^2 i H(x)=-2x^3+6x^2-8 i otrzymano wynik P(x).

Podaj stopień wielomianu P(x).

Odpowiedź:
st.P(x)= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11679 ⋅ Poprawnie: 126/272 [46%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wyznacz tę wartość parametru m, dla której wielomian P(x)=6x^3-3x^2-5x+m-1 dzieli się bez reszty przez dwumian x-1.
Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11675 ⋅ Poprawnie: 102/159 [64%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Zapisz wyrażenie (2x-4)^3 w postaci a_1x^3+b_1x^2+c_1x+d_1.

Podaj liczby b_1 i c_1.

Odpowiedzi:
b_1= (wpisz liczbę całkowitą)
c_1= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10117 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Wyznacz rozwiązanie nierówności (x+7)^2(x+6)(x-2)\leqslant 0. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10114 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Liczba 3 jest pierwiastkiem wielomianu określonego wzorem W(x)=\left(x^2+px+p-5\right)\left(x^2-4x-12\right).

Wyznacz pierwiastek dwukrotny tego wielomianu.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20990 ⋅ Poprawnie: 48/76 [63%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Wielomian W(x)=-6x^3+x^2-2x-2 jest podzielny przez dwumian P(x)=x+\frac{1}{2}, a wynikiem tego dzielenia jest wielomian Q(x)=ax^2+bx+c.

Wyznacz współczynniki a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20996 ⋅ Poprawnie: 65/184 [35%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Pierwiastkiem wielomianu W(x)= 3x^3+13x^2+8x-12 jest liczba -2. Wyznacz pozostałe pierwiastki tego wielomianu.

Podaj najmniejszy pierwiastek całkowity tego wielomianu.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj najmniejszy pierwiastek niecałkowity tego wielomianu.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20985 ⋅ Poprawnie: 8/12 [66%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wielomian W(x)=-3x^3+(3a+b-7)x^2-(4a+9b+6)x+30 jest podzielny przez wielomian P(x)=-3x+5, a wynikiem tego dzielenia jest wielomian Q(x)=x^2-4x+6.

Wyznacz liczbę a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Wyznacz liczbę b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-21005 ⋅ Poprawnie: 17/37 [45%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Suma objętości trzech sześcianów jest równa 405. Krawędź drugiego z tych sześcianów jest o 1 dłuższa od krawędzi pierwszego sześcianu, a krawędź trzeciego sześcianu jest o 1 krótsza od krawędzi pierwszego sześcianu.

Wyznacz długość krawędzi najmniejszego z tych sześcianów.

Odpowiedź:
a_{min}= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pr-20207 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » Wielomian W(x) spełnia warunki: W(1)=5, W(-2)=2 i przy dzieleniu przez dwumian x+3 daje resztę -15. Jaką resztę daje wielomian W(x) przy dzieleniu przez wielomian P(x)=x^3+4x^2+x-6?
Zapisz resztę w postaci R(x)=a_1x^2+b_1x+c_1.

Podaj a_1.

Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj b_1.
Odpowiedź:
b_1= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30160 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Dany jest wielomian W(x)=(m-3)x^3-(m+7)x^2-(m)x+m+4, który dzieli się bez reszty przez x+1. Wyznacz te wartości parametru m, dla których wielomian ten ma dokładnie dwa pierwiastki.

Podaj najmniejsze możliwe m spełniające warunki zadania.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Podaj największe możliwe m spełniające warunki zadania.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30154 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Dany jest wielomian W(x)=x^3-3(m-2)x^2+(3m^2-12m+11)x-9m^2+56m-72. Wykres tego wielomianu, po przesunięciu o wektor [-3,0], przechodzi przez początek układu współrzędnych.

Podaj m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 12.2 (1 pkt)
 Wyznacz wszystkie pierwiastki tego wielomianu.

Podaj największy pierwiastek tego wielomianu.

Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Podpunkt 12.3 (1 pkt)
 Podaj ten pierwiastek tego wielomianu, który nie jest ani największy, ani tez najmniejszy.
Odpowiedź:
x= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm