Podstawą pudełka w kształcie prostopadłościanu o objętości
V=2.8 litrów jest kwadrat, którego krawędź jest
o 13 dłuższa od wysokości h tego prostopadłościanu.
Wyznacz długość krawędzi podstawy a i wysokości
tego prostopadłościanu.
Odpowiedzi:
a
=
(wpisz liczbę całkowitą)
h
=
(wpisz liczbę całkowitą)
Zadanie 10.2 pkt ⋅ Numer: pr-21022 ⋅ Poprawnie: 50/33 [151%]
Wyznacz zbiór wszystkich wartości parametru m\in\mathbb{R}, dla których
równanie
x^3-6x^2+(8m-29)x+10m-30=0
ma trzy różne rozwiązania, z których jedno jest średnią arytmetyczną pozostałych.
Podaj najmniejsze możliwe m.
Odpowiedź:
m_{min}=(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj największe możliwe m.
Odpowiedź:
m_{max}=(wpisz liczbę całkowitą)
Zadanie 11.4 pkt ⋅ Numer: pr-30844 ⋅ Poprawnie: 0/0
Dany jest wielomian W(x)=
(x+2)\left[x^2+(p+3)x+p+11\right].
Przedział (a,b) jest zbiorem tych wszystkich wartości parametru
p, dla których wielomian ten ma tylko jeden pierwiastek o krotności
jeden i nie posiada pierwiastków o innych krotnościach.
Podaj liczby a i b.
Odpowiedzi:
a
=
(wpisz liczbę całkowitą)
b
=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Dla p\in\{p_1,p_2,p_3\}, gdzie p_1\lessdot p_2\lessdot p_3,
wielomian W(x) ma jeden pierwiastek jednokrotny i jeden pierwiastek
dwukrotny.
Podaj liczby p_1, p_2 i p_3.
Odpowiedzi:
p_1
=
(wpisz liczbę całkowitą)
p_2
=
(wpisz liczbę całkowitą)
p_3
=
(wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
Dla p\in(-\infty,a)\cup(b,c)\cup(d,+\infty)
wielomian W(x) ma trzy pierwiastki jednokrotne.
Podaj liczby b i c.
Odpowiedzi:
b
=
(wpisz liczbę całkowitą)
c
=
(wpisz liczbę całkowitą)
Zadanie 12.4 pkt ⋅ Numer: pr-30851 ⋅ Poprawnie: 0/1 [0%]