Podgląd testu : lo2@sp-17-wielomiany-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11551 ⋅ Poprawnie: 60/126 [47%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Dany jest wielomian
W(x)=P(x)+Q(x) , gdzie
\begin{cases}
P(x)=(16m^4-4)x^5-6mx^3+5 \\
Q(x)=(6m^2-18)x^5-4mx^3+8
\end{cases}
.
Wyznacz iloczyn tych wszystkich wartości parametru m , dla
których st.P(x)=3 lub st.Q(x)=3 .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 2. 1 pkt ⋅ Numer: pr-10123 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wielomian W(x)=2x^3-x-q dzieli się bez reszty przez
dwumian x-p+1 . Wynika z tego, że liczba
q jest równa:
Odpowiedzi:
A. 2(p-1)^3+p-1
B. 2(p-1)^3-p+1
C. 2(p+1)^3+p-1
D. 2(p+1)^3-p+1
Zadanie 3. 1 pkt ⋅ Numer: pp-11675 ⋅ Poprawnie: 102/159 [64%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Zapisz wyrażenie
(2x-3)^3 w postaci
a_1x^3+b_1x^2+c_1x+d_1 .
Podaj liczby b_1 i c_1 .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pr-10115 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (0.2 pkt)
Wyznacz dziedzinę funkcji określonej wzorem
g(x)=\sqrt{x^3-144x} .
Rozwiązanie zapisz w postaci sumy przedziałów.
Suma ta ma postać:
Odpowiedzi:
A. (p, q)\cup(r,+\infty)
B. (-\infty,p\rangle\cup\langle q,r\rangle
C. \langle p,q\rangle
D. (p,q)
E. \langle p, q\rangle\cup\langle r,+\infty)
F. (-\infty,p)\cup(q,r)
Podpunkt 4.2 (0.8 pkt)
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pr-10127 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Oblicz iloczyn wszystkich pierwiastków rzeczywistych wielomianu określonego wzorem
W(x)=x^4-3x^2-28 .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pr-20205 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Wielomian
W(x)=\sqrt{(a+1)^2}x^3+x^2+|a|x+3
przy dzieleniu przez dwumian
x+1 daje resztę
-17 .
Podaj najmniejsze możliwe a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe
a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pr-21008 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (1 pkt)
Wielomian
W(x)=x^3+11x^2+ax+b ma trzy pierwiastki
x_1 ,
x_2 i
x_3 takie,
że
x_2-x_1=3 i
x_3-x_1=10 .
Wyznacz najmniejszy i największy pierwiastek tego wielomianu.
Odpowiedzi:
Podpunkt 7.2 (1 pkt)
Wyznacz wartości parametrów
a i
b .
Odpowiedzi:
Zadanie 8. 2 pkt ⋅ Numer: pr-20193 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (1 pkt)
Wielomian
P(x)=x^5+ax^3+12x^2+bx-36 dzieli
się przez wielomian
Q(x)=12+x+x^3 .
Wyznacz liczby
a i
b .
Podaj a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-21002 ⋅ Poprawnie: 26/66 [39%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Iloczyn trzech liczb
a ,
b i
c takich, że liczba
b jest o
3 większa od liczby
a , a
liczba
c jest o
1 mniejsza od
liczby
b , jest równy
40 .
Wyznacz te liczby.
Odpowiedzi:
Zadanie 10. 2 pkt ⋅ Numer: pr-20221 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
Wielomian
W(x) przy dzieleniu przez dwumian
x-1 daje resztę
8 , zaś przy
dzieleniu przez
x-2 resztę
-6 . Jaką resztę daje ten wielomian przy dzieleniu
przez
x^2-3x+2 ?
Zapisz tę resztę w postaci R(x)=ax+b . Podaj
a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30148 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
» Stopień wielomianu
W(x) jest większy od
2 . Suma wszystkich współczynników tego wielomianu
jest równa
6 , a suma współczynników przy potęgach
o parzystych wykładnikach jest równa sumie współczynników przy potęgach
o nieparzystych wykładnikach. Wyznacz resztę
R(x)
z dzielenia tego wielomianu przez wielomian
Q(x)=(x-1)(x+1) .
Zapisz wielomian R(x) w postaci ogólnej
R(x)=ax+b .
Podaj a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pr-30157 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 12.1 (2 pkt)
Dla jakich wartości parametru
p , równanie
x^2-(p+4)x+p+6=0 ma dwa różne pierwiastki
rzeczywiste?
Podaj największą możliwą wartość p , która nie spełnia.
warunków zadania.
Odpowiedź:
Wpisz odpowiedź:
+
\cdot
√
(wpisz trzy liczby całkowite)
Podpunkt 12.2 (1 pkt)
Dla jakich wartości parametru
p dwa różne pierwiastki
rzeczywiste tego równania spełniają warunek
x_1^4+x_2^4=
4p^3+30p^2+40p+4 ?
Podaj najmniejszą możliwą wartość p .
Odpowiedź:
p_{min}=
+
\cdot
√
(wpisz trzy liczby całkowite)
Podpunkt 12.3 (1 pkt)
Podaj największą możliwą wartość
p .
Odpowiedź:
p_{max}=
+
\cdot
√
(wpisz trzy liczby całkowite)
Rozwiąż