Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11552 ⋅ Poprawnie: 454/570 [79%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
Pomnożono dwa wielomiany G(x)=6+3x^2 i H(x)=-2x^3+6x^2-8 i otrzymano wynik P(x).

Podaj stopień wielomianu P(x).

Odpowiedź:
st.P(x)= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pr-10122 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
 «« Wielomian W(x)=\sqrt{6}x^3-\sqrt{3}x^2-2\sqrt{3} przy dzieleniu przez dwumian x- \frac{m}{4} daje resztę, która jest liczbą wymierną. Wynika z tego, że liczba m jest równa:
Odpowiedzi:
A. 4\sqrt{6} B. 12\sqrt{2}
C. 4\sqrt{2} D. 8\sqrt{2}
Zadanie 3.  1 pkt ⋅ Numer: pp-11675 ⋅ Poprawnie: 102/159 [64%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Zapisz wyrażenie (4x-3)^3 w postaci a_1x^3+b_1x^2+c_1x+d_1.

Podaj liczby b_1 i c_1.

Odpowiedzi:
b_1= (wpisz liczbę całkowitą)
c_1= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10477 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz dziedzinę funkcji określonej wzorem g(x)=\frac{1}{\sqrt{x^3+24x^2+144x}}. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10126 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Liczba wymierna p jest pierwiastkiem wielomianu W(x)=2x^3-x^2+x-6.

Liczba p może należeć do przedziału:

Odpowiedzi:
A. (-3,-2) B. (1,2)
C. (2,3) D. (-1,0)
Zadanie 6.  2 pkt ⋅ Numer: pp-20968 ⋅ Poprawnie: 14/57 [24%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wielomian W(x)=x^3+ax^2+bx+1 dla argumentu 2 przyjmuje wartość 9 oraz przy dzieleniu przez dwumian x-3 daje resztę 1.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-21008 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wielomian W(x)=x^3+11x^2+ax+b ma trzy pierwiastki x_1, x_2 i x_3 takie, że x_2-x_1=2 i x_3-x_1=8.

Wyznacz najmniejszy i największy pierwiastek tego wielomianu.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Wyznacz wartości parametrów a i b.
Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20193 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wielomian P(x)=x^5+ax^3+12x^2+bx+24 dzieli się przez wielomian Q(x)=12+x+x^3. Wyznacz liczby a i b.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-21002 ⋅ Poprawnie: 26/66 [39%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Iloczyn trzech liczb a, b i c takich, że liczba b jest o 4 większa od liczby a, a liczba c jest o 1 mniejsza od liczby b, jest równy 224.

Wyznacz te liczby.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pr-20177 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Liczba x_0=1 jest pierwiastkiem drukrotnym wielomianu P(x)=ax^3+bx^2+cx+d, a przy dzieleniu przez dwumian x+3 wielomian P(x) daje resztę zero. Wiedząc, że P(0)=-9 wyznacz wszystkie współczynniki tego wielomianu.

Podaj b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30140 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Wyznacz wszystkie wartości parametru m\in\mathbb{R}, dla których równanie x^2-(m-1)x+m^2+2m-3=0 ma dwa różne pierwiastki rzeczywiste.

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (1 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
 Wyznacz wszystkie wartości parametru m\in\mathbb{R}, dla których suma różnych pierwiastków tego równania jest mniejsza od 2m^3+18m^2+54m+51.

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 11.4 (1 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30848 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Wyznacz wszystkie wartości parametru m\in\mathbb{R}, dla których równanie x^4+2(m-2)x^2+4m^2+24m+36=0 ma cztery rozwiązania. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców całkowitych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Podaj największy z końców tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm