Wielomian P(x)=x(4x^2+23x+26)+p przy dzieleniu przez
dwumian Q(x)=x+1 daje resztę
-15. Oblicz wartość współczynnika
p i wyznacz wszystkie pierwiastki wielomianu
P(x).
Podaj p.
Odpowiedź:
p=(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj najmniejszy pierwiastek całkowity tego wielomianu.
Odpowiedź:
x_{min}=(wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
Podaj pierwiastek tego wielomianu, który nie jest liczbą całkowitą.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11.4 pkt ⋅ Numer: pr-30139 ⋅ Poprawnie: 0/0
« Wyznacz zbiór wszystkich wartości parametru m\in\mathbb{R}, dla których
równanie
x^3+(4m-19)x^2+(4m-11)x=0
ma trzy różne rozwiązania, z których dwa są ujemne. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat