Podgląd testu : lo2@sp-17-wielomiany-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11551 ⋅ Poprawnie: 60/126 [47%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Dany jest wielomian
W(x)=P(x)+Q(x) , gdzie
\begin{cases}
P(x)=(16m^4-4)x^5-6mx^3+5 \\
Q(x)=(2m^2-8)x^5-4mx^3+8
\end{cases}
.
Wyznacz iloczyn tych wszystkich wartości parametru m , dla
których st.P(x)=3 lub st.Q(x)=3 .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 2. 1 pkt ⋅ Numer: pr-10122 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 2.1 (1 pkt)
«« Wielomian
W(x)=\sqrt{6}x^3-\sqrt{3}x^2-2\sqrt{3}
przy dzieleniu przez dwumian
x-
\frac{m}{5}
daje
resztę, która jest liczbą wymierną. Wynika z tego, że liczba
m jest równa:
Odpowiedzi:
A. 15\sqrt{2}
B. 5\sqrt{2}
C. 5\sqrt{6}
D. 5\sqrt{3}
Zadanie 3. 1 pkt ⋅ Numer: pp-11677 ⋅ Poprawnie: 44/61 [72%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Zapisz wyrażenie
(9x-5)^2x+(5-9x)x^2-(9x-5) w postaci iloczynu
dwóch wyrażeń w postaci
(a_1x^2+b_1x+c_1)(ax+d_1) .
Podaj sumę a_1+b_1+c_1 .
Odpowiedź:
a_1+b_1+c_1=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pr-10116 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wyznacz dziedzinę funkcji określonej wzorem
f(x)=\frac{1}{\sqrt{x^3-28x^2+196x}} .
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pr-10114 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Liczba
-5 jest pierwiastkiem wielomianu określonego wzorem
W(x)=\left(x^2+px+p+35\right)\left(x^2+13x+30\right) .
Wyznacz pierwiastek dwukrotny tego wielomianu.
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pr-20205 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Wielomian
W(x)=\sqrt{(a+1)^2}x^3+x^2+|a|x+3
przy dzieleniu przez dwumian
x+1 daje resztę
-5 .
Podaj najmniejsze możliwe a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe
a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pr-21010 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (2 pkt)
Wyznacz wszystkie pierwiastki wielomianu
W(x)=
12x^3-32x^2+25x-6 .
Podaj najmniejszy i największy pierwiastek tego wielomianu.
Odpowiedzi:
Zadanie 8. 2 pkt ⋅ Numer: pr-20191 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Wyznacz resztę z dzielenia wielomianu
W(x)=x^3+(m-6)x^2+2(4-m)(m-2)x przez dwumian
P(x)=x-(-2+m) .
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-21001 ⋅ Poprawnie: 35/88 [39%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Iloczyn kwadratu liczby
a i kwadratu liczby większej od
a o
3 , jest równy
784 .
Podaj najmniejszą i największą możliwą wartość liczby a .
Odpowiedzi:
Zadanie 10. 2 pkt ⋅ Numer: pr-20197 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
Wielomian
P(x)=(x^2-3x+1)^{2017} przy dzieleniu przez
trójmian
Q(x)=-x^2+4x-3 daje resztę
R(x)=ax+b .
Podaj a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj b .
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30165 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
» Pierwiastki
x_1 ,
x_2 i
x_3 wielomianu
W(x)=x^3+(m^2-45)x^2+18x spełniają warunki:
2x_2=x_3 i
x_1+x_2=3 .
Podaj najmniejsze możliwe m .
Odpowiedź:
m_{min}=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj największe możliwe
m .
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pr-30851 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
Wyznacz wszystkie wartości parametru
m\in\mathbb{R} , dla których
równanie
x^3+6mx^2+36mx+216=0
ma dokładnie dwa rozwiązania.
Podaj najmniejsze możliwe m .
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
Podaj największe możliwe
m .
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Rozwiąż