« Wielomian
W(x)=x^3+m^2x^2+\frac{3}{2}x+\frac{3}{8}
przy dzieleniu
przez wielomian
P(x)=x+\left(\frac{1}{3}\right)^{\log_{3}{2}}
daje resztę r=\frac{3}{8}.
Podaj najmniejsze możliwe m.
Odpowiedź:
m_{min}=
\cdot√
(wpisz trzy liczby całkowite)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe m.
Odpowiedź:
m_{max}=
\cdot√
(wpisz trzy liczby całkowite)
Zadanie 7.2 pkt ⋅ Numer: pr-21007 ⋅ Poprawnie: 0/0
Wyznacz wszystkie wartości parametru m, dla których
część wspólna przedziałów (-\infty,
m^3-9m^2+27m-30
\rangle oraz
\left\langle
-5m^2+33m-54
,+\infty\right) jest zbiorem
jednoelementowym.
Podaj najmniejsze możliwe m, które jest liczbą całkowitą.
Odpowiedź:
min_{\mathbb{Z}}=(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj największe możliwe m, które jest liczbą całkowitą.
Odpowiedź:
max_{\mathbb{Z}}=(wpisz liczbę całkowitą)
Podpunkt 8.3 (1 pkt)
Podaj mnajwiększą wartość parametru m, która nie jest liczbą całkowitą.
Odpowiedź:
m_{max\not\in\mathbb{Z}}=+\cdot√
(wpisz trzy liczby całkowite)
Zadanie 9.2 pkt ⋅ Numer: pp-21009 ⋅ Poprawnie: 24/62 [38%]
« Wyznacz zbiór wszystkich wartości parametru m\in\mathbb{R}, dla których
równanie
(x-8)\left[x^2+(-4m-8)x+ m^2+22m+16\right]=0
ma dokładnie dwa rozwiązania.
Podaj najmniejsze możliwe m.
Odpowiedź:
m_{min}=(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj największe możliwe m.
Odpowiedź:
m_{max}=(wpisz liczbę całkowitą)
Zadanie 11.4 pkt ⋅ Numer: pr-30163 ⋅ Poprawnie: 0/0
Liczby -4 i 4 są
pierwiastkami wielomianu W(x), dla którego zachodzi
równość \text{st}.W(x)=4. Wielomian
W(x) dzieli się bez reszty przez trójmian
P(x)=x^2+\frac{3}{2}x-1, a do jego wykresu należy punkt
o współrzędnych \left(-1,45\right).
Wyznacz W(4).
Odpowiedź:
W(4)=(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Wyznacz pozostałe pierwiastki tego wielomianu. Podaj najmniejszy z nich.
Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 11.3 (1 pkt)
Podaj największy z nich.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 12.4 pkt ⋅ Numer: pr-30159 ⋅ Poprawnie: 0/0