Podgląd testu : lo2@sp-17-wielomiany-pr-3
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11551 ⋅ Poprawnie: 60/126 [47%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
« Dany jest wielomian
W(x)=P(x)+Q(x), gdzie
\begin{cases}
P(x)=(16m^4-4)x^5-6mx^3+5 \\
Q(x)=(13m^2-26)x^5-4mx^3+8
\end{cases}
.
Wyznacz iloczyn tych wszystkich wartości parametru m, dla
których st.P(x)=3 lub st.Q(x)=3.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11682 ⋅ Poprawnie: 116/250 [46%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
« Wielomian określony wzorem
P(x)=4x^3-3x^2+5x+1 przy
dzieleniu przez dwumian
x-0,5 daje resztę
r.
Wyznacz liczbę r.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11676 ⋅ Poprawnie: 72/101 [71%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Oblicz wartość wyrażenia algebraicznego
w=(3\sqrt{7}-1)^3.
Odpowiedź:
w=
+
\cdot
√
(wpisz trzy liczby całkowite)
|
Zadanie 4. 1 pkt ⋅ Numer: pr-10115 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 4.1 (0.2 pkt)
Wyznacz dziedzinę funkcji określonej wzorem
g(x)=\sqrt{x^3-4x}.
Rozwiązanie zapisz w postaci sumy przedziałów.
Suma ta ma postać:
Odpowiedzi:
|
A. (-\infty,p\rangle\cup\langle q,r\rangle
|
B. (-\infty,p)\cup(q,r)
|
|
C. (p, q)\cup(r,+\infty)
|
D. (p,q)
|
|
E. \langle p, q\rangle\cup\langle r,+\infty)
|
F. \langle p,q\rangle
|
Podpunkt 4.2 (0.8 pkt)
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
|
Zadanie 5. 1 pkt ⋅ Numer: pr-10127 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Oblicz iloczyn wszystkich pierwiastków rzeczywistych wielomianu określonego wzorem
W(x)=x^4+9x^2-10.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20994 ⋅ Poprawnie: 29/73 [39%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
W wyniku podzielenia wielomianu
W(x)=
-5x^3+10x^2-3x-5
przez dwumian
P(x)=x-1, otrzymamy wynik dzielenia
Q(x)=ax^2+bx+c i resztę
r.
Wyznacz współczynniki a, b i c.
Odpowiedzi:
Podpunkt 6.2 (1 pkt)
Podaj resztę
r z tego dzielenia.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
|
Zadanie 7. 2 pkt ⋅ Numer: pr-21008 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Wielomian
W(x)=x^3-x^2+ax+b ma trzy pierwiastki
x_1,
x_2 i
x_3 takie,
że
x_2-x_1=10 i
x_3-x_1=15.
Wyznacz najmniejszy i największy pierwiastek tego wielomianu.
Odpowiedzi:
Podpunkt 7.2 (1 pkt)
Wyznacz wartości parametrów
a i
b.
Odpowiedzi:
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20988 ⋅ Poprawnie: 12/12 [100%] |
Rozwiąż |
Podpunkt 8.1 (2 pkt)
Wielomian
W(x)=7x^4-12x^3-4x^2+35x+10 jest podzielny przez
wielomian
P(x)=ax+b, a wynikiem tego dzielenia jest wielomian
Q(x)=x^3-2x^2+5.
Wyznacz liczby a i b.
Odpowiedzi:
|
Zadanie 9. 2 pkt ⋅ Numer: pp-21009 ⋅ Poprawnie: 24/62 [38%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
Iloczyn trzech kolejnych liczb nieparzystych jest o
65 większy od różnicy kwadratów liczby największej i najmniejszej.
Znajdź te liczby.
Podaj najmniejszą z tych liczb.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
|
Zadanie 10. 2 pkt ⋅ Numer: pr-20180 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
« Liczba
-4 jest pierwiastkiem dwukrotnym wielomianu
H(x)=x^3+bx^2+cx-32.
Podaj b.
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Odpowiedź:
c=
(wpisz liczbę całkowitą)
|
Zadanie 11. 4 pkt ⋅ Numer: pr-30145 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 11.1 (2 pkt)
» Wielomian
W(x)=x^5+(a+3)x^4-bx^3+bx^2+(c+1)x+6
dzieli się bez reszty przez wielomian
P(x)=x^3-7x+6.
Podaj a+b.
Odpowiedź:
a+b=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Odpowiedź:
c=
(wpisz liczbę całkowitą)
|
Zadanie 12. 4 pkt ⋅ Numer: pr-30158 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 12.1 (2 pkt)
« Wyznacz te wartości parametru
m, dla których
równanie
(m-10)x^4-(m-10)x^2+4m-60=0 ma cztery
różne pierwiastki rzeczywiste.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych
tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)