Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11471 ⋅ Poprawnie: 371/684 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 «« Wielomian P(x)=(m-9)x^2+\sqrt{2}x^4-\sqrt{2}+1 spełnia warunek 4\cdot P(1)+3\sqrt{2}=P(\sqrt{2}) gdy m=..........

Podaj brakującą liczbę.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pr-10122 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
 «« Wielomian W(x)=\sqrt{6}x^3-\sqrt{3}x^2-2\sqrt{3} przy dzieleniu przez dwumian x- \frac{m}{3} daje resztę, która jest liczbą wymierną. Wynika z tego, że liczba m jest równa:
Odpowiedzi:
A. 9\sqrt{2} B. 3\sqrt{6}
C. 3\sqrt{2} D. 3\sqrt{3}
Zadanie 3.  1 pkt ⋅ Numer: pp-11674 ⋅ Poprawnie: 81/127 [63%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Wyrażenie 8x^3+27y^3 jest równe \left(2x+ay)\left(bx^2+cxy+9y^2\right).

Podaj liczby a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10477 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz dziedzinę funkcji określonej wzorem g(x)=\frac{1}{\sqrt{x^3+20x^2+100x}}. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10128 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Dana jest funkcja g(x)=2x^3+x^2, x\in\mathbb{R}. Funkcja f(x)=\frac{|g(x)|}{g(x)} przyjmuje wartość równą -1 wtedy i tylko wtedy gdy:
Odpowiedzi:
A. x\in\left(-\infty,-\frac{1}{2}\right) B. x\in\left(0,\frac{1}{2}\right)
C. x\in\left(-\infty,-\frac{1}{2}\right)\cup\left(-\frac{1}{2},0\right) D. x\in\left(-\infty,\frac{1}{2}\right)
Zadanie 6.  2 pkt ⋅ Numer: pp-20970 ⋅ Poprawnie: 8/14 [57%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 «« Reszta z dzielenia wielomianu W(x)=x^3+3x^2-\frac{1}{2}m^2x+8m przez dwumian P(x)=x+2 przyjmuje najmniejszą możliwą wartość.

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Ile jest równa ta najmniejsza możliwa wartość?
Odpowiedź:
W_{min}(x)= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20997 ⋅ Poprawnie: 12/17 [70%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wielomian W(x)=4x^3+6(m-6)x^2+(4m-22)x-12 jest podzielny przez dwumian P(x)=x+2.

Wyznacz parametr m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj najmniejszy i największy pierwiastek tego wielomianu.
Odpowiedzi:
x_{min}=
(wpisz liczbę całkowitą)

x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20194 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Wyznacz te wartości parametrów m i n, dla których wielomian P(x)=x^9+\frac{m-1}{4}x+2n+6 jest podzielny przez wielomian Q(x)=1-x^2.

Podaj m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj n.
Odpowiedź:
n=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-21007 ⋅ Poprawnie: 24/62 [38%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Krawędzie akwarium w kształcie prostopadłościanu wychodzące z jednego wierzchołka mają długość 3, 5 i 2. Inne akwarium prostopadłościenne, którego każda krawędz jest dłuższa o ten sam odcinek od odpowiednich krawędzi pierwszego akwarium, ma pojemność o 110 większą od pierwszego akwarium.

Wyznacz długość dwóch najkrótszych boków nowe zbudowanego akwarium.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pr-21021 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Wyznacz zbiór wszystkich wartości parametru m\in\mathbb{R}, dla których równanie x^3-(2m+4)x^2-4x=0 ma trzy różne rozwiązania, z których jedno jest średnią arytmetyczną pozostałych.

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30400 ⋅ Poprawnie: 8/14 [57%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Wielomian W(x)=-9x^3+bx^2+cx+36 jest podzielny przez trójmian P(x)=-9x^2+60x-36.

Podaj wartość parametru b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Podaj wartość parametru c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
 Podaj najmniejszy pierwiastek całkowity tego wielomianu.
Odpowiedź:
x_{min\{Z\}}= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30153 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « Dany jest wielomian W(x)=(m-5)x^3+x^2+(m^2-10m+16)x+m-5. Jednym z pierwiastków tego wielomianu jest liczba 1.

Podaj najmniejszą możliwą wartość parametru m.

Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 12.2 (1 pkt)
 Podaj największą możliwą wartość parametru m.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Podpunkt 12.3 (2 pkt)
 Jednym z pierwiastków tego wielomianu jest liczba 1, a jeden z pozostałych pierwiastków należy do zbioru \mathbb{W}-\mathbb{C}.

Wyznacz ten pierwiastek.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm