Podgląd testu : lo2@sp-17-wielomiany-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11556 ⋅ Poprawnie: 537/607 [88%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Suma wielomianów W(x)=-2x^3+5x^2-3 oraz
P(x)=2x^3+12x wynosi:
Odpowiedzi:
A. 5x^2+12x-3
B. 4x^3+12x^2-3
C. 4x^6+5x^2+12x-3
D. 4x^3+5x^2+12x-3
Zadanie 2. 1 pkt ⋅ Numer: pr-10123 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wielomian W(x)=2x^3-x-q dzieli się bez reszty przez
dwumian x-p+1 . Wynika z tego, że liczba
q jest równa:
Odpowiedzi:
A. 2(p+1)^3-p+1
B. 2(p+1)^3+p-1
C. 2(p-1)^3-p+1
D. 2(p-1)^3+p-1
Zadanie 3. 1 pkt ⋅ Numer: pp-11672 ⋅ Poprawnie: 149/202 [73%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wyrażenie
(4x+1)^3-(x-6)(x+6)
zapisane w postaci sumy algebraicznej ma postać
64x^3+mx^2+nx+37 ,
gdzie
m,n\in\mathbb{Z} .
Podaj liczby m i n .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pr-10115 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (0.2 pkt)
Wyznacz dziedzinę funkcji określonej wzorem
g(x)=\sqrt{x^3-225x} .
Rozwiązanie zapisz w postaci sumy przedziałów.
Suma ta ma postać:
Odpowiedzi:
A. (-\infty,p\rangle\cup\langle q,r\rangle
B. (p, q)\cup(r,+\infty)
C. (-\infty,p)\cup(q,r)
D. (p,q)
E. \langle p, q\rangle\cup\langle r,+\infty)
F. \langle p,q\rangle
Podpunkt 4.2 (0.8 pkt)
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pr-10476 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Wielomian
W(x)=16x^3+ax^2+9x ma pierwiastek
dwukrotny.
Wyznacz dodatnią wartość parametru a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 6. 4 pkt ⋅ Numer: pr-21057 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (2 pkt)
Dany jest wielomian
P(x)=x^4+ax^3+bx^2+11x-10
, który przy dzieleniu przez każdy z dwumianów
x-3 ,
x+2 i
x-1
daje tę samą resztę. Oblicz
a i
b .
Podaj a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (2 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pr-21008 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (1 pkt)
Wielomian
W(x)=x^3-5x^2+ax+b ma trzy pierwiastki
x_1 ,
x_2 i
x_3 takie,
że
x_2-x_1=8 i
x_3-x_1=12 .
Wyznacz najmniejszy i największy pierwiastek tego wielomianu.
Odpowiedzi:
Podpunkt 7.2 (1 pkt)
Wyznacz wartości parametrów
a i
b .
Odpowiedzi:
Zadanie 8. 2 pkt ⋅ Numer: pp-20964 ⋅ Poprawnie: 8/10 [80%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Wyrażenie
\frac{3\cdot xy}{xy+3y^2}:\frac{x^2}{x^2+6xy+9y^2}
można przekształcić do postaci
a+b\cdot \frac{y}{x} , gdzie
a i
b są
liczbami całkowitymi.
Podaj liczbę a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-21002 ⋅ Poprawnie: 26/66 [39%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Iloczyn trzech liczb
a ,
b i
c takich, że liczba
b jest o
3 większa od liczby
a , a
liczba
c jest o
1 mniejsza od
liczby
b , jest równy
280 .
Wyznacz te liczby.
Odpowiedzi:
Zadanie 10. 2 pkt ⋅ Numer: pr-20180 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Liczba
-1 jest pierwiastkiem dwukrotnym wielomianu
H(x)=x^3+bx^2+cx-3 .
Podaj b .
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30140 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (1 pkt)
« Wyznacz wszystkie wartości parametru
m\in\mathbb{R} ,
dla których równanie
x^2-(m-9)x+m^2-14m+45=0 ma dwa
różne pierwiastki rzeczywiste.
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (1 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
q=
(wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
Wyznacz wszystkie wartości parametru
m\in\mathbb{R} ,
dla których suma różnych pierwiastków tego równania jest mniejsza od
2m^3-30m^2+150m-253 .
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Podpunkt 11.4 (1 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
q=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pr-30850 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 12.1 (2 pkt)
Wyznacz wszystkie wartości parametru
m\in\mathbb{R} , dla których
równanie
x^4+(m-4)x^2+(m-2)^2=0
ma dwa rozwiązania
x_1 i
x_2 takie, że
\frac{1}{\left|x_1\cdot x_2\right|}\lessdot 1 .
Podaj najmniejsze możliwe m .
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
Podaj największe możliwe
m .
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Rozwiąż