Podgląd testu : lo2@sp-17-wielomiany-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11472 ⋅ Poprawnie: 319/582 [54%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wielomian
P(x)=q-11+2x+px^2-2x^4 spełnia
warunki
\begin{cases}
P(-1)+P(1)=0 \\
P(-\sqrt{2})=-P(\sqrt{2})
\end{cases}
.
Podaj liczby p i q .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11682 ⋅ Poprawnie: 116/250 [46%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Wielomian określony wzorem
P(x)=4x^3-3x^2+4x+1 przy
dzieleniu przez dwumian
x-0,5 daje resztę
r .
Wyznacz liczbę r .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11674 ⋅ Poprawnie: 81/127 [63%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Wyrażenie
8x^3+125y^3 jest równe
\left(2x+ay)\left(bx^2+cxy+25y^2\right) .
Podaj liczby a , b i
c .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pr-10478 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (0.2 pkt)
Wyznacz dziedzinę funkcji określonej wzorem
f(x)=\sqrt{x^3-14x^2} .
Rozwiązanie zapisz w postaci sumy przedziałów.
Suma ta ma posatać:
Odpowiedzi:
A. \langle p,q\rangle
B. (p,q)
C. \langle p,+\infty)
D. \{p\}\cup\langle q,+\infty)
E. (-\infty,p\rangle\cup\{q\}
F. (-\infty,p\rangle
Podpunkt 4.2 (0.8 pkt)
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pr-10126 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Liczba wymierna
p jest pierwiastkiem
wielomianu
W(x)=2x^3+7x^2+9x+10 .
Liczba p może należeć do przedziału:
Odpowiedzi:
A. (-5,-3)
B. (2,5)
C. (0,3)
D. (-3,-2)
Zadanie 6. 2 pkt ⋅ Numer: pp-20970 ⋅ Poprawnie: 8/14 [57%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
«« Reszta z dzielenia wielomianu
W(x)=x^3-11x^2-\frac{1}{2}m^2x+8m przez dwumian
P(x)=x+2 przyjmuje najmniejszą możliwą wartość.
Wyznacz m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Ile jest równa ta najmniejsza możliwa wartość?
Odpowiedź:
W_{min}(x)=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pr-21008 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (1 pkt)
Wielomian
W(x)=x^3+7x^2+ax+b ma trzy pierwiastki
x_1 ,
x_2 i
x_3 takie,
że
x_2-x_1=1 i
x_3-x_1=10 .
Wyznacz najmniejszy i największy pierwiastek tego wielomianu.
Odpowiedzi:
Podpunkt 7.2 (1 pkt)
Wyznacz wartości parametrów
a i
b .
Odpowiedzi:
Zadanie 8. 2 pkt ⋅ Numer: pp-21039 ⋅ Poprawnie: 17/22 [77%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
«Wielomiany
W(x)-F(x) , gdzie
W(x)=2x^3+(a+3)x^2+5x-3 i
F(x)=x^3-5x^2+(b-5)x+4 , oraz
H(x)=x^3+2x^2+4x-7 są równe.
Wyznacz liczby a i b .
Odpowiedzi:
Zadanie 9. 2 pkt ⋅ Numer: pp-21006 ⋅ Poprawnie: 16/23 [69%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Podstawą pudełka w kształcie prostopadłościanu o objętości
V=10.0 litrów jest kwadrat, którego krawędź jest
o
9 dłuższa od wysokości
h tego prostopadłościanu.
Wyznacz długość krawędzi podstawy a i wysokości
tego prostopadłościanu.
Odpowiedzi:
Zadanie 10. 2 pkt ⋅ Numer: pr-20201 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
Wielomian
P(x)=-x^3-2x+11 podzielony przez
dwumian
x-m daje resztę z przedziału
(-1,+\infty) . Wyznacz możliwe wartości parametru
m .
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę tych końców
przedziałów, które są liczbami.
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30164 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Wielomian
P(x)=3x^3+(m-2)x^2-34x+m-31 dzieli się bez
reszty przez wielomian
Q(x)=x+4 .
Wyznacz m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Wyznacz sumę wszystkich pierwiastków całkowitych tego wielomianu.
Odpowiedź:
suma=
(wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
Podaj pierwiastek tego wielomianu, który nie jest liczbą całkowitą.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 4 pkt ⋅ Numer: pr-30847 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
Wyznacz wszystkie wartości parametru
m\in\mathbb{R} , dla których
równanie
x^4+(m+2)x^2+m^2+9m+14=0
ma dokładnie dwa rozwiązania. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców całkowitych tych przedziałów.
Odpowiedzi:
Podpunkt 12.2 (2 pkt)
Podaj najmniejszy z końców tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż