Podgląd testu : lo2@sp-17-wielomiany-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11471 ⋅ Poprawnie: 371/684 [54%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
«« Wielomian
P(x)=(m+10)x^2+\sqrt{2}x^4-\sqrt{2}+1 spełnia
warunek
4\cdot P(1)+3\sqrt{2}=P(\sqrt{2}) gdy
m=......... .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11681 ⋅ Poprawnie: 71/158 [44%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Wielomian określony wzorem
W(x)=x^5-3x^4+mx^3+6 przy
dzieleniu przez dwumian
x+1 daje resztę
6 .
Wyznacz liczbę m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11675 ⋅ Poprawnie: 102/159 [64%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Zapisz wyrażenie
(3x-4)^3 w postaci
a_1x^3+b_1x^2+c_1x+d_1 .
Podaj liczby b_1 i c_1 .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pr-10115 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (0.2 pkt)
Wyznacz dziedzinę funkcji określonej wzorem
g(x)=\sqrt{x^3-225x} .
Rozwiązanie zapisz w postaci sumy przedziałów.
Suma ta ma postać:
Odpowiedzi:
A. (p, q)\cup(r,+\infty)
B. (-\infty,p)\cup(q,r)
C. (-\infty,p\rangle\cup\langle q,r\rangle
D. \langle p, q\rangle\cup\langle r,+\infty)
E. \langle p,q\rangle
F. (p,q)
Podpunkt 4.2 (0.8 pkt)
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pr-11604 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Wielomian
W(x)=ax^3+40x^2+16x ma pierwiastek
dwukrotny.
Wyznacz dodatnią wartość parametru a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20970 ⋅ Poprawnie: 8/14 [57%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
«« Reszta z dzielenia wielomianu
W(x)=x^3+10x^2-\frac{1}{2}m^2x+8m przez dwumian
P(x)=x+2 przyjmuje najmniejszą możliwą wartość.
Wyznacz m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Ile jest równa ta najmniejsza możliwa wartość?
Odpowiedź:
W_{min}(x)=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pr-21009 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (2 pkt)
Wyznacz wszystkie pierwiastki wielomianu
W(x)=
6x^3+x^2+13x-15 .
Podaj najmniejszy i największy pierwiastek tego wielomianu.
Odpowiedzi:
Zadanie 8. 2 pkt ⋅ Numer: pp-20987 ⋅ Poprawnie: 5/9 [55%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Wielomian
W(x)=-8x^3-8x^2-18x-8 jest podzielny przez
wielomian
P(x)=ax+b , a wynikiem tego dzielenia jest wielomian
Q(x)=2x^2+x+4 .
Wyznacz liczby a i b .
Odpowiedzi:
Zadanie 9. 2 pkt ⋅ Numer: pp-21007 ⋅ Poprawnie: 24/62 [38%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Krawędzie akwarium w kształcie prostopadłościanu wychodzące z jednego wierzchołka mają długość
3 ,
5 i
2 . Inne
akwarium prostopadłościenne, którego każda krawędz jest dłuższa o ten sam odcinek od odpowiednich
krawędzi pierwszego akwarium, ma pojemność o
3540
większą od pierwszego akwarium.
Wyznacz długość dwóch najkrótszych boków nowe zbudowanego akwarium.
Odpowiedzi:
Zadanie 10. 2 pkt ⋅ Numer: pr-20181 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Liczba
-1 jest pierwiastkiem wielomianu
H(x)=x^4+bx^3+cx^2+dx-4 o krotności trzy.
Podaj b .
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30162 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (1 pkt)
» Pierwiastkami wielomianu
W(x)=4x^3+px^2+qx-6
są liczby
2 i
1 .
Wyznacz p .
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Odpowiedź:
q=
(wpisz liczbę całkowitą)
Podpunkt 11.3 (2 pkt)
Wyznacz trzeci pierwiastek tego wielomianu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 4 pkt ⋅ Numer: pr-30851 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
Wyznacz wszystkie wartości parametru
m\in\mathbb{R} , dla których
równanie
x^3+3mx^2+9mx+27=0
ma dokładnie dwa rozwiązania.
Podaj najmniejsze możliwe m .
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
Podaj największe możliwe
m .
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Rozwiąż