Podgląd testu : lo2@sp-17-wielomiany-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11471 ⋅ Poprawnie: 371/684 [54%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
«« Wielomian
P(x)=(m+9)x^2+\sqrt{2}x^4-\sqrt{2}+1 spełnia
warunek
4\cdot P(1)+3\sqrt{2}=P(\sqrt{2}) gdy
m=......... .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11679 ⋅ Poprawnie: 126/272 [46%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wyznacz tę wartość parametru
m , dla której wielomian
P(x)=6x^3-2x^2-5x+m-1 dzieli się bez reszty przez
dwumian
x-1 .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11675 ⋅ Poprawnie: 102/159 [64%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Zapisz wyrażenie
(3x-4)^3 w postaci
a_1x^3+b_1x^2+c_1x+d_1 .
Podaj liczby b_1 i c_1 .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pr-10478 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (0.2 pkt)
Wyznacz dziedzinę funkcji określonej wzorem
f(x)=\sqrt{x^3-7x^2} .
Rozwiązanie zapisz w postaci sumy przedziałów.
Suma ta ma posatać:
Odpowiedzi:
A. (p,q)
B. \langle p,+\infty)
C. (-\infty,p\rangle
D. \{p\}\cup\langle q,+\infty)
E. \langle p,q\rangle
F. (-\infty,p\rangle\cup\{q\}
Podpunkt 4.2 (0.8 pkt)
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pr-10476 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Wielomian
W(x)=4x^3+ax^2+4x ma pierwiastek
dwukrotny.
Wyznacz dodatnią wartość parametru a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20971 ⋅ Poprawnie: 17/42 [40%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
r=23
» Wielomian
W(x)=x^4+a^2x^3+ax^2-x+3 przy
dzieleniu przez dwumian
x-1 daje resztę
23 .
Podaj najmniejsze możliwe a .
Odpowiedź:
a_{min}=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe
a .
Odpowiedź:
a_{max}=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pr-21007 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (1 pkt)
Wielomian
W(x)=x^3-6x^2+ax+10 ma trzy pierwiastki
x_1 ,
x_2 i
x_3 takie,
że
x_2=x_1+b i
x_3=x_1+2b , gdzie
b\ > 0 .
Wyznacz wartości parametrów a i b .
Odpowiedzi:
Podpunkt 7.2 (1 pkt)
Wyznacz najmniejszy i największy pierwiastek tego wielomianu.
Odpowiedzi:
Zadanie 8. 2 pkt ⋅ Numer: pp-20987 ⋅ Poprawnie: 5/9 [55%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Wielomian
W(x)=-4x^3+2x^2-6x+8 jest podzielny przez
wielomian
P(x)=ax+b , a wynikiem tego dzielenia jest wielomian
Q(x)=2x^2+x+4 .
Wyznacz liczby a i b .
Odpowiedzi:
Zadanie 9. 2 pkt ⋅ Numer: pp-21009 ⋅ Poprawnie: 24/62 [38%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Iloczyn trzech kolejnych liczb nieparzystych jest o
3195 większy od różnicy kwadratów liczby największej i najmniejszej.
Znajdź te liczby.
Podaj najmniejszą z tych liczb.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pr-20234 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Wielomian
P(x)=x^4-3x^3+38x^2-37x+35 przedstaw w postaci
\left(x^2+b_1x+c_1\right)\left(x^2+b_2x+c_2\right) , gdzie
b_1,c_1,b_2,c_2\in\mathbb{C} .
Podaj mniejszą z liczb b_1 i b_2 .
Odpowiedź:
min(b_1, b_2)=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj większą z liczb
b_1 i
b_2 .
Odpowiedź:
max(b_1, b_2)=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30140 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (1 pkt)
« Wyznacz wszystkie wartości parametru
m\in\mathbb{R} ,
dla których równanie
x^2-(m-1)x+m^2+2m-3=0 ma dwa
różne pierwiastki rzeczywiste.
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (1 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
q=
(wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
Wyznacz wszystkie wartości parametru
m\in\mathbb{R} ,
dla których suma różnych pierwiastków tego równania jest mniejsza od
2m^3+18m^2+54m+51 .
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Podpunkt 11.4 (1 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
q=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pr-30846 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
« Wyznacz zbiór wszystkich wartości parametru
m\in\mathbb{R} , dla których
równanie
x^3+(4m-7)x^2+(4m+1)x=0
ma trzy różne rozwiązania, z których dwa są ujemne. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż