Podgląd testu : lo2@sp-17-wielomiany-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11551 ⋅ Poprawnie: 60/126 [47%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Dany jest wielomian
W(x)=P(x)+Q(x) , gdzie
\begin{cases}
P(x)=(16m^4-4)x^5-6mx^3+5 \\
Q(x)=(14m^2-28)x^5-4mx^3+8
\end{cases}
.
Wyznacz iloczyn tych wszystkich wartości parametru m , dla
których st.P(x)=3 lub st.Q(x)=3 .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 2. 1 pkt ⋅ Numer: pp-11679 ⋅ Poprawnie: 126/272 [46%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wyznacz tę wartość parametru
m , dla której wielomian
P(x)=6x^3+5x^2-5x+m-1 dzieli się bez reszty przez
dwumian
x-1 .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11676 ⋅ Poprawnie: 72/101 [71%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Oblicz wartość wyrażenia algebraicznego
w=(3\sqrt{7}-1)^3 .
Odpowiedź:
w=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pr-10116 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wyznacz dziedzinę funkcji określonej wzorem
f(x)=\frac{1}{\sqrt{x^3-30x^2+225x}} .
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pr-11604 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Wielomian
W(x)=ax^3-50x^2+25x ma pierwiastek
dwukrotny.
Wyznacz dodatnią wartość parametru a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20972 ⋅ Poprawnie: 12/15 [80%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Wielomian
W(x)=x^3+m^2x^2+\frac{7}{2}x+\frac{11}{8}
przy dzieleniu
przez wielomian
P(x)=x+\left(\frac{1}{3}\right)^{\log_{3}{2}}
daje resztę
r=\frac{3}{8} .
Podaj najmniejsze możliwe m .
Odpowiedź:
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe
m .
Odpowiedź:
Zadanie 7. 2 pkt ⋅ Numer: pp-20995 ⋅ Poprawnie: 57/176 [32%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Wielomian
W(x)=
2x^3+x^2-18x-9
jest podzielny przez dwumian
P(x)=x-3 .
Wyznacz pierwiastki tego wielomianu.
Podaj najmniejszy pierwiastek tego wielomianu.
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj pierwiastek niecałkowity tego wielomianu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pr-20191 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Wyznacz resztę z dzielenia wielomianu
W(x)=x^3+(m-6)x^2+2(4-m)(m-2)x przez dwumian
P(x)=x-(-2+m) .
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-21002 ⋅ Poprawnie: 26/66 [39%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Iloczyn trzech liczb
a ,
b i
c takich, że liczba
b jest o
4 większa od liczby
a , a
liczba
c jest o
1 mniejsza od
liczby
b , jest równy
360 .
Wyznacz te liczby.
Odpowiedzi:
Zadanie 10. 2 pkt ⋅ Numer: pr-20181 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Liczba
2 jest pierwiastkiem wielomianu
H(x)=x^4+bx^3+cx^2+dx+32 o krotności trzy.
Podaj b .
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30161 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Wyznacz te wartości parametru
m ,
dla których wielomian
W(x)=(m+5)x^3+(m+3)x^2-(2m+11)x
ma trzy pierwiastki rzeczywiste.
Podaj najmniejsze m , które nie spełnia warunków
zadania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Podaj największe
m , które nie spełnia warunków
zadania.
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pr-30156 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 12.1 (2 pkt)
» Liczby
x_1 ,
x_2 i
x_3 są trzema różnymi pierwiastkami wielomianu
W(x)=x^3+6x^2+(3-m)x-2m-10 . Wiedząc, że
x_1^2+x_2^2+x_3^2=30 , wyznacz
m .
Podaj największe możliwe m .
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
Dla jakich wartości parametru
m
suma dwóch pierwiastków wielomianu
W(x)=x^3+6x^2+(3-m)x-2m-10
jest równa pierwiastkowi trzeciemu.
Podaj największe możliwe m .
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Rozwiąż