» Wyznacz wszystkie pierwiastki wielomianu W(x)
wiedząc, że przy dzieleniu przez dwumian x-1
wielomian ten daje iloraz równy
2(x^2-4x-13) oraz
resztę równą 64.
Podaj najmniejszy pierwiastek tego wielomianu.
Odpowiedź:
x_{min}=(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj największy pierwiastek tego wielomianu.
Odpowiedź:
x_{max}=(wpisz liczbę całkowitą)
Zadanie 8.2 pkt ⋅ Numer: pr-20227 ⋅ Poprawnie: 0/0
Suma objętości trzech sześcianów jest równa 405.
Krawędź drugiego z tych sześcianów jest o 1 dłuższa
od krawędzi pierwszego sześcianu, a krawędź trzeciego sześcianu jest o
1 krótsza od krawędzi pierwszego sześcianu.
Wyznacz długość krawędzi najmniejszego z tych sześcianów.
Odpowiedź:
a_{min}=(wpisz liczbę całkowitą)
Zadanie 10.2 pkt ⋅ Numer: pr-21013 ⋅ Poprawnie: 0/0
» Stopień wielomianu W(x) jest większy od
2. Suma wszystkich współczynników tego wielomianu
jest równa 6, a suma współczynników przy potęgach
o parzystych wykładnikach jest równa sumie współczynników przy potęgach
o nieparzystych wykładnikach. Wyznacz resztę R(x)
z dzielenia tego wielomianu przez wielomian
Q(x)=(x-1)(x+1).
Zapisz wielomian R(x) w postaci ogólnej
R(x)=ax+b.
Podaj a.
Odpowiedź:
a=(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj b.
Odpowiedź:
b=(wpisz liczbę całkowitą)
Zadanie 12.4 pkt ⋅ Numer: pr-30846 ⋅ Poprawnie: 0/1 [0%]
« Wyznacz zbiór wszystkich wartości parametru m\in\mathbb{R}, dla których
równanie
x^3+(4m-11)x^2+(4m-3)x=0
ma trzy różne rozwiązania, z których dwa są ujemne. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat