Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11472 ⋅ Poprawnie: 319/582 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wielomian P(x)=q-8+2x+px^2-2x^4 spełnia warunki \begin{cases} P(-1)+P(1)=0 \\ P(-\sqrt{2})=-P(\sqrt{2}) \end{cases} .

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 2.  2 pkt ⋅ Numer: pp-11683 ⋅ Poprawnie: 54/81 [66%] Rozwiąż 
Podpunkt 2.1 (2 pkt)
 Przy dzieleniu przez P(x)=x-1 wielomian W(x)=x^4+2x^3-5x^2-6mx+9 daje resztę -5.

Oblicz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11678 ⋅ Poprawnie: 64/75 [85%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wyrażenie (\sqrt{5}-x)(x^2+5+\sqrt{5}x) jest równe m\sqrt{n}+kx^3, gdzie m,n,k\in\mathbb{Z}.

Podaj liczby m, n i k.

Odpowiedzi:
m= (wpisz liczbę całkowitą)
n= (wpisz liczbę całkowitą)
k= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10117 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Wyznacz rozwiązanie nierówności (x+8)^2(x+3)(x+1)\leqslant 0. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10114 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Liczba -4 jest pierwiastkiem wielomianu określonego wzorem W(x)=\left(x^2+px+p+20\right)\left(x^2+4x-32\right).

Wyznacz pierwiastek dwukrotny tego wielomianu.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20990 ⋅ Poprawnie: 48/76 [63%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Wielomian W(x)=10x^3+x^2+4x+3 jest podzielny przez dwumian P(x)=x+\frac{1}{2}, a wynikiem tego dzielenia jest wielomian Q(x)=ax^2+bx+c.

Wyznacz współczynniki a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20998 ⋅ Poprawnie: 21/89 [23%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wyznacz wszystkie pierwiastki wielomianu P(x)=5x^3+2x^2-20x-8.

Podaj najmniejszy z jego pierwiastków.

Odpowiedź:
x_{min}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj największy z jego pierwiastków.
Odpowiedź:
x_{max}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 8.  3 pkt ⋅ Numer: pr-20228 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wyznacz wszystkie wartości parametru m, dla których część wspólna przedziałów (-\infty, m^3-9m^2+27m-30 \rangle oraz \left\langle -5m^2+33m-54 ,+\infty\right) jest zbiorem jednoelementowym.

Podaj najmniejsze możliwe m, które jest liczbą całkowitą.

Odpowiedź:
min_{\mathbb{Z}}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj największe możliwe m, które jest liczbą całkowitą.
Odpowiedź:
max_{\mathbb{Z}}= (wpisz liczbę całkowitą)
Podpunkt 8.3 (1 pkt)
 Podaj mnajwiększą wartość parametru m, która nie jest liczbą całkowitą.
Odpowiedź:
m_{max\not\in\mathbb{Z}}= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-21003 ⋅ Poprawnie: 23/57 [40%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
  Uczniowe pewnej klasy podzielili się na trzy wieloosobowe grupy. W drugiej grupie jest o 9 osób więcej niż w pierwzej, zaś w trzeciej grupie o 12 osób więcej niż w pierwszej. Iloczyn liczby uczniów grupy drugiej i trzeciej jest o 144 większy od sześcianu liczby uczniów pierwszej grupy.

Ilu uczniów liczy ta klasa?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pr-20207 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » Wielomian W(x) spełnia warunki: W(1)=5, W(-2)=2 i przy dzieleniu przez dwumian x+1 daje resztę -5. Jaką resztę daje wielomian W(x) przy dzieleniu przez wielomian P(x)=x^3+2x^2-x-2?
Zapisz resztę w postaci R(x)=a_1x^2+b_1x+c_1.

Podaj a_1.

Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj b_1.
Odpowiedź:
b_1= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30141 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Wyznacz wszystkie wartości parametru m, dla których równanie x^2-4(m-3)x-m^3+15m^2-62m+76=0 ma dwa różne pierwiastki rzeczywiste.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj największy z końców liczbowych tych przedziałów.

Odpowiedź:
max= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Podaj środek tego z tych przedziałów, który ma skończoną długość.
Odpowiedź:
s= (wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
 Wyznacz wszystkie wartości parametru m, dla których to równanie dwa różne pierwiastki rzeczywiste takie, że \left(x_1-x_2\right)^2 \lessdot 8m-16.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 11.4 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30157 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Dla jakich wartości parametru p, równanie x^2-(p+7)x+p+9=0 ma dwa różne pierwiastki rzeczywiste?

Podaj największą możliwą wartość p, która nie spełnia. warunków zadania.

Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.2 (1 pkt)
 Dla jakich wartości parametru p dwa różne pierwiastki rzeczywiste tego równania spełniają warunek x_1^4+x_2^4= 4p^3+66p^2+328p+502?

Podaj najmniejszą możliwą wartość p.

Odpowiedź:
p_{min}= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.3 (1 pkt)
 Podaj największą możliwą wartość p.
Odpowiedź:
p_{max}= + \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm