Uczniowe pewnej klasy podzielili się na trzy wieloosobowe grupy. W drugiej grupie
jest o 4 osób więcej niż w pierwzej, zaś w trzeciej
grupie o 7 osób więcej niż w pierwszej. Iloczyn
liczby uczniów grupy drugiej i trzeciej jest o 24
większy od sześcianu liczby uczniów pierwszej grupy.
Ilu uczniów liczy ta klasa?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 10.2 pkt ⋅ Numer: pr-20470 ⋅ Poprawnie: 0/0
Dany jest wielomian
W(x)=(m-12)x^3-(m-2)x^2-(m-9)x+m-5, który dzieli się
bez reszty przez x+1. Wyznacz te wartości
parametru m, dla których wielomian ten ma
dokładnie dwa pierwiastki.
Podaj najmniejsze możliwe m spełniające warunki
zadania.
Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Podaj największe możliwe m spełniające warunki
zadania.
Odpowiedź:
m_{max}=(wpisz liczbę całkowitą)
Zadanie 12.4 pkt ⋅ Numer: pr-30154 ⋅ Poprawnie: 0/0
Dany jest wielomian
W(x)=x^3-3(m-4)x^2+(3m^2-24m+47)x-9m^2+92m-220.
Wykres tego wielomianu, po przesunięciu o wektor
[-3,0], przechodzi przez początek układu
współrzędnych.
Podaj m.
Odpowiedź:
m=(wpisz liczbę całkowitą)
Podpunkt 12.2 (1 pkt)
Wyznacz wszystkie pierwiastki tego wielomianu.
Podaj największy pierwiastek tego wielomianu.
Odpowiedź:
x_{max}=(wpisz liczbę całkowitą)
Podpunkt 12.3 (1 pkt)
Podaj ten pierwiastek tego wielomianu, który nie jest ani największy, ani tez najmniejszy.
Odpowiedź:
x=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat