Krawędzie akwarium w kształcie prostopadłościanu wychodzące z jednego wierzchołka mają długość
3, 5 i 2. Inne
akwarium prostopadłościenne, którego każda krawędz jest dłuższa o ten sam odcinek od odpowiednich
krawędzi pierwszego akwarium, ma pojemność o 210
większą od pierwszego akwarium.
Wyznacz długość dwóch najkrótszych boków nowe zbudowanego akwarium.
Odpowiedzi:
min
=
(wpisz liczbę całkowitą)
max
=
(wpisz liczbę całkowitą)
Zadanie 10.2 pkt ⋅ Numer: pr-20221 ⋅ Poprawnie: 0/0
Wielomian W(x) przy dzieleniu przez dwumian
x-1 daje resztę 8, zaś przy
dzieleniu przez x-2 resztę
8. Jaką resztę daje ten wielomian przy dzieleniu
przez x^2-3x+2?
Zapisz tę resztę w postaci R(x)=ax+b. Podaj
a.
Odpowiedź:
a=(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj a.
Odpowiedź:
b=(wpisz liczbę całkowitą)
Zadanie 11.4 pkt ⋅ Numer: pr-30350 ⋅ Poprawnie: 0/0
Dany jest wielomian
W(x)=2x^3+(m^3-3m^2+3m+1)x^2-11x-2(2m-1), który jest
podzielny przez dwumian x-2 oraz przy dzieleniu
przez dwumian x+1 daje resztę
6.
Wyznacz m.
Odpowiedź:
m=(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Dla wyznaczonej wartości m rozwiąż nierówność
W(x)\geqslant 0.
Podaj największą liczbę ujemną spełniającą tę nierówność.
Odpowiedź:
x_{<0}=
(wpisz dwie liczby całkowite)
Podpunkt 11.3 (1 pkt)
Rozwiązanie nierówności W(x)\geqslant 0
zapisz w postaci sumy przedziałów. Podaj sumę
wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma=
(wpisz dwie liczby całkowite)
Zadanie 12.4 pkt ⋅ Numer: pr-30152 ⋅ Poprawnie: 0/0
« Dana jest funkcja
f(x)=|x^3-3\sqrt{5}x^2-x+3\sqrt{5}|, której wykres
przesunięto o wektor
\vec{u}=[-3\sqrt{5}, -\sqrt{6}],
w wyniku czego otrzymano wykres funkcji g. Dla jakich
argumentów funkcja g osiąga wartość najmniejszą i
ile ona jest równa?
Podaj najmniejszą wartość funkcji g.
Odpowiedź:
g_{min}(x)=\cdot√
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (1 pkt)
Podaj najmniejszy z argumentów, dla którego funkcja g
przyjmuje wartość najmniejszą.
Odpowiedź:
x_{min}=+\cdot√
(wpisz trzy liczby całkowite)
Podpunkt 12.3 (1 pkt)
Podaj największy z argumentów, dla którego funkcja g
przyjmuje wartość najmniejszą.
Odpowiedź:
x_{max}=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat