Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11556 ⋅ Poprawnie: 537/607 [88%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
Suma wielomianów W(x)=-2x^3+5x^2-3 oraz P(x)=2x^3+12x wynosi:
Odpowiedzi:
A. 5x^2+12x-3 B. 4x^6+5x^2+12x-3
C. 4x^3+12x^2-3 D. 4x^3+5x^2+12x-3
Zadanie 2.  1 pkt ⋅ Numer: pp-11679 ⋅ Poprawnie: 126/272 [46%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wyznacz tę wartość parametru m, dla której wielomian P(x)=6x^3+5x^2-5x+m-1 dzieli się bez reszty przez dwumian x-1.
Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11673 ⋅ Poprawnie: 100/138 [72%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Iloczyn wyrażenia 5x-4 przez wyrażenie -25x^2-20x-16 jest równy ax^3+bx+c, gdzie a,b,c\in\mathbb{Z}.

Podaj liczby a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10116 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz dziedzinę funkcji określonej wzorem f(x)=\frac{1}{\sqrt{x^3-32x^2+256x}}. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10127 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz iloczyn wszystkich pierwiastków rzeczywistych wielomianu określonego wzorem W(x)=x^4+x^2-6.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20994 ⋅ Poprawnie: 29/73 [39%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 W wyniku podzielenia wielomianu W(x)= 3x^3-8x^2+4x-2 przez dwumian P(x)=x-1, otrzymamy wynik dzielenia Q(x)=ax^2+bx+c i resztę r.

Wyznacz współczynniki a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj resztę r z tego dzielenia.
Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20211 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Wyznacz wszystkie pierwiastki wielomianu W(x) wiedząc, że przy dzieleniu przez dwumian x-1 wielomian ten daje iloraz równy 2(x^2-3x-12) oraz resztę równą 48.

Podaj najmniejszy pierwiastek tego wielomianu.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj największy pierwiastek tego wielomianu.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 8.  3 pkt ⋅ Numer: pp-20977 ⋅ Poprawnie: 62/89 [69%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Rozwiąż równanie x^3+7x^2-3x-21=0.

Podaj rozwiązanie wymierne tego równania.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj najmniejsze rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz dwie liczby całkowite)
Podpunkt 8.3 (1 pkt)
 Podaj największe rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-21001 ⋅ Poprawnie: 35/88 [39%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Iloczyn kwadratu liczby a i kwadratu liczby większej od a o 3, jest równy 2916.

Podaj najmniejszą i największą możliwą wartość liczby a.

Odpowiedzi:
a_{min}= (wpisz liczbę całkowitą)
a_{max}= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pr-21025 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Wyznacz zbiór wszystkich wartości parametru m\in\mathbb{R}, dla których równanie (m+7)x^3=x(2x-m-8) ma trzy rozwiązania. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców całkowitych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Największy z końców tych przedziałów jest liczbą postaci \frac{a+\sqrt{b}}{c}, gdzie a,b,c\in\mathbb{Z} i b jest liczbą pierwszą.

Podaj liczby a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30399 ⋅ Poprawnie: 18/56 [32%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Liczby -2 i -\frac{1}{2} są pierwiastkami wielomianu W(x)=2x^3+(a+b+10)x^2+(2a+5b+32)x-8.

Wyznacz parametry a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Wyznacz trzeci pierwiastek tego wielomianu.
Odpowiedź:
x_3= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30151 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
 «« Wyznacz te wartości parametru m, dla których równanie x^7-3(m+9)x^4+(2m^2+36m+166)x=0 ma trzy rozwiązania rzeczywiste.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Wyznacz te wartości parametru m, dla których równanie to ma trzy rozwiązania rzeczywiste, których suma szescianów jest równa co najmniej 16.

Podaj najmniejsze m spełniające warunki zadania.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm