Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11472 ⋅ Poprawnie: 279/533 [52%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wielomian P(x)=q+2+2x+px^2-2x^4 spełnia warunki \begin{cases} P(-1)+P(1)=0 \\ P(-\sqrt{2})=-P(\sqrt{2}) \end{cases} .

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11679 ⋅ Poprawnie: 126/272 [46%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wyznacz tę wartość parametru m, dla której wielomian P(x)=6x^3-8x^2-5x+m-1 dzieli się bez reszty przez dwumian x-1.
Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11676 ⋅ Poprawnie: 72/101 [71%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Oblicz wartość wyrażenia algebraicznego w=(2\sqrt{7}-1)^3.
Odpowiedź:
w= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10301 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Reszta z dzielenia wielomianu W(x)=x^{19}+x^{15}+x^{11}+x^{7}+x^{3}+x przez dwumian P(x)=x^2-1 jest równa:
Odpowiedzi:
A. 6x+1 B. 6x
C. 3x-1 D. 6x-1
Zadanie 5.  1 pkt ⋅ Numer: pr-10128 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Dana jest funkcja g(x)=6x^3-12x^2, x\in\mathbb{R}. Funkcja f(x)=\frac{|g(x)|}{g(x)} przyjmuje wartość równą -1 wtedy i tylko wtedy gdy:
Odpowiedzi:
A. x\in\left(-\infty,2\right) B. x\in\left(0,2\right)
C. x\in\left(2,+\infty\right) D. x\in(-\infty,0)\cup\left(0,2\right)
Zadanie 6.  2 pkt ⋅ Numer: pp-20972 ⋅ Poprawnie: 12/15 [80%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Wielomian W(x)=x^3+m^2x^2-\frac{3}{2}x-\frac{19}{8} przy dzieleniu przez wielomian P(x)=x+\left(\frac{1}{3}\right)^{\log_{3}{2}} daje resztę r=\frac{3}{8}.

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20999 ⋅ Poprawnie: 23/58 [39%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Wyznacz całkowite pierwiastki wielomianu W(x)= x^3+\frac{59}{6}x^2-\frac{77}{3}x+4.

Podaj najmniejszy i największy pierwiastek całkowity tego wielomianu.

Odpowiedzi:
x_{min\{Z\}}= (wpisz liczbę całkowitą)
x_{max\{Z\}}= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20975 ⋅ Poprawnie: 128/293 [43%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Rozwiąż równanie x^3-x^2+2x-2=0.

Podaj najmniejsze rozwiązanie tego równania.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj największe rozwiązanie tego równania.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-21006 ⋅ Poprawnie: 16/23 [69%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Podstawą pudełka w kształcie prostopadłościanu o objętości V=0.8 litrów jest kwadrat, którego krawędź jest o 18 dłuższa od wysokości h tego prostopadłościanu.

Wyznacz długość krawędzi podstawy a i wysokości tego prostopadłościanu.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
h= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pr-20198 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 «« Liczba -7 jest miejscem zerowym wielomianu P(x). Ponadto P(2)=-54. Wielomian P(x) przy dzieleniu przez Q(x)=x^2+5x-14 daje resztę R(x)=ax+b.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30844 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Dany jest wielomian W(x)= (x+2)\left[x^2+(p+1)x+p+9\right].
Przedział (a,b) jest zbiorem tych wszystkich wartości parametru p, dla których wielomian ten ma tylko jeden pierwiastek o krotności jeden i nie posiada pierwiastków o innych krotnościach.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Dla p\in\{p_1,p_2,p_3\}, gdzie p_1\lessdot p_2\lessdot p_3, wielomian W(x) ma jeden pierwiastek jednokrotny i jeden pierwiastek dwukrotny.

Podaj liczby p_1, p_2 i p_3.

Odpowiedzi:
p_1= (wpisz liczbę całkowitą)
p_2= (wpisz liczbę całkowitą)
p_3= (wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
 Dla p\in(-\infty,a)\cup(b,c)\cup(d,+\infty) wielomian W(x) ma trzy pierwiastki jednokrotne.

Podaj liczby b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30153 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « Dany jest wielomian W(x)=(m+1)x^3+x^2+(m^2+2m-8)x+m+1. Jednym z pierwiastków tego wielomianu jest liczba 1.

Podaj najmniejszą możliwą wartość parametru m.

Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 12.2 (1 pkt)
 Podaj największą możliwą wartość parametru m.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Podpunkt 12.3 (2 pkt)
 Jednym z pierwiastków tego wielomianu jest liczba 1, a jeden z pozostałych pierwiastków należy do zbioru \mathbb{W}-\mathbb{C}.

Wyznacz ten pierwiastek.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm