Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11552 ⋅ Poprawnie: 537/640 [83%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
Pomnożono dwa wielomiany G(x)=6+3x^2 i H(x)=-2x^3+6x^2-8 i otrzymano wynik P(x).

Podaj stopień wielomianu P(x).

Odpowiedź:
st.P(x)= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11680 ⋅ Poprawnie: 45/79 [56%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wyznacz resztę z dzielenia wielomianu określonego wzorem W(x)=2\frac{2}{3}x^3-2x^2+x-0,25 przez dwumian x+0,75.
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11676 ⋅ Poprawnie: 72/101 [71%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Oblicz wartość wyrażenia algebraicznego w=(3\sqrt{3}-1)^3.
Odpowiedź:
w= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10115 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (0.2 pkt)
 Wyznacz dziedzinę funkcji określonej wzorem g(x)=\sqrt{x^3-64x}. Rozwiązanie zapisz w postaci sumy przedziałów.

Suma ta ma postać:

Odpowiedzi:
A. \langle p, q\rangle\cup\langle r,+\infty) B. (-\infty,p)\cup(q,r)
C. (p, q)\cup(r,+\infty) D. (p,q)
E. \langle p,q\rangle F. (-\infty,p\rangle\cup\langle q,r\rangle
Podpunkt 4.2 (0.8 pkt)
 Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10129 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Dany jest wielomian Q(x)=221x^3-px^2-qx-21, gdzie p,q\in\mathbb{C}.

Pierwiastkiem wielomianu Q(x) nie może być liczba:

Odpowiedzi:
A. -\frac{3}{17} B. \frac{7}{13}
C. \frac{7}{4} D. \frac{7}{17}
Zadanie 6.  2 pkt ⋅ Numer: pr-20210 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Wyznacz te wartości parametru m, dla których wielomian W(x)=x^9-(m-1)^3x^8+(m^2-2m)x^5+2(m)x^2+(m-1)x przy dzieleniu przez wielomian P(x)=x+1 daje resztę 1.

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-21011 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Wyznacz wszystkie pierwiastki wielomianu W(x)= x^3+\frac{5}{6}x^2-\frac{1}{3}x-\frac{1}{6}.

Podaj najmniejszy i największy pierwiastek tego wielomianu.

Odpowiedzi:
x_{min}= (dwie liczby całkowite)

x_{max}= (dwie liczby całkowite)
Zadanie 8.  3 pkt ⋅ Numer: pp-20976 ⋅ Poprawnie: 104/194 [53%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Rozwiąż równanie 4x^3-4x^2-8x+8=0.

Podaj rozwiązanie wymierne tego równania.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj najmniejsze rozwiązanie tego równania, które nie jest liczbą wymierną.
Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz dwie liczby całkowite)
Podpunkt 8.3 (1 pkt)
 Podaj największe rozwiązanie tego równania, które nie jest liczbą wymierną.
Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-21006 ⋅ Poprawnie: 16/23 [69%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Podstawą pudełka w kształcie prostopadłościanu o objętości V=0.9 litrów jest kwadrat, którego krawędź jest o 1 dłuższa od wysokości h tego prostopadłościanu.

Wyznacz długość krawędzi podstawy a i wysokości tego prostopadłościanu.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
h= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pr-20186 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Rozwiąż nierówność 6x^7-76x^5-26x^3\geqslant 0.

Podaj najmniejszą liczbę ujemną, która spełnia tę nierówność.

Odpowiedź:
min_{<0}= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Podaj najmniejszą liczbę dodatnią, która spełnia tę nierówność.
Odpowiedź:
min_{>0}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30145 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 » Wielomian W(x)=x^5+(a+1)x^4-bx^3+bx^2+(c-2)x+6 dzieli się bez reszty przez wielomian P(x)=x^3-7x+6.

Podaj a+b.

Odpowiedź:
a+b= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30150 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (1 pkt)
 » Dla jakich wartości parametru m równanie x^2+(m-1)x+m+3=0 ma mniej niż dwa rozwiązania rzeczywiste?

Podaj najmniejsze możliwe m spełniające warunki zadania.

Odpowiedź:
m_{min}= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.2 (1 pkt)
 Podaj największe możliwe m spełniające warunki zadania.
Odpowiedź:
m_{max}= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.3 (2 pkt)
 Wyznacz te wartości parametru m, dla których suma trzecich potęg dwóch różnych pierwiastków tego równania jest równa 64.

Podaj najmniejsze m spełniające warunki zadania.

Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm