« Wielomian
W(x)=x^3+m^2x^2-\frac{3}{2}x-\frac{19}{8}
przy dzieleniu
przez wielomian
P(x)=x+\left(\frac{1}{3}\right)^{\log_{3}{2}}
daje resztę r=\frac{3}{8}.
Podaj najmniejsze możliwe m.
Odpowiedź:
m_{min}=
\cdot√
(wpisz trzy liczby całkowite)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe m.
Odpowiedź:
m_{max}=
\cdot√
(wpisz trzy liczby całkowite)
Zadanie 7.2 pkt ⋅ Numer: pp-20999 ⋅ Poprawnie: 23/58 [39%]
Podstawą pudełka w kształcie prostopadłościanu o objętości
V=0.8 litrów jest kwadrat, którego krawędź jest
o 18 dłuższa od wysokości h tego prostopadłościanu.
Wyznacz długość krawędzi podstawy a i wysokości
tego prostopadłościanu.
Odpowiedzi:
a
=
(wpisz liczbę całkowitą)
h
=
(wpisz liczbę całkowitą)
Zadanie 10.2 pkt ⋅ Numer: pr-20198 ⋅ Poprawnie: 0/0
Dany jest wielomian W(x)=
(x+2)\left[x^2+(p+1)x+p+9\right].
Przedział (a,b) jest zbiorem tych wszystkich wartości parametru
p, dla których wielomian ten ma tylko jeden pierwiastek o krotności
jeden i nie posiada pierwiastków o innych krotnościach.
Podaj liczby a i b.
Odpowiedzi:
a
=
(wpisz liczbę całkowitą)
b
=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Dla p\in\{p_1,p_2,p_3\}, gdzie p_1\lessdot p_2\lessdot p_3,
wielomian W(x) ma jeden pierwiastek jednokrotny i jeden pierwiastek
dwukrotny.
Podaj liczby p_1, p_2 i p_3.
Odpowiedzi:
p_1
=
(wpisz liczbę całkowitą)
p_2
=
(wpisz liczbę całkowitą)
p_3
=
(wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
Dla p\in(-\infty,a)\cup(b,c)\cup(d,+\infty)
wielomian W(x) ma trzy pierwiastki jednokrotne.
Podaj liczby b i c.
Odpowiedzi:
b
=
(wpisz liczbę całkowitą)
c
=
(wpisz liczbę całkowitą)
Zadanie 12.4 pkt ⋅ Numer: pr-30153 ⋅ Poprawnie: 0/0