Podgląd testu : lo2@sp-17-wielomiany-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11472 ⋅ Poprawnie: 319/582 [54%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wielomian
P(x)=q+5+2x+px^2-2x^4 spełnia
warunki
\begin{cases}
P(-1)+P(1)=0 \\
P(-\sqrt{2})=-P(\sqrt{2})
\end{cases}
.
Podaj liczby p i q .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11679 ⋅ Poprawnie: 126/272 [46%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wyznacz tę wartość parametru
m , dla której wielomian
P(x)=6x^3-5x^2-5x+m-1 dzieli się bez reszty przez
dwumian
x-1 .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11675 ⋅ Poprawnie: 102/159 [64%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Zapisz wyrażenie
(2x-4)^3 w postaci
a_1x^3+b_1x^2+c_1x+d_1 .
Podaj liczby b_1 i c_1 .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pr-10477 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wyznacz dziedzinę funkcji określonej wzorem
g(x)=\frac{1}{\sqrt{x^3+8x^2+16x}} .
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pr-10128 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Dana jest funkcja
g(x)=7x^3-8x^2 ,
x\in\mathbb{R} . Funkcja
f(x)=\frac{|g(x)|}{g(x)} przyjmuje wartość równą
-1 wtedy i tylko wtedy gdy:
Odpowiedzi:
A. x\in\left(\frac{8}{7},+\infty\right)
B. x\in\left(0,\frac{8}{7}\right)
C. x\in(-\infty,0)\cup\left(0,\frac{8}{7}\right)
D. x\in\left(-\infty,\frac{8}{7}\right)
Zadanie 6. 2 pkt ⋅ Numer: pp-20966 ⋅ Poprawnie: 14/38 [36%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
« Liczba
p jest resztą z dzielenia wielomianu
W(x)=6x^3-4x^2 przez
x+3 ,
a liczba
q resztą z dzielnia tego wielomianu przez
x-2 .
Oblicz |2p-q| .
Odpowiedź:
|2p-q|=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20995 ⋅ Poprawnie: 57/176 [32%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Wielomian
W(x)=
-x^3-\frac{15}{2}x^2-\frac{37}{2}x-15
jest podzielny przez dwumian
P(x)=x+2 .
Wyznacz pierwiastki tego wielomianu.
Podaj najmniejszy pierwiastek tego wielomianu.
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj pierwiastek niecałkowity tego wielomianu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pr-20192 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Wielomian
W(x)=2x^4-5x^3+px^2+8x+q dzieli
się przez wielomian
P(x)=-x^2+2x+2 .
Wyznacz
p i
q .
Podaj p .
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
q=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-21003 ⋅ Poprawnie: 23/57 [40%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Uczniowe pewnej klasy podzielili się na trzy wieloosobowe grupy. W drugiej grupie
jest o
9 osób więcej niż w pierwzej, zaś w trzeciej
grupie o
14 osób więcej niż w pierwszej. Iloczyn
liczby uczniów grupy drugiej i trzeciej jest o
170
większy od sześcianu liczby uczniów pierwszej grupy.
Ilu uczniów liczy ta klasa?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pr-20221 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
Wielomian
W(x) przy dzieleniu przez dwumian
x-1 daje resztę
8 , zaś przy
dzieleniu przez
x-2 resztę
-7 . Jaką resztę daje ten wielomian przy dzieleniu
przez
x^2-3x+2 ?
Zapisz tę resztę w postaci R(x)=ax+b . Podaj
a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30141 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (1 pkt)
« Wyznacz wszystkie wartości parametru
m , dla
których równanie
x^2-4(m-2)x-m^3+12m^2-35m+28=0
ma dwa różne pierwiastki rzeczywiste.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj największy z końców
liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
Podaj środek tego z tych przedziałów, który ma skończoną długość.
Odpowiedź:
s=
(wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
Wyznacz wszystkie wartości parametru
m , dla
których to równanie dwa różne pierwiastki rzeczywiste takie, że
\left(x_1-x_2\right)^2 \lessdot 8m-8 .
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z
końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 11.4 (1 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pr-30150 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 12.1 (1 pkt)
» Dla jakich wartości parametru
m równanie
x^2+(m+3)x+m+7=0 ma mniej niż dwa
rozwiązania rzeczywiste?
Podaj najmniejsze możliwe m spełniające warunki
zadania.
Odpowiedź:
m_{min}=
+
\cdot
√
(wpisz trzy liczby całkowite)
Podpunkt 12.2 (1 pkt)
Podaj największe możliwe
m spełniające warunki
zadania.
Odpowiedź:
m_{max}=
+
\cdot
√
(wpisz trzy liczby całkowite)
Podpunkt 12.3 (2 pkt)
Wyznacz te wartości parametru
m , dla których suma
trzecich potęg dwóch różnych pierwiastków tego równania jest równa
64 .
Podaj najmniejsze m spełniające warunki zadania.
Odpowiedź:
m_{min}=
(wpisz liczbę całkowitą)
Rozwiąż