« Wyznacz te wartości parametru m, dla których
wielomian
W(x)=x^9-(m-3)^3x^8+(m^2-6m+8)x^5+2(m-2)x^2+(m-3)x
przy dzieleniu przez wielomian P(x)=x+1 daje resztę
1.
Podaj najmniejsze możliwe m.
Odpowiedź:
m_{min}=(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe m.
Odpowiedź:
m_{max}=(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pr-21006 ⋅ Poprawnie: 0/0
Suma objętości trzech sześcianów jest równa 160.
Krawędź drugiego z tych sześcianów jest o 2 dłuższa
od krawędzi pierwszego sześcianu, a krawędź trzeciego sześcianu jest o
1 krótsza od krawędzi pierwszego sześcianu.
Wyznacz długość krawędzi najmniejszego z tych sześcianów.
Odpowiedź:
a_{min}=(wpisz liczbę całkowitą)
Zadanie 10.2 pkt ⋅ Numer: pr-21028 ⋅ Poprawnie: 0/0
Jedynym miejscem zerowym funkcji wielomianowej określonej wzorem y=W(x)
jest liczba 4, która jest pierwiastkiem dwukrotnym wielomianu
W(x) o stopniu równym cztery. Do wykresu tej funkcji należą punkty o współrzędnych
A=(0,48 ), B=(2,36)
oraz C=(-2,180 ).
Zapisz wzór wielomianu W(x) w postaci ogólnej
W(x)=ax^4+bx^3+cx^2+dx+e. Podaj liczby b i c.
Odpowiedzi:
b
=
(wpisz liczbę całkowitą)
c
=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj liczby d i e.
Odpowiedzi:
d
=
(wpisz liczbę całkowitą)
e
=
(wpisz liczbę całkowitą)
Zadanie 11.4 pkt ⋅ Numer: pr-30143 ⋅ Poprawnie: 0/0