Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-17-wielomiany-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11472 ⋅ Poprawnie: 319/582 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wielomian P(x)=q+5+2x+px^2-2x^4 spełnia warunki \begin{cases} P(-1)+P(1)=0 \\ P(-\sqrt{2})=-P(\sqrt{2}) \end{cases} .

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11679 ⋅ Poprawnie: 126/272 [46%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wyznacz tę wartość parametru m, dla której wielomian P(x)=6x^3-5x^2-5x+m-1 dzieli się bez reszty przez dwumian x-1.
Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11675 ⋅ Poprawnie: 102/159 [64%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Zapisz wyrażenie (2x-4)^3 w postaci a_1x^3+b_1x^2+c_1x+d_1.

Podaj liczby b_1 i c_1.

Odpowiedzi:
b_1= (wpisz liczbę całkowitą)
c_1= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10477 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz dziedzinę funkcji określonej wzorem g(x)=\frac{1}{\sqrt{x^3+8x^2+16x}}. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10128 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Dana jest funkcja g(x)=7x^3-8x^2, x\in\mathbb{R}. Funkcja f(x)=\frac{|g(x)|}{g(x)} przyjmuje wartość równą -1 wtedy i tylko wtedy gdy:
Odpowiedzi:
A. x\in\left(\frac{8}{7},+\infty\right) B. x\in\left(0,\frac{8}{7}\right)
C. x\in(-\infty,0)\cup\left(0,\frac{8}{7}\right) D. x\in\left(-\infty,\frac{8}{7}\right)
Zadanie 6.  2 pkt ⋅ Numer: pp-20966 ⋅ Poprawnie: 14/38 [36%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Liczba p jest resztą z dzielenia wielomianu W(x)=6x^3-4x^2 przez x+3, a liczba q resztą z dzielnia tego wielomianu przez x-2.

Oblicz |2p-q|.

Odpowiedź:
|2p-q|= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20995 ⋅ Poprawnie: 57/176 [32%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wielomian W(x)= -x^3-\frac{15}{2}x^2-\frac{37}{2}x-15 jest podzielny przez dwumian P(x)=x+2. Wyznacz pierwiastki tego wielomianu.

Podaj najmniejszy pierwiastek tego wielomianu.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj pierwiastek niecałkowity tego wielomianu.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20192 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Wielomian W(x)=2x^4-5x^3+px^2+8x+q dzieli się przez wielomian P(x)=-x^2+2x+2. Wyznacz p i q.

Podaj p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-21003 ⋅ Poprawnie: 23/57 [40%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
  Uczniowe pewnej klasy podzielili się na trzy wieloosobowe grupy. W drugiej grupie jest o 9 osób więcej niż w pierwzej, zaś w trzeciej grupie o 14 osób więcej niż w pierwszej. Iloczyn liczby uczniów grupy drugiej i trzeciej jest o 170 większy od sześcianu liczby uczniów pierwszej grupy.

Ilu uczniów liczy ta klasa?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pr-20221 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Wielomian W(x) przy dzieleniu przez dwumian x-1 daje resztę 8, zaś przy dzieleniu przez x-2 resztę -7. Jaką resztę daje ten wielomian przy dzieleniu przez x^2-3x+2?

Zapisz tę resztę w postaci R(x)=ax+b. Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj a.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30141 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Wyznacz wszystkie wartości parametru m, dla których równanie x^2-4(m-2)x-m^3+12m^2-35m+28=0 ma dwa różne pierwiastki rzeczywiste.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj największy z końców liczbowych tych przedziałów.

Odpowiedź:
max= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Podaj środek tego z tych przedziałów, który ma skończoną długość.
Odpowiedź:
s= (wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
 Wyznacz wszystkie wartości parametru m, dla których to równanie dwa różne pierwiastki rzeczywiste takie, że \left(x_1-x_2\right)^2 \lessdot 8m-8.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 11.4 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30150 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (1 pkt)
 » Dla jakich wartości parametru m równanie x^2+(m+3)x+m+7=0 ma mniej niż dwa rozwiązania rzeczywiste?

Podaj najmniejsze możliwe m spełniające warunki zadania.

Odpowiedź:
m_{min}= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.2 (1 pkt)
 Podaj największe możliwe m spełniające warunki zadania.
Odpowiedź:
m_{max}= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.3 (2 pkt)
 Wyznacz te wartości parametru m, dla których suma trzecich potęg dwóch różnych pierwiastków tego równania jest równa 64.

Podaj najmniejsze m spełniające warunki zadania.

Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm