Podstawą pudełka w kształcie prostopadłościanu o objętości
V=0.2 litrów jest kwadrat, którego krawędź jest
o 8 dłuższa od wysokości h tego prostopadłościanu.
Wyznacz długość krawędzi podstawy a i wysokości
tego prostopadłościanu.
Odpowiedzi:
a
=
(wpisz liczbę całkowitą)
h
=
(wpisz liczbę całkowitą)
Zadanie 10.2 pkt ⋅ Numer: pr-21022 ⋅ Poprawnie: 50/33 [151%]
Wyznacz zbiór wszystkich wartości parametru m\in\mathbb{R}, dla których
równanie
x^3-6x^2+(8m+11)x+10m+20=0
ma trzy różne rozwiązania, z których jedno jest średnią arytmetyczną pozostałych.
Podaj najmniejsze możliwe m.
Odpowiedź:
m_{min}=(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj największe możliwe m.
Odpowiedź:
m_{max}=(wpisz liczbę całkowitą)
Zadanie 11.4 pkt ⋅ Numer: pr-30138 ⋅ Poprawnie: 0/0
«« O wielomianie W(x)=2x^3+bx^2+cx+d wiadomo, że
liczba 1 jest pierwiastkiem dwukrotnym tego
wielomianu oraz że W(x) jest on podzielny przez dwumian
x-4. Oblicz współczynniki b,
c, d.
Podaj b.
Odpowiedź:
b=(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj c.
Odpowiedź:
c=(wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
Rozwiąż nierówność W(x-2) \leqslant 0.
Podaj największą liczbę, która spełnia tę nierówność.
Odpowiedź:
x_{max}=(wpisz liczbę całkowitą)
Zadanie 12.4 pkt ⋅ Numer: pr-30846 ⋅ Poprawnie: 0/1 [0%]
« Wyznacz zbiór wszystkich wartości parametru m\in\mathbb{R}, dla których
równanie
x^3+(4m+1)x^2+(4m+9)x=0
ma trzy różne rozwiązania, z których dwa są ujemne. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat