Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11155 ⋅ Poprawnie: 628/1062 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Ile wyrazów ciągu a_n=n^2-576 jest mniejszych od 4900?
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11160 ⋅ Poprawnie: 307/554 [55%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wyznacz najmniejszy dodatni wyraz ciągu określonego wzorem a_n=7n-171.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11904 ⋅ Poprawnie: 209/216 [96%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=\frac{n+1}{2n^2} dla każdej liczby naturalnej n \geqslant 1.

Piąty wyraz tego ciągu jest równy:

Odpowiedzi:
A. \frac{4}{49} B. \frac{2}{25}
C. \frac{7}{72} D. \frac{2}{9}
E. \frac{5}{32} F. \frac{3}{25}
Zadanie 4.  1 pkt ⋅ Numer: pp-12065 ⋅ Poprawnie: 113/129 [87%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg (b_n) jest określony wzorem b_n=4n^2-30n dla każdej liczby naturalnej n\geqslant 1.

Liczba niedodatnich wyrazów ciągu b_n jest równa:

Odpowiedzi:
A. 11 B. 2
C. 9 D. 5
E. 1 F. 12
G. 7 H. 3
Zadanie 5.  1 pkt ⋅ Numer: pp-11991 ⋅ Poprawnie: 446/650 [68%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=(-1)^n\cdot (n-2) dla każdej liczby naturalnej n\geqslant 1.

Oceń prawdziwość poniższych stwierdzeń:

Odpowiedzi:
T/N : ciąg (a_n) jest rosnący T/N : różnica a_{3}-a_2 jest równa -1
Zadanie 6.  1 pkt ⋅ Numer: pp-11456 ⋅ Poprawnie: 1353/1531 [88%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Pomiędzy liczby 105 i 357 można wstawić pięć takich liczb, że wszystkie siedem liczb będą tworzyć ciąg arytmetyczny.

Wyznacz najmniejszą z wstawionych liczb.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-11433 ⋅ Poprawnie: 434/501 [86%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Dla ciągu arytmetycznego (a_n) określonego dla n\geqslant 1 spełniony jest warunek a_{10}+a_{11}+a_{12}=\frac{15}{2}.

Oblicz a_{11}.

Odpowiedź:
a_k=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11891 ⋅ Poprawnie: 384/389 [98%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Ciąg (a_n), określony dla każdej liczby naturalnej n \geqslant 1, jest arytmetyczny. Różnica tego ciągu jest równa -2 oraz a_8=-12.

Czwarty wyraz tego ciągu jest równy:

Odpowiedzi:
A. -2 B. -4
C. -8 D. -6
E. -10 F. -12
Zadanie 9.  1 pkt ⋅ Numer: pp-12119 ⋅ Poprawnie: 161/185 [87%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Różnica tego ciągu jest równa -4.

Wtedy:

Odpowiedzi:
A. a_{18}-a_{5}=-40 B. a_{18}-a_{5}=-52
C. a_{18}-a_{5}=-36 D. a_{18}-a_{5}=-56
E. a_{18}-a_{5}=-44 F. a_{18}-a_{5}=-68
G. a_{18}-a_{5}=-64 H. a_{18}-a_{5}=-48
Zadanie 10.  1 pkt ⋅ Numer: pp-11153 ⋅ Poprawnie: 43/132 [32%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » W ciągu arytmetycznym, w którym r\neq 0, zachodzi warunek a_{29}=0.

Wówczas:

Odpowiedzi:
A. S_{58}=0 B. S_{58}=a_{58}
C. S_{58} \lessdot a_{58} D. S_{58} > a_{58}
Zadanie 11.  1 pkt ⋅ Numer: pp-11175 ⋅ Poprawnie: 627/989 [63%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 » Ciąg geometryczny określony jest wzorem a_n=3\cdot 6^{4-n}, dla n\in\mathbb{N_{+}}.

Oblicz iloraz tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-11171 ⋅ Poprawnie: 568/727 [78%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 W monotonicznym ciągu geometrycznym a_1=2, a a_3=\frac{25}{2}.

Oblicz iloraz tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 13.  1 pkt ⋅ Numer: pp-11992 ⋅ Poprawnie: 521/661 [78%] Rozwiąż 
Podpunkt 13.1 (0.2 pkt)
 Trzywyrazowy ciąg (12, 6, 2m-7) jest geometryczny.

Ten ciąg jest:

Odpowiedzi:
A. rosnący B. malejący
Podpunkt 13.2 (0.8 pkt)
 Liczba m jest równa:
Odpowiedzi:
A. 2 B. 6
C. 5 D. 9
E. 8 F. 7
Zadanie 14.  1 pkt ⋅ Numer: pp-11412 ⋅ Poprawnie: 244/370 [65%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Ciąg liczbowy geometryczny (a_n) zawiera tylko wyrazy dodatnie oraz \frac{a_{11}}{a_{9}}= \frac{1}{81}.

Oblicz iloraz tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 15.  1 pkt ⋅ Numer: pp-11184 ⋅ Poprawnie: 262/407 [64%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 « Po k latach z tytułu lokaty o wysokości 4300 zł oprocentowanej w wysokości 25\% w skali roku przy rocznej kapitalizacji odsetek otrzymamy łączne odsetki (przed potrąceniem podatków) w wysokości m złotych.

Wyznacz liczbę m.

Odpowiedź:
m= (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm