Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11156 ⋅ Poprawnie: 146/232 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Dany jest ciąg (b_n), w którym b_n=(n+2)(n-122). Ciąg ten zawiera k wyrazów ujemnych.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11160 ⋅ Poprawnie: 307/554 [55%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wyznacz najmniejszy dodatni wyraz ciągu określonego wzorem a_n=7n-130.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11767 ⋅ Poprawnie: 762/826 [92%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=2^n\cdot(n+1), dla każdej dodatniej liczby naturalnej n.

Wyraz a_6 jest równy:

Odpowiedzi:
A. 448 B. 224
C. 896 D. 1024
Zadanie 4.  1 pkt ⋅ Numer: pp-12038 ⋅ Poprawnie: 64/79 [81%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=(-1)^n\cdot n+1 dla każdej liczby naturalnej n > 1.

Wtedy trzeci wyraz tego ciągu jest równy:

Odpowiedzi:
A. 17 B. 6
C. 10 D. -2
E. -13 F. -12
G. -20 H. -8
Zadanie 5.  1 pkt ⋅ Numer: pp-11387 ⋅ Poprawnie: 302/596 [50%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Oceń, które z podanych ciągów są malejące?
Odpowiedzi:
T/N : a_n=\frac{n-3}{4} T/N : a_n=1-\frac{4}{n+1}
T/N : a_n=\sqrt{3}n+1  
Zadanie 6.  1 pkt ⋅ Numer: pp-11146 ⋅ Poprawnie: 1705/2079 [82%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « W ciągu arytmetycznym \left(a_n\right) wyrazy pierwszy i trzeci są równe odpowiednio -8 i 2, a pewien wyraz tego ciągu a_k jest równy 62.

Wyznacz numer tego wyrazu.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-11789 ⋅ Poprawnie: 771/928 [83%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Trzywyrazowy ciąg (1,7,a+2) jest arytmetyczny.

Liczba a jest równa:

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11836 ⋅ Poprawnie: 686/764 [89%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Ciąg arytmetyczny \left(a_n\right) jest określony dla każdej liczby naturalnej n\geqslant 1. W tym ciągu a_2=8 oraz a_3=15.

8-ty wyraz tego ciągu a_{8} jest równy:

Odpowiedzi:
A. 43 B. 64
C. 57 D. 71
E. 50 F. 36
Zadanie 9.  1 pkt ⋅ Numer: pp-12037 ⋅ Poprawnie: 208/202 [102%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Ciągi (a_n), (b_n), (c_n) oraz (d_n) są określone dla każdej liczby naturalnej n > 1 następująco: a_n=5n^2+3, b_n=4n+2, c_n=2^n, d_n=\frac{6}{n}.

Wskaż zdanie prawdziwe:

Odpowiedzi:
A. ciąg c_n jest arytmetyczny B. żaden z ciągów nie jest arytmetyczny
C. ciąg a_n jest arytmetyczny D. ciąg b_n jest arytmetyczny
Zadanie 10.  1 pkt ⋅ Numer: pp-11837 ⋅ Poprawnie: 407/624 [65%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony dla każdej liczby naturalnej n\geqslant 1. Suma n początkowych wyrazów tego ciągu jest określona wzorem S_n=2\cdot(5^n-1), dla każdej liczby naturalnej n\geqslant 1.

Oceń prawdziwość poniższych stwierdzeń:

Odpowiedzi:
T/N : pierwszy wyraz ciągu \left(a_n\right) jest równy 8 T/N : suma a_1+a_2 jest równa 51
Zadanie 11.  1 pkt ⋅ Numer: pp-11176 ⋅ Poprawnie: 536/816 [65%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 W ciągu geometrycznym (a_n) wyraz o numerze k=5 jest równy 7.

Oblicz a_{3}\cdot a_{7}.

Odpowiedź:
a_{k-2}\cdot a_{k+2}= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-11168 ⋅ Poprawnie: 117/163 [71%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Pewien gatunek liczy 1000 osobników i co roku jego liczebność rośnie o 20\%.

Po upływie 7 lat liczebność tego gatunku wyniesie:

Odpowiedzi:
A. 1000\cdot (1+1.2^7) B. 1000\cdot (1+1.2)^7
C. 1000\cdot (1+7\cdot 1.2) D. 1000\cdot (1.2)^7
Zadanie 13.  1 pkt ⋅ Numer: pp-11862 ⋅ Poprawnie: 177/233 [75%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Wszystkie wyrazy nieskończonego ciągu geometrycznego \left(a_n\right), określonego dla każdej liczby naturalnej n\geqslant 1, są dodatnie i 36a_5=9a_3.

Wtedy iloraz tego ciągu jest równy:

Odpowiedzi:
A. \frac{1}{2} B. \frac{2}{3}
C. \frac{3}{8} D. 1
E. \frac{3}{10} F. \frac{3}{4}
Zadanie 14.  1 pkt ⋅ Numer: pp-11180 ⋅ Poprawnie: 728/1057 [68%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Suma pierwszych pięciu wyrazów ciągu geometrycznego jest równa -\frac{11}{4}, a jego iloraz wynosi -2.

Wyznacz a_1.

Odpowiedź:
a_1=
(wpisz dwie liczby całkowite)
Zadanie 15.  1 pkt ⋅ Numer: pp-11184 ⋅ Poprawnie: 262/406 [64%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 « Po k latach z tytułu lokaty o wysokości 3200 zł oprocentowanej w wysokości 25\% w skali roku przy rocznej kapitalizacji odsetek otrzymamy łączne odsetki (przed potrąceniem podatków) w wysokości m złotych.

Wyznacz liczbę m.

Odpowiedź:
m= (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm