Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11159 ⋅ Poprawnie: 232/393 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Dany jest ciąg a_n=\frac{n+13}{n+2}.

Ile wyrazów całkowitych występuje w tym ciągu?

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11162 ⋅ Poprawnie: 53/111 [47%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Ogólny wyraz ciągu określony jest wzorem a_n=7\left(\sqrt[3]{3}\right)^{n+6}, przy czym n jest liczbą co najwyżej dwucyfrową.

Wyznacz ilość wyrazów wymiernych tego ciągu.

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11788 ⋅ Poprawnie: 755/904 [83%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=\frac{n-9}{3}, dla każdej liczby naturalnej n\geqslant 1.

Liczba wyrazów tego ciągu mniejszych od 26 jest równa:

Odpowiedzi:
A. 84 B. 90
C. 85 D. 88
E. 86 F. 89
Zadanie 4.  1 pkt ⋅ Numer: pp-12038 ⋅ Poprawnie: 108/119 [90%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=(-3)^n\cdot n-2 dla każdej liczby naturalnej n > 1.

Wtedy trzeci wyraz tego ciągu jest równy:

Odpowiedzi:
A. -71 B. -65
C. -83 D. -72
E. -91 F. -103
G. -80 H. -66
Zadanie 5.  1 pkt ⋅ Numer: pp-11991 ⋅ Poprawnie: 446/650 [68%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=(-1)^n\cdot (n-2) dla każdej liczby naturalnej n\geqslant 1.

Oceń prawdziwość poniższych stwierdzeń:

Odpowiedzi:
T/N : ciąg (a_n) jest monotoniczny T/N : wszystkie wyrazy ciągu (a_n) są dodatnie
Zadanie 6.  1 pkt ⋅ Numer: pp-11150 ⋅ Poprawnie: 894/1151 [77%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
Oceń, które z podanych ciągów są arytmetyczne:
Odpowiedzi:
T/N : a_n=\frac{-4n+16}{-2} T/N : a_n=\sqrt{n+3}
Zadanie 7.  1 pkt ⋅ Numer: pp-11789 ⋅ Poprawnie: 903/1055 [85%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Trzywyrazowy ciąg (3,7,a+5) jest arytmetyczny.

Liczba a jest równa:

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11891 ⋅ Poprawnie: 384/389 [98%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Ciąg (a_n), określony dla każdej liczby naturalnej n \geqslant 1, jest arytmetyczny. Różnica tego ciągu jest równa 2 oraz a_8=11.

Czwarty wyraz tego ciągu jest równy:

Odpowiedzi:
A. 3 B. 11
C. 1 D. 5
E. 7 F. 9
Zadanie 9.  1 pkt ⋅ Numer: pp-12066 ⋅ Poprawnie: 201/214 [93%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Piąty i siódmy wyraz tego ciągu spełniają warunek a_5+a_7=196.

Wtedy szósty wyraz tego ciągu jest równy:

Odpowiedzi:
A. 112 B. 95
C. 98 D. 83
E. 89 F. 106
G. 108 H. 104
Zadanie 10.  1 pkt ⋅ Numer: pp-11151 ⋅ Poprawnie: 478/634 [75%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « W kinie jest 34 rzędów krzeseł. Rząd pierwszy składa się z 14 krzeseł, a każdy następny rząd zawiera o 12 krzeseł więcej niż rząd poprzedni.

Ile jest krzeseł w kinie?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11166 ⋅ Poprawnie: 103/162 [63%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 W ciągu geometrycznym (a_n) wyraz k=12-ty jest równy a_{12}=\sqrt{6}.

Oblicz iloczyn pięciu kolejnych wyrazów tego ciągu a_{10}\cdot a_{11}\cdot a_{12}\cdot a_{13}\cdot a_{14} .

Odpowiedź:
a_{k-2}\cdot a_{k-1}\cdot a_k\cdot a_{k+1}\cdot a_{k+2}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-11169 ⋅ Poprawnie: 346/528 [65%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Ciąg (a_n) jest geometryczny i niemonotoniczny, w którym a_{10}=-\frac{1}{9} i a_{15}=27.

Wówczas wyraz a_{14} jest równy:

Odpowiedź:
a_{k}= (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-11790 ⋅ Poprawnie: 719/907 [79%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Ciąg geometryczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. W tym ciągu a_1=2.75 oraz a_2=-16.50.

Suma trzech początkowych wyrazów ciągu (a_n) jest równa:

Odpowiedzi:
A. \frac{345}{4} B. 85
C. \frac{349}{4} D. \frac{339}{4}
E. \frac{343}{4} F. \frac{341}{4}
Zadanie 14.  1 pkt ⋅ Numer: pp-11181 ⋅ Poprawnie: 536/838 [63%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Ciąg określony jest wzorem a_n=4^n.

Oblicz S_{7}.

Odpowiedź:
S_k= (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-11830 ⋅ Poprawnie: 645/752 [85%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Pan Grzegorz wpłacił do banku pewną kwotę na lokatę dwuletnią. Po każdym rocznym okresie oszczędzania bank doliczał odsetki w wysokości 30\% od kwoty bieżącego kapitału znajdującego się na lokacie. Po dwóch latach oszczędzania pan Grzegorz odebrał z tego banku wraz z odsetkami kwotę 8112.00 zł (bez uwzględnienia podatków).

Kwota wpłacona przez pana Grzegorza na tę lokatę była równa:

Odpowiedzi:
A. 5300 B. 5000
C. 4800 D. 5200
E. 4500 F. 5100


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm