Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11159 ⋅ Poprawnie: 232/392 [59%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Dany jest ciąg
a_n=\frac{n+14}{n+3} .
Ile wyrazów całkowitych występuje w tym ciągu?
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11161 ⋅ Poprawnie: 949/1086 [87%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Pewien wyraz ciągu jest równy
428 . Ciąg ten określony
jest wzorem
a_n=\frac{3n+7}{2} .
Wyznacz numer tego wyrazu.
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11904 ⋅ Poprawnie: 194/204 [95%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
(a_n) jest określony wzorem
a_n=\frac{n+4}{2n^2} dla każdej liczby naturalnej
n \geqslant 1 .
Piąty wyraz tego ciągu jest równy:
Odpowiedzi:
A. \frac{7}{18}
B. \frac{5}{36}
C. \frac{3}{25}
D. \frac{11}{98}
E. \frac{9}{50}
F. \frac{1}{4}
Zadanie 4. 1 pkt ⋅ Numer: pp-12038 ⋅ Poprawnie: 100/114 [87%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Ciąg
(a_n) jest określony wzorem
a_n=(-4)^n\cdot n+6 dla każdej liczby
naturalnej
n > 1 .
Wtedy trzeci wyraz tego ciągu jest równy:
Odpowiedzi:
A. -186
B. -204
C. -183
D. -177
E. -193
F. -168
G. -201
H. -205
Zadanie 5. 1 pkt ⋅ Numer: pp-11455 ⋅ Poprawnie: 70/140 [50%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
«« Wskaż najmniejszy możliwy numer wyrazu, poczynając od którego ciąg liczbowy określony
wzorem
a_n=n^2-23n+23 jest monotoniczny:
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-11146 ⋅ Poprawnie: 1709/2083 [82%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« W ciągu arytmetycznym
\left(a_n\right)
wyrazy pierwszy i trzeci są równe odpowiednio
8
i
24 , a pewien wyraz tego ciągu
a_k
jest równy
104 .
Wyznacz numer tego wyrazu.
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-11541 ⋅ Poprawnie: 481/731 [65%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Trzy liczby
x+4 ,
x+10
i
3x+20 ,
w podanej kolejności są trzema początkowymi wyrazami ciągu arytmetycznego
\left(c_n\right) .
Oblicz c_{80} .
Odpowiedź:
c_k=
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-11891 ⋅ Poprawnie: 367/377 [97%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Ciąg
(a_n) , określony dla każdej liczby naturalnej
n \geqslant 1 , jest arytmetyczny. Różnica tego ciągu jest równa
4 oraz
a_8=36 .
Czwarty wyraz tego ciągu jest równy:
Odpowiedzi:
A. 24
B. 16
C. 36
D. 32
E. 20
F. 28
Zadanie 9. 1 pkt ⋅ Numer: pp-12119 ⋅ Poprawnie: 150/177 [84%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Ciąg arytmetyczny
(a_n) jest określony dla każdej liczby
naturalnej
n\geqslant 1 . Różnica tego ciągu jest równa
10 .
Wtedy:
Odpowiedzi:
A. a_{18}-a_{5}=110
B. a_{18}-a_{5}=130
C. a_{18}-a_{5}=150
D. a_{18}-a_{5}=90
E. a_{18}-a_{5}=160
F. a_{18}-a_{5}=100
G. a_{18}-a_{5}=140
H. a_{18}-a_{5}=120
Zadanie 10. 1 pkt ⋅ Numer: pp-11837 ⋅ Poprawnie: 448/673 [66%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Ciąg
\left(a_n\right) jest określony dla każdej liczby
naturalnej
n\geqslant 1 .
Suma
n początkowych wyrazów tego ciągu jest określona wzorem
S_n=4\cdot(7^n-1) , dla każdej liczby naturalnej
n\geqslant 1 .
Oceń prawdziwość poniższych stwierdzeń:
Odpowiedzi:
T/N : różnica a_2-a_1 jest równa 144
T/N : iloczyn a_1\cdot a_2 jest równy 4032
Zadanie 11. 1 pkt ⋅ Numer: pp-11177 ⋅ Poprawnie: 477/712 [66%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Ciąg
(12-3\sqrt{15}, x, 12+3\sqrt{15})
jest geometryczny.
Oblicz x .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Zadanie 12. 1 pkt ⋅ Numer: pp-11168 ⋅ Poprawnie: 117/163 [71%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Pewien gatunek liczy
1000 osobników i co roku
jego liczebność rośnie o
70\% .
Po upływie 9 lat liczebność tego gatunku wyniesie:
Odpowiedzi:
A. 1000\cdot (1+1.7)^9
B. 1000\cdot (1+9\cdot 1.7)
C. 1000\cdot (1+1.7^9)
D. 1000\cdot (1.7)^9
Zadanie 13. 1 pkt ⋅ Numer: pp-12121 ⋅ Poprawnie: 73/79 [92%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Trójwyrazowy ciąg
(6,x,96) jest rosnącym ciągiem
geometrycznym.
Wtedy x jest równe:
Odpowiedzi:
A. 23
B. 24
C. 25
D. 22
E. 26
F. 20
Zadanie 14. 1 pkt ⋅ Numer: pp-11919 ⋅ Poprawnie: 200/244 [81%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Dany jest ciąg geometryczny
(a_n) , określony dla każdej liczby naturalnej
n\geqslant 1 . Drugi wyraz tego ciągu oraz iloraz ciągu
(a_n) są równe
4 .
Suma sześciu początkowych kolejnych wyrazów tego ciągu jest równa:
Odpowiedzi:
A. 341
B. 5461
C. 1365
D. 21845
E. 85
F. 5463
Zadanie 15. 1 pkt ⋅ Numer: pp-11830 ⋅ Poprawnie: 605/705 [85%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
Pan Grzegorz wpłacił do banku pewną kwotę na lokatę dwuletnią. Po każdym rocznym okresie
oszczędzania bank doliczał odsetki w wysokości
30\% od kwoty bieżącego
kapitału znajdującego się na lokacie. Po dwóch latach oszczędzania pan Grzegorz odebrał z tego
banku wraz z odsetkami kwotę
10985.00 zł (bez uwzględnienia podatków).
Kwota wpłacona przez pana Grzegorza na tę lokatę była równa:
Odpowiedzi:
A. 6600 zł
B. 6700 zł
C. 7000 zł
D. 6900 zł
E. 6500 zł
F. 6300 zł
Rozwiąż