Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11159 ⋅ Poprawnie: 232/392 [59%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Dany jest ciąg
a_n=\frac{n+11}{n+3} .
Ile wyrazów całkowitych występuje w tym ciągu?
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11163 ⋅ Poprawnie: 107/161 [66%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Liczba
10^{12} jest jednym z wyrazów ciągu kwadratów
kolejnych liczb naturalnych
1,2,4,9,16,... .
Poprzednim wyrazem tego ciągu jest liczba:
Odpowiedzi:
A. \left(10^{6}\right)^2
B. \left(10^{6}-1\right)^2
C. \left(10^{6}+1\right)^2
D. 10^{12}\right)-1
Zadanie 3. 1 pkt ⋅ Numer: pp-11860 ⋅ Poprawnie: 189/205 [92%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
\left(a_n\right) jest określony wzorem
a_n=\frac{2n^2+9n}{n} dla każdej liczby
naturalnej
n\geqslant 1 .
Wtedy wyraz a_7 jest równy:
Odpowiedzi:
A. 21
B. 17
C. 25
D. 19
E. 23
F. 27
Zadanie 4. 1 pkt ⋅ Numer: pp-11918 ⋅ Poprawnie: 175/229 [76%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Dane są ciągi
a_n=3n oraz
b_n=4n-2 , określone
dla każdej liczby naturalnej
n\geqslant 1 .
Liczba 13 :
Odpowiedzi:
A. nie jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n)
B. nie jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n)
C. jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n)
D. jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n)
Zadanie 5. 1 pkt ⋅ Numer: pp-11968 ⋅ Poprawnie: 93/123 [75%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Dany jest ciąg
(a_n) określony wzorem
a_n=4n^2+n dla każdej liczby naturalnej
n\geqslant 1 .
Oceń prawdziwość poniższych stwierdzeń:
Odpowiedzi:
T/N : ciąg (a_n) nie jest monotoniczny
T/N : ciąg (a_n) jest monotoniczny
Zadanie 6. 1 pkt ⋅ Numer: pp-11144 ⋅ Poprawnie: 1048/1310 [80%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Ciąg
(a_n) jest arytmetyczny i spełnia warunek
3a_3=a_2+2a_1+19 .
Oblicz różnicę tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-11433 ⋅ Poprawnie: 434/501 [86%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Dla ciągu arytmetycznego
(a_n) określonego dla
n\geqslant 1 spełniony jest warunek
a_{14}+a_{15}+a_{16}=\frac{33}{2} .
Oblicz a_{15} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-11891 ⋅ Poprawnie: 343/356 [96%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Ciąg
(a_n) , określony dla każdej liczby naturalnej
n \geqslant 1 , jest arytmetyczny. Różnica tego ciągu jest równa
2 oraz
a_8=3 .
Czwarty wyraz tego ciągu jest równy:
Odpowiedzi:
A. 3
B. -3
C. -7
D. -5
E. -1
F. 1
Zadanie 9. 1 pkt ⋅ Numer: pp-12037 ⋅ Poprawnie: 222/216 [102%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Ciągi
(a_n) ,
(b_n) ,
(c_n) oraz
(d_n) są określone dla każdej liczby naturalnej
n > 1 następująco:
a_n=7n^2+2 ,
b_n=3n+2 ,
c_n=5^n ,
d_n=\frac{7}{n} .
Wskaż zdanie prawdziwe:
Odpowiedzi:
A. żaden z ciągów nie jest arytmetyczny
B. ciąg d_n jest arytmetyczny
C. ciąg a_n jest arytmetyczny
D. ciąg b_n jest arytmetyczny
Zadanie 10. 1 pkt ⋅ Numer: pp-11147 ⋅ Poprawnie: 55/119 [46%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Ciąg
(c_n) dany jest wzorem
c_n=(n-16)\cdot 6 dla
n\geqslant 1 .
Oblicz S_{20} .
Odpowiedź:
S_{20}=
(wpisz liczbę całkowitą)
Zadanie 11. 1 pkt ⋅ Numer: pp-11177 ⋅ Poprawnie: 477/711 [67%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Ciąg
(4-\sqrt{7}, x, 4+\sqrt{7})
jest geometryczny.
Oblicz x .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Zadanie 12. 1 pkt ⋅ Numer: pp-11434 ⋅ Poprawnie: 102/166 [61%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
W ciągu geometrycznym
(a_n) dane sa wyrazy:
a_1=\sqrt{m} ,
a_2=m\sqrt{m} ,
a_3=m^2\sqrt{m} .
Wzór na n -ty wyraz tego ciągu ma postać:
Odpowiedzi:
A. (\sqrt{17})^n
B. \left(\frac{\sqrt{17}}{17}\right)^n
C. \frac{\left(\sqrt{17}\right)^n}{17}
D. \frac{17^n}{\sqrt{17}}
Zadanie 13. 1 pkt ⋅ Numer: pp-11816 ⋅ Poprawnie: 463/718 [64%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Dany jest ciąg geometryczny
\left(a_n\right) określony dla każdej liczby
naturalnej
n\geqslant 1 . Pierwszy wyraz tego ciągu jest równy
8 , natomiast iloraz tego ciągu jest równy
-\frac{1}{2} .
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : wyraz a_{2063} jest dodatni
T/N : różnica a_3-a_2 jest równa 6
Zadanie 14. 1 pkt ⋅ Numer: pp-11181 ⋅ Poprawnie: 536/836 [64%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Ciąg określony jest wzorem
a_n=2^n .
Oblicz S_{8} .
Odpowiedź:
S_k=
(wpisz liczbę całkowitą)
Zadanie 15. 1 pkt ⋅ Numer: pp-11830 ⋅ Poprawnie: 600/698 [85%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
Pan Grzegorz wpłacił do banku pewną kwotę na lokatę dwuletnią. Po każdym rocznym okresie
oszczędzania bank doliczał odsetki w wysokości
10\% od kwoty bieżącego
kapitału znajdującego się na lokacie. Po dwóch latach oszczędzania pan Grzegorz odebrał z tego
banku wraz z odsetkami kwotę
6776.00 zł (bez uwzględnienia podatków).
Kwota wpłacona przez pana Grzegorza na tę lokatę była równa:
Odpowiedzi:
A. 6100 zł
B. 5200 zł
C. 5600 zł
D. 5900 zł
E. 5700 zł
F. 5800 zł
Rozwiąż