Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11159 ⋅ Poprawnie: 232/392 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Dany jest ciąg a_n=\frac{n+12}{n+3}.

Ile wyrazów całkowitych występuje w tym ciągu?

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11385 ⋅ Poprawnie: 274/413 [66%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=\frac{1-4n}{-3n+2}.

Wyraz a_{2k+2} tego ciągu jest równy:

Odpowiedzi:
A. \frac{8k+9}{6k+4} B. \frac{8k+7}{6k+4}
C. \frac{8k+9}{6k+8} D. \frac{8k+7}{6k+8}
Zadanie 3.  1 pkt ⋅ Numer: pp-11860 ⋅ Poprawnie: 269/284 [94%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=\frac{3n^2+17n}{n} dla każdej liczby naturalnej n\geqslant 1.

Wtedy wyraz a_7 jest równy:

Odpowiedzi:
A. 53 B. 32
C. 50 D. 38
E. 29 F. 41
Zadanie 4.  1 pkt ⋅ Numer: pp-11918 ⋅ Poprawnie: 204/253 [80%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dane są ciągi a_n=3n oraz b_n=4n-2, określone dla każdej liczby naturalnej n\geqslant 1.

Liczba 25:

Odpowiedzi:
A. jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n) B. nie jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n)
C. nie jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n) D. jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n)
Zadanie 5.  1 pkt ⋅ Numer: pp-11386 ⋅ Poprawnie: 331/661 [50%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oceń, które z podanych ciągów są rosnące?
Odpowiedzi:
T/N : a_n=\frac{6-2n}{3} T/N : a_n=2-\frac{1}{2-3n}
T/N : a_n=-\frac{1}{4}n+10  
Zadanie 6.  1 pkt ⋅ Numer: pp-11144 ⋅ Poprawnie: 1049/1311 [80%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Ciąg (a_n) jest arytmetyczny i spełnia warunek 3a_3=a_2+2a_1+13.

Oblicz różnicę tego ciągu.

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11149 ⋅ Poprawnie: 769/967 [79%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Długości boków trójkąta prostokątnego tworzą ciąg arytmetyczny.

Boki tego trójkąta mają długość:

Odpowiedzi:
A. 22,29,36 B. 23,30,37
C. 20,27,34 D. 21,28,35
Zadanie 8.  1 pkt ⋅ Numer: pp-11836 ⋅ Poprawnie: 779/856 [91%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Ciąg arytmetyczny \left(a_n\right) jest określony dla każdej liczby naturalnej n\geqslant 1. W tym ciągu a_2=6 oraz a_3=10.

8-ty wyraz tego ciągu a_{8} jest równy:

Odpowiedzi:
A. 22 B. 26
C. 38 D. 34
E. 30 F. 42
Zadanie 9.  1 pkt ⋅ Numer: pp-12037 ⋅ Poprawnie: 249/241 [103%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Ciągi (a_n), (b_n), (c_n) oraz (d_n) są określone dla każdej liczby naturalnej n > 1 następująco: a_n=8n^2-7, b_n=4n+7, c_n=5^n, d_n=\frac{9}{n}.

Wskaż zdanie prawdziwe:

Odpowiedzi:
A. ciąg b_n jest arytmetyczny B. żaden z ciągów nie jest arytmetyczny
C. ciąg c_n jest arytmetyczny D. ciąg a_n jest arytmetyczny
Zadanie 10.  1 pkt ⋅ Numer: pp-11153 ⋅ Poprawnie: 43/132 [32%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » W ciągu arytmetycznym, w którym r\neq 0, zachodzi warunek a_{15}=0.

Wówczas:

Odpowiedzi:
A. S_{30} > a_{30} B. S_{30} \lessdot a_{30}
C. S_{30}=a_{30} D. S_{30}=0
Zadanie 11.  1 pkt ⋅ Numer: pp-11166 ⋅ Poprawnie: 103/162 [63%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 W ciągu geometrycznym (a_n) wyraz k=7-ty jest równy a_{7}=2\sqrt{3}.

Oblicz iloczyn pięciu kolejnych wyrazów tego ciągu a_{5}\cdot a_{6}\cdot a_{7}\cdot a_{8}\cdot a_{9} .

Odpowiedź:
a_{k-2}\cdot a_{k-1}\cdot a_k\cdot a_{k+1}\cdot a_{k+2}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-11171 ⋅ Poprawnie: 568/727 [78%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 W monotonicznym ciągu geometrycznym a_1=-2, a a_3=-\frac{81}{2}.

Oblicz iloraz tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 13.  1 pkt ⋅ Numer: pp-11790 ⋅ Poprawnie: 713/900 [79%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Ciąg geometryczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. W tym ciągu a_1=7.75 oraz a_2=-31.00.

Suma trzech początkowych wyrazów ciągu (a_n) jest równa:

Odpowiedzi:
A. \frac{405}{4} B. \frac{411}{4}
C. \frac{401}{4} D. \frac{403}{4}
E. \frac{407}{4} F. \frac{201}{2}
Zadanie 14.  1 pkt ⋅ Numer: pp-11181 ⋅ Poprawnie: 536/837 [64%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Ciąg określony jest wzorem a_n=3^n.

Oblicz S_{9}.

Odpowiedź:
S_k= (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-11780 ⋅ Poprawnie: 812/925 [87%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Klient wpłacił do banku 13000 zł na lokatę dwuletnią. Po każdym rocznym okresie oszczędzania bank dolicza odsetki w wysokości 5\% od kwoty bieżącego kapitału znajdującego się na lokacie.

Po dwóch latach oszczędzania łączna wartość doliczonych odsetek na tej lokacie (bez uwzględniania podatków) jest równa:

Odpowiedzi:
A. 1332.50 zł B. 1665.63 zł
C. 1066.00 zł D. 1599.00 zł
E. 1142.14 zł F. 1110.42 zł


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm