Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11155 ⋅ Poprawnie: 626/1060 [59%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
» Ile wyrazów ciągu
a_n=n^2-3025 jest mniejszych od
2304 ?
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11163 ⋅ Poprawnie: 107/161 [66%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Liczba
10^{26} jest jednym z wyrazów ciągu kwadratów
kolejnych liczb naturalnych
1,2,4,9,16,... .
Poprzednim wyrazem tego ciągu jest liczba:
Odpowiedzi:
A. \left(10^{13}\right)^2
B. \left(10^{13}+1\right)^2
C. 10^{26}\right)-1
D. \left(10^{13}-1\right)^2
Zadanie 3. 1 pkt ⋅ Numer: pp-11767 ⋅ Poprawnie: 815/875 [93%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
\left(a_n\right) jest określony wzorem
a_n=2^n\cdot(n+4) , dla każdej dodatniej liczby
naturalnej
n .
Wyraz a_4 jest równy:
Odpowiedzi:
A. 288
B. 64
C. 128
D. 256
Zadanie 4. 1 pkt ⋅ Numer: pp-11918 ⋅ Poprawnie: 202/253 [79%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Dane są ciągi
a_n=3n oraz
b_n=4n-2 , określone
dla każdej liczby naturalnej
n\geqslant 1 .
Liczba 47 :
Odpowiedzi:
A. jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n)
B. nie jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n)
C. nie jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n)
D. jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n)
Zadanie 5. 1 pkt ⋅ Numer: pp-11968 ⋅ Poprawnie: 114/145 [78%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Dany jest ciąg
(a_n) określony wzorem
a_n=2n^2-n dla każdej liczby naturalnej
n\geqslant 1 .
Oceń prawdziwość poniższych stwierdzeń:
Odpowiedzi:
T/N : ciąg (a_n) jest malejący
T/N : ciąg (a_n) jest rosnący
Zadanie 6. 1 pkt ⋅ Numer: pp-11146 ⋅ Poprawnie: 1709/2083 [82%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« W ciągu arytmetycznym
\left(a_n\right)
wyrazy pierwszy i trzeci są równe odpowiednio
6
i
10 , a pewien wyraz tego ciągu
a_k
jest równy
32 .
Wyznacz numer tego wyrazu.
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-11148 ⋅ Poprawnie: 659/918 [71%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« W ciągu arytmetycznym
(a_n) dane są:
a_{5}=-2 i
a_{12}=-9 .
Wówczas a_1+r jest równe:
Odpowiedź:
a_1+r=
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-11969 ⋅ Poprawnie: 314/271 [115%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Pięciowyrazowy ciąg
\left(6,\frac{5}{2},x,y,-8\right)
jest arytmetyczny.
Liczby x i y są równe:
Odpowiedzi:
A. x=-\frac{1}{2} oraz y=-4
B. x=-1 oraz y=-\frac{9}{2}
C. x=0 oraz y=-4
D. x=-1 oraz y=-\frac{7}{2}
E. x=-\frac{1}{2} oraz y=-\frac{7}{2}
F. x=0 oraz y=-\frac{9}{2}
Zadanie 9. 1 pkt ⋅ Numer: pp-12119 ⋅ Poprawnie: 151/178 [84%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Ciąg arytmetyczny
(a_n) jest określony dla każdej liczby
naturalnej
n\geqslant 1 . Różnica tego ciągu jest równa
-8 .
Wtedy:
Odpowiedzi:
A. a_{16}-a_{6}=-80
B. a_{16}-a_{6}=-104
C. a_{16}-a_{6}=-112
D. a_{16}-a_{6}=-96
E. a_{16}-a_{6}=-88
F. a_{16}-a_{6}=-72
G. a_{16}-a_{6}=-48
H. a_{16}-a_{6}=-56
Zadanie 10. 1 pkt ⋅ Numer: pp-11509 ⋅ Poprawnie: 497/926 [53%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Oblicz sumę wszystkich liczb naturalnych trzycyfrowych parzystych, które są większe od
257 .
Odpowiedź:
s=
(wpisz liczbę całkowitą)
Zadanie 11. 1 pkt ⋅ Numer: pp-11173 ⋅ Poprawnie: 187/321 [58%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
« Dany jest ciąg geometryczny o początkowych wyrazach
a_1=81 ,
a_2=27 ,
a_3=9 .
Oblicz numer największego wyrazu tego ciągu, który jest mniejszy od
\frac{1}{6} .
Odpowiedź:
max_{< \frac{1}{m}}=
(wpisz liczbę całkowitą)
Zadanie 12. 1 pkt ⋅ Numer: pp-11171 ⋅ Poprawnie: 568/727 [78%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
W monotonicznym ciągu geometrycznym
a_1=4 , a
a_3=9 .
Oblicz iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 13. 1 pkt ⋅ Numer: pp-11838 ⋅ Poprawnie: 568/689 [82%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Trzywyrazowy ciąg
(-5-2a, 12, 48) jest geometryczny.
Liczba a jest równa:
Odpowiedzi:
A. -8
B. -6
C. -4
D. -1
E. -16
F. -2
Zadanie 14. 1 pkt ⋅ Numer: pp-11181 ⋅ Poprawnie: 536/836 [64%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Ciąg określony jest wzorem
a_n=4^n .
Oblicz S_{6} .
Odpowiedź:
S_k=
(wpisz liczbę całkowitą)
Zadanie 15. 1 pkt ⋅ Numer: pp-11182 ⋅ Poprawnie: 314/498 [63%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
Kwotę 1000 zł ulokowano w banku na roczną lokatę oprocentowaną w wysokości
16\% w stosunku rocznym. Po zakończeniu lokaty od
naliczonych odsetek odprowadzany jest podatek w wysokości
19\% .
Maksymalna kwota, jaką po upływie roku będzie można wypłacić z banku, jest
równa:
Odpowiedzi:
A. 1000\cdot\left(1+\frac{19}{100}\cdot\frac{16}{100}\right)
B. 1000\cdot\left(1-\frac{19}{100}\cdot\frac{16}{100}\right)
C. 1000\cdot\left(1-\frac{81}{100}\cdot\frac{16}{100}\right)
D. 1000\cdot\left(1+\frac{81}{100}\cdot\frac{16}{100}\right)
Rozwiąż