Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11156 ⋅ Poprawnie: 147/234 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Dany jest ciąg (b_n), w którym b_n=(n+2)(n-101). Ciąg ten zawiera k wyrazów ujemnych.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11162 ⋅ Poprawnie: 53/111 [47%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Ogólny wyraz ciągu określony jest wzorem a_n=7\left(\sqrt[3]{3}\right)^{n+1}, przy czym n jest liczbą co najwyżej dwucyfrową.

Wyznacz ilość wyrazów wymiernych tego ciągu.

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11860 ⋅ Poprawnie: 272/284 [95%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=\frac{2n^2-4n}{n} dla każdej liczby naturalnej n\geqslant 1.

Wtedy wyraz a_7 jest równy:

Odpowiedzi:
A. 16 B. 18
C. 8 D. 4
E. 10 F. 6
Zadanie 4.  1 pkt ⋅ Numer: pp-12065 ⋅ Poprawnie: 113/129 [87%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg (b_n) jest określony wzorem b_n=4n^2-33n dla każdej liczby naturalnej n\geqslant 1.

Liczba niedodatnich wyrazów ciągu b_n jest równa:

Odpowiedzi:
A. 6 B. 5
C. 16 D. 11
E. 15 F. 7
G. 4 H. 8
Zadanie 5.  1 pkt ⋅ Numer: pp-11454 ⋅ Poprawnie: 258/421 [61%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wyznacz numer wyrazu, poczynając od którego ciąg liczbowy określony wzorem a_n=n^2-11n+11 jest rosnący.
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11146 ⋅ Poprawnie: 1727/2098 [82%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « W ciągu arytmetycznym \left(a_n\right) wyrazy pierwszy i trzeci są równe odpowiednio -10 i 0, a pewien wyraz tego ciągu a_k jest równy 45.

Wyznacz numer tego wyrazu.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-11433 ⋅ Poprawnie: 434/501 [86%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Dla ciągu arytmetycznego (a_n) określonego dla n\geqslant 1 spełniony jest warunek a_{12}+a_{13}+a_{14}=\frac{15}{2}.

Oblicz a_{13}.

Odpowiedź:
a_k=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11836 ⋅ Poprawnie: 784/858 [91%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Ciąg arytmetyczny \left(a_n\right) jest określony dla każdej liczby naturalnej n\geqslant 1. W tym ciągu a_2=5 oraz a_3=9.

8-ty wyraz tego ciągu a_{8} jest równy:

Odpowiedzi:
A. 21 B. 33
C. 29 D. 37
E. 25 F. 41
Zadanie 9.  1 pkt ⋅ Numer: pp-12035 ⋅ Poprawnie: 244/254 [96%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Ciąg (a_n), określony dla każdej liczby naturalnej n > 1, jest arytmetyczny. Różnica tego ciągu jest równa -1, a pierwszy wyraz tego ciągu jest równy -8.

Wtedy iloraz \frac{a_4}{a_2} jest równy:

Odpowiedzi:
A. \frac{22}{9} B. \frac{11}{9}
C. \frac{44}{9} D. \frac{11}{3}
E. \frac{22}{27} F. \frac{11}{6}
Zadanie 10.  1 pkt ⋅ Numer: pp-11145 ⋅ Poprawnie: 164/256 [64%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 W ciągu arytmetycznym a_{5}=-16 oraz a_{9}=-24.

Oblicz S_{12}.

Odpowiedź:
S_{12}= (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11174 ⋅ Poprawnie: 1414/2172 [65%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Ciąg liczbowy \left(8,2,\frac{c}{2}-1\right) jest ciągiem geometrycznym.

Oblicz c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-11165 ⋅ Poprawnie: 186/360 [51%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « W ciągu 20 minut z jednej bakterii powstaje 2 innych.

Ile nowych bakterii powstanie w ciągu 140 minut z jednej bakterii?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-12064 ⋅ Poprawnie: 106/117 [90%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Trzywyrzowy ciąg \left(14,3x,\frac{7}{2}\right) jest geometryczny i wszystkie jego wyrazy są dodatnie.

Wynika z tego, że x jest równe:

Odpowiedzi:
A. \frac{7}{3} B. \frac{7}{9}
C. \frac{14}{3} D. \frac{7}{12}
E. \frac{7}{6} F. \frac{7}{2}
Zadanie 14.  1 pkt ⋅ Numer: pp-11412 ⋅ Poprawnie: 244/370 [65%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Ciąg liczbowy geometryczny (a_n) zawiera tylko wyrazy dodatnie oraz \frac{a_{15}}{a_{13}}= \frac{1}{16}.

Oblicz iloraz tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 15.  1 pkt ⋅ Numer: pp-11182 ⋅ Poprawnie: 324/518 [62%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Kwotę 1000 zł ulokowano w banku na roczną lokatę oprocentowaną w wysokości 4\% w stosunku rocznym. Po zakończeniu lokaty od naliczonych odsetek odprowadzany jest podatek w wysokości 19\%.

Maksymalna kwota, jaką po upływie roku będzie można wypłacić z banku, jest równa:

Odpowiedzi:
A. 1000\cdot\left(1-\frac{81}{100}\cdot\frac{4}{100}\right) B. 1000\cdot\left(1+\frac{19}{100}\cdot\frac{4}{100}\right)
C. 1000\cdot\left(1+\frac{81}{100}\cdot\frac{4}{100}\right) D. 1000\cdot\left(1-\frac{19}{100}\cdot\frac{4}{100}\right)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm