Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11158 ⋅ Poprawnie: 470/920 [51%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Ciąg liczbowy (a_n) określony jest wzorem a_n=\frac{2n^2-16n+30}{n^2+9}, a liczby p i q są odpowiednio najmniejszym i największym numerem wyrazów ciągu, które są równe 0.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11163 ⋅ Poprawnie: 107/161 [66%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Liczba 10^{22} jest jednym z wyrazów ciągu kwadratów kolejnych liczb naturalnych 1,2,4,9,16,....

Poprzednim wyrazem tego ciągu jest liczba:

Odpowiedzi:
A. \left(10^{11}-1\right)^2 B. 10^{22}\right)-1
C. \left(10^{11}\right)^2 D. \left(10^{11}+1\right)^2
Zadanie 3.  1 pkt ⋅ Numer: pp-11788 ⋅ Poprawnie: 746/900 [82%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=\frac{n-7}{2}, dla każdej liczby naturalnej n\geqslant 1.

Liczba wyrazów tego ciągu mniejszych od 26 jest równa:

Odpowiedzi:
A. 60 B. 56
C. 57 D. 61
E. 62 F. 58
Zadanie 4.  1 pkt ⋅ Numer: pp-12038 ⋅ Poprawnie: 103/119 [86%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=(-3)^n\cdot n-5 dla każdej liczby naturalnej n > 1.

Wtedy trzeci wyraz tego ciągu jest równy:

Odpowiedzi:
A. -86 B. -76
C. -96 D. -88
E. -100 F. -75
G. -67 H. -78
Zadanie 5.  1 pkt ⋅ Numer: pp-11387 ⋅ Poprawnie: 303/597 [50%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Oceń, które z podanych ciągów są malejące?
Odpowiedzi:
T/N : a_n=1-\frac{4}{n+1} T/N : a_n=\frac{n-3}{4}
T/N : a_n=\frac{3}{2n+3}  
Zadanie 6.  1 pkt ⋅ Numer: pp-11146 ⋅ Poprawnie: 1727/2098 [82%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « W ciągu arytmetycznym \left(a_n\right) wyrazy pierwszy i trzeci są równe odpowiednio 1 i 5, a pewien wyraz tego ciągu a_k jest równy 31.

Wyznacz numer tego wyrazu.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-11789 ⋅ Poprawnie: 895/1050 [85%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Trzywyrazowy ciąg (3,5,a+5) jest arytmetyczny.

Liczba a jest równa:

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11861 ⋅ Poprawnie: 487/499 [97%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 W ciągu arytmetycznym (a_n), określonym dla każdej liczby naturalnej n\geqslant 1, a_5=-26 oraz a_{10}=-61. Różnica tego ciągu jest równa:
Odpowiedzi:
A. -15 B. -11
C. -\frac{7}{2} D. -7
E. -\frac{11}{2} F. -13
Zadanie 9.  1 pkt ⋅ Numer: pp-12035 ⋅ Poprawnie: 238/254 [93%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Ciąg (a_n), określony dla każdej liczby naturalnej n > 1, jest arytmetyczny. Różnica tego ciągu jest równa -5, a pierwszy wyraz tego ciągu jest równy 1.

Wtedy iloraz \frac{a_4}{a_2} jest równy:

Odpowiedzi:
A. \frac{7}{2} B. \frac{7}{3}
C. \frac{7}{4} D. 7
E. \frac{21}{4} F. \frac{21}{2}
Zadanie 10.  1 pkt ⋅ Numer: pp-11142 ⋅ Poprawnie: 328/477 [68%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Kamil każdego dnia czytał o 18 stron książki więcej niż przeczytał dnia poprzedniego. Do dwunastego dnia włącznie przeczytał 1440 stron.

Ile stron przeczytał pierwszego dnia?

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11166 ⋅ Poprawnie: 103/162 [63%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 W ciągu geometrycznym (a_n) wyraz k=13-ty jest równy a_{13}=2\sqrt{3}.

Oblicz iloczyn pięciu kolejnych wyrazów tego ciągu a_{11}\cdot a_{12}\cdot a_{13}\cdot a_{14}\cdot a_{15} .

Odpowiedź:
a_{k-2}\cdot a_{k-1}\cdot a_k\cdot a_{k+1}\cdot a_{k+2}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-11508 ⋅ Poprawnie: 493/840 [58%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 (1 pkt) W ciągu geometrycznym \left(a_n\right), określonym dla każdego n\in\mathbb{N_+}, wyrazy drugi i szósty są równe odpowiednio a_2=7 i a_6=28.

Kwadrat wyrazu czwartego tego ciągu jest równy:

Odpowiedź:
a_4^2= (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-11790 ⋅ Poprawnie: 712/900 [79%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Ciąg geometryczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. W tym ciągu a_1=0.75 oraz a_2=-4.50.

Suma trzech początkowych wyrazów ciągu (a_n) jest równa:

Odpowiedzi:
A. \frac{93}{4} B. 23
C. \frac{91}{4} D. \frac{95}{4}
E. \frac{97}{4} F. \frac{101}{4}
Zadanie 14.  1 pkt ⋅ Numer: pp-11180 ⋅ Poprawnie: 730/1060 [68%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Suma pierwszych pięciu wyrazów ciągu geometrycznego jest równa \frac{121}{3}, a jego iloraz wynosi 3.

Wyznacz a_1.

Odpowiedź:
a_1=
(wpisz dwie liczby całkowite)
Zadanie 15.  1 pkt ⋅ Numer: pp-11183 ⋅ Poprawnie: 539/888 [60%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Na lokacie złożono 1000 zł przy rocznej stopie procentowej 16\% (procent składany). Odsetki naliczane są co kwartał.

Po upływie roku wielkość kapitału na lokacie (przed potrąceniem podatków będzie równa:

Odpowiedzi:
A. 1000\cdot\left(1+\frac{4}{400}\right)^4 B. 1000\cdot\left(1+\frac{4}{100}\right)
C. 1000\cdot\left(1+\frac{4}{100}\right)^4 D. 1000\cdot\left(1+\left(\frac{16}{100}\right)^4\right)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm