Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11156 ⋅ Poprawnie: 147/233 [63%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Dany jest ciąg (b_n), w którym b_n=(n+9)(n-26). Ciąg ten zawiera k wyrazów ujemnych.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11163 ⋅ Poprawnie: 107/161 [66%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Liczba 10^{28} jest jednym z wyrazów ciągu kwadratów kolejnych liczb naturalnych 1,2,4,9,16,....

Poprzednim wyrazem tego ciągu jest liczba:

Odpowiedzi:
A. \left(10^{14}-1\right)^2 B. \left(10^{14}+1\right)^2
C. 10^{28}\right)-1 D. \left(10^{14}\right)^2
Zadanie 3.  1 pkt ⋅ Numer: pp-11815 ⋅ Poprawnie: 667/735 [90%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=(-1)^n\cdot\frac{n+11}{2}, dla każdej liczby naturalnej n\geqslant 1.

Trzeci wyraz tego ciągu jest równy:

Odpowiedzi:
A. -6 B. -7
C. -8 D. 7
E. -9 F. -\frac{13}{2}
Zadanie 4.  1 pkt ⋅ Numer: pp-11918 ⋅ Poprawnie: 202/253 [79%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dane są ciągi a_n=3n oraz b_n=4n-2, określone dla każdej liczby naturalnej n\geqslant 1.

Liczba 53:

Odpowiedzi:
A. jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n) B. nie jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n)
C. nie jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n) D. jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n)
Zadanie 5.  1 pkt ⋅ Numer: pp-11455 ⋅ Poprawnie: 70/140 [50%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 «« Wskaż najmniejszy możliwy numer wyrazu, poczynając od którego ciąg liczbowy określony wzorem a_n=n^2-23n+23 jest monotoniczny:
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11150 ⋅ Poprawnie: 893/1150 [77%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
Oceń, które z podanych ciągów są arytmetyczne:
Odpowiedzi:
T/N : a_n=\frac{1}{n} T/N : a_n=\frac{-4n+16}{-2}
Zadanie 7.  1 pkt ⋅ Numer: pp-11148 ⋅ Poprawnie: 659/918 [71%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « W ciągu arytmetycznym (a_n) dane są: a_{4}=17 i a_{11}=52.

Wówczas a_1+r jest równe:

Odpowiedź:
a_1+r= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11891 ⋅ Poprawnie: 368/378 [97%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Ciąg (a_n), określony dla każdej liczby naturalnej n \geqslant 1, jest arytmetyczny. Różnica tego ciągu jest równa -3 oraz a_8=-12.

Czwarty wyraz tego ciągu jest równy:

Odpowiedzi:
A. -6 B. -12
C. 0 D. -3
E. 3 F. -9
Zadanie 9.  1 pkt ⋅ Numer: pp-12119 ⋅ Poprawnie: 151/178 [84%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Różnica tego ciągu jest równa -7.

Wtedy:

Odpowiedzi:
A. a_{15}-a_{8}=-21 B. a_{15}-a_{8}=-28
C. a_{15}-a_{8}=-77 D. a_{15}-a_{8}=-42
E. a_{15}-a_{8}=-49 F. a_{15}-a_{8}=-63
G. a_{15}-a_{8}=-35 H. a_{15}-a_{8}=-56
Zadanie 10.  1 pkt ⋅ Numer: pp-11151 ⋅ Poprawnie: 477/633 [75%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « W kinie jest 37 rzędów krzeseł. Rząd pierwszy składa się z 11 krzeseł, a każdy następny rząd zawiera o 13 krzeseł więcej niż rząd poprzedni.

Ile jest krzeseł w kinie?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11178 ⋅ Poprawnie: 900/1160 [77%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Ciąg (b_n) jest geometryczny, w krórym dane są dwa wyrazy b_1=648 i b_5=8.

Wyznacz iloraz tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-11165 ⋅ Poprawnie: 186/359 [51%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « W ciągu 20 minut z jednej bakterii powstaje 3 innych.

Ile nowych bakterii powstanie w ciągu 80 minut z jednej bakterii?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-11992 ⋅ Poprawnie: 493/636 [77%] Rozwiąż 
Podpunkt 13.1 (0.2 pkt)
 Trzywyrazowy ciąg (12, 6, 2m-13) jest geometryczny.

Ten ciąg jest:

Odpowiedzi:
A. malejący B. rosnący
Podpunkt 13.2 (0.8 pkt)
 Liczba m jest równa:
Odpowiedzi:
A. 9 B. 10
C. 6 D. 12
E. 11 F. 8
Zadanie 14.  1 pkt ⋅ Numer: pp-11919 ⋅ Poprawnie: 200/244 [81%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Dany jest ciąg geometryczny (a_n), określony dla każdej liczby naturalnej n\geqslant 1. Drugi wyraz tego ciągu oraz iloraz ciągu (a_n) są równe 4.

Suma czterech początkowych kolejnych wyrazów tego ciągu jest równa:

Odpowiedzi:
A. 1365 B. 85
C. 21 D. 5
E. 343 F. 341
Zadanie 15.  1 pkt ⋅ Numer: pp-11184 ⋅ Poprawnie: 262/407 [64%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 « Po k latach z tytułu lokaty o wysokości 4800 zł oprocentowanej w wysokości 25\% w skali roku przy rocznej kapitalizacji odsetek otrzymamy łączne odsetki (przed potrąceniem podatków) w wysokości m złotych.

Wyznacz liczbę m.

Odpowiedź:
m= (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm