Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11159 ⋅ Poprawnie: 232/392 [59%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Dany jest ciąg
a_n=\frac{n+13}{n+3} .
Ile wyrazów całkowitych występuje w tym ciągu?
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11163 ⋅ Poprawnie: 107/161 [66%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Liczba
10^{24} jest jednym z wyrazów ciągu kwadratów
kolejnych liczb naturalnych
1,2,4,9,16,... .
Poprzednim wyrazem tego ciągu jest liczba:
Odpowiedzi:
A. 10^{24}\right)-1
B. \left(10^{12}\right)^2
C. \left(10^{12}-1\right)^2
D. \left(10^{12}+1\right)^2
Zadanie 3. 1 pkt ⋅ Numer: pp-11815 ⋅ Poprawnie: 561/627 [89%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
\left(a_n\right) jest określony wzorem
a_n=(-1)^n\cdot\frac{n+8}{5} , dla każdej liczby naturalnej
n\geqslant 1 .
Trzeci wyraz tego ciągu jest równy:
Odpowiedzi:
A. -\frac{9}{5}
B. -\frac{11}{5}
C. -\frac{13}{5}
D. \frac{11}{5}
E. -3
F. -2
Zadanie 4. 1 pkt ⋅ Numer: pp-12065 ⋅ Poprawnie: 54/83 [65%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Ciąg
(b_n) jest określony wzorem
b_n=4n^2-58n dla każdej liczby naturalnej
n\geqslant 1 .
Liczba niedodatnich wyrazów ciągu b_n jest równa:
Odpowiedzi:
A. 18
B. 26
C. 13
D. 8
E. 19
F. 24
G. 14
H. 11
Zadanie 5. 1 pkt ⋅ Numer: pp-11991 ⋅ Poprawnie: 375/576 [65%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Ciąg
(a_n) jest określony wzorem
a_n=(-1)^n\cdot (n+4) dla każdej liczby
naturalnej
n\geqslant 1 .
Oceń prawdziwość poniższych stwierdzeń:
Odpowiedzi:
T/N : ciąg (a_n) jest monotoniczny
T/N : ciąg (a_n) jest rosnący
Zadanie 6. 1 pkt ⋅ Numer: pp-11143 ⋅ Poprawnie: 709/933 [75%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
«« Ciąg
(\sqrt{108}, b,\sqrt{432})
jest arytmetyczny.
Oblicz b .
Odpowiedź:
b=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-11433 ⋅ Poprawnie: 433/500 [86%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Dla ciągu arytmetycznego
(a_n) określonego dla
n\geqslant 1 spełniony jest warunek
a_{10}+a_{11}+a_{12}=\frac{39}{2} .
Oblicz a_{11} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-12013 ⋅ Poprawnie: 386/446 [86%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
W ciągu arytmetycznym
(a_n) , określonym dla każdej liczby
naturalnej
n\geqslant 1 , dane są wyrazy:
a_1=3 oraz
a_3=7 .
Wyraz a_{14} jest równy:
Odpowiedzi:
A. 21
B. 33
C. 25
D. 15
E. 29
F. 19
G. 17
H. 35
I. 39
J. 31
Zadanie 9. 1 pkt ⋅ Numer: pp-12066 ⋅ Poprawnie: 131/160 [81%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Ciąg arytmetyczny
(a_n) jest określony dla każdej liczby
naturalnej
n\geqslant 1 . Piąty i siódmy wyraz tego ciągu
spełniają warunek
a_5+a_7=188 .
Wtedy szósty wyraz tego ciągu jest równy:
Odpowiedzi:
A. 93
B. 112
C. 107
D. 109
E. 81
F. 94
G. 85
H. 96
Zadanie 10. 1 pkt ⋅ Numer: pp-11142 ⋅ Poprawnie: 308/456 [67%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Kamil każdego dnia czytał o
19 stron książki
więcej niż przeczytał dnia poprzedniego. Do dwunastego dnia włącznie przeczytał
1638 stron.
Ile stron przeczytał pierwszego dnia?
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 11. 1 pkt ⋅ Numer: pp-11173 ⋅ Poprawnie: 187/321 [58%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
« Dany jest ciąg geometryczny o początkowych wyrazach
a_1=729 ,
a_2=243 ,
a_3=81 .
Oblicz numer największego wyrazu tego ciągu, który jest mniejszy od
\frac{1}{6} .
Odpowiedź:
max_{< \frac{1}{m}}=
(wpisz liczbę całkowitą)
Zadanie 12. 1 pkt ⋅ Numer: pp-11170 ⋅ Poprawnie: 333/468 [71%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
» W ciągu geometrycznym
(a_n) dane są:
a_1=1296 i
a_3=36 , a czwarty wyraz tego ciągu
jest ujemny.
Wyznacz a_4 .
Odpowiedź:
a_4=
(wpisz liczbę całkowitą)
Zadanie 13. 1 pkt ⋅ Numer: pp-12121 ⋅ Poprawnie: 56/63 [88%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Trójwyrazowy ciąg
(5,x,125) jest rosnącym ciągiem
geometrycznym.
Wtedy x jest równe:
Odpowiedzi:
A. 22
B. 29
C. 24
D. 26
E. 25
F. 28
Zadanie 14. 1 pkt ⋅ Numer: pp-11412 ⋅ Poprawnie: 237/359 [66%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Ciąg liczbowy geometryczny
(a_n) zawiera
tylko wyrazy dodatnie oraz
\frac{a_{19}}{a_{17}}=
\frac{1}{81} .
Oblicz iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 15. 1 pkt ⋅ Numer: pp-11184 ⋅ Poprawnie: 262/406 [64%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
« Po
k latach z tytułu lokaty o wysokości
5600 zł oprocentowanej w wysokości
25\% w skali roku przy
rocznej kapitalizacji odsetek otrzymamy łączne odsetki (przed potrąceniem
podatków) w wysokości
m złotych.
Wyznacz liczbę m .
Odpowiedź:
m=
(liczba zapisana dziesiętnie)
Rozwiąż