Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11156 ⋅ Poprawnie: 147/233 [63%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Dany jest ciąg (b_n), w którym b_n=(n+5)(n-82). Ciąg ten zawiera k wyrazów ujemnych.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11160 ⋅ Poprawnie: 307/554 [55%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wyznacz najmniejszy dodatni wyraz ciągu określonego wzorem a_n=7n-159.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11767 ⋅ Poprawnie: 815/875 [93%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=2^n\cdot(n+3), dla każdej dodatniej liczby naturalnej n.

Wyraz a_5 jest równy:

Odpowiedzi:
A. 512 B. 256
C. 576 D. 128
Zadanie 4.  1 pkt ⋅ Numer: pp-12090 ⋅ Poprawnie: 67/71 [94%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dane są ciągi (a_n), (b_n), (c_n), (d_n), określone dla każdej liczby naturalnej n\geqslant 1 wzorami: a_n=20n+3, b_n=2n^2-3, c_n=n^2+10n-2, d_n=\frac{n+187}{n}.

Liczba 239 jest 11-tym wyrazem ciągu:

Odpowiedzi:
A. (d_n) B. (a_n)
C. (b_n) D. (c_n)
Zadanie 5.  1 pkt ⋅ Numer: pp-11991 ⋅ Poprawnie: 422/628 [67%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=(-1)^n\cdot (n-2) dla każdej liczby naturalnej n\geqslant 1.

Oceń prawdziwość poniższych stwierdzeń:

Odpowiedzi:
T/N : ciąg (a_n) jest rosnący T/N : ciąg (a_n) zawiera wyraz dodatni i wyraz ujemny
Zadanie 6.  1 pkt ⋅ Numer: pp-11150 ⋅ Poprawnie: 893/1150 [77%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
Oceń, które z podanych ciągów są arytmetyczne:
Odpowiedzi:
T/N : a_n=\sqrt{n+3} T/N : a_n=n^2
Zadanie 7.  1 pkt ⋅ Numer: pp-11789 ⋅ Poprawnie: 861/1023 [84%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Trzywyrazowy ciąg (2,7,a+1) jest arytmetyczny.

Liczba a jest równa:

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11861 ⋅ Poprawnie: 440/449 [97%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 W ciągu arytmetycznym (a_n), określonym dla każdej liczby naturalnej n\geqslant 1, a_5=-6 oraz a_{10}=-11. Różnica tego ciągu jest równa:
Odpowiedzi:
A. -4 B. -1
C. 7 D. \frac{1}{2}
E. -\frac{1}{2} F. -5
Zadanie 9.  1 pkt ⋅ Numer: pp-12066 ⋅ Poprawnie: 190/211 [90%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Trzeci i piąty wyraz tego ciągu spełniają warunek a_3+a_5=132.

Wtedy czwarty wyraz tego ciągu jest równy:

Odpowiedzi:
A. 49 B. 86
C. 59 D. 63
E. 47 F. 77
G. 76 H. 66
Zadanie 10.  1 pkt ⋅ Numer: pp-11151 ⋅ Poprawnie: 477/633 [75%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « W kinie jest 29 rzędów krzeseł. Rząd pierwszy składa się z 15 krzeseł, a każdy następny rząd zawiera o 9 krzeseł więcej niż rząd poprzedni.

Ile jest krzeseł w kinie?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11179 ⋅ Poprawnie: 901/1213 [74%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 W ciągu geometrycznym (a_n), który zawiera dziewięć wyrazów, wszystkie wyrazy są dodatnie i znane są dwa wyrazy a_1=5 i a_9=20.

Oblicz a_5.

Odpowiedź:
a_5= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-11168 ⋅ Poprawnie: 117/163 [71%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Pewien gatunek liczy 1000 osobników i co roku jego liczebność rośnie o 40\%.

Po upływie 7 lat liczebność tego gatunku wyniesie:

Odpowiedzi:
A. 1000\cdot (1.4)^7 B. 1000\cdot (1+7\cdot 1.4)
C. 1000\cdot (1+1.4)^7 D. 1000\cdot (1+1.4^7)
Zadanie 13.  1 pkt ⋅ Numer: pp-12091 ⋅ Poprawnie: 57/78 [73%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Ciąg geometryczny (a_n), określony dla każdej liczby naturalnej n\geqslant 1, jest rosnący i wszystkie jego wyrazy są dodatnie. Ponadto spełniony jest warunek a_3=a_1^{4}\cdot a_2. Niech q oznacza iloraz ciągu (a_n).

Wtedy:

Odpowiedzi:
A. a_1=\frac{1}{q^4} B. q^4=a_1
C. q=a_1^4 D. a_1=q
Zadanie 14.  1 pkt ⋅ Numer: pp-11412 ⋅ Poprawnie: 243/369 [65%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Ciąg liczbowy geometryczny (a_n) zawiera tylko wyrazy dodatnie oraz \frac{a_{13}}{a_{11}}= \frac{1}{64}.

Oblicz iloraz tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 15.  1 pkt ⋅ Numer: pp-11183 ⋅ Poprawnie: 531/874 [60%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Na lokacie złożono 1000 zł przy rocznej stopie procentowej 16\% (procent składany). Odsetki naliczane są co kwartał.

Po upływie roku wielkość kapitału na lokacie (przed potrąceniem podatków będzie równa:

Odpowiedzi:
A. 1000\cdot\left(1+\frac{4}{100}\right)^4 B. 1000\cdot\left(1+\left(\frac{16}{100}\right)^4\right)
C. 1000\cdot\left(1+\frac{4}{100}\right) D. 1000\cdot\left(1+\frac{4}{400}\right)^4


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm