Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11155 ⋅ Poprawnie: 626/1060 [59%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
» Ile wyrazów ciągu
a_n=n^2-4225 jest mniejszych od
5184 ?
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11161 ⋅ Poprawnie: 949/1086 [87%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Pewien wyraz ciągu jest równy
449 . Ciąg ten określony
jest wzorem
a_n=\frac{3n+7}{2} .
Wyznacz numer tego wyrazu.
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11767 ⋅ Poprawnie: 813/873 [93%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
\left(a_n\right) jest określony wzorem
a_n=2^n\cdot(n+5) , dla każdej dodatniej liczby
naturalnej
n .
Wyraz a_4 jest równy:
Odpowiedzi:
A. 320
B. 288
C. 144
D. 72
Zadanie 4. 1 pkt ⋅ Numer: pp-12065 ⋅ Poprawnie: 103/125 [82%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Ciąg
(b_n) jest określony wzorem
b_n=5n^2-22n dla każdej liczby naturalnej
n\geqslant 1 .
Liczba niedodatnich wyrazów ciągu b_n jest równa:
Odpowiedzi:
A. 15
B. 2
C. 5
D. 12
E. 11
F. 4
G. 9
H. 14
Zadanie 5. 1 pkt ⋅ Numer: pp-11386 ⋅ Poprawnie: 331/661 [50%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Oceń, które z podanych ciągów są rosnące?
Odpowiedzi:
T/N : a_n=-\frac{1}{4}n+10
T/N : a_n=12+n-n^2
T/N : a_n=\frac{n-3}{4}
Zadanie 6. 1 pkt ⋅ Numer: pp-11146 ⋅ Poprawnie: 1709/2083 [82%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« W ciągu arytmetycznym
\left(a_n\right)
wyrazy pierwszy i trzeci są równe odpowiednio
12
i
18 , a pewien wyraz tego ciągu
a_k
jest równy
54 .
Wyznacz numer tego wyrazu.
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-11541 ⋅ Poprawnie: 481/731 [65%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Trzy liczby
x+8 ,
x+14
i
3x+32 ,
w podanej kolejności są trzema początkowymi wyrazami ciągu arytmetycznego
\left(c_n\right) .
Oblicz c_{63} .
Odpowiedź:
c_k=
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-11891 ⋅ Poprawnie: 367/377 [97%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Ciąg
(a_n) , określony dla każdej liczby naturalnej
n \geqslant 1 , jest arytmetyczny. Różnica tego ciągu jest równa
-3 oraz
a_8=-9 .
Czwarty wyraz tego ciągu jest równy:
Odpowiedzi:
A. -6
B. 3
C. -3
D. 0
E. 6
F. -9
Zadanie 9. 1 pkt ⋅ Numer: pp-12035 ⋅ Poprawnie: 232/248 [93%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Ciąg
(a_n) , określony dla każdej liczby naturalnej
n > 1 , jest arytmetyczny. Różnica tego ciągu jest
równa
-4 , a pierwszy wyraz tego ciągu jest równy
8 .
Wtedy iloraz \frac{a_4}{a_2} jest równy:
Odpowiedzi:
A. -3
B. -\frac{2}{3}
C. -1
D. -\frac{1}{2}
E. -2
F. -4
Zadanie 10. 1 pkt ⋅ Numer: pp-11411 ⋅ Poprawnie: 1309/1493 [87%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
W ciągu arytmetycznym
(a_n) dane są wyrazy
a_1=21 i
a_8=-21 .
Suma ośmiu początkowych wyrazów tego ciągu jest równa:
Odpowiedź:
S_8=
(wpisz liczbę całkowitą)
Zadanie 11. 1 pkt ⋅ Numer: pp-11173 ⋅ Poprawnie: 187/321 [58%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
« Dany jest ciąg geometryczny o początkowych wyrazach
a_1=81 ,
a_2=27 ,
a_3=9 .
Oblicz numer największego wyrazu tego ciągu, który jest mniejszy od
\frac{1}{7} .
Odpowiedź:
max_{< \frac{1}{m}}=
(wpisz liczbę całkowitą)
Zadanie 12. 1 pkt ⋅ Numer: pp-11165 ⋅ Poprawnie: 186/359 [51%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
« W ciągu
20 minut z jednej bakterii powstaje
3 innych.
Ile nowych bakterii powstanie w ciągu 80 minut z
jednej bakterii?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 13. 1 pkt ⋅ Numer: pp-11790 ⋅ Poprawnie: 698/885 [78%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Ciąg geometryczny
(a_n) jest określony dla każdej liczby naturalnej
n\geqslant 1 . W tym ciągu
a_1=1.75 oraz
a_2=-14.00 .
Suma trzech początkowych wyrazów ciągu (a_n) jest równa:
Odpowiedzi:
A. \frac{401}{4}
B. \frac{399}{4}
C. \frac{403}{4}
D. \frac{397}{4}
E. \frac{199}{2}
F. \frac{407}{4}
Zadanie 14. 1 pkt ⋅ Numer: pp-11180 ⋅ Poprawnie: 730/1059 [68%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Suma pierwszych pięciu wyrazów ciągu geometrycznego jest równa
-\frac{121}{2} , a jego iloraz wynosi
3 .
Wyznacz a_1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 15. 1 pkt ⋅ Numer: pp-11780 ⋅ Poprawnie: 796/909 [87%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
Klient wpłacił do banku
48000 zł na lokatę dwuletnią. Po każdym rocznym okresie
oszczędzania bank dolicza odsetki w wysokości
3\% od kwoty bieżącego kapitału
znajdującego się na lokacie.
Po dwóch latach oszczędzania łączna wartość doliczonych odsetek na tej lokacie (bez
uwzględniania podatków) jest równa:
Odpowiedzi:
A. 2338.56 zł
B. 2436.00 zł
C. 2923.20 zł
D. 3507.84 zł
E. 3654.00 zł
F. 2505.60 zł
Rozwiąż