Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11157 ⋅ Poprawnie: 241/419 [57%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Ciąg
\left(a_n\right) określony jest wzorem
a_n=-22+24n-2n^2 .
Wyznacz numer największego wyrazu ciągu \left(a_n\right) .
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11160 ⋅ Poprawnie: 307/554 [55%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Wyznacz najmniejszy dodatni wyraz ciągu określonego wzorem
a_n=7n-114 .
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11860 ⋅ Poprawnie: 271/284 [95%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
\left(a_n\right) jest określony wzorem
a_n=\frac{2n^2-12n}{n} dla każdej liczby
naturalnej
n\geqslant 1 .
Wtedy wyraz a_7 jest równy:
Odpowiedzi:
A. 8
B. 10
C. -4
D. 2
E. 6
F. -2
Zadanie 4. 1 pkt ⋅ Numer: pp-12065 ⋅ Poprawnie: 111/129 [86%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Ciąg
(b_n) jest określony wzorem
b_n=5n^2-53n dla każdej liczby naturalnej
n\geqslant 1 .
Liczba niedodatnich wyrazów ciągu b_n jest równa:
Odpowiedzi:
A. 5
B. 7
C. 4
D. 10
E. 3
F. 15
G. 22
H. 20
Zadanie 5. 1 pkt ⋅ Numer: pp-11991 ⋅ Poprawnie: 444/649 [68%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Ciąg
(a_n) jest określony wzorem
a_n=(-1)^n\cdot (n-4) dla każdej liczby
naturalnej
n\geqslant 1 .
Oceń prawdziwość poniższych stwierdzeń:
Odpowiedzi:
T/N : ciąg (a_n) zawiera wyraz dodatni i wyraz ujemny
T/N : ciąg (a_n) jest monotoniczny
Zadanie 6. 1 pkt ⋅ Numer: pp-11150 ⋅ Poprawnie: 894/1151 [77%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Oceń, które z podanych ciągów są arytmetyczne:
Odpowiedzi:
T/N : a_n=\frac{1}{n}
T/N : a_n=\sqrt{n+3}
Zadanie 7. 1 pkt ⋅ Numer: pp-11789 ⋅ Poprawnie: 897/1050 [85%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Trzywyrazowy ciąg
(1,4,a-3) jest arytmetyczny.
Liczba a jest równa:
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-11891 ⋅ Poprawnie: 379/387 [97%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Ciąg
(a_n) , określony dla każdej liczby naturalnej
n \geqslant 1 , jest arytmetyczny. Różnica tego ciągu jest równa
-3 oraz
a_8=-33 .
Czwarty wyraz tego ciągu jest równy:
Odpowiedzi:
A. -21
B. -18
C. -24
D. -27
E. -30
F. -33
Zadanie 9. 1 pkt ⋅ Numer: pp-12119 ⋅ Poprawnie: 157/184 [85%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Ciąg arytmetyczny
(a_n) jest określony dla każdej liczby
naturalnej
n\geqslant 1 . Różnica tego ciągu jest równa
-6 .
Wtedy:
Odpowiedzi:
A. a_{17}-a_{6}=-84
B. a_{17}-a_{6}=-72
C. a_{17}-a_{6}=-90
D. a_{17}-a_{6}=-78
E. a_{17}-a_{6}=-42
F. a_{17}-a_{6}=-66
G. a_{17}-a_{6}=-54
H. a_{17}-a_{6}=-48
Zadanie 10. 1 pkt ⋅ Numer: pp-11152 ⋅ Poprawnie: 496/864 [57%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Oblicz sumę
10 początkowych wyrazów ciągu arytmetycznego
o wzorze ogólnym
a_n=\frac{5}{2}-3\cdot n .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-11176 ⋅ Poprawnie: 536/816 [65%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
W ciągu geometrycznym
(a_n) wyraz
o numerze
k=4 jest równy
5 .
Oblicz a_{2}\cdot a_{6} .
Odpowiedź:
a_{k-2}\cdot a_{k+2}=
(wpisz liczbę całkowitą)
Zadanie 12. 1 pkt ⋅ Numer: pp-11171 ⋅ Poprawnie: 568/727 [78%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
W monotonicznym ciągu geometrycznym
a_1=-6 , a
a_3=-24 .
Oblicz iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 13. 1 pkt ⋅ Numer: pp-12014 ⋅ Poprawnie: 293/412 [71%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Trzywyrazowy ciąg
(-1,2,x-3) jest arytmetyczny.
Trzywyrazowy ciąg
(-1,2,y-2) jest geometryczny.
Liczby x oraz y spełniają warunki:
Odpowiedzi:
A. x > 3 i y\lessdot 2
B. x > 3 i y > 2
C. x \lessdot 3 i y > 2
D. x \lessdot 3 i y\lessdot 2
Zadanie 14. 1 pkt ⋅ Numer: pp-11180 ⋅ Poprawnie: 730/1060 [68%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Suma pierwszych pięciu wyrazów ciągu geometrycznego jest równa
\frac{61}{2} , a jego iloraz wynosi
-3 .
Wyznacz a_1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 15. 1 pkt ⋅ Numer: pp-11830 ⋅ Poprawnie: 642/749 [85%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
Pan Grzegorz wpłacił do banku pewną kwotę na lokatę dwuletnią. Po każdym rocznym okresie
oszczędzania bank doliczał odsetki w wysokości
10\% od kwoty bieżącego
kapitału znajdującego się na lokacie. Po dwóch latach oszczędzania pan Grzegorz odebrał z tego
banku wraz z odsetkami kwotę
3872.00 zł (bez uwzględnienia podatków).
Kwota wpłacona przez pana Grzegorza na tę lokatę była równa:
Odpowiedzi:
A. 3200 zł
B. 3600 zł
C. 3500 zł
D. 3400 zł
E. 3000 zł
F. 3700 zł
Rozwiąż