Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11155 ⋅ Poprawnie: 626/1060 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Ile wyrazów ciągu a_n=n^2-1024 jest mniejszych od 15876?
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11161 ⋅ Poprawnie: 949/1086 [87%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Pewien wyraz ciągu jest równy 308. Ciąg ten określony jest wzorem a_n=\frac{3n+7}{2}.

Wyznacz numer tego wyrazu.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11767 ⋅ Poprawnie: 813/873 [93%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=2^n\cdot(n+1), dla każdej dodatniej liczby naturalnej n.

Wyraz a_5 jest równy:

Odpowiedzi:
A. 384 B. 192
C. 96 D. 448
Zadanie 4.  1 pkt ⋅ Numer: pp-12065 ⋅ Poprawnie: 103/125 [82%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg (b_n) jest określony wzorem b_n=3n^2-71n dla każdej liczby naturalnej n\geqslant 1.

Liczba niedodatnich wyrazów ciągu b_n jest równa:

Odpowiedzi:
A. 23 B. 32
C. 25 D. 34
E. 16 F. 18
G. 24 H. 21
Zadanie 5.  1 pkt ⋅ Numer: pp-11455 ⋅ Poprawnie: 70/140 [50%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 «« Wskaż najmniejszy możliwy numer wyrazu, poczynając od którego ciąg liczbowy określony wzorem a_n=n^2-11n+11 jest monotoniczny:
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11150 ⋅ Poprawnie: 893/1150 [77%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
Oceń, które z podanych ciągów są arytmetyczne:
Odpowiedzi:
T/N : a_n=\frac{-4n+16}{-2} T/N : a_n=n^2
Zadanie 7.  1 pkt ⋅ Numer: pp-11149 ⋅ Poprawnie: 752/952 [78%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Długości boków trójkąta prostokątnego tworzą ciąg arytmetyczny.

Boki tego trójkąta mają długość:

Odpowiedzi:
A. 10,13,16 B. 11,14,17
C. 13,16,19 D. 9,12,15
Zadanie 8.  1 pkt ⋅ Numer: pp-11861 ⋅ Poprawnie: 437/445 [98%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 W ciągu arytmetycznym (a_n), określonym dla każdej liczby naturalnej n\geqslant 1, a_5=-32 oraz a_{10}=-47. Różnica tego ciągu jest równa:
Odpowiedzi:
A. -3 B. -12
C. -\frac{3}{2} D. -\frac{3}{2}
E. -7 F. -5
Zadanie 9.  1 pkt ⋅ Numer: pp-12035 ⋅ Poprawnie: 232/248 [93%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Ciąg (a_n), określony dla każdej liczby naturalnej n > 1, jest arytmetyczny. Różnica tego ciągu jest równa -2, a pierwszy wyraz tego ciągu jest równy -8.

Wtedy iloraz \frac{a_4}{a_2} jest równy:

Odpowiedzi:
A. \frac{14}{5} B. \frac{28}{5}
C. \frac{21}{10} D. \frac{21}{5}
E. \frac{14}{15} F. \frac{7}{5}
Zadanie 10.  1 pkt ⋅ Numer: pp-11411 ⋅ Poprawnie: 1309/1493 [87%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 W ciągu arytmetycznym (a_n) dane są wyrazy a_1=12 i a_8=-37.

Suma ośmiu początkowych wyrazów tego ciągu jest równa:

Odpowiedź:
S_8= (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11176 ⋅ Poprawnie: 536/816 [65%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 W ciągu geometrycznym (a_n) wyraz o numerze k=4 jest równy 6.

Oblicz a_{2}\cdot a_{6}.

Odpowiedź:
a_{k-2}\cdot a_{k+2}= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-11432 ⋅ Poprawnie: 352/503 [69%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=\frac{-6+2n}{-3}.

Ciąg ten jest:

Odpowiedzi:
A. geometryczny o ilorazie q=-\frac{8}{3} B. arytmetyczny o różnicy r=-\frac{4}{3}
C. geometryczny o ilorazie q=-2 D. arytmetyczny o różnicy r=-\frac{2}{3}
Zadanie 13.  1 pkt ⋅ Numer: pp-12121 ⋅ Poprawnie: 73/79 [92%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Trójwyrazowy ciąg (3,x,48) jest rosnącym ciągiem geometrycznym.

Wtedy x jest równe:

Odpowiedzi:
A. 13 B. 15
C. 10 D. 16
E. 14 F. 12
Zadanie 14.  1 pkt ⋅ Numer: pp-11919 ⋅ Poprawnie: 200/244 [81%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Dany jest ciąg geometryczny (a_n), określony dla każdej liczby naturalnej n\geqslant 1. Drugi wyraz tego ciągu oraz iloraz ciągu (a_n) są równe 2.

Suma pięciu początkowych kolejnych wyrazów tego ciągu jest równa:

Odpowiedzi:
A. 127 B. 65
C. 31 D. 15
E. 7 F. 63
Zadanie 15.  1 pkt ⋅ Numer: pp-11183 ⋅ Poprawnie: 531/874 [60%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Na lokacie złożono 1000 zł przy rocznej stopie procentowej 4\% (procent składany). Odsetki naliczane są co kwartał.

Po upływie roku wielkość kapitału na lokacie (przed potrąceniem podatków będzie równa:

Odpowiedzi:
A. 1000\cdot\left(1+\frac{1}{400}\right)^4 B. 1000\cdot\left(1+\frac{1}{100}\right)^4
C. 1000\cdot\left(1+\frac{1}{100}\right) D. 1000\cdot\left(1+\left(\frac{4}{100}\right)^4\right)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm