Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11158 ⋅ Poprawnie: 469/919 [51%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Ciąg liczbowy (a_n) określony jest wzorem a_n=\frac{2n^2-16n+14}{n^2+1}, a liczby p i q są odpowiednio najmniejszym i największym numerem wyrazów ciągu, które są równe 0.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11163 ⋅ Poprawnie: 107/161 [66%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Liczba 10^{12} jest jednym z wyrazów ciągu kwadratów kolejnych liczb naturalnych 1,2,4,9,16,....

Poprzednim wyrazem tego ciągu jest liczba:

Odpowiedzi:
A. \left(10^{6}\right)^2 B. \left(10^{6}+1\right)^2
C. 10^{12}\right)-1 D. \left(10^{6}-1\right)^2
Zadanie 3.  1 pkt ⋅ Numer: pp-11767 ⋅ Poprawnie: 765/829 [92%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=2^n\cdot(n+1), dla każdej dodatniej liczby naturalnej n.

Wyraz a_6 jest równy:

Odpowiedzi:
A. 224 B. 896
C. 1024 D. 448
Zadanie 4.  1 pkt ⋅ Numer: pp-11918 ⋅ Poprawnie: 160/213 [75%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dane są ciągi a_n=3n oraz b_n=4n-2, określone dla każdej liczby naturalnej n\geqslant 1.

Liczba 13:

Odpowiedzi:
A. nie jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n) B. jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n)
C. jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n) D. nie jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n)
Zadanie 5.  1 pkt ⋅ Numer: pp-11991 ⋅ Poprawnie: 384/586 [65%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=(-1)^n\cdot (n-5) dla każdej liczby naturalnej n\geqslant 1.

Oceń prawdziwość poniższych stwierdzeń:

Odpowiedzi:
T/N : ciąg (a_n) jest monotoniczny T/N : różnica a_{3}-a_2 jest równa 5
Zadanie 6.  1 pkt ⋅ Numer: pp-11150 ⋅ Poprawnie: 891/1148 [77%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
Oceń, które z podanych ciągów są arytmetyczne:
Odpowiedzi:
T/N : a_n=\frac{1}{n} T/N : a_n=\sqrt{n+3}
Zadanie 7.  1 pkt ⋅ Numer: pp-11541 ⋅ Poprawnie: 480/730 [65%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Trzy liczby x-15, x-9 i 3x-37, w podanej kolejności są trzema początkowymi wyrazami ciągu arytmetycznego \left(c_n\right).

Oblicz c_{70}.

Odpowiedź:
c_k= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11969 ⋅ Poprawnie: 278/236 [117%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Pięciowyrazowy ciąg \left(-11,-\frac{21}{2},x,y,-9\right) jest arytmetyczny.

Liczby x i y są równe:

Odpowiedzi:
A. x=-9 oraz y=-\frac{19}{2} B. x=-10 oraz y=-\frac{19}{2}
C. x=-\frac{19}{2} oraz y=-\frac{17}{2} D. x=-10 oraz y=-\frac{17}{2}
E. x=-\frac{19}{2} oraz y=-9 F. x=-9 oraz y=-9
Zadanie 9.  1 pkt ⋅ Numer: pp-12035 ⋅ Poprawnie: 194/216 [89%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Ciąg (a_n), określony dla każdej liczby naturalnej n > 1, jest arytmetyczny. Różnica tego ciągu jest równa -5, a pierwszy wyraz tego ciągu jest równy -6.

Wtedy iloraz \frac{a_4}{a_2} jest równy:

Odpowiedzi:
A. \frac{84}{11} B. \frac{42}{11}
C. \frac{63}{22} D. \frac{21}{22}
E. \frac{63}{11} F. \frac{21}{11}
Zadanie 10.  1 pkt ⋅ Numer: pp-11411 ⋅ Poprawnie: 1309/1493 [87%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 W ciągu arytmetycznym (a_n) dane są wyrazy a_1=12 i a_8=-51.

Suma ośmiu początkowych wyrazów tego ciągu jest równa:

Odpowiedź:
S_8= (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11174 ⋅ Poprawnie: 1413/2171 [65%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Ciąg liczbowy \left(8,2,\frac{c}{2}-1\right) jest ciągiem geometrycznym.

Oblicz c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-11434 ⋅ Poprawnie: 102/166 [61%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 W ciągu geometrycznym (a_n) dane sa wyrazy: a_1=\sqrt{m}, a_2=m\sqrt{m}, a_3=m^2\sqrt{m}.

Wzór na n-ty wyraz tego ciągu ma postać:

Odpowiedzi:
A. (\sqrt{13})^n B. \frac{13^n}{\sqrt{13}}
C. \left(\frac{\sqrt{13}}{13}\right)^n D. \frac{\left(\sqrt{13}\right)^n}{13}
Zadanie 13.  1 pkt ⋅ Numer: pp-11862 ⋅ Poprawnie: 177/233 [75%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Wszystkie wyrazy nieskończonego ciągu geometrycznego \left(a_n\right), określonego dla każdej liczby naturalnej n\geqslant 1, są dodatnie i 36a_5=4a_3.

Wtedy iloraz tego ciągu jest równy:

Odpowiedzi:
A. \frac{4}{9} B. \frac{1}{3}
C. \frac{1}{5} D. \frac{2}{3}
E. \frac{1}{4} F. \frac{1}{2}
Zadanie 14.  1 pkt ⋅ Numer: pp-11181 ⋅ Poprawnie: 536/836 [64%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Ciąg określony jest wzorem a_n=2^n.

Oblicz S_{8}.

Odpowiedź:
S_k= (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-11830 ⋅ Poprawnie: 593/688 [86%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Pan Grzegorz wpłacił do banku pewną kwotę na lokatę dwuletnią. Po każdym rocznym okresie oszczędzania bank doliczał odsetki w wysokości 5\% od kwoty bieżącego kapitału znajdującego się na lokacie. Po dwóch latach oszczędzania pan Grzegorz odebrał z tego banku wraz z odsetkami kwotę 3528.00 zł (bez uwzględnienia podatków).

Kwota wpłacona przez pana Grzegorza na tę lokatę była równa:

Odpowiedzi:
A. 3700 B. 3200
C. 3600 D. 2900
E. 3000 F. 3500


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm