Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11158 ⋅ Poprawnie: 470/920 [51%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Ciąg liczbowy (a_n) określony jest wzorem a_n=\frac{2n^2-26n+44}{n^2+4}, a liczby p i q są odpowiednio najmniejszym i największym numerem wyrazów ciągu, które są równe 0.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11163 ⋅ Poprawnie: 107/161 [66%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Liczba 10^{16} jest jednym z wyrazów ciągu kwadratów kolejnych liczb naturalnych 1,2,4,9,16,....

Poprzednim wyrazem tego ciągu jest liczba:

Odpowiedzi:
A. \left(10^{8}-1\right)^2 B. 10^{16}\right)-1
C. \left(10^{8}+1\right)^2 D. \left(10^{8}\right)^2
Zadanie 3.  1 pkt ⋅ Numer: pp-11767 ⋅ Poprawnie: 818/877 [93%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=2^n\cdot(n+2), dla każdej dodatniej liczby naturalnej n.

Wyraz a_7 jest równy:

Odpowiedzi:
A. 2560 B. 1152
C. 2304 D. 576
Zadanie 4.  1 pkt ⋅ Numer: pp-12090 ⋅ Poprawnie: 68/72 [94%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dane są ciągi (a_n), (b_n), (c_n), (d_n), określone dla każdej liczby naturalnej n\geqslant 1 wzorami: a_n=20n+3, b_n=2n^2-3, c_n=n^2+10n-2, d_n=\frac{n+187}{n}.

Liczba 323 jest 16-tym wyrazem ciągu:

Odpowiedzi:
A. (d_n) B. (b_n)
C. (c_n) D. (a_n)
Zadanie 5.  1 pkt ⋅ Numer: pp-11455 ⋅ Poprawnie: 70/140 [50%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 «« Wskaż najmniejszy możliwy numer wyrazu, poczynając od którego ciąg liczbowy określony wzorem a_n=n^2-15n+15 jest monotoniczny:
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11150 ⋅ Poprawnie: 894/1151 [77%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
Oceń, które z podanych ciągów są arytmetyczne:
Odpowiedzi:
T/N : a_n=\frac{1}{n} T/N : a_n=\frac{-4n+16}{-2}
Zadanie 7.  1 pkt ⋅ Numer: pp-11149 ⋅ Poprawnie: 767/966 [79%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Długości boków trójkąta prostokątnego tworzą ciąg arytmetyczny.

Boki tego trójkąta mają długość:

Odpowiedzi:
A. 22,29,36 B. 25,32,39
C. 21,28,35 D. 23,30,37
Zadanie 8.  1 pkt ⋅ Numer: pp-11836 ⋅ Poprawnie: 749/825 [90%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Ciąg arytmetyczny \left(a_n\right) jest określony dla każdej liczby naturalnej n\geqslant 1. W tym ciągu a_2=6 oraz a_3=10.

6-ty wyraz tego ciągu a_{6} jest równy:

Odpowiedzi:
A. 18 B. 26
C. 34 D. 30
E. 22 F. 14
Zadanie 9.  1 pkt ⋅ Numer: pp-12035 ⋅ Poprawnie: 236/252 [93%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Ciąg (a_n), określony dla każdej liczby naturalnej n > 1, jest arytmetyczny. Różnica tego ciągu jest równa 5, a pierwszy wyraz tego ciągu jest równy -4.

Wtedy iloraz \frac{a_4}{a_2} jest równy:

Odpowiedzi:
A. \frac{33}{2} B. 22
C. 11 D. 44
E. 33 F. \frac{11}{2}
Zadanie 10.  1 pkt ⋅ Numer: pp-11151 ⋅ Poprawnie: 478/634 [75%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « W kinie jest 25 rzędów krzeseł. Rząd pierwszy składa się z 19 krzeseł, a każdy następny rząd zawiera o 3 krzeseł więcej niż rząd poprzedni.

Ile jest krzeseł w kinie?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11179 ⋅ Poprawnie: 901/1213 [74%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 W ciągu geometrycznym (a_n), który zawiera dziewięć wyrazów, wszystkie wyrazy są dodatnie i znane są dwa wyrazy a_1=9 i a_9=4.

Oblicz a_5.

Odpowiedź:
a_5= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-11434 ⋅ Poprawnie: 102/166 [61%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 W ciągu geometrycznym (a_n) dane sa wyrazy: a_1=\sqrt{m}, a_2=m\sqrt{m}, a_3=m^2\sqrt{m}.

Wzór na n-ty wyraz tego ciągu ma postać:

Odpowiedzi:
A. \left(\frac{\sqrt{3}}{3}\right)^n B. (\sqrt{3})^n
C. \frac{\left(\sqrt{3}\right)^n}{3} D. \frac{3^n}{\sqrt{3}}
Zadanie 13.  1 pkt ⋅ Numer: pp-11790 ⋅ Poprawnie: 703/889 [79%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Ciąg geometryczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. W tym ciągu a_1=7.75 oraz a_2=-31.00.

Suma trzech początkowych wyrazów ciągu (a_n) jest równa:

Odpowiedzi:
A. \frac{201}{2} B. \frac{405}{4}
C. \frac{401}{4} D. \frac{411}{4}
E. \frac{403}{4} F. \frac{407}{4}
Zadanie 14.  1 pkt ⋅ Numer: pp-11919 ⋅ Poprawnie: 200/245 [81%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Dany jest ciąg geometryczny (a_n), określony dla każdej liczby naturalnej n\geqslant 1. Drugi wyraz tego ciągu oraz iloraz ciągu (a_n) są równe 2.

Suma sześciu początkowych kolejnych wyrazów tego ciągu jest równa:

Odpowiedzi:
A. 129 B. 15
C. 63 D. 127
E. 255 F. 31
Zadanie 15.  1 pkt ⋅ Numer: pp-11183 ⋅ Poprawnie: 537/887 [60%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Na lokacie złożono 1000 zł przy rocznej stopie procentowej 8\% (procent składany). Odsetki naliczane są co kwartał.

Po upływie roku wielkość kapitału na lokacie (przed potrąceniem podatków będzie równa:

Odpowiedzi:
A. 1000\cdot\left(1+\frac{2}{100}\right) B. 1000\cdot\left(1+\frac{2}{400}\right)^4
C. 1000\cdot\left(1+\frac{2}{100}\right)^4 D. 1000\cdot\left(1+\left(\frac{8}{100}\right)^4\right)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm