Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11155 ⋅ Poprawnie: 628/1062 [59%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
» Ile wyrazów ciągu
a_n=n^2-576 jest mniejszych od
4900 ?
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11160 ⋅ Poprawnie: 307/554 [55%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Wyznacz najmniejszy dodatni wyraz ciągu określonego wzorem
a_n=7n-171 .
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11904 ⋅ Poprawnie: 209/216 [96%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
(a_n) jest określony wzorem
a_n=\frac{n+1}{2n^2} dla każdej liczby naturalnej
n \geqslant 1 .
Piąty wyraz tego ciągu jest równy:
Odpowiedzi:
A. \frac{4}{49}
B. \frac{2}{25}
C. \frac{7}{72}
D. \frac{2}{9}
E. \frac{5}{32}
F. \frac{3}{25}
Zadanie 4. 1 pkt ⋅ Numer: pp-12065 ⋅ Poprawnie: 113/129 [87%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Ciąg
(b_n) jest określony wzorem
b_n=4n^2-30n dla każdej liczby naturalnej
n\geqslant 1 .
Liczba niedodatnich wyrazów ciągu b_n jest równa:
Odpowiedzi:
A. 11
B. 2
C. 9
D. 5
E. 1
F. 12
G. 7
H. 3
Zadanie 5. 1 pkt ⋅ Numer: pp-11991 ⋅ Poprawnie: 446/650 [68%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Ciąg
(a_n) jest określony wzorem
a_n=(-1)^n\cdot (n-2) dla każdej liczby
naturalnej
n\geqslant 1 .
Oceń prawdziwość poniższych stwierdzeń:
Odpowiedzi:
T/N : ciąg (a_n) jest rosnący
T/N : różnica a_{3}-a_2 jest równa -1
Zadanie 6. 1 pkt ⋅ Numer: pp-11456 ⋅ Poprawnie: 1353/1531 [88%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Pomiędzy liczby
105 i
357
można wstawić pięć takich liczb, że wszystkie siedem liczb będą tworzyć
ciąg arytmetyczny.
Wyznacz najmniejszą z wstawionych liczb.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-11433 ⋅ Poprawnie: 434/501 [86%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Dla ciągu arytmetycznego
(a_n) określonego dla
n\geqslant 1 spełniony jest warunek
a_{10}+a_{11}+a_{12}=\frac{15}{2} .
Oblicz a_{11} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-11891 ⋅ Poprawnie: 384/389 [98%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Ciąg
(a_n) , określony dla każdej liczby naturalnej
n \geqslant 1 , jest arytmetyczny. Różnica tego ciągu jest równa
-2 oraz
a_8=-12 .
Czwarty wyraz tego ciągu jest równy:
Odpowiedzi:
A. -2
B. -4
C. -8
D. -6
E. -10
F. -12
Zadanie 9. 1 pkt ⋅ Numer: pp-12119 ⋅ Poprawnie: 161/185 [87%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Ciąg arytmetyczny
(a_n) jest określony dla każdej liczby
naturalnej
n\geqslant 1 . Różnica tego ciągu jest równa
-4 .
Wtedy:
Odpowiedzi:
A. a_{18}-a_{5}=-40
B. a_{18}-a_{5}=-52
C. a_{18}-a_{5}=-36
D. a_{18}-a_{5}=-56
E. a_{18}-a_{5}=-44
F. a_{18}-a_{5}=-68
G. a_{18}-a_{5}=-64
H. a_{18}-a_{5}=-48
Zadanie 10. 1 pkt ⋅ Numer: pp-11153 ⋅ Poprawnie: 43/132 [32%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
» W ciągu arytmetycznym, w którym
r\neq 0 ,
zachodzi warunek
a_{29}=0 .
Wówczas:
Odpowiedzi:
A. S_{58}=0
B. S_{58}=a_{58}
C. S_{58} \lessdot a_{58}
D. S_{58} > a_{58}
Zadanie 11. 1 pkt ⋅ Numer: pp-11175 ⋅ Poprawnie: 627/989 [63%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
» Ciąg geometryczny określony jest wzorem
a_n=3\cdot 6^{4-n} , dla
n\in\mathbb{N_{+}} .
Oblicz iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-11171 ⋅ Poprawnie: 568/727 [78%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
W monotonicznym ciągu geometrycznym
a_1=2 , a
a_3=\frac{25}{2} .
Oblicz iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 13. 1 pkt ⋅ Numer: pp-11992 ⋅ Poprawnie: 521/661 [78%]
Rozwiąż
Podpunkt 13.1 (0.2 pkt)
Trzywyrazowy ciąg
(12, 6, 2m-7)
jest geometryczny.
Ten ciąg jest:
Odpowiedzi:
Podpunkt 13.2 (0.8 pkt)
Odpowiedzi:
A. 2
B. 6
C. 5
D. 9
E. 8
F. 7
Zadanie 14. 1 pkt ⋅ Numer: pp-11412 ⋅ Poprawnie: 244/370 [65%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Ciąg liczbowy geometryczny
(a_n) zawiera
tylko wyrazy dodatnie oraz
\frac{a_{11}}{a_{9}}=
\frac{1}{81} .
Oblicz iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 15. 1 pkt ⋅ Numer: pp-11184 ⋅ Poprawnie: 262/407 [64%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
« Po
k latach z tytułu lokaty o wysokości
4300 zł oprocentowanej w wysokości
25\% w skali roku przy
rocznej kapitalizacji odsetek otrzymamy łączne odsetki (przed potrąceniem
podatków) w wysokości
m złotych.
Wyznacz liczbę m .
Odpowiedź:
m=
(liczba zapisana dziesiętnie)
Rozwiąż