Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11158 ⋅ Poprawnie: 470/920 [51%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Ciąg liczbowy
(a_n) określony jest wzorem
a_n=\frac{2n^2-20n+48}{n^2+16} ,
a liczby
p i
q są odpowiednio najmniejszym
i największym numerem wyrazów ciągu, które są równe
0 .
Podaj liczby p i q .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11162 ⋅ Poprawnie: 53/111 [47%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Ogólny wyraz ciągu określony jest wzorem
a_n=7\left(\sqrt[3]{3}\right)^{n+6} , przy czym
n jest liczbą co najwyżej dwucyfrową.
Wyznacz ilość wyrazów wymiernych tego ciągu.
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11788 ⋅ Poprawnie: 746/900 [82%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
\left(a_n\right) jest określony wzorem
a_n=\frac{n-8}{2} , dla każdej liczby naturalnej
n\geqslant 1 .
Liczba wyrazów tego ciągu mniejszych od 22 jest równa:
Odpowiedzi:
A. 55
B. 51
C. 54
D. 49
E. 53
F. 50
Zadanie 4. 1 pkt ⋅ Numer: pp-12038 ⋅ Poprawnie: 102/118 [86%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Ciąg
(a_n) jest określony wzorem
a_n=(-3)^n\cdot n-6 dla każdej liczby
naturalnej
n > 1 .
Wtedy trzeci wyraz tego ciągu jest równy:
Odpowiedzi:
A. -105
B. -77
C. -87
D. -80
E. -81
F. -83
G. -86
H. -107
Zadanie 5. 1 pkt ⋅ Numer: pp-11454 ⋅ Poprawnie: 258/421 [61%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Wyznacz numer wyrazu, poczynając od którego ciąg liczbowy określony
wzorem
a_n=n^2-21n+21 jest rosnący.
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-11146 ⋅ Poprawnie: 1727/2098 [82%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« W ciągu arytmetycznym
\left(a_n\right)
wyrazy pierwszy i trzeci są równe odpowiednio
4
i
8 , a pewien wyraz tego ciągu
a_k
jest równy
32 .
Wyznacz numer tego wyrazu.
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-11149 ⋅ Poprawnie: 769/967 [79%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Długości boków trójkąta prostokątnego tworzą ciąg arytmetyczny.
Boki tego trójkąta mają długość:
Odpowiedzi:
A. 40,52,64
B. 38,50,62
C. 35,47,59
D. 36,48,60
Zadanie 8. 1 pkt ⋅ Numer: pp-11861 ⋅ Poprawnie: 487/499 [97%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
W ciągu arytmetycznym
(a_n) , określonym dla każdej liczby naturalnej
n\geqslant 1 ,
a_5=-26 oraz
a_{10}=-66 . Różnica tego ciągu jest równa:
Odpowiedzi:
A. 2
B. -9
C. -\frac{13}{2}
D. -15
E. -8
F. -14
Zadanie 9. 1 pkt ⋅ Numer: pp-12035 ⋅ Poprawnie: 237/253 [93%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Ciąg
(a_n) , określony dla każdej liczby naturalnej
n > 1 , jest arytmetyczny. Różnica tego ciągu jest
równa
-6 , a pierwszy wyraz tego ciągu jest równy
3 .
Wtedy iloraz \frac{a_4}{a_2} jest równy:
Odpowiedzi:
A. 10
B. \frac{10}{3}
C. \frac{15}{2}
D. 20
E. 5
F. \frac{5}{2}
Zadanie 10. 1 pkt ⋅ Numer: pp-11147 ⋅ Poprawnie: 55/119 [46%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Ciąg
(c_n) dany jest wzorem
c_n=(n-13)\cdot 4 dla
n\geqslant 1 .
Oblicz S_{20} .
Odpowiedź:
S_{20}=
(wpisz liczbę całkowitą)
Zadanie 11. 1 pkt ⋅ Numer: pp-11174 ⋅ Poprawnie: 1413/2171 [65%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Ciąg liczbowy
\left(48,12,\frac{c}{2}-1\right) jest
ciągiem geometrycznym.
Oblicz c .
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 12. 1 pkt ⋅ Numer: pp-11167 ⋅ Poprawnie: 100/148 [67%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
W malejącym ciągu geometrycznym pierwszy wyraz jest równy
\frac{200}{3} , a wyraz trzeci jest równy
0,(6) .
Piąty wyraz tego ciągu jest równy:
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 13. 1 pkt ⋅ Numer: pp-12034 ⋅ Poprawnie: 110/122 [90%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Ciąg
(x,y,z) jest geometryczny. Iloczyn wszystkich
wyrazów tego ciągu jest równy
-216 .
Wynika z tego, że y jest równe:
Odpowiedzi:
A. 12
B. -3
C. 6
D. 3
E. -6
F. -12
Zadanie 14. 1 pkt ⋅ Numer: pp-11181 ⋅ Poprawnie: 536/837 [64%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Ciąg określony jest wzorem
a_n=4^n .
Oblicz S_{6} .
Odpowiedź:
S_k=
(wpisz liczbę całkowitą)
Zadanie 15. 1 pkt ⋅ Numer: pp-11183 ⋅ Poprawnie: 539/888 [60%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
Na lokacie złożono 1000 zł przy rocznej stopie procentowej
20\% (procent składany). Odsetki naliczane są co
kwartał.
Po upływie roku wielkość kapitału na lokacie (przed potrąceniem podatków
będzie równa:
Odpowiedzi:
A. 1000\cdot\left(1+\left(\frac{20}{100}\right)^4\right)
B. 1000\cdot\left(1+\frac{5}{400}\right)^4
C. 1000\cdot\left(1+\frac{5}{100}\right)^4
D. 1000\cdot\left(1+\frac{5}{100}\right)
Rozwiąż