Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11158 ⋅ Poprawnie: 469/919 [51%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Ciąg liczbowy (a_n) określony jest wzorem a_n=\frac{2n^2-16n+14}{n^2+1}, a liczby p i q są odpowiednio najmniejszym i największym numerem wyrazów ciągu, które są równe 0.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11161 ⋅ Poprawnie: 949/1086 [87%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Pewien wyraz ciągu jest równy 311. Ciąg ten określony jest wzorem a_n=\frac{3n+7}{2}.

Wyznacz numer tego wyrazu.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11860 ⋅ Poprawnie: 217/229 [94%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=\frac{2n^2+n}{n} dla każdej liczby naturalnej n\geqslant 1.

Wtedy wyraz a_7 jest równy:

Odpowiedzi:
A. 21 B. 9
C. 13 D. 25
E. 17 F. 15
Zadanie 4.  1 pkt ⋅ Numer: pp-12065 ⋅ Poprawnie: 103/125 [82%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg (b_n) jest określony wzorem b_n=2n^2-43n dla każdej liczby naturalnej n\geqslant 1.

Liczba niedodatnich wyrazów ciągu b_n jest równa:

Odpowiedzi:
A. 14 B. 32
C. 29 D. 21
E. 30 F. 18
G. 13 H. 22
Zadanie 5.  1 pkt ⋅ Numer: pp-11968 ⋅ Poprawnie: 114/145 [78%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=3n^2+n dla każdej liczby naturalnej n\geqslant 1.

Oceń prawdziwość poniższych stwierdzeń:

Odpowiedzi:
T/N : ciąg (a_n) jest rosnący T/N : ciąg (a_n) jest malejący
Zadanie 6.  1 pkt ⋅ Numer: pp-11456 ⋅ Poprawnie: 1352/1530 [88%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Pomiędzy liczby 72 i 360 można wstawić pięć takich liczb, że wszystkie siedem liczb będą tworzyć ciąg arytmetyczny.

Wyznacz najmniejszą z wstawionych liczb.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-11149 ⋅ Poprawnie: 752/952 [78%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Długości boków trójkąta prostokątnego tworzą ciąg arytmetyczny.

Boki tego trójkąta mają długość:

Odpowiedzi:
A. 11,14,17 B. 8,11,14
C. 9,12,15 D. 13,16,19
Zadanie 8.  1 pkt ⋅ Numer: pp-11891 ⋅ Poprawnie: 367/377 [97%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Ciąg (a_n), określony dla każdej liczby naturalnej n \geqslant 1, jest arytmetyczny. Różnica tego ciągu jest równa 4 oraz a_8=29.

Czwarty wyraz tego ciągu jest równy:

Odpowiedzi:
A. 29 B. 21
C. 9 D. 25
E. 13 F. 17
Zadanie 9.  1 pkt ⋅ Numer: pp-12119 ⋅ Poprawnie: 151/178 [84%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Różnica tego ciągu jest równa 8.

Wtedy:

Odpowiedzi:
A. a_{17}-a_{6}=104 B. a_{17}-a_{6}=120
C. a_{17}-a_{6}=96 D. a_{17}-a_{6}=56
E. a_{17}-a_{6}=88 F. a_{17}-a_{6}=64
G. a_{17}-a_{6}=112 H. a_{17}-a_{6}=72
Zadanie 10.  1 pkt ⋅ Numer: pp-11154 ⋅ Poprawnie: 363/546 [66%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « W ciągu arytmetycznym (a_n) sumę n początkowych wyrazów można obliczyć korzystając ze wzoru S_n=n+2n^2, gdzie n\in\mathbb{N_{+}}.

Oblicz wyraz a_{4} tego ciągu.

Odpowiedź:
a_k= (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11172 ⋅ Poprawnie: 204/251 [81%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Ciąg określony wzorem a_n=n^2+6n+5 jest ciągiem:
Odpowiedzi:
A. niemonotonicznym B. arytmetycznym
C. rosnącym D. geometrycznym
Zadanie 12.  1 pkt ⋅ Numer: pp-11434 ⋅ Poprawnie: 102/166 [61%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 W ciągu geometrycznym (a_n) dane sa wyrazy: a_1=\sqrt{m}, a_2=m\sqrt{m}, a_3=m^2\sqrt{m}.

Wzór na n-ty wyraz tego ciągu ma postać:

Odpowiedzi:
A. \frac{\left(\sqrt{3}\right)^n}{3} B. (\sqrt{3})^n
C. \left(\frac{\sqrt{3}}{3}\right)^n D. \frac{3^n}{\sqrt{3}}
Zadanie 13.  1 pkt ⋅ Numer: pp-12034 ⋅ Poprawnie: 106/118 [89%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Ciąg (x,y,z) jest geometryczny. Iloczyn wszystkich wyrazów tego ciągu jest równy 125.

Wynika z tego, że y jest równe:

Odpowiedzi:
A. -10 B. \frac{5}{2}
C. -5 D. -\frac{5}{2}
E. 10 F. 5
Zadanie 14.  1 pkt ⋅ Numer: pp-11181 ⋅ Poprawnie: 536/836 [64%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Ciąg określony jest wzorem a_n=2^n.

Oblicz S_{8}.

Odpowiedź:
S_k= (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-11183 ⋅ Poprawnie: 531/874 [60%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Na lokacie złożono 1000 zł przy rocznej stopie procentowej 4\% (procent składany). Odsetki naliczane są co kwartał.

Po upływie roku wielkość kapitału na lokacie (przed potrąceniem podatków będzie równa:

Odpowiedzi:
A. 1000\cdot\left(1+\frac{1}{400}\right)^4 B. 1000\cdot\left(1+\frac{1}{100}\right)
C. 1000\cdot\left(1+\left(\frac{4}{100}\right)^4\right) D. 1000\cdot\left(1+\frac{1}{100}\right)^4


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm