Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11155 ⋅ Poprawnie: 626/1060 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Ile wyrazów ciągu a_n=n^2-3025 jest mniejszych od 2304?
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11163 ⋅ Poprawnie: 107/161 [66%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Liczba 10^{26} jest jednym z wyrazów ciągu kwadratów kolejnych liczb naturalnych 1,2,4,9,16,....

Poprzednim wyrazem tego ciągu jest liczba:

Odpowiedzi:
A. \left(10^{13}\right)^2 B. \left(10^{13}+1\right)^2
C. 10^{26}\right)-1 D. \left(10^{13}-1\right)^2
Zadanie 3.  1 pkt ⋅ Numer: pp-11767 ⋅ Poprawnie: 815/875 [93%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=2^n\cdot(n+4), dla każdej dodatniej liczby naturalnej n.

Wyraz a_4 jest równy:

Odpowiedzi:
A. 288 B. 64
C. 128 D. 256
Zadanie 4.  1 pkt ⋅ Numer: pp-11918 ⋅ Poprawnie: 202/253 [79%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dane są ciągi a_n=3n oraz b_n=4n-2, określone dla każdej liczby naturalnej n\geqslant 1.

Liczba 47:

Odpowiedzi:
A. jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n) B. nie jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n)
C. nie jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n) D. jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n)
Zadanie 5.  1 pkt ⋅ Numer: pp-11968 ⋅ Poprawnie: 114/145 [78%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=2n^2-n dla każdej liczby naturalnej n\geqslant 1.

Oceń prawdziwość poniższych stwierdzeń:

Odpowiedzi:
T/N : ciąg (a_n) jest malejący T/N : ciąg (a_n) jest rosnący
Zadanie 6.  1 pkt ⋅ Numer: pp-11146 ⋅ Poprawnie: 1709/2083 [82%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « W ciągu arytmetycznym \left(a_n\right) wyrazy pierwszy i trzeci są równe odpowiednio 6 i 10, a pewien wyraz tego ciągu a_k jest równy 32.

Wyznacz numer tego wyrazu.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-11148 ⋅ Poprawnie: 659/918 [71%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « W ciągu arytmetycznym (a_n) dane są: a_{5}=-2 i a_{12}=-9.

Wówczas a_1+r jest równe:

Odpowiedź:
a_1+r= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11969 ⋅ Poprawnie: 314/271 [115%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Pięciowyrazowy ciąg \left(6,\frac{5}{2},x,y,-8\right) jest arytmetyczny.

Liczby x i y są równe:

Odpowiedzi:
A. x=-\frac{1}{2} oraz y=-4 B. x=-1 oraz y=-\frac{9}{2}
C. x=0 oraz y=-4 D. x=-1 oraz y=-\frac{7}{2}
E. x=-\frac{1}{2} oraz y=-\frac{7}{2} F. x=0 oraz y=-\frac{9}{2}
Zadanie 9.  1 pkt ⋅ Numer: pp-12119 ⋅ Poprawnie: 151/178 [84%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Różnica tego ciągu jest równa -8.

Wtedy:

Odpowiedzi:
A. a_{16}-a_{6}=-80 B. a_{16}-a_{6}=-104
C. a_{16}-a_{6}=-112 D. a_{16}-a_{6}=-96
E. a_{16}-a_{6}=-88 F. a_{16}-a_{6}=-72
G. a_{16}-a_{6}=-48 H. a_{16}-a_{6}=-56
Zadanie 10.  1 pkt ⋅ Numer: pp-11509 ⋅ Poprawnie: 497/926 [53%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Oblicz sumę wszystkich liczb naturalnych trzycyfrowych parzystych, które są większe od 257.
Odpowiedź:
s= (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11173 ⋅ Poprawnie: 187/321 [58%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Dany jest ciąg geometryczny o początkowych wyrazach a_1=81, a_2=27, a_3=9.

Oblicz numer największego wyrazu tego ciągu, który jest mniejszy od \frac{1}{6}.

Odpowiedź:
max_{< \frac{1}{m}}= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-11171 ⋅ Poprawnie: 568/727 [78%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 W monotonicznym ciągu geometrycznym a_1=4, a a_3=9.

Oblicz iloraz tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 13.  1 pkt ⋅ Numer: pp-11838 ⋅ Poprawnie: 568/689 [82%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Trzywyrazowy ciąg (-5-2a, 12, 48) jest geometryczny.

Liczba a jest równa:

Odpowiedzi:
A. -8 B. -6
C. -4 D. -1
E. -16 F. -2
Zadanie 14.  1 pkt ⋅ Numer: pp-11181 ⋅ Poprawnie: 536/836 [64%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Ciąg określony jest wzorem a_n=4^n.

Oblicz S_{6}.

Odpowiedź:
S_k= (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-11182 ⋅ Poprawnie: 314/498 [63%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Kwotę 1000 zł ulokowano w banku na roczną lokatę oprocentowaną w wysokości 16\% w stosunku rocznym. Po zakończeniu lokaty od naliczonych odsetek odprowadzany jest podatek w wysokości 19\%.

Maksymalna kwota, jaką po upływie roku będzie można wypłacić z banku, jest równa:

Odpowiedzi:
A. 1000\cdot\left(1+\frac{19}{100}\cdot\frac{16}{100}\right) B. 1000\cdot\left(1-\frac{19}{100}\cdot\frac{16}{100}\right)
C. 1000\cdot\left(1-\frac{81}{100}\cdot\frac{16}{100}\right) D. 1000\cdot\left(1+\frac{81}{100}\cdot\frac{16}{100}\right)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm