Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11155 ⋅ Poprawnie: 626/1060 [59%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
» Ile wyrazów ciągu
a_n=n^2-1024 jest mniejszych od
15876 ?
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11161 ⋅ Poprawnie: 949/1086 [87%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Pewien wyraz ciągu jest równy
308 . Ciąg ten określony
jest wzorem
a_n=\frac{3n+7}{2} .
Wyznacz numer tego wyrazu.
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11767 ⋅ Poprawnie: 813/873 [93%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
\left(a_n\right) jest określony wzorem
a_n=2^n\cdot(n+1) , dla każdej dodatniej liczby
naturalnej
n .
Wyraz a_5 jest równy:
Odpowiedzi:
A. 384
B. 192
C. 96
D. 448
Zadanie 4. 1 pkt ⋅ Numer: pp-12065 ⋅ Poprawnie: 103/125 [82%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Ciąg
(b_n) jest określony wzorem
b_n=3n^2-71n dla każdej liczby naturalnej
n\geqslant 1 .
Liczba niedodatnich wyrazów ciągu b_n jest równa:
Odpowiedzi:
A. 23
B. 32
C. 25
D. 34
E. 16
F. 18
G. 24
H. 21
Zadanie 5. 1 pkt ⋅ Numer: pp-11455 ⋅ Poprawnie: 70/140 [50%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
«« Wskaż najmniejszy możliwy numer wyrazu, poczynając od którego ciąg liczbowy określony
wzorem
a_n=n^2-11n+11 jest monotoniczny:
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-11150 ⋅ Poprawnie: 893/1150 [77%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Oceń, które z podanych ciągów są arytmetyczne:
Odpowiedzi:
T/N : a_n=\frac{-4n+16}{-2}
T/N : a_n=n^2
Zadanie 7. 1 pkt ⋅ Numer: pp-11149 ⋅ Poprawnie: 752/952 [78%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Długości boków trójkąta prostokątnego tworzą ciąg arytmetyczny.
Boki tego trójkąta mają długość:
Odpowiedzi:
A. 10,13,16
B. 11,14,17
C. 13,16,19
D. 9,12,15
Zadanie 8. 1 pkt ⋅ Numer: pp-11861 ⋅ Poprawnie: 437/445 [98%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
W ciągu arytmetycznym
(a_n) , określonym dla każdej liczby naturalnej
n\geqslant 1 ,
a_5=-32 oraz
a_{10}=-47 . Różnica tego ciągu jest równa:
Odpowiedzi:
A. -3
B. -12
C. -\frac{3}{2}
D. -\frac{3}{2}
E. -7
F. -5
Zadanie 9. 1 pkt ⋅ Numer: pp-12035 ⋅ Poprawnie: 232/248 [93%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Ciąg
(a_n) , określony dla każdej liczby naturalnej
n > 1 , jest arytmetyczny. Różnica tego ciągu jest
równa
-2 , a pierwszy wyraz tego ciągu jest równy
-8 .
Wtedy iloraz \frac{a_4}{a_2} jest równy:
Odpowiedzi:
A. \frac{14}{5}
B. \frac{28}{5}
C. \frac{21}{10}
D. \frac{21}{5}
E. \frac{14}{15}
F. \frac{7}{5}
Zadanie 10. 1 pkt ⋅ Numer: pp-11411 ⋅ Poprawnie: 1309/1493 [87%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
W ciągu arytmetycznym
(a_n) dane są wyrazy
a_1=12 i
a_8=-37 .
Suma ośmiu początkowych wyrazów tego ciągu jest równa:
Odpowiedź:
S_8=
(wpisz liczbę całkowitą)
Zadanie 11. 1 pkt ⋅ Numer: pp-11176 ⋅ Poprawnie: 536/816 [65%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
W ciągu geometrycznym
(a_n) wyraz
o numerze
k=4 jest równy
6 .
Oblicz a_{2}\cdot a_{6} .
Odpowiedź:
a_{k-2}\cdot a_{k+2}=
(wpisz liczbę całkowitą)
Zadanie 12. 1 pkt ⋅ Numer: pp-11432 ⋅ Poprawnie: 352/503 [69%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Dany jest ciąg
(a_n) określony wzorem
a_n=\frac{-6+2n}{-3} .
Ciąg ten jest:
Odpowiedzi:
A. geometryczny o ilorazie q=-\frac{8}{3}
B. arytmetyczny o różnicy r=-\frac{4}{3}
C. geometryczny o ilorazie q=-2
D. arytmetyczny o różnicy r=-\frac{2}{3}
Zadanie 13. 1 pkt ⋅ Numer: pp-12121 ⋅ Poprawnie: 73/79 [92%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Trójwyrazowy ciąg
(3,x,48) jest rosnącym ciągiem
geometrycznym.
Wtedy x jest równe:
Odpowiedzi:
A. 13
B. 15
C. 10
D. 16
E. 14
F. 12
Zadanie 14. 1 pkt ⋅ Numer: pp-11919 ⋅ Poprawnie: 200/244 [81%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Dany jest ciąg geometryczny
(a_n) , określony dla każdej liczby naturalnej
n\geqslant 1 . Drugi wyraz tego ciągu oraz iloraz ciągu
(a_n) są równe
2 .
Suma pięciu początkowych kolejnych wyrazów tego ciągu jest równa:
Odpowiedzi:
A. 127
B. 65
C. 31
D. 15
E. 7
F. 63
Zadanie 15. 1 pkt ⋅ Numer: pp-11183 ⋅ Poprawnie: 531/874 [60%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
Na lokacie złożono 1000 zł przy rocznej stopie procentowej
4\% (procent składany). Odsetki naliczane są co
kwartał.
Po upływie roku wielkość kapitału na lokacie (przed potrąceniem podatków
będzie równa:
Odpowiedzi:
A. 1000\cdot\left(1+\frac{1}{400}\right)^4
B. 1000\cdot\left(1+\frac{1}{100}\right)^4
C. 1000\cdot\left(1+\frac{1}{100}\right)
D. 1000\cdot\left(1+\left(\frac{4}{100}\right)^4\right)
Rozwiąż