Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11156 ⋅ Poprawnie: 146/232 [62%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Dany jest ciąg
(b_n) , w którym
b_n=(n+7)(n-145) . Ciąg ten zawiera
k wyrazów ujemnych.
Wyznacz liczbę k .
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11385 ⋅ Poprawnie: 274/413 [66%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Dany jest ciąg
(a_n) określony wzorem
a_n=\frac{1-4n}{-3n+2} .
Wyraz a_{2k+5} tego ciągu jest równy:
Odpowiedzi:
A. \frac{8k+19}{6k+13}
B. \frac{8k+19}{6k+17}
C. \frac{8k+21}{6k+17}
D. \frac{8k+21}{6k+13}
Zadanie 3. 1 pkt ⋅ Numer: pp-11815 ⋅ Poprawnie: 585/652 [89%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
\left(a_n\right) jest określony wzorem
a_n=(-1)^n\cdot\frac{n+8}{4} , dla każdej liczby naturalnej
n\geqslant 1 .
Trzeci wyraz tego ciągu jest równy:
Odpowiedzi:
A. -\frac{13}{4}
B. -\frac{5}{2}
C. -\frac{11}{4}
D. \frac{11}{4}
E. -\frac{15}{4}
F. -\frac{9}{4}
Zadanie 4. 1 pkt ⋅ Numer: pp-12065 ⋅ Poprawnie: 66/93 [70%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Ciąg
(b_n) jest określony wzorem
b_n=4n^2-50n dla każdej liczby naturalnej
n\geqslant 1 .
Liczba niedodatnich wyrazów ciągu b_n jest równa:
Odpowiedzi:
A. 12
B. 20
C. 21
D. 23
E. 14
F. 7
G. 9
H. 16
Zadanie 5. 1 pkt ⋅ Numer: pp-11991 ⋅ Poprawnie: 387/590 [65%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Ciąg
(a_n) jest określony wzorem
a_n=(-1)^n\cdot (n+2) dla każdej liczby
naturalnej
n\geqslant 1 .
Oceń prawdziwość poniższych stwierdzeń:
Odpowiedzi:
T/N : ciąg (a_n) jest rosnący
T/N : ciąg (a_n) zawiera wyraz dodatni i wyraz ujemny
Zadanie 6. 1 pkt ⋅ Numer: pp-11143 ⋅ Poprawnie: 718/942 [76%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
«« Ciąg
(\sqrt{108}, b,\sqrt{300})
jest arytmetyczny.
Oblicz b .
Odpowiedź:
b=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-11541 ⋅ Poprawnie: 481/731 [65%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Trzy liczby
x-1 ,
x+5
i
3x+5 ,
w podanej kolejności są trzema początkowymi wyrazami ciągu arytmetycznego
\left(c_n\right) .
Oblicz c_{73} .
Odpowiedź:
c_k=
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-11861 ⋅ Poprawnie: 402/413 [97%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
W ciągu arytmetycznym
(a_n) , określonym dla każdej liczby naturalnej
n\geqslant 1 ,
a_5=13 oraz
a_{10}=23 . Różnica tego ciągu jest równa:
Odpowiedzi:
A. 2
B. -3
C. 11
D. \frac{7}{2}
E. 9
F. 1
Zadanie 9. 1 pkt ⋅ Numer: pp-12037 ⋅ Poprawnie: 212/205 [103%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Ciągi
(a_n) ,
(b_n) ,
(c_n) oraz
(d_n) są określone dla każdej liczby naturalnej
n > 1 następująco:
a_n=6n-8 ,
b_n=8n^2+2 ,
c_n=5^n ,
d_n=\frac{2}{n} .
Wskaż zdanie prawdziwe:
Odpowiedzi:
A. ciąg d_n jest arytmetyczny
B. żaden z ciągów nie jest arytmetyczny
C. ciąg c_n jest arytmetyczny
D. ciąg a_n jest arytmetyczny
Zadanie 10. 1 pkt ⋅ Numer: pp-11142 ⋅ Poprawnie: 314/462 [67%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Kamil każdego dnia czytał o
19 stron książki
więcej niż przeczytał dnia poprzedniego. Do dwunastego dnia włącznie przeczytał
1614 stron.
Ile stron przeczytał pierwszego dnia?
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 11. 1 pkt ⋅ Numer: pp-11175 ⋅ Poprawnie: 627/988 [63%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
» Ciąg geometryczny określony jest wzorem
a_n=3\cdot 6^{7-n} , dla
n\in\mathbb{N_{+}} .
Oblicz iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-11167 ⋅ Poprawnie: 100/148 [67%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
W malejącym ciągu geometrycznym pierwszy wyraz jest równy
\frac{200}{3} , a wyraz trzeci jest równy
0,(6) .
Piąty wyraz tego ciągu jest równy:
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 13. 1 pkt ⋅ Numer: pp-11816 ⋅ Poprawnie: 419/658 [63%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Dany jest ciąg geometryczny
\left(a_n\right) określony dla każdej liczby
naturalnej
n\geqslant 1 . Pierwszy wyraz tego ciągu jest równy
27 , natomiast iloraz tego ciągu jest równy
-\frac{1}{3} .
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : suma a_2+a_3 jest równa 21
T/N : różnica a_3-a_2 jest równa 12
Zadanie 14. 1 pkt ⋅ Numer: pp-11180 ⋅ Poprawnie: 730/1059 [68%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Suma pierwszych pięciu wyrazów ciągu geometrycznego jest równa
-\frac{121}{4} , a jego iloraz wynosi
3 .
Wyznacz a_1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 15. 1 pkt ⋅ Numer: pp-11830 ⋅ Poprawnie: 594/689 [86%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
Pan Grzegorz wpłacił do banku pewną kwotę na lokatę dwuletnią. Po każdym rocznym okresie
oszczędzania bank doliczał odsetki w wysokości
30\% od kwoty bieżącego
kapitału znajdującego się na lokacie. Po dwóch latach oszczędzania pan Grzegorz odebrał z tego
banku wraz z odsetkami kwotę
5408.00 zł (bez uwzględnienia podatków).
Kwota wpłacona przez pana Grzegorza na tę lokatę była równa:
Odpowiedzi:
A. 3500 zł
B. 2900 zł
C. 3200 zł
D. 3800 zł
E. 3700 zł
F. 3600 zł
Rozwiąż