Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11157 ⋅ Poprawnie: 241/419 [57%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Ciąg \left(a_n\right) określony jest wzorem a_n=-290+68n-2n^2.

Wyznacz numer największego wyrazu ciągu \left(a_n\right).

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11385 ⋅ Poprawnie: 274/413 [66%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=\frac{1-4n}{-3n+2}.

Wyraz a_{2k+7} tego ciągu jest równy:

Odpowiedzi:
A. \frac{8k+29}{6k+19} B. \frac{8k+29}{6k+23}
C. \frac{8k+27}{6k+19} D. \frac{8k+27}{6k+23}
Zadanie 3.  1 pkt ⋅ Numer: pp-11904 ⋅ Poprawnie: 196/206 [95%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=\frac{n+6}{2n^2} dla każdej liczby naturalnej n \geqslant 1.

Piąty wyraz tego ciągu jest równy:

Odpowiedzi:
A. \frac{13}{98} B. \frac{1}{2}
C. \frac{1}{6} D. \frac{11}{50}
E. \frac{5}{16} F. \frac{11}{75}
Zadanie 4.  1 pkt ⋅ Numer: pp-12090 ⋅ Poprawnie: 68/72 [94%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dane są ciągi (a_n), (b_n), (c_n), (d_n), określone dla każdej liczby naturalnej n\geqslant 1 wzorami: a_n=20n+3, b_n=2n^2-3, c_n=n^2+10n-2, d_n=\frac{n+187}{n}.

Liczba 117 jest 7-tym wyrazem ciągu:

Odpowiedzi:
A. (b_n) B. (d_n)
C. (c_n) D. (a_n)
Zadanie 5.  1 pkt ⋅ Numer: pp-11968 ⋅ Poprawnie: 114/146 [78%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=2n^2-2n dla każdej liczby naturalnej n\geqslant 1.

Oceń prawdziwość poniższych stwierdzeń:

Odpowiedzi:
T/N : ciąg (a_n) jest rosnący T/N : ciąg (a_n) nie jest monotoniczny
Zadanie 6.  1 pkt ⋅ Numer: pp-11143 ⋅ Poprawnie: 719/944 [76%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 «« Ciąg (\sqrt{147}, b,\sqrt{243}) jest arytmetyczny.

Oblicz b.

Odpowiedź:
b= \cdot
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11148 ⋅ Poprawnie: 660/919 [71%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « W ciągu arytmetycznym (a_n) dane są: a_{4}=-4 i a_{11}=-18.

Wówczas a_1+r jest równe:

Odpowiedź:
a_1+r= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11861 ⋅ Poprawnie: 446/455 [98%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 W ciągu arytmetycznym (a_n), określonym dla każdej liczby naturalnej n\geqslant 1, a_5=-8 oraz a_{10}=-43. Różnica tego ciągu jest równa:
Odpowiedzi:
A. -8 B. -\frac{7}{2}
C. -7 D. -10
E. -\frac{11}{2} F. -9
Zadanie 9.  1 pkt ⋅ Numer: pp-12119 ⋅ Poprawnie: 152/179 [84%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Różnica tego ciągu jest równa -9.

Wtedy:

Odpowiedzi:
A. a_{15}-a_{6}=-72 B. a_{15}-a_{6}=-99
C. a_{15}-a_{6}=-45 D. a_{15}-a_{6}=-90
E. a_{15}-a_{6}=-108 F. a_{15}-a_{6}=-63
G. a_{15}-a_{6}=-81 H. a_{15}-a_{6}=-54
Zadanie 10.  1 pkt ⋅ Numer: pp-11145 ⋅ Poprawnie: 163/254 [64%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 W ciągu arytmetycznym a_{4}=-19 oraz a_{8}=-55.

Oblicz S_{12}.

Odpowiedź:
S_{12}= (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11173 ⋅ Poprawnie: 187/321 [58%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Dany jest ciąg geometryczny o początkowych wyrazach a_1=81, a_2=27, a_3=9.

Oblicz numer największego wyrazu tego ciągu, który jest mniejszy od \frac{1}{5}.

Odpowiedź:
max_{< \frac{1}{m}}= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-11165 ⋅ Poprawnie: 186/360 [51%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « W ciągu 20 minut z jednej bakterii powstaje 3 innych.

Ile nowych bakterii powstanie w ciągu 60 minut z jednej bakterii?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-12064 ⋅ Poprawnie: 96/112 [85%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Trzywyrzowy ciąg \left(8,3x,\frac{1}{2}\right) jest geometryczny i wszystkie jego wyrazy są dodatnie.

Wynika z tego, że x jest równe:

Odpowiedzi:
A. \frac{4}{3} B. \frac{1}{3}
C. \frac{4}{9} D. \frac{2}{3}
E. 1 F. \frac{1}{6}
Zadanie 14.  1 pkt ⋅ Numer: pp-11181 ⋅ Poprawnie: 536/837 [64%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Ciąg określony jest wzorem a_n=5^n.

Oblicz S_{6}.

Odpowiedź:
S_k= (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-11830 ⋅ Poprawnie: 615/719 [85%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Pan Grzegorz wpłacił do banku pewną kwotę na lokatę dwuletnią. Po każdym rocznym okresie oszczędzania bank doliczał odsetki w wysokości 10\% od kwoty bieżącego kapitału znajdującego się na lokacie. Po dwóch latach oszczędzania pan Grzegorz odebrał z tego banku wraz z odsetkami kwotę 5324.00 zł (bez uwzględnienia podatków).

Kwota wpłacona przez pana Grzegorza na tę lokatę była równa:

Odpowiedzi:
A. 4400 B. 4800
C. 4500 D. 4600
E. 4200 F. 4100


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm