Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11159 ⋅ Poprawnie: 232/392 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Dany jest ciąg a_n=\frac{n+13}{n+3}.

Ile wyrazów całkowitych występuje w tym ciągu?

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11163 ⋅ Poprawnie: 107/161 [66%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Liczba 10^{24} jest jednym z wyrazów ciągu kwadratów kolejnych liczb naturalnych 1,2,4,9,16,....

Poprzednim wyrazem tego ciągu jest liczba:

Odpowiedzi:
A. \left(10^{12}\right)^2 B. 10^{24}\right)-1
C. \left(10^{12}-1\right)^2 D. \left(10^{12}+1\right)^2
Zadanie 3.  1 pkt ⋅ Numer: pp-11860 ⋅ Poprawnie: 216/228 [94%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=\frac{5n^2+12n}{n} dla każdej liczby naturalnej n\geqslant 1.

Wtedy wyraz a_7 jest równy:

Odpowiedzi:
A. 47 B. 42
C. 62 D. 67
E. 32 F. 72
Zadanie 4.  1 pkt ⋅ Numer: pp-11918 ⋅ Poprawnie: 201/252 [79%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dane są ciągi a_n=3n oraz b_n=4n-2, określone dla każdej liczby naturalnej n\geqslant 1.

Liczba 42:

Odpowiedzi:
A. jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n) B. nie jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n)
C. jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n) D. nie jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n)
Zadanie 5.  1 pkt ⋅ Numer: pp-11455 ⋅ Poprawnie: 70/140 [50%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 «« Wskaż najmniejszy możliwy numer wyrazu, poczynając od którego ciąg liczbowy określony wzorem a_n=n^2-19n+19 jest monotoniczny:
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11144 ⋅ Poprawnie: 1049/1311 [80%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Ciąg (a_n) jest arytmetyczny i spełnia warunek 3a_3=a_2+2a_1-1.

Oblicz różnicę tego ciągu.

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11149 ⋅ Poprawnie: 752/952 [78%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Długości boków trójkąta prostokątnego tworzą ciąg arytmetyczny.

Boki tego trójkąta mają długość:

Odpowiedzi:
A. 35,47,59 B. 37,49,61
C. 36,48,60 D. 40,52,64
Zadanie 8.  1 pkt ⋅ Numer: pp-11891 ⋅ Poprawnie: 367/377 [97%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Ciąg (a_n), określony dla każdej liczby naturalnej n \geqslant 1, jest arytmetyczny. Różnica tego ciągu jest równa 3 oraz a_8=24.

Czwarty wyraz tego ciągu jest równy:

Odpowiedzi:
A. 21 B. 24
C. 18 D. 9
E. 15 F. 12
Zadanie 9.  1 pkt ⋅ Numer: pp-12066 ⋅ Poprawnie: 190/211 [90%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Piąty i siódmy wyraz tego ciągu spełniają warunek a_5+a_7=108.

Wtedy szósty wyraz tego ciągu jest równy:

Odpowiedzi:
A. 43 B. 54
C. 51 D. 71
E. 73 F. 66
G. 42 H. 55
Zadanie 10.  1 pkt ⋅ Numer: pp-11145 ⋅ Poprawnie: 163/254 [64%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 W ciągu arytmetycznym a_{7}=38 oraz a_{11}=62.

Oblicz S_{12}.

Odpowiedź:
S_{12}= (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11542 ⋅ Poprawnie: 185/271 [68%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Liczby \sqrt{122}-1, 3x+5 i \sqrt{122}+1, w podanej kolejności są trzema początkowymi wyrazami rosnącego ciągu geometrycznego.

Oblicz sumę tych liczb.

Odpowiedź:
s= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-11171 ⋅ Poprawnie: 568/727 [78%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 W monotonicznym ciągu geometrycznym a_1=2, a a_3=32.

Oblicz iloraz tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 13.  1 pkt ⋅ Numer: pp-11992 ⋅ Poprawnie: 492/636 [77%] Rozwiąż 
Podpunkt 13.1 (0.2 pkt)
 Trzywyrazowy ciąg (12, 6, 2m+9) jest geometryczny.

Ten ciąg jest:

Odpowiedzi:
A. rosnący B. malejący
Podpunkt 13.2 (0.8 pkt)
 Liczba m jest równa:
Odpowiedzi:
A. -3 B. 0
C. -4 D. -7
E. 1 F. -1
Zadanie 14.  1 pkt ⋅ Numer: pp-11919 ⋅ Poprawnie: 199/243 [81%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Dany jest ciąg geometryczny (a_n), określony dla każdej liczby naturalnej n\geqslant 1. Drugi wyraz tego ciągu oraz iloraz ciągu (a_n) są równe 3.

Suma sześciu początkowych kolejnych wyrazów tego ciągu jest równa:

Odpowiedzi:
A. 121 B. 40
C. 364 D. 1093
E. 1095 F. 3280
Zadanie 15.  1 pkt ⋅ Numer: pp-11780 ⋅ Poprawnie: 796/909 [87%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Klient wpłacił do banku 34000 zł na lokatę dwuletnią. Po każdym rocznym okresie oszczędzania bank dolicza odsetki w wysokości 11\% od kwoty bieżącego kapitału znajdującego się na lokacie.

Po dwóch latach oszczędzania łączna wartość doliczonych odsetek na tej lokacie (bez uwzględniania podatków) jest równa:

Odpowiedzi:
A. 6764.06 zł B. 9864.25 zł
C. 7891.40 zł D. 6313.12 zł
E. 6576.17 zł F. 9469.68 zł


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm