Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11155 ⋅ Poprawnie: 627/1061 [59%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
» Ile wyrazów ciągu
a_n=n^2-225 jest mniejszych od
12544 ?
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11161 ⋅ Poprawnie: 949/1086 [87%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Pewien wyraz ciągu jest równy
431 . Ciąg ten określony
jest wzorem
a_n=\frac{3n+7}{2} .
Wyznacz numer tego wyrazu.
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11904 ⋅ Poprawnie: 204/213 [95%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
(a_n) jest określony wzorem
a_n=\frac{n+5}{2n^2} dla każdej liczby naturalnej
n \geqslant 1 .
Piąty wyraz tego ciągu jest równy:
Odpowiedzi:
A. \frac{2}{15}
B. \frac{6}{49}
C. \frac{4}{9}
D. \frac{1}{5}
E. \frac{11}{72}
F. \frac{9}{32}
Zadanie 4. 1 pkt ⋅ Numer: pp-12065 ⋅ Poprawnie: 109/129 [84%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Ciąg
(b_n) jest określony wzorem
b_n=5n^2-52n dla każdej liczby naturalnej
n\geqslant 1 .
Liczba niedodatnich wyrazów ciągu b_n jest równa:
Odpowiedzi:
A. 6
B. 2
C. 22
D. 10
E. 16
F. 19
G. 11
H. 5
Zadanie 5. 1 pkt ⋅ Numer: pp-11387 ⋅ Poprawnie: 303/597 [50%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Oceń, które z podanych ciągów są malejące?
Odpowiedzi:
T/N : a_n=n^2-124
T/N : a_n=\frac{6-2n}{3}
T/N : a_n=\frac{1}{1-4n}
Zadanie 6. 1 pkt ⋅ Numer: pp-11150 ⋅ Poprawnie: 894/1151 [77%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Oceń, które z podanych ciągów są arytmetyczne:
Odpowiedzi:
T/N : a_n=\frac{1}{n}
T/N : a_n=n^2
Zadanie 7. 1 pkt ⋅ Numer: pp-11148 ⋅ Poprawnie: 660/919 [71%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« W ciągu arytmetycznym
(a_n) dane są:
a_{8}=12 i
a_{15}=19 .
Wówczas a_1+r jest równe:
Odpowiedź:
a_1+r=
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-11891 ⋅ Poprawnie: 377/387 [97%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Ciąg
(a_n) , określony dla każdej liczby naturalnej
n \geqslant 1 , jest arytmetyczny. Różnica tego ciągu jest równa
2 oraz
a_8=23 .
Czwarty wyraz tego ciągu jest równy:
Odpowiedzi:
A. 15
B. 13
C. 23
D. 19
E. 21
F. 17
Zadanie 9. 1 pkt ⋅ Numer: pp-12119 ⋅ Poprawnie: 155/184 [84%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Ciąg arytmetyczny
(a_n) jest określony dla każdej liczby
naturalnej
n\geqslant 1 . Różnica tego ciągu jest równa
4 .
Wtedy:
Odpowiedzi:
A. a_{19}-a_{7}=52
B. a_{19}-a_{7}=64
C. a_{19}-a_{7}=44
D. a_{19}-a_{7}=36
E. a_{19}-a_{7}=48
F. a_{19}-a_{7}=56
G. a_{19}-a_{7}=60
H. a_{19}-a_{7}=32
Zadanie 10. 1 pkt ⋅ Numer: pp-11509 ⋅ Poprawnie: 497/926 [53%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Oblicz sumę wszystkich liczb naturalnych trzycyfrowych parzystych, które są większe od
275 .
Odpowiedź:
s=
(wpisz liczbę całkowitą)
Zadanie 11. 1 pkt ⋅ Numer: pp-11174 ⋅ Poprawnie: 1413/2171 [65%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Ciąg liczbowy
\left(56,14,\frac{c}{2}-1\right) jest
ciągiem geometrycznym.
Oblicz c .
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 12. 1 pkt ⋅ Numer: pp-11169 ⋅ Poprawnie: 346/527 [65%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Ciąg
(a_n) jest geometryczny i niemonotoniczny,
w którym
a_{11}=-\frac{1}{25} i
a_{16}=125 .
Wówczas wyraz a_{15} jest równy:
Odpowiedź:
a_{k}=
(wpisz liczbę całkowitą)
Zadanie 13. 1 pkt ⋅ Numer: pp-12091 ⋅ Poprawnie: 61/84 [72%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Ciąg geometryczny
(a_n) , określony dla każdej liczby naturalnej
n\geqslant 1 , jest rosnący i wszystkie jego wyrazy są dodatnie.
Ponadto spełniony jest warunek
a_3=a_1^{5}\cdot a_2 .
Niech
q oznacza iloraz ciągu
(a_n) .
Wtedy:
Odpowiedzi:
A. q=a_1^5
B. a_1=\frac{1}{q^5}
C. a_1=q
D. q^5=a_1
Zadanie 14. 1 pkt ⋅ Numer: pp-11919 ⋅ Poprawnie: 202/246 [82%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Dany jest ciąg geometryczny
(a_n) , określony dla każdej liczby naturalnej
n\geqslant 1 . Drugi wyraz tego ciągu oraz iloraz ciągu
(a_n) są równe
4 .
Suma sześciu początkowych kolejnych wyrazów tego ciągu jest równa:
Odpowiedzi:
A. 341
B. 85
C. 1365
D. 21845
E. 5463
F. 5461
Zadanie 15. 1 pkt ⋅ Numer: pp-11830 ⋅ Poprawnie: 642/749 [85%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
Pan Grzegorz wpłacił do banku pewną kwotę na lokatę dwuletnią. Po każdym rocznym okresie
oszczędzania bank doliczał odsetki w wysokości
30\% od kwoty bieżącego
kapitału znajdującego się na lokacie. Po dwóch latach oszczędzania pan Grzegorz odebrał z tego
banku wraz z odsetkami kwotę
9126.00 zł (bez uwzględnienia podatków).
Kwota wpłacona przez pana Grzegorza na tę lokatę była równa:
Odpowiedzi:
A. 5600 zł
B. 5300 zł
C. 5800 zł
D. 5100 zł
E. 5500 zł
F. 5400 zł
Rozwiąż