Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11156 ⋅ Poprawnie: 146/232 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Dany jest ciąg (b_n), w którym b_n=(n+7)(n-145). Ciąg ten zawiera k wyrazów ujemnych.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11385 ⋅ Poprawnie: 274/413 [66%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=\frac{1-4n}{-3n+2}.

Wyraz a_{2k+5} tego ciągu jest równy:

Odpowiedzi:
A. \frac{8k+19}{6k+13} B. \frac{8k+19}{6k+17}
C. \frac{8k+21}{6k+17} D. \frac{8k+21}{6k+13}
Zadanie 3.  1 pkt ⋅ Numer: pp-11815 ⋅ Poprawnie: 585/652 [89%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=(-1)^n\cdot\frac{n+8}{4}, dla każdej liczby naturalnej n\geqslant 1.

Trzeci wyraz tego ciągu jest równy:

Odpowiedzi:
A. -\frac{13}{4} B. -\frac{5}{2}
C. -\frac{11}{4} D. \frac{11}{4}
E. -\frac{15}{4} F. -\frac{9}{4}
Zadanie 4.  1 pkt ⋅ Numer: pp-12065 ⋅ Poprawnie: 66/93 [70%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg (b_n) jest określony wzorem b_n=4n^2-50n dla każdej liczby naturalnej n\geqslant 1.

Liczba niedodatnich wyrazów ciągu b_n jest równa:

Odpowiedzi:
A. 12 B. 20
C. 21 D. 23
E. 14 F. 7
G. 9 H. 16
Zadanie 5.  1 pkt ⋅ Numer: pp-11991 ⋅ Poprawnie: 387/590 [65%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=(-1)^n\cdot (n+2) dla każdej liczby naturalnej n\geqslant 1.

Oceń prawdziwość poniższych stwierdzeń:

Odpowiedzi:
T/N : ciąg (a_n) jest rosnący T/N : ciąg (a_n) zawiera wyraz dodatni i wyraz ujemny
Zadanie 6.  1 pkt ⋅ Numer: pp-11143 ⋅ Poprawnie: 718/942 [76%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 «« Ciąg (\sqrt{108}, b,\sqrt{300}) jest arytmetyczny.

Oblicz b.

Odpowiedź:
b= \cdot
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11541 ⋅ Poprawnie: 481/731 [65%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Trzy liczby x-1, x+5 i 3x+5, w podanej kolejności są trzema początkowymi wyrazami ciągu arytmetycznego \left(c_n\right).

Oblicz c_{73}.

Odpowiedź:
c_k= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11861 ⋅ Poprawnie: 402/413 [97%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 W ciągu arytmetycznym (a_n), określonym dla każdej liczby naturalnej n\geqslant 1, a_5=13 oraz a_{10}=23. Różnica tego ciągu jest równa:
Odpowiedzi:
A. 2 B. -3
C. 11 D. \frac{7}{2}
E. 9 F. 1
Zadanie 9.  1 pkt ⋅ Numer: pp-12037 ⋅ Poprawnie: 212/205 [103%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Ciągi (a_n), (b_n), (c_n) oraz (d_n) są określone dla każdej liczby naturalnej n > 1 następująco: a_n=6n-8, b_n=8n^2+2, c_n=5^n, d_n=\frac{2}{n}.

Wskaż zdanie prawdziwe:

Odpowiedzi:
A. ciąg d_n jest arytmetyczny B. żaden z ciągów nie jest arytmetyczny
C. ciąg c_n jest arytmetyczny D. ciąg a_n jest arytmetyczny
Zadanie 10.  1 pkt ⋅ Numer: pp-11142 ⋅ Poprawnie: 314/462 [67%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Kamil każdego dnia czytał o 19 stron książki więcej niż przeczytał dnia poprzedniego. Do dwunastego dnia włącznie przeczytał 1614 stron.

Ile stron przeczytał pierwszego dnia?

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11175 ⋅ Poprawnie: 627/988 [63%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 » Ciąg geometryczny określony jest wzorem a_n=3\cdot 6^{7-n}, dla n\in\mathbb{N_{+}}.

Oblicz iloraz tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-11167 ⋅ Poprawnie: 100/148 [67%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 W malejącym ciągu geometrycznym pierwszy wyraz jest równy \frac{200}{3}, a wyraz trzeci jest równy 0,(6).

Piąty wyraz tego ciągu jest równy:

Odpowiedź:
a_5=
(wpisz dwie liczby całkowite)
Zadanie 13.  1 pkt ⋅ Numer: pp-11816 ⋅ Poprawnie: 419/658 [63%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Dany jest ciąg geometryczny \left(a_n\right) określony dla każdej liczby naturalnej n\geqslant 1. Pierwszy wyraz tego ciągu jest równy 27, natomiast iloraz tego ciągu jest równy -\frac{1}{3}.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : suma a_2+a_3 jest równa 21 T/N : różnica a_3-a_2 jest równa 12
Zadanie 14.  1 pkt ⋅ Numer: pp-11180 ⋅ Poprawnie: 730/1059 [68%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Suma pierwszych pięciu wyrazów ciągu geometrycznego jest równa -\frac{121}{4}, a jego iloraz wynosi 3.

Wyznacz a_1.

Odpowiedź:
a_1=
(wpisz dwie liczby całkowite)
Zadanie 15.  1 pkt ⋅ Numer: pp-11830 ⋅ Poprawnie: 594/689 [86%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Pan Grzegorz wpłacił do banku pewną kwotę na lokatę dwuletnią. Po każdym rocznym okresie oszczędzania bank doliczał odsetki w wysokości 30\% od kwoty bieżącego kapitału znajdującego się na lokacie. Po dwóch latach oszczędzania pan Grzegorz odebrał z tego banku wraz z odsetkami kwotę 5408.00 zł (bez uwzględnienia podatków).

Kwota wpłacona przez pana Grzegorza na tę lokatę była równa:

Odpowiedzi:
A. 3500 B. 2900
C. 3200 D. 3800
E. 3700 F. 3600


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm