Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11158 ⋅ Poprawnie: 469/919 [51%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Ciąg liczbowy (a_n) określony jest wzorem a_n=\frac{2n^2-20n+42}{n^2+9}, a liczby p i q są odpowiednio najmniejszym i największym numerem wyrazów ciągu, które są równe 0.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11162 ⋅ Poprawnie: 53/111 [47%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Ogólny wyraz ciągu określony jest wzorem a_n=7\left(\sqrt[3]{3}\right)^{n+5}, przy czym n jest liczbą co najwyżej dwucyfrową.

Wyznacz ilość wyrazów wymiernych tego ciągu.

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11904 ⋅ Poprawnie: 147/161 [91%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=\frac{n+1}{2n^2} dla każdej liczby naturalnej n \geqslant 1.

Piąty wyraz tego ciągu jest równy:

Odpowiedzi:
A. \frac{2}{9} B. \frac{4}{49}
C. \frac{2}{25} D. \frac{5}{32}
E. \frac{3}{25} F. \frac{7}{72}
Zadanie 4.  1 pkt ⋅ Numer: pp-11918 ⋅ Poprawnie: 154/206 [74%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dane są ciągi a_n=3n oraz b_n=4n-2, określone dla każdej liczby naturalnej n\geqslant 1.

Liczba 38:

Odpowiedzi:
A. jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n) B. nie jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n)
C. nie jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n) D. jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n)
Zadanie 5.  1 pkt ⋅ Numer: pp-11991 ⋅ Poprawnie: 377/578 [65%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=(-1)^n\cdot (n-3) dla każdej liczby naturalnej n\geqslant 1.

Oceń prawdziwość poniższych stwierdzeń:

Odpowiedzi:
T/N : wyraz a_4 jest większy od wyrazu a_{5} T/N : ciąg (a_n) zawiera liczbę 0
Zadanie 6.  1 pkt ⋅ Numer: pp-11143 ⋅ Poprawnie: 709/933 [75%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 «« Ciąg (\sqrt{75}, b,\sqrt{147}) jest arytmetyczny.

Oblicz b.

Odpowiedź:
b= \cdot
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11433 ⋅ Poprawnie: 433/500 [86%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Dla ciągu arytmetycznego (a_n) określonego dla n\geqslant 1 spełniony jest warunek a_{16}+a_{17}+a_{18}=\frac{39}{2}.

Oblicz a_{17}.

Odpowiedź:
a_k=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11861 ⋅ Poprawnie: 394/406 [97%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 W ciągu arytmetycznym (a_n), określonym dla każdej liczby naturalnej n\geqslant 1, a_5=-14 oraz a_{10}=-34. Różnica tego ciągu jest równa:
Odpowiedzi:
A. 6 B. -3
C. -11 D. -4
E. -13 F. -7
Zadanie 9.  1 pkt ⋅ Numer: pp-12066 ⋅ Poprawnie: 134/162 [82%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Piąty i siódmy wyraz tego ciągu spełniają warunek a_5+a_7=144.

Wtedy szósty wyraz tego ciągu jest równy:

Odpowiedzi:
A. 73 B. 72
C. 75 D. 54
E. 87 F. 84
G. 78 H. 52
Zadanie 10.  1 pkt ⋅ Numer: pp-11154 ⋅ Poprawnie: 362/545 [66%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « W ciągu arytmetycznym (a_n) sumę n początkowych wyrazów można obliczyć korzystając ze wzoru S_n=n+2n^2, gdzie n\in\mathbb{N_{+}}.

Oblicz wyraz a_{10} tego ciągu.

Odpowiedź:
a_k= (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11542 ⋅ Poprawnie: 185/271 [68%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Liczby \sqrt{50}-1, 3x+2 i \sqrt{50}+1, w podanej kolejności są trzema początkowymi wyrazami rosnącego ciągu geometrycznego.

Oblicz sumę tych liczb.

Odpowiedź:
s= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-11167 ⋅ Poprawnie: 100/148 [67%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 W malejącym ciągu geometrycznym pierwszy wyraz jest równy \frac{200}{3}, a wyraz trzeci jest równy 0,(6).

Piąty wyraz tego ciągu jest równy:

Odpowiedź:
a_5=
(wpisz dwie liczby całkowite)
Zadanie 13.  1 pkt ⋅ Numer: pp-11992 ⋅ Poprawnie: 466/607 [76%] Rozwiąż 
Podpunkt 13.1 (0.2 pkt)
 Trzywyrazowy ciąg (12, 6, 2m-9) jest geometryczny.

Ten ciąg jest:

Odpowiedzi:
A. rosnący B. malejący
Podpunkt 13.2 (0.8 pkt)
 Liczba m jest równa:
Odpowiedzi:
A. 6 B. 10
C. 9 D. 8
E. 4 F. 2
Zadanie 14.  1 pkt ⋅ Numer: pp-11180 ⋅ Poprawnie: 727/1052 [69%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Suma pierwszych pięciu wyrazów ciągu geometrycznego jest równa -\frac{121}{5}, a jego iloraz wynosi 3.

Wyznacz a_1.

Odpowiedź:
a_1=
(wpisz dwie liczby całkowite)
Zadanie 15.  1 pkt ⋅ Numer: pp-11780 ⋅ Poprawnie: 727/827 [87%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Klient wpłacił do banku 32000 zł na lokatę dwuletnią. Po każdym rocznym okresie oszczędzania bank dolicza odsetki w wysokości 4\% od kwoty bieżącego kapitału znajdującego się na lokacie.

Po dwóch latach oszczędzania łączna wartość doliczonych odsetek na tej lokacie (bez uwzględniania podatków) jest równa:

Odpowiedzi:
A. 2611.20 zł B. 2088.96 zł
C. 2238.17 zł D. 3264.00 zł
E. 2176.00 zł F. 3133.44 zł


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm