Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11155 ⋅ Poprawnie: 626/1060 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Ile wyrazów ciągu a_n=n^2-4225 jest mniejszych od 5184?
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11161 ⋅ Poprawnie: 949/1086 [87%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Pewien wyraz ciągu jest równy 449. Ciąg ten określony jest wzorem a_n=\frac{3n+7}{2}.

Wyznacz numer tego wyrazu.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11767 ⋅ Poprawnie: 813/873 [93%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=2^n\cdot(n+5), dla każdej dodatniej liczby naturalnej n.

Wyraz a_4 jest równy:

Odpowiedzi:
A. 320 B. 288
C. 144 D. 72
Zadanie 4.  1 pkt ⋅ Numer: pp-12065 ⋅ Poprawnie: 103/125 [82%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg (b_n) jest określony wzorem b_n=5n^2-22n dla każdej liczby naturalnej n\geqslant 1.

Liczba niedodatnich wyrazów ciągu b_n jest równa:

Odpowiedzi:
A. 15 B. 2
C. 5 D. 12
E. 11 F. 4
G. 9 H. 14
Zadanie 5.  1 pkt ⋅ Numer: pp-11386 ⋅ Poprawnie: 331/661 [50%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oceń, które z podanych ciągów są rosnące?
Odpowiedzi:
T/N : a_n=-\frac{1}{4}n+10 T/N : a_n=12+n-n^2
T/N : a_n=\frac{n-3}{4}  
Zadanie 6.  1 pkt ⋅ Numer: pp-11146 ⋅ Poprawnie: 1709/2083 [82%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « W ciągu arytmetycznym \left(a_n\right) wyrazy pierwszy i trzeci są równe odpowiednio 12 i 18, a pewien wyraz tego ciągu a_k jest równy 54.

Wyznacz numer tego wyrazu.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-11541 ⋅ Poprawnie: 481/731 [65%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Trzy liczby x+8, x+14 i 3x+32, w podanej kolejności są trzema początkowymi wyrazami ciągu arytmetycznego \left(c_n\right).

Oblicz c_{63}.

Odpowiedź:
c_k= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11891 ⋅ Poprawnie: 367/377 [97%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Ciąg (a_n), określony dla każdej liczby naturalnej n \geqslant 1, jest arytmetyczny. Różnica tego ciągu jest równa -3 oraz a_8=-9.

Czwarty wyraz tego ciągu jest równy:

Odpowiedzi:
A. -6 B. 3
C. -3 D. 0
E. 6 F. -9
Zadanie 9.  1 pkt ⋅ Numer: pp-12035 ⋅ Poprawnie: 232/248 [93%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Ciąg (a_n), określony dla każdej liczby naturalnej n > 1, jest arytmetyczny. Różnica tego ciągu jest równa -4, a pierwszy wyraz tego ciągu jest równy 8.

Wtedy iloraz \frac{a_4}{a_2} jest równy:

Odpowiedzi:
A. -3 B. -\frac{2}{3}
C. -1 D. -\frac{1}{2}
E. -2 F. -4
Zadanie 10.  1 pkt ⋅ Numer: pp-11411 ⋅ Poprawnie: 1309/1493 [87%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 W ciągu arytmetycznym (a_n) dane są wyrazy a_1=21 i a_8=-21.

Suma ośmiu początkowych wyrazów tego ciągu jest równa:

Odpowiedź:
S_8= (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11173 ⋅ Poprawnie: 187/321 [58%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Dany jest ciąg geometryczny o początkowych wyrazach a_1=81, a_2=27, a_3=9.

Oblicz numer największego wyrazu tego ciągu, który jest mniejszy od \frac{1}{7}.

Odpowiedź:
max_{< \frac{1}{m}}= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-11165 ⋅ Poprawnie: 186/359 [51%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « W ciągu 20 minut z jednej bakterii powstaje 3 innych.

Ile nowych bakterii powstanie w ciągu 80 minut z jednej bakterii?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-11790 ⋅ Poprawnie: 698/885 [78%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Ciąg geometryczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. W tym ciągu a_1=1.75 oraz a_2=-14.00.

Suma trzech początkowych wyrazów ciągu (a_n) jest równa:

Odpowiedzi:
A. \frac{401}{4} B. \frac{399}{4}
C. \frac{403}{4} D. \frac{397}{4}
E. \frac{199}{2} F. \frac{407}{4}
Zadanie 14.  1 pkt ⋅ Numer: pp-11180 ⋅ Poprawnie: 730/1059 [68%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Suma pierwszych pięciu wyrazów ciągu geometrycznego jest równa -\frac{121}{2}, a jego iloraz wynosi 3.

Wyznacz a_1.

Odpowiedź:
a_1=
(wpisz dwie liczby całkowite)
Zadanie 15.  1 pkt ⋅ Numer: pp-11780 ⋅ Poprawnie: 796/909 [87%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Klient wpłacił do banku 48000 zł na lokatę dwuletnią. Po każdym rocznym okresie oszczędzania bank dolicza odsetki w wysokości 3\% od kwoty bieżącego kapitału znajdującego się na lokacie.

Po dwóch latach oszczędzania łączna wartość doliczonych odsetek na tej lokacie (bez uwzględniania podatków) jest równa:

Odpowiedzi:
A. 2338.56 zł B. 2436.00 zł
C. 2923.20 zł D. 3507.84 zł
E. 3654.00 zł F. 2505.60 zł


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm