Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11155 ⋅ Poprawnie: 627/1061 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Ile wyrazów ciągu a_n=n^2-3025 jest mniejszych od 2304?
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11385 ⋅ Poprawnie: 274/413 [66%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=\frac{1-4n}{-3n+2}.

Wyraz a_{2k+3} tego ciągu jest równy:

Odpowiedzi:
A. \frac{8k+13}{6k+7} B. \frac{8k+11}{6k+11}
C. \frac{8k+11}{6k+7} D. \frac{8k+13}{6k+11}
Zadanie 3.  1 pkt ⋅ Numer: pp-11767 ⋅ Poprawnie: 841/903 [93%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=2^n\cdot(n+3), dla każdej dodatniej liczby naturalnej n.

Wyraz a_5 jest równy:

Odpowiedzi:
A. 512 B. 256
C. 128 D. 576
Zadanie 4.  1 pkt ⋅ Numer: pp-12065 ⋅ Poprawnie: 108/129 [83%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg (b_n) jest określony wzorem b_n=3n^2-41n dla każdej liczby naturalnej n\geqslant 1.

Liczba niedodatnich wyrazów ciągu b_n jest równa:

Odpowiedzi:
A. 13 B. 25
C. 20 D. 18
E. 16 F. 23
G. 8 H. 5
Zadanie 5.  1 pkt ⋅ Numer: pp-11991 ⋅ Poprawnie: 440/648 [67%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=(-1)^n\cdot (n-6) dla każdej liczby naturalnej n\geqslant 1.

Oceń prawdziwość poniższych stwierdzeń:

Odpowiedzi:
T/N : ciąg (a_n) zawiera wyraz dodatni i wyraz ujemny T/N : ciąg (a_n) zawiera liczbę 0
Zadanie 6.  1 pkt ⋅ Numer: pp-11150 ⋅ Poprawnie: 894/1151 [77%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
Oceń, które z podanych ciągów są arytmetyczne:
Odpowiedzi:
T/N : a_n=n^2 T/N : a_n=\frac{-4n+16}{-2}
Zadanie 7.  1 pkt ⋅ Numer: pp-11541 ⋅ Poprawnie: 497/746 [66%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Trzy liczby x-15, x-9 i 3x-37, w podanej kolejności są trzema początkowymi wyrazami ciągu arytmetycznego \left(c_n\right).

Oblicz c_{61}.

Odpowiedź:
c_k= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-12013 ⋅ Poprawnie: 451/509 [88%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 W ciągu arytmetycznym (a_n), określonym dla każdej liczby naturalnej n\geqslant 1, dane są wyrazy: a_1=-11 oraz a_3=-15.

Wyraz a_{16} jest równy:

Odpowiedzi:
A. -41 B. -47
C. -45 D. -29
E. -35 F. -51
G. -33 H. -37
I. -43 J. -27
Zadanie 9.  1 pkt ⋅ Numer: pp-12037 ⋅ Poprawnie: 247/240 [102%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Ciągi (a_n), (b_n), (c_n) oraz (d_n) są określone dla każdej liczby naturalnej n > 1 następująco: a_n=5n^2-7, b_n=2n-4, c_n=5^n, d_n=\frac{5}{n}.

Wskaż zdanie prawdziwe:

Odpowiedzi:
A. ciąg c_n jest arytmetyczny B. żaden z ciągów nie jest arytmetyczny
C. ciąg d_n jest arytmetyczny D. ciąg b_n jest arytmetyczny
Zadanie 10.  1 pkt ⋅ Numer: pp-11145 ⋅ Poprawnie: 163/254 [64%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 W ciągu arytmetycznym a_{4}=-34 oraz a_{8}=-70.

Oblicz S_{12}.

Odpowiedź:
S_{12}= (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11175 ⋅ Poprawnie: 627/989 [63%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 » Ciąg geometryczny określony jest wzorem a_n=3\cdot 4^{5-n}, dla n\in\mathbb{N_{+}}.

Oblicz iloraz tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-11169 ⋅ Poprawnie: 346/527 [65%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Ciąg (a_n) jest geometryczny i niemonotoniczny, w którym a_{7}=-\frac{1}{16} i a_{12}=64.

Wówczas wyraz a_{11} jest równy:

Odpowiedź:
a_{k}= (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-12034 ⋅ Poprawnie: 110/122 [90%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Ciąg (x,y,z) jest geometryczny. Iloczyn wszystkich wyrazów tego ciągu jest równy -216.

Wynika z tego, że y jest równe:

Odpowiedzi:
A. 6 B. -6
C. 12 D. -3
E. -12 F. 3
Zadanie 14.  1 pkt ⋅ Numer: pp-11181 ⋅ Poprawnie: 536/837 [64%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Ciąg określony jest wzorem a_n=3^n.

Oblicz S_{7}.

Odpowiedź:
S_k= (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-11830 ⋅ Poprawnie: 642/749 [85%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Pan Grzegorz wpłacił do banku pewną kwotę na lokatę dwuletnią. Po każdym rocznym okresie oszczędzania bank doliczał odsetki w wysokości 10\% od kwoty bieżącego kapitału znajdującego się na lokacie. Po dwóch latach oszczędzania pan Grzegorz odebrał z tego banku wraz z odsetkami kwotę 6171.00 zł (bez uwzględnienia podatków).

Kwota wpłacona przez pana Grzegorza na tę lokatę była równa:

Odpowiedzi:
A. 5100 B. 5300
C. 4700 D. 5200
E. 5500 F. 5700


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm