Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11157 ⋅ Poprawnie: 241/419 [57%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Ciąg \left(a_n\right) określony jest wzorem a_n=-336+68n-2n^2.

Wyznacz numer największego wyrazu ciągu \left(a_n\right).

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11162 ⋅ Poprawnie: 53/111 [47%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Ogólny wyraz ciągu określony jest wzorem a_n=7\left(\sqrt[3]{3}\right)^{n+2}, przy czym n jest liczbą co najwyżej dwucyfrową.

Wyznacz ilość wyrazów wymiernych tego ciągu.

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11767 ⋅ Poprawnie: 849/907 [93%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=2^n\cdot(n+1), dla każdej dodatniej liczby naturalnej n.

Wyraz a_7 jest równy:

Odpowiedzi:
A. 2048 B. 1024
C. 512 D. 2304
Zadanie 4.  1 pkt ⋅ Numer: pp-12065 ⋅ Poprawnie: 112/129 [86%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg (b_n) jest określony wzorem b_n=2n^2-65n dla każdej liczby naturalnej n\geqslant 1.

Liczba niedodatnich wyrazów ciągu b_n jest równa:

Odpowiedzi:
A. 35 B. 29
C. 36 D. 25
E. 33 F. 32
G. 37 H. 28
Zadanie 5.  1 pkt ⋅ Numer: pp-11386 ⋅ Poprawnie: 331/661 [50%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oceń, które z podanych ciągów są rosnące?
Odpowiedzi:
T/N : a_n=1-\frac{4}{n+1} T/N : a_n=7-(n-1)^2
T/N : a_n=n^2-n-2  
Zadanie 6.  1 pkt ⋅ Numer: pp-11143 ⋅ Poprawnie: 720/945 [76%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 «« Ciąg (\sqrt{27}, b,\sqrt{243}) jest arytmetyczny.

Oblicz b.

Odpowiedź:
b= \cdot
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11789 ⋅ Poprawnie: 898/1050 [85%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Trzywyrazowy ciąg (1,10,a+6) jest arytmetyczny.

Liczba a jest równa:

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11836 ⋅ Poprawnie: 783/856 [91%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Ciąg arytmetyczny \left(a_n\right) jest określony dla każdej liczby naturalnej n\geqslant 1. W tym ciągu a_2=10 oraz a_3=18.

10-ty wyraz tego ciągu a_{10} jest równy:

Odpowiedzi:
A. 98 B. 82
C. 58 D. 74
E. 66 F. 90
Zadanie 9.  1 pkt ⋅ Numer: pp-12035 ⋅ Poprawnie: 244/254 [96%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Ciąg (a_n), określony dla każdej liczby naturalnej n > 1, jest arytmetyczny. Różnica tego ciągu jest równa 5, a pierwszy wyraz tego ciągu jest równy -6.

Wtedy iloraz \frac{a_4}{a_2} jest równy:

Odpowiedzi:
A. -\frac{9}{2} B. -27
C. -9 D. -6
E. -\frac{27}{2} F. -18
Zadanie 10.  1 pkt ⋅ Numer: pp-11154 ⋅ Poprawnie: 363/546 [66%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « W ciągu arytmetycznym (a_n) sumę n początkowych wyrazów można obliczyć korzystając ze wzoru S_n=n+2n^2, gdzie n\in\mathbb{N_{+}}.

Oblicz wyraz a_{5} tego ciągu.

Odpowiedź:
a_k= (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11177 ⋅ Poprawnie: 490/726 [67%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Ciąg (12-3\sqrt{15}, x, 12+3\sqrt{15}) jest geometryczny.

Oblicz x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-11171 ⋅ Poprawnie: 568/727 [78%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 W monotonicznym ciągu geometrycznym a_1=-4, a a_3=-81.

Oblicz iloraz tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 13.  1 pkt ⋅ Numer: pp-11816 ⋅ Poprawnie: 477/735 [64%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Dany jest ciąg geometryczny \left(a_n\right) określony dla każdej liczby naturalnej n\geqslant 1. Pierwszy wyraz tego ciągu jest równy 16, natomiast iloraz tego ciągu jest równy -\frac{1}{2}.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : suma a_2+a_3 jest równa 12 T/N : ciąg (a_n) jest malejący
Zadanie 14.  1 pkt ⋅ Numer: pp-11412 ⋅ Poprawnie: 243/369 [65%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Ciąg liczbowy geometryczny (a_n) zawiera tylko wyrazy dodatnie oraz \frac{a_{21}}{a_{19}}= \frac{1}{16}.

Oblicz iloraz tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 15.  1 pkt ⋅ Numer: pp-11184 ⋅ Poprawnie: 262/407 [64%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 « Po k latach z tytułu lokaty o wysokości 1000 zł oprocentowanej w wysokości 25\% w skali roku przy rocznej kapitalizacji odsetek otrzymamy łączne odsetki (przed potrąceniem podatków) w wysokości m złotych.

Wyznacz liczbę m.

Odpowiedź:
m= (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm