Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11157 ⋅ Poprawnie: 241/419 [57%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Ciąg \left(a_n\right) określony jest wzorem a_n=-162+60n-2n^2.

Wyznacz numer największego wyrazu ciągu \left(a_n\right).

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11385 ⋅ Poprawnie: 269/408 [65%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=\frac{1-4n}{-3n+2}.

Wyraz a_{2k+3} tego ciągu jest równy:

Odpowiedzi:
A. \frac{8k+11}{6k+11} B. \frac{8k+13}{6k+7}
C. \frac{8k+13}{6k+11} D. \frac{8k+11}{6k+7}
Zadanie 3.  1 pkt ⋅ Numer: pp-11767 ⋅ Poprawnie: 758/822 [92%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=2^n\cdot(n+3), dla każdej dodatniej liczby naturalnej n.

Wyraz a_7 jest równy:

Odpowiedzi:
A. 2560 B. 2816
C. 640 D. 1280
Zadanie 4.  1 pkt ⋅ Numer: pp-12038 ⋅ Poprawnie: 63/78 [80%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=(-2)^n\cdot n+6 dla każdej liczby naturalnej n > 1.

Wtedy trzeci wyraz tego ciągu jest równy:

Odpowiedzi:
A. -9 B. -26
C. -25 D. -31
E. -33 F. -4
G. -30 H. -18
Zadanie 5.  1 pkt ⋅ Numer: pp-11455 ⋅ Poprawnie: 70/140 [50%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 «« Wskaż najmniejszy możliwy numer wyrazu, poczynając od którego ciąg liczbowy określony wzorem a_n=n^2-17n+17 jest monotoniczny:
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11150 ⋅ Poprawnie: 888/1143 [77%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
Oceń, które z podanych ciągów są arytmetyczne:
Odpowiedzi:
T/N : a_n=\frac{1}{n} T/N : a_n=\sqrt{n+3}
Zadanie 7.  1 pkt ⋅ Numer: pp-11433 ⋅ Poprawnie: 433/500 [86%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Dla ciągu arytmetycznego (a_n) określonego dla n\geqslant 1 spełniony jest warunek a_{16}+a_{17}+a_{18}=\frac{15}{2}.

Oblicz a_{17}.

Odpowiedź:
a_k=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11836 ⋅ Poprawnie: 685/763 [89%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Ciąg arytmetyczny \left(a_n\right) jest określony dla każdej liczby naturalnej n\geqslant 1. W tym ciągu a_2=6 oraz a_3=10.

6-ty wyraz tego ciągu a_{6} jest równy:

Odpowiedzi:
A. 14 B. 22
C. 26 D. 30
E. 34 F. 18
Zadanie 9.  1 pkt ⋅ Numer: pp-12037 ⋅ Poprawnie: 208/202 [102%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Ciągi (a_n), (b_n), (c_n) oraz (d_n) są określone dla każdej liczby naturalnej n > 1 następująco: a_n=8n^2-8, b_n=2n-6, c_n=3^n, d_n=\frac{7}{n}.

Wskaż zdanie prawdziwe:

Odpowiedzi:
A. ciąg c_n jest arytmetyczny B. ciąg a_n jest arytmetyczny
C. ciąg d_n jest arytmetyczny D. ciąg b_n jest arytmetyczny
Zadanie 10.  1 pkt ⋅ Numer: pp-11151 ⋅ Poprawnie: 477/633 [75%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « W kinie jest 28 rzędów krzeseł. Rząd pierwszy składa się z 20 krzeseł, a każdy następny rząd zawiera o 3 krzeseł więcej niż rząd poprzedni.

Ile jest krzeseł w kinie?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11178 ⋅ Poprawnie: 900/1160 [77%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Ciąg (b_n) jest geometryczny, w krórym dane są dwa wyrazy b_1=12005 i b_5=5.

Wyznacz iloraz tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-11432 ⋅ Poprawnie: 352/503 [69%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=\frac{-1-6n}{-6}.

Ciąg ten jest:

Odpowiedzi:
A. arytmetyczny o różnicy r=1 B. geometryczny o ilorazie q=4
C. arytmetyczny o różnicy r=2 D. geometryczny o ilorazie q=3
Zadanie 13.  1 pkt ⋅ Numer: pp-11862 ⋅ Poprawnie: 175/231 [75%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Wszystkie wyrazy nieskończonego ciągu geometrycznego \left(a_n\right), określonego dla każdej liczby naturalnej n\geqslant 1, są dodatnie i 81a_5=25a_3.

Wtedy iloraz tego ciągu jest równy:

Odpowiedzi:
A. \frac{10}{9} B. \frac{5}{12}
C. \frac{10}{27} D. \frac{20}{27}
E. \frac{5}{9} F. \frac{5}{6}
Zadanie 14.  1 pkt ⋅ Numer: pp-11181 ⋅ Poprawnie: 536/836 [64%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Ciąg określony jest wzorem a_n=3^n.

Oblicz S_{9}.

Odpowiedź:
S_k= (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-11182 ⋅ Poprawnie: 314/497 [63%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Kwotę 1000 zł ulokowano w banku na roczną lokatę oprocentowaną w wysokości 10\% w stosunku rocznym. Po zakończeniu lokaty od naliczonych odsetek odprowadzany jest podatek w wysokości 19\%.

Maksymalna kwota, jaką po upływie roku będzie można wypłacić z banku, jest równa:

Odpowiedzi:
A. 1000\cdot\left(1-\frac{19}{100}\cdot\frac{10}{100}\right) B. 1000\cdot\left(1-\frac{81}{100}\cdot\frac{10}{100}\right)
C. 1000\cdot\left(1+\frac{81}{100}\cdot\frac{10}{100}\right) D. 1000\cdot\left(1-\frac{19}{100}+\frac{10}{100}\right)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm