Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11157 ⋅ Poprawnie: 241/419 [57%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Ciąg \left(a_n\right) określony jest wzorem a_n=-216+48n-2n^2.

Wyznacz numer największego wyrazu ciągu \left(a_n\right).

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11162 ⋅ Poprawnie: 53/111 [47%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Ogólny wyraz ciągu określony jest wzorem a_n=7\left(\sqrt[3]{3}\right)^{n+8}, przy czym n jest liczbą co najwyżej dwucyfrową.

Wyznacz ilość wyrazów wymiernych tego ciągu.

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11788 ⋅ Poprawnie: 751/900 [83%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=\frac{n-12}{2}, dla każdej liczby naturalnej n\geqslant 1.

Liczba wyrazów tego ciągu mniejszych od 20 jest równa:

Odpowiedzi:
A. 55 B. 51
C. 53 D. 49
E. 54 F. 50
Zadanie 4.  1 pkt ⋅ Numer: pp-11918 ⋅ Poprawnie: 207/254 [81%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dane są ciągi a_n=3n oraz b_n=4n-2, określone dla każdej liczby naturalnej n\geqslant 1.

Liczba 60:

Odpowiedzi:
A. jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n) B. jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n)
C. nie jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n) D. nie jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n)
Zadanie 5.  1 pkt ⋅ Numer: pp-11968 ⋅ Poprawnie: 123/152 [80%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=2n^2+n dla każdej liczby naturalnej n\geqslant 1.

Oceń prawdziwość poniższych stwierdzeń:

Odpowiedzi:
T/N : ciąg (a_n) nie jest monotoniczny T/N : ciąg (a_n) jest monotoniczny
Zadanie 6.  1 pkt ⋅ Numer: pp-11146 ⋅ Poprawnie: 1727/2098 [82%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « W ciągu arytmetycznym \left(a_n\right) wyrazy pierwszy i trzeci są równe odpowiednio 12 i 16, a pewien wyraz tego ciągu a_k jest równy 38.

Wyznacz numer tego wyrazu.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-11541 ⋅ Poprawnie: 497/746 [66%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Trzy liczby x+8, x+14 i 3x+32, w podanej kolejności są trzema początkowymi wyrazami ciągu arytmetycznego \left(c_n\right).

Oblicz c_{61}.

Odpowiedź:
c_k= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11836 ⋅ Poprawnie: 783/856 [91%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Ciąg arytmetyczny \left(a_n\right) jest określony dla każdej liczby naturalnej n\geqslant 1. W tym ciągu a_2=7 oraz a_3=12.

10-ty wyraz tego ciągu a_{10} jest równy:

Odpowiedzi:
A. 37 B. 42
C. 47 D. 52
E. 62 F. 57
Zadanie 9.  1 pkt ⋅ Numer: pp-12037 ⋅ Poprawnie: 254/241 [105%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Ciągi (a_n), (b_n), (c_n) oraz (d_n) są określone dla każdej liczby naturalnej n > 1 następująco: a_n=2n+2, b_n=4n^2-3, c_n=5^n, d_n=\frac{2}{n}.

Wskaż zdanie prawdziwe:

Odpowiedzi:
A. ciąg a_n jest arytmetyczny B. ciąg d_n jest arytmetyczny
C. ciąg c_n jest arytmetyczny D. ciąg b_n jest arytmetyczny
Zadanie 10.  1 pkt ⋅ Numer: pp-11142 ⋅ Poprawnie: 328/477 [68%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Kamil każdego dnia czytał o 26 stron książki więcej niż przeczytał dnia poprzedniego. Do dwunastego dnia włącznie przeczytał 2064 stron.

Ile stron przeczytał pierwszego dnia?

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11542 ⋅ Poprawnie: 185/271 [68%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Liczby \sqrt{50}-1, 4x+1 i \sqrt{50}+1, w podanej kolejności są trzema początkowymi wyrazami rosnącego ciągu geometrycznego.

Oblicz sumę tych liczb.

Odpowiedź:
s= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-11165 ⋅ Poprawnie: 186/360 [51%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « W ciągu 20 minut z jednej bakterii powstaje 3 innych.

Ile nowych bakterii powstanie w ciągu 60 minut z jednej bakterii?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-12064 ⋅ Poprawnie: 104/116 [89%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Trzywyrzowy ciąg \left(18,3x,\frac{1}{2}\right) jest geometryczny i wszystkie jego wyrazy są dodatnie.

Wynika z tego, że x jest równe:

Odpowiedzi:
A. \frac{2}{3} B. \frac{1}{2}
C. \frac{1}{4} D. \frac{3}{2}
E. \frac{1}{3} F. 1
Zadanie 14.  1 pkt ⋅ Numer: pp-11412 ⋅ Poprawnie: 243/369 [65%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Ciąg liczbowy geometryczny (a_n) zawiera tylko wyrazy dodatnie oraz \frac{a_{5}}{a_{3}}= \frac{1}{169}.

Oblicz iloraz tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 15.  1 pkt ⋅ Numer: pp-11184 ⋅ Poprawnie: 262/407 [64%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 « Po k latach z tytułu lokaty o wysokości 4400 zł oprocentowanej w wysokości 25\% w skali roku przy rocznej kapitalizacji odsetek otrzymamy łączne odsetki (przed potrąceniem podatków) w wysokości m złotych.

Wyznacz liczbę m.

Odpowiedź:
m= (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm