Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11155 ⋅ Poprawnie: 626/1060 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Ile wyrazów ciągu a_n=n^2-1024 jest mniejszych od 15876?
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11161 ⋅ Poprawnie: 949/1086 [87%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Pewien wyraz ciągu jest równy 353. Ciąg ten określony jest wzorem a_n=\frac{3n+7}{2}.

Wyznacz numer tego wyrazu.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11860 ⋅ Poprawnie: 178/194 [91%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=\frac{3n^2+17n}{n} dla każdej liczby naturalnej n\geqslant 1.

Wtedy wyraz a_7 jest równy:

Odpowiedzi:
A. 38 B. 41
C. 35 D. 32
E. 47 F. 29
Zadanie 4.  1 pkt ⋅ Numer: pp-12090 ⋅ Poprawnie: 33/39 [84%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dane są ciągi (a_n), (b_n), (c_n), (d_n), określone dla każdej liczby naturalnej n\geqslant 1 wzorami: a_n=20n+3, b_n=2n^2-3, c_n=n^2+10n-2, d_n=\frac{n+187}{n}.

Liczba 323 jest 16-tym wyrazem ciągu:

Odpowiedzi:
A. (d_n) B. (b_n)
C. (c_n) D. (a_n)
Zadanie 5.  1 pkt ⋅ Numer: pp-11455 ⋅ Poprawnie: 70/140 [50%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 «« Wskaż najmniejszy możliwy numer wyrazu, poczynając od którego ciąg liczbowy określony wzorem a_n=n^2-15n+15 jest monotoniczny:
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11456 ⋅ Poprawnie: 1352/1530 [88%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Pomiędzy liczby 89 i 449 można wstawić pięć takich liczb, że wszystkie siedem liczb będą tworzyć ciąg arytmetyczny.

Wyznacz najmniejszą z wstawionych liczb.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-11433 ⋅ Poprawnie: 433/500 [86%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Dla ciągu arytmetycznego (a_n) określonego dla n\geqslant 1 spełniony jest warunek a_{16}+a_{17}+a_{18}=\frac{21}{2}.

Oblicz a_{17}.

Odpowiedź:
a_k=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-12013 ⋅ Poprawnie: 396/457 [86%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 W ciągu arytmetycznym (a_n), określonym dla każdej liczby naturalnej n\geqslant 1, dane są wyrazy: a_1=-4 oraz a_3=4.

Wyraz a_{10} jest równy:

Odpowiedzi:
A. 48 B. 8
C. 52 D. 40
E. 24 F. 32
G. 36 H. 44
I. 4 J. 20
Zadanie 9.  1 pkt ⋅ Numer: pp-12119 ⋅ Poprawnie: 116/148 [78%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Różnica tego ciągu jest równa 9.

Wtedy:

Odpowiedzi:
A. a_{19}-a_{5}=108 B. a_{19}-a_{5}=162
C. a_{19}-a_{5}=99 D. a_{19}-a_{5}=135
E. a_{19}-a_{5}=126 F. a_{19}-a_{5}=153
G. a_{19}-a_{5}=90 H. a_{19}-a_{5}=144
Zadanie 10.  1 pkt ⋅ Numer: pp-11152 ⋅ Poprawnie: 496/864 [57%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Oblicz sumę 16 początkowych wyrazów ciągu arytmetycznego o wzorze ogólnym a_n=\frac{5}{2}-6\cdot n.
Odpowiedź:
S_k=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-11176 ⋅ Poprawnie: 536/816 [65%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 W ciągu geometrycznym (a_n) wyraz o numerze k=7 jest równy 9.

Oblicz a_{5}\cdot a_{9}.

Odpowiedź:
a_{k-2}\cdot a_{k+2}= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-11169 ⋅ Poprawnie: 345/526 [65%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Ciąg (a_n) jest geometryczny i niemonotoniczny, w którym a_{6}=-\frac{1}{36} i a_{11}=216.

Wówczas wyraz a_{10} jest równy:

Odpowiedź:
a_{k}= (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-12091 ⋅ Poprawnie: 46/64 [71%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Ciąg geometryczny (a_n), określony dla każdej liczby naturalnej n\geqslant 1, jest rosnący i wszystkie jego wyrazy są dodatnie. Ponadto spełniony jest warunek a_3=a_1^{6}\cdot a_2. Niech q oznacza iloraz ciągu (a_n).

Wtedy:

Odpowiedzi:
A. a_1=\frac{1}{q^6} B. a_1=q
C. q=a_1^6 D. q^6=a_1
Zadanie 14.  1 pkt ⋅ Numer: pp-11919 ⋅ Poprawnie: 184/226 [81%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Dany jest ciąg geometryczny (a_n), określony dla każdej liczby naturalnej n\geqslant 1. Drugi wyraz tego ciągu oraz iloraz ciągu (a_n) są równe 2.

Suma sześciu początkowych kolejnych wyrazów tego ciągu jest równa:

Odpowiedzi:
A. 127 B. 255
C. 63 D. 129
E. 31 F. 15
Zadanie 15.  1 pkt ⋅ Numer: pp-11830 ⋅ Poprawnie: 594/689 [86%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Pan Grzegorz wpłacił do banku pewną kwotę na lokatę dwuletnią. Po każdym rocznym okresie oszczędzania bank doliczał odsetki w wysokości 30\% od kwoty bieżącego kapitału znajdującego się na lokacie. Po dwóch latach oszczędzania pan Grzegorz odebrał z tego banku wraz z odsetkami kwotę 7605.00 zł (bez uwzględnienia podatków).

Kwota wpłacona przez pana Grzegorza na tę lokatę była równa:

Odpowiedzi:
A. 4700 B. 4500
C. 4400 D. 4600
E. 4300 F. 5100


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm