Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11157 ⋅ Poprawnie: 241/419 [57%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Ciąg \left(a_n\right) określony jest wzorem a_n=-22+24n-2n^2.

Wyznacz numer największego wyrazu ciągu \left(a_n\right).

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11161 ⋅ Poprawnie: 949/1086 [87%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Pewien wyraz ciągu jest równy 389. Ciąg ten określony jest wzorem a_n=\frac{3n+7}{2}.

Wyznacz numer tego wyrazu.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11860 ⋅ Poprawnie: 194/209 [92%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=\frac{4n^2-10n}{n} dla każdej liczby naturalnej n\geqslant 1.

Wtedy wyraz a_7 jest równy:

Odpowiedzi:
A. 10 B. 26
C. 18 D. 6
E. 22 F. 34
Zadanie 4.  1 pkt ⋅ Numer: pp-12090 ⋅ Poprawnie: 48/53 [90%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dane są ciągi (a_n), (b_n), (c_n), (d_n), określone dla każdej liczby naturalnej n\geqslant 1 wzorami: a_n=20n+3, b_n=2n^2-3, c_n=n^2+10n-2, d_n=\frac{n+187}{n}.

Liczba 159 jest 9-tym wyrazem ciągu:

Odpowiedzi:
A. (d_n) B. (a_n)
C. (c_n) D. (b_n)
Zadanie 5.  1 pkt ⋅ Numer: pp-11991 ⋅ Poprawnie: 402/609 [66%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=(-1)^n\cdot (n-3) dla każdej liczby naturalnej n\geqslant 1.

Oceń prawdziwość poniższych stwierdzeń:

Odpowiedzi:
T/N : ciąg (a_n) zawiera wyraz dodatni i wyraz ujemny T/N : różnica a_{3}-a_2 jest równa 1
Zadanie 6.  1 pkt ⋅ Numer: pp-11456 ⋅ Poprawnie: 1352/1530 [88%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Pomiędzy liczby 103 i 343 można wstawić pięć takich liczb, że wszystkie siedem liczb będą tworzyć ciąg arytmetyczny.

Wyznacz najmniejszą z wstawionych liczb.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-11789 ⋅ Poprawnie: 840/1004 [83%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Trzywyrazowy ciąg (3,7,a-5) jest arytmetyczny.

Liczba a jest równa:

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11836 ⋅ Poprawnie: 716/792 [90%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Ciąg arytmetyczny \left(a_n\right) jest określony dla każdej liczby naturalnej n\geqslant 1. W tym ciągu a_2=6 oraz a_3=11.

11-ty wyraz tego ciągu a_{11} jest równy:

Odpowiedzi:
A. 51 B. 41
C. 61 D. 56
E. 66 F. 46
Zadanie 9.  1 pkt ⋅ Numer: pp-12035 ⋅ Poprawnie: 214/232 [92%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Ciąg (a_n), określony dla każdej liczby naturalnej n > 1, jest arytmetyczny. Różnica tego ciągu jest równa -3, a pierwszy wyraz tego ciągu jest równy 1.

Wtedy iloraz \frac{a_4}{a_2} jest równy:

Odpowiedzi:
A. 2 B. \frac{8}{3}
C. 4 D. 12
E. 8 F. 6
Zadanie 10.  1 pkt ⋅ Numer: pp-11147 ⋅ Poprawnie: 55/119 [46%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Ciąg (c_n) dany jest wzorem c_n=(n-13)\cdot 5 dla n\geqslant 1.

Oblicz S_{20}.

Odpowiedź:
S_{20}= (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11175 ⋅ Poprawnie: 627/988 [63%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 » Ciąg geometryczny określony jest wzorem a_n=4\cdot 5^{4-n}, dla n\in\mathbb{N_{+}}.

Oblicz iloraz tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-11432 ⋅ Poprawnie: 352/503 [69%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=\frac{1+3n}{-5}.

Ciąg ten jest:

Odpowiedzi:
A. geometryczny o ilorazie q=-\frac{9}{5} B. geometryczny o ilorazie q=-\frac{12}{5}
C. arytmetyczny o różnicy r=-\frac{3}{5} D. arytmetyczny o różnicy r=-\frac{6}{5}
Zadanie 13.  1 pkt ⋅ Numer: pp-12091 ⋅ Poprawnie: 54/75 [72%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Ciąg geometryczny (a_n), określony dla każdej liczby naturalnej n\geqslant 1, jest rosnący i wszystkie jego wyrazy są dodatnie. Ponadto spełniony jest warunek a_3=a_1^{3}\cdot a_2. Niech q oznacza iloraz ciągu (a_n).

Wtedy:

Odpowiedzi:
A. q=a_1^3 B. a_1=\frac{1}{q^3}
C. q^3=a_1 D. a_1=q
Zadanie 14.  1 pkt ⋅ Numer: pp-11412 ⋅ Poprawnie: 243/369 [65%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Ciąg liczbowy geometryczny (a_n) zawiera tylko wyrazy dodatnie oraz \frac{a_{9}}{a_{7}}= \frac{1}{81}.

Oblicz iloraz tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 15.  1 pkt ⋅ Numer: pp-11183 ⋅ Poprawnie: 531/874 [60%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Na lokacie złożono 1000 zł przy rocznej stopie procentowej 16\% (procent składany). Odsetki naliczane są co kwartał.

Po upływie roku wielkość kapitału na lokacie (przed potrąceniem podatków będzie równa:

Odpowiedzi:
A. 1000\cdot\left(1+\frac{4}{100}\right)^4 B. 1000\cdot\left(1+\left(\frac{16}{100}\right)^4\right)
C. 1000\cdot\left(1+\frac{4}{100}\right) D. 1000\cdot\left(1+\frac{4}{400}\right)^4


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm