Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11158 ⋅ Poprawnie: 469/919 [51%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Ciąg liczbowy
(a_n) określony jest wzorem
a_n=\frac{2n^2-24n+54}{n^2+9} ,
a liczby
p i
q są odpowiednio najmniejszym
i największym numerem wyrazów ciągu, które są równe
0 .
Podaj liczby p i q .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11160 ⋅ Poprawnie: 307/554 [55%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Wyznacz najmniejszy dodatni wyraz ciągu określonego wzorem
a_n=7n-154 .
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11815 ⋅ Poprawnie: 641/712 [90%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
\left(a_n\right) jest określony wzorem
a_n=(-1)^n\cdot\frac{n+6}{4} , dla każdej liczby naturalnej
n\geqslant 1 .
Trzeci wyraz tego ciągu jest równy:
Odpowiedzi:
A. -\frac{7}{4}
B. -\frac{9}{4}
C. \frac{9}{4}
D. -\frac{13}{4}
E. -2
F. -\frac{11}{4}
Zadanie 4. 1 pkt ⋅ Numer: pp-12038 ⋅ Poprawnie: 74/90 [82%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Ciąg
(a_n) jest określony wzorem
a_n=(-2)^n\cdot n+1 dla każdej liczby
naturalnej
n > 1 .
Wtedy trzeci wyraz tego ciągu jest równy:
Odpowiedzi:
A. -32
B. -16
C. -43
D. -19
E. -23
F. -4
G. -17
H. -38
Zadanie 5. 1 pkt ⋅ Numer: pp-11968 ⋅ Poprawnie: 92/122 [75%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Dany jest ciąg
(a_n) określony wzorem
a_n=3n^2+5n dla każdej liczby naturalnej
n\geqslant 1 .
Oceń prawdziwość poniższych stwierdzeń:
Odpowiedzi:
T/N : wyraz a_{8} jest równy 232 :
T/N : ciąg (a_n) nie jest monotoniczny
Zadanie 6. 1 pkt ⋅ Numer: pp-11456 ⋅ Poprawnie: 1352/1530 [88%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Pomiędzy liczby
95 i
401
można wstawić pięć takich liczb, że wszystkie siedem liczb będą tworzyć
ciąg arytmetyczny.
Wyznacz najmniejszą z wstawionych liczb.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-11433 ⋅ Poprawnie: 434/501 [86%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Dla ciągu arytmetycznego
(a_n) określonego dla
n\geqslant 1 spełniony jest warunek
a_{13}+a_{14}+a_{15}=\frac{27}{2} .
Oblicz a_{14} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-12013 ⋅ Poprawnie: 406/468 [86%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
W ciągu arytmetycznym
(a_n) , określonym dla każdej liczby
naturalnej
n\geqslant 1 , dane są wyrazy:
a_1=-2 oraz
a_3=0 .
Wyraz a_{18} jest równy:
Odpowiedzi:
A. 9
B. 12
C. 10
D. 11
E. 13
F. 18
G. 15
H. 16
I. 19
J. 8
Zadanie 9. 1 pkt ⋅ Numer: pp-12119 ⋅ Poprawnie: 125/156 [80%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Ciąg arytmetyczny
(a_n) jest określony dla każdej liczby
naturalnej
n\geqslant 1 . Różnica tego ciągu jest równa
4 .
Wtedy:
Odpowiedzi:
A. a_{17}-a_{7}=24
B. a_{17}-a_{7}=44
C. a_{17}-a_{7}=36
D. a_{17}-a_{7}=28
E. a_{17}-a_{7}=48
F. a_{17}-a_{7}=32
G. a_{17}-a_{7}=40
H. a_{17}-a_{7}=52
Zadanie 10. 1 pkt ⋅ Numer: pp-11411 ⋅ Poprawnie: 1309/1493 [87%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
W ciągu arytmetycznym
(a_n) dane są wyrazy
a_1=16 i
a_8=-47 .
Suma ośmiu początkowych wyrazów tego ciągu jest równa:
Odpowiedź:
S_8=
(wpisz liczbę całkowitą)
Zadanie 11. 1 pkt ⋅ Numer: pp-11179 ⋅ Poprawnie: 901/1213 [74%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
W ciągu geometrycznym
(a_n) , który zawiera dziewięć
wyrazów, wszystkie wyrazy są dodatnie i znane są dwa wyrazy
a_1=8 i
a_9=18 .
Oblicz a_5 .
Odpowiedź:
a_5=
(wpisz liczbę całkowitą)
Zadanie 12. 1 pkt ⋅ Numer: pp-11170 ⋅ Poprawnie: 333/468 [71%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
» W ciągu geometrycznym
(a_n) dane są:
a_1=625 i
a_3=25 , a czwarty wyraz tego ciągu
jest ujemny.
Wyznacz a_4 .
Odpowiedź:
a_4=
(wpisz liczbę całkowitą)
Zadanie 13. 1 pkt ⋅ Numer: pp-12064 ⋅ Poprawnie: 86/103 [83%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Trzywyrzowy ciąg
\left(72,3x,\frac{8}{9}\right)
jest geometryczny i wszystkie jego wyrazy są dodatnie.
Wynika z tego, że x jest równe:
Odpowiedzi:
A. 4
B. \frac{2}{3}
C. \frac{16}{9}
D. \frac{4}{3}
E. \frac{8}{3}
F. \frac{8}{9}
Zadanie 14. 1 pkt ⋅ Numer: pp-11919 ⋅ Poprawnie: 192/235 [81%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Dany jest ciąg geometryczny
(a_n) , określony dla każdej liczby naturalnej
n\geqslant 1 . Drugi wyraz tego ciągu oraz iloraz ciągu
(a_n) są równe
3 .
Suma pięciu początkowych kolejnych wyrazów tego ciągu jest równa:
Odpowiedzi:
A. 40
B. 366
C. 13
D. 1093
E. 121
F. 364
Zadanie 15. 1 pkt ⋅ Numer: pp-11184 ⋅ Poprawnie: 262/406 [64%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
« Po
k latach z tytułu lokaty o wysokości
4000 zł oprocentowanej w wysokości
25\% w skali roku przy
rocznej kapitalizacji odsetek otrzymamy łączne odsetki (przed potrąceniem
podatków) w wysokości
m złotych.
Wyznacz liczbę m .
Odpowiedź:
m=
(liczba zapisana dziesiętnie)
Rozwiąż