Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11156 ⋅ Poprawnie: 146/232 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Dany jest ciąg (b_n), w którym b_n=(n+9)(n-10). Ciąg ten zawiera k wyrazów ujemnych.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11161 ⋅ Poprawnie: 949/1086 [87%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Pewien wyraz ciągu jest równy 431. Ciąg ten określony jest wzorem a_n=\frac{3n+7}{2}.

Wyznacz numer tego wyrazu.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11815 ⋅ Poprawnie: 575/640 [89%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=(-1)^n\cdot\frac{n+11}{2}, dla każdej liczby naturalnej n\geqslant 1.

Trzeci wyraz tego ciągu jest równy:

Odpowiedzi:
A. -6 B. -9
C. 7 D. -8
E. -\frac{13}{2} F. -7
Zadanie 4.  1 pkt ⋅ Numer: pp-12090 ⋅ Poprawnie: 28/34 [82%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dane są ciągi (a_n), (b_n), (c_n), (d_n), określone dla każdej liczby naturalnej n\geqslant 1 wzorami: a_n=20n+3, b_n=2n^2-3, c_n=n^2+10n-2, d_n=\frac{n+187}{n}.

Liczba 117 jest 7-tym wyrazem ciągu:

Odpowiedzi:
A. (d_n) B. (a_n)
C. (b_n) D. (c_n)
Zadanie 5.  1 pkt ⋅ Numer: pp-11991 ⋅ Poprawnie: 380/581 [65%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=(-1)^n\cdot (n-6) dla każdej liczby naturalnej n\geqslant 1.

Oceń prawdziwość poniższych stwierdzeń:

Odpowiedzi:
T/N : ciąg (a_n) jest rosnący T/N : ciąg (a_n) jest monotoniczny
Zadanie 6.  1 pkt ⋅ Numer: pp-11144 ⋅ Poprawnie: 1035/1294 [79%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Ciąg (a_n) jest arytmetyczny i spełnia warunek 3a_3=a_2+2a_1-17.

Oblicz różnicę tego ciągu.

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11149 ⋅ Poprawnie: 751/951 [78%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Długości boków trójkąta prostokątnego tworzą ciąg arytmetyczny.

Boki tego trójkąta mają długość:

Odpowiedzi:
A. 45,60,75 B. 49,64,79
C. 47,62,77 D. 44,59,74
Zadanie 8.  1 pkt ⋅ Numer: pp-12013 ⋅ Poprawnie: 390/451 [86%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 W ciągu arytmetycznym (a_n), określonym dla każdej liczby naturalnej n\geqslant 1, dane są wyrazy: a_1=9 oraz a_3=1.

Wyraz a_{14} jest równy:

Odpowiedzi:
A. -59 B. -63
C. -39 D. -23
E. -19 F. -31
G. -51 H. -27
I. -47 J. -43
Zadanie 9.  1 pkt ⋅ Numer: pp-12066 ⋅ Poprawnie: 138/164 [84%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Piąty i siódmy wyraz tego ciągu spełniają warunek a_5+a_7=160.

Wtedy szósty wyraz tego ciągu jest równy:

Odpowiedzi:
A. 71 B. 95
C. 88 D. 67
E. 80 F. 78
G. 93 H. 62
Zadanie 10.  1 pkt ⋅ Numer: pp-11151 ⋅ Poprawnie: 477/633 [75%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « W kinie jest 37 rzędów krzeseł. Rząd pierwszy składa się z 10 krzeseł, a każdy następny rząd zawiera o 9 krzeseł więcej niż rząd poprzedni.

Ile jest krzeseł w kinie?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11172 ⋅ Poprawnie: 204/251 [81%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Ciąg określony wzorem a_n=n^2+6n-7 jest ciągiem:
Odpowiedzi:
A. niemonotonicznym B. rosnącym
C. arytmetycznym D. malejącym
Zadanie 12.  1 pkt ⋅ Numer: pp-11168 ⋅ Poprawnie: 117/163 [71%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Pewien gatunek liczy 1000 osobników i co roku jego liczebność rośnie o 70\%.

Po upływie 5 lat liczebność tego gatunku wyniesie:

Odpowiedzi:
A. 1000\cdot (1+1.7)^5 B. 1000\cdot (1+5\cdot 1.7)
C. 1000\cdot (1.7)^5 D. 1000\cdot (1+1.7^5)
Zadanie 13.  1 pkt ⋅ Numer: pp-12121 ⋅ Poprawnie: 58/65 [89%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Trójwyrazowy ciąg (2,x,72) jest rosnącym ciągiem geometrycznym.

Wtedy x jest równe:

Odpowiedzi:
A. 15 B. 16
C. 9 D. 12
E. 14 F. 8
Zadanie 14.  1 pkt ⋅ Numer: pp-11180 ⋅ Poprawnie: 727/1052 [69%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Suma pierwszych pięciu wyrazów ciągu geometrycznego jest równa -\frac{31}{2}, a jego iloraz wynosi 2.

Wyznacz a_1.

Odpowiedź:
a_1=
(wpisz dwie liczby całkowite)
Zadanie 15.  1 pkt ⋅ Numer: pp-11830 ⋅ Poprawnie: 589/684 [86%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Pan Grzegorz wpłacił do banku pewną kwotę na lokatę dwuletnią. Po każdym rocznym okresie oszczędzania bank doliczał odsetki w wysokości 30\% od kwoty bieżącego kapitału znajdującego się na lokacie. Po dwóch latach oszczędzania pan Grzegorz odebrał z tego banku wraz z odsetkami kwotę 9633.00 zł (bez uwzględnienia podatków).

Kwota wpłacona przez pana Grzegorza na tę lokatę była równa:

Odpowiedzi:
A. 5700 B. 5500
C. 5300 D. 6100
E. 5800 F. 6200


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm