Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11156 ⋅ Poprawnie: 147/234 [62%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Dany jest ciąg
(b_n) , w którym
b_n=(n+2)(n-101) . Ciąg ten zawiera
k wyrazów ujemnych.
Wyznacz liczbę k .
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11162 ⋅ Poprawnie: 53/111 [47%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Ogólny wyraz ciągu określony jest wzorem
a_n=7\left(\sqrt[3]{3}\right)^{n+1} , przy czym
n jest liczbą co najwyżej dwucyfrową.
Wyznacz ilość wyrazów wymiernych tego ciągu.
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11860 ⋅ Poprawnie: 272/284 [95%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
\left(a_n\right) jest określony wzorem
a_n=\frac{2n^2-4n}{n} dla każdej liczby
naturalnej
n\geqslant 1 .
Wtedy wyraz a_7 jest równy:
Odpowiedzi:
A. 16
B. 18
C. 8
D. 4
E. 10
F. 6
Zadanie 4. 1 pkt ⋅ Numer: pp-12065 ⋅ Poprawnie: 113/129 [87%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Ciąg
(b_n) jest określony wzorem
b_n=4n^2-33n dla każdej liczby naturalnej
n\geqslant 1 .
Liczba niedodatnich wyrazów ciągu b_n jest równa:
Odpowiedzi:
A. 6
B. 5
C. 16
D. 11
E. 15
F. 7
G. 4
H. 8
Zadanie 5. 1 pkt ⋅ Numer: pp-11454 ⋅ Poprawnie: 258/421 [61%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Wyznacz numer wyrazu, poczynając od którego ciąg liczbowy określony
wzorem
a_n=n^2-11n+11 jest rosnący.
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-11146 ⋅ Poprawnie: 1727/2098 [82%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« W ciągu arytmetycznym
\left(a_n\right)
wyrazy pierwszy i trzeci są równe odpowiednio
-10
i
0 , a pewien wyraz tego ciągu
a_k
jest równy
45 .
Wyznacz numer tego wyrazu.
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-11433 ⋅ Poprawnie: 434/501 [86%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Dla ciągu arytmetycznego
(a_n) określonego dla
n\geqslant 1 spełniony jest warunek
a_{12}+a_{13}+a_{14}=\frac{15}{2} .
Oblicz a_{13} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-11836 ⋅ Poprawnie: 784/858 [91%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Ciąg arytmetyczny
\left(a_n\right) jest określony dla każdej liczby
naturalnej
n\geqslant 1 . W tym ciągu
a_2=5
oraz
a_3=9 .
8-ty wyraz tego ciągu a_{8} jest równy:
Odpowiedzi:
A. 21
B. 33
C. 29
D. 37
E. 25
F. 41
Zadanie 9. 1 pkt ⋅ Numer: pp-12035 ⋅ Poprawnie: 244/254 [96%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Ciąg
(a_n) , określony dla każdej liczby naturalnej
n > 1 , jest arytmetyczny. Różnica tego ciągu jest
równa
-1 , a pierwszy wyraz tego ciągu jest równy
-8 .
Wtedy iloraz \frac{a_4}{a_2} jest równy:
Odpowiedzi:
A. \frac{22}{9}
B. \frac{11}{9}
C. \frac{44}{9}
D. \frac{11}{3}
E. \frac{22}{27}
F. \frac{11}{6}
Zadanie 10. 1 pkt ⋅ Numer: pp-11145 ⋅ Poprawnie: 164/256 [64%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
W ciągu arytmetycznym
a_{5}=-16 oraz
a_{9}=-24 .
Oblicz S_{12} .
Odpowiedź:
S_{12}=
(wpisz liczbę całkowitą)
Zadanie 11. 1 pkt ⋅ Numer: pp-11174 ⋅ Poprawnie: 1414/2172 [65%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Ciąg liczbowy
\left(8,2,\frac{c}{2}-1\right) jest
ciągiem geometrycznym.
Oblicz c .
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 12. 1 pkt ⋅ Numer: pp-11165 ⋅ Poprawnie: 186/360 [51%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
« W ciągu
20 minut z jednej bakterii powstaje
2 innych.
Ile nowych bakterii powstanie w ciągu 140 minut z
jednej bakterii?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 13. 1 pkt ⋅ Numer: pp-12064 ⋅ Poprawnie: 106/117 [90%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Trzywyrzowy ciąg
\left(14,3x,\frac{7}{2}\right)
jest geometryczny i wszystkie jego wyrazy są dodatnie.
Wynika z tego, że x jest równe:
Odpowiedzi:
A. \frac{7}{3}
B. \frac{7}{9}
C. \frac{14}{3}
D. \frac{7}{12}
E. \frac{7}{6}
F. \frac{7}{2}
Zadanie 14. 1 pkt ⋅ Numer: pp-11412 ⋅ Poprawnie: 244/370 [65%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Ciąg liczbowy geometryczny
(a_n) zawiera
tylko wyrazy dodatnie oraz
\frac{a_{15}}{a_{13}}=
\frac{1}{16} .
Oblicz iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 15. 1 pkt ⋅ Numer: pp-11182 ⋅ Poprawnie: 324/518 [62%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
Kwotę 1000 zł ulokowano w banku na roczną lokatę oprocentowaną w wysokości
4\% w stosunku rocznym. Po zakończeniu lokaty od
naliczonych odsetek odprowadzany jest podatek w wysokości
19\% .
Maksymalna kwota, jaką po upływie roku będzie można wypłacić z banku, jest
równa:
Odpowiedzi:
A. 1000\cdot\left(1-\frac{81}{100}\cdot\frac{4}{100}\right)
B. 1000\cdot\left(1+\frac{19}{100}\cdot\frac{4}{100}\right)
C. 1000\cdot\left(1+\frac{81}{100}\cdot\frac{4}{100}\right)
D. 1000\cdot\left(1-\frac{19}{100}\cdot\frac{4}{100}\right)
Rozwiąż