Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11158 ⋅ Poprawnie: 470/920 [51%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Ciąg liczbowy
(a_n) określony jest wzorem
a_n=\frac{2n^2-26n+60}{n^2+9} ,
a liczby
p i
q są odpowiednio najmniejszym
i największym numerem wyrazów ciągu, które są równe
0 .
Podaj liczby p i q .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11385 ⋅ Poprawnie: 274/413 [66%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Dany jest ciąg
(a_n) określony wzorem
a_n=\frac{1-4n}{-3n+2} .
Wyraz a_{2k+4} tego ciągu jest równy:
Odpowiedzi:
A. \frac{8k+15}{6k+10}
B. \frac{8k+17}{6k+10}
C. \frac{8k+15}{6k+14}
D. \frac{8k+17}{6k+14}
Zadanie 3. 1 pkt ⋅ Numer: pp-11904 ⋅ Poprawnie: 197/207 [95%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
(a_n) jest określony wzorem
a_n=\frac{n+2}{2n^2} dla każdej liczby naturalnej
n \geqslant 1 .
Piąty wyraz tego ciągu jest równy:
Odpowiedzi:
A. \frac{3}{16}
B. \frac{5}{18}
C. \frac{7}{75}
D. \frac{7}{50}
E. \frac{1}{9}
F. \frac{9}{98}
Zadanie 4. 1 pkt ⋅ Numer: pp-11918 ⋅ Poprawnie: 203/253 [80%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Dane są ciągi
a_n=3n oraz
b_n=4n-2 , określone
dla każdej liczby naturalnej
n\geqslant 1 .
Liczba 35 :
Odpowiedzi:
A. nie jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n)
B. jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n)
C. jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n)
D. nie jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n)
Zadanie 5. 1 pkt ⋅ Numer: pp-11968 ⋅ Poprawnie: 114/146 [78%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Dany jest ciąg
(a_n) określony wzorem
a_n=3n^2+4n dla każdej liczby naturalnej
n\geqslant 1 .
Oceń prawdziwość poniższych stwierdzeń:
Odpowiedzi:
T/N : ciąg (a_n) jest monotoniczny
T/N : ciąg (a_n) jest malejący
Zadanie 6. 1 pkt ⋅ Numer: pp-11146 ⋅ Poprawnie: 1725/2097 [82%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« W ciągu arytmetycznym
\left(a_n\right)
wyrazy pierwszy i trzeci są równe odpowiednio
8
i
20 , a pewien wyraz tego ciągu
a_k
jest równy
74 .
Wyznacz numer tego wyrazu.
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-11149 ⋅ Poprawnie: 767/966 [79%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Długości boków trójkąta prostokątnego tworzą ciąg arytmetyczny.
Boki tego trójkąta mają długość:
Odpowiedzi:
A. 32,42,52
B. 34,44,54
C. 30,40,50
D. 29,39,49
Zadanie 8. 1 pkt ⋅ Numer: pp-12013 ⋅ Poprawnie: 432/491 [87%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
W ciągu arytmetycznym
(a_n) , określonym dla każdej liczby
naturalnej
n\geqslant 1 , dane są wyrazy:
a_1=3 oraz
a_3=-5 .
Wyraz a_{13} jest równy:
Odpowiedzi:
A. -41
B. -21
C. -49
D. -17
E. -57
F. -29
G. -61
H. -53
I. -33
J. -45
Zadanie 9. 1 pkt ⋅ Numer: pp-12037 ⋅ Poprawnie: 246/239 [102%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Ciągi
(a_n) ,
(b_n) ,
(c_n) oraz
(d_n) są określone dla każdej liczby naturalnej
n > 1 następująco:
a_n=6n^2+6 ,
b_n=6n-8 ,
c_n=4^n ,
d_n=\frac{3}{n} .
Wskaż zdanie prawdziwe:
Odpowiedzi:
A. ciąg c_n jest arytmetyczny
B. żaden z ciągów nie jest arytmetyczny
C. ciąg a_n jest arytmetyczny
D. ciąg b_n jest arytmetyczny
Zadanie 10. 1 pkt ⋅ Numer: pp-11152 ⋅ Poprawnie: 496/864 [57%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Oblicz sumę
19 początkowych wyrazów ciągu arytmetycznego
o wzorze ogólnym
a_n=\frac{5}{2}-5\cdot n .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-11179 ⋅ Poprawnie: 901/1213 [74%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
W ciągu geometrycznym
(a_n) , który zawiera dziewięć
wyrazów, wszystkie wyrazy są dodatnie i znane są dwa wyrazy
a_1=4 i
a_9=16 .
Oblicz a_5 .
Odpowiedź:
a_5=
(wpisz liczbę całkowitą)
Zadanie 12. 1 pkt ⋅ Numer: pp-11508 ⋅ Poprawnie: 493/840 [58%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
(1 pkt)
W ciągu geometrycznym
\left(a_n\right) , określonym
dla każdego
n\in\mathbb{N_+} , wyrazy drugi i szósty
są równe odpowiednio
a_2=6 i
a_6=54 .
Kwadrat wyrazu czwartego tego ciągu jest równy:
Odpowiedź:
a_4^2=
(wpisz liczbę całkowitą)
Zadanie 13. 1 pkt ⋅ Numer: pp-12034 ⋅ Poprawnie: 109/121 [90%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Ciąg
(x,y,z) jest geometryczny. Iloczyn wszystkich
wyrazów tego ciągu jest równy
8 .
Wynika z tego, że y jest równe:
Odpowiedzi:
A. 4
B. -2
C. 1
D. -4
E. -1
F. 2
Zadanie 14. 1 pkt ⋅ Numer: pp-11412 ⋅ Poprawnie: 243/369 [65%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Ciąg liczbowy geometryczny
(a_n) zawiera
tylko wyrazy dodatnie oraz
\frac{a_{17}}{a_{15}}=
\frac{1}{64} .
Oblicz iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 15. 1 pkt ⋅ Numer: pp-11780 ⋅ Poprawnie: 801/914 [87%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
Klient wpłacił do banku
29000 zł na lokatę dwuletnią. Po każdym rocznym okresie
oszczędzania bank dolicza odsetki w wysokości
9\% od kwoty bieżącego kapitału
znajdującego się na lokacie.
Po dwóch latach oszczędzania łączna wartość doliczonych odsetek na tej lokacie (bez
uwzględniania podatków) jest równa:
Odpowiedzi:
A. 6818.63 zł
B. 4545.75 zł
C. 4363.92 zł
D. 6545.88 zł
E. 4675.63 zł
F. 5454.90 zł
Rozwiąż