Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11156 ⋅ Poprawnie: 147/234 [62%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Dany jest ciąg
(b_n) , w którym
b_n=(n+10)(n-170) . Ciąg ten zawiera
k wyrazów ujemnych.
Wyznacz liczbę k .
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11161 ⋅ Poprawnie: 949/1086 [87%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Pewien wyraz ciągu jest równy
449 . Ciąg ten określony
jest wzorem
a_n=\frac{3n+7}{2} .
Wyznacz numer tego wyrazu.
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11767 ⋅ Poprawnie: 849/907 [93%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
\left(a_n\right) jest określony wzorem
a_n=2^n\cdot(n+5) , dla każdej dodatniej liczby
naturalnej
n .
Wyraz a_6 jest równy:
Odpowiedzi:
A. 1408
B. 1536
C. 704
D. 352
Zadanie 4. 1 pkt ⋅ Numer: pp-12065 ⋅ Poprawnie: 112/129 [86%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Ciąg
(b_n) jest określony wzorem
b_n=5n^2-52n dla każdej liczby naturalnej
n\geqslant 1 .
Liczba niedodatnich wyrazów ciągu b_n jest równa:
Odpowiedzi:
A. 10
B. 15
C. 4
D. 11
E. 8
F. 13
G. 5
H. 2
Zadanie 5. 1 pkt ⋅ Numer: pp-11968 ⋅ Poprawnie: 123/152 [80%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Dany jest ciąg
(a_n) określony wzorem
a_n=4n^2-2n dla każdej liczby naturalnej
n\geqslant 1 .
Oceń prawdziwość poniższych stwierdzeń:
Odpowiedzi:
T/N : ciąg (a_n) jest rosnący
T/N : ciąg (a_n) jest malejący
Zadanie 6. 1 pkt ⋅ Numer: pp-11144 ⋅ Poprawnie: 1049/1311 [80%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Ciąg
(a_n) jest arytmetyczny i spełnia warunek
3a_3=a_2+2a_1-14 .
Oblicz różnicę tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-11149 ⋅ Poprawnie: 769/967 [79%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Długości boków trójkąta prostokątnego tworzą ciąg arytmetyczny.
Boki tego trójkąta mają długość:
Odpowiedzi:
A. 52,69,86
B. 53,70,87
C. 50,67,84
D. 51,68,85
Zadanie 8. 1 pkt ⋅ Numer: pp-11861 ⋅ Poprawnie: 494/501 [98%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
W ciągu arytmetycznym
(a_n) , określonym dla każdej liczby naturalnej
n\geqslant 1 ,
a_5=31 oraz
a_{10}=46 . Różnica tego ciągu jest równa:
Odpowiedzi:
A. -1
B. -3
C. 3
D. \frac{3}{2}
E. 2
F. -4
Zadanie 9. 1 pkt ⋅ Numer: pp-12119 ⋅ Poprawnie: 160/184 [86%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Ciąg arytmetyczny
(a_n) jest określony dla każdej liczby
naturalnej
n\geqslant 1 . Różnica tego ciągu jest równa
4 .
Wtedy:
Odpowiedzi:
A. a_{15}-a_{6}=48
B. a_{15}-a_{6}=44
C. a_{15}-a_{6}=52
D. a_{15}-a_{6}=20
E. a_{15}-a_{6}=36
F. a_{15}-a_{6}=28
G. a_{15}-a_{6}=32
H. a_{15}-a_{6}=40
Zadanie 10. 1 pkt ⋅ Numer: pp-11837 ⋅ Poprawnie: 489/718 [68%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Ciąg
\left(a_n\right) jest określony dla każdej liczby
naturalnej
n\geqslant 1 .
Suma
n początkowych wyrazów tego ciągu jest określona wzorem
S_n=3\cdot(2^n-1) , dla każdej liczby naturalnej
n\geqslant 1 .
Oceń prawdziwość poniższych stwierdzeń:
Odpowiedzi:
T/N : różnica a_2-a_1 jest równa 3
T/N : pierwszy wyraz ciągu \left(a_n\right) jest równy 3
Zadanie 11. 1 pkt ⋅ Numer: pp-11542 ⋅ Poprawnie: 185/271 [68%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Liczby
\sqrt{26}-1 ,
4x+5 i
\sqrt{26}+1 ,
w podanej kolejności są trzema początkowymi wyrazami rosnącego ciągu geometrycznego.
Oblicz sumę tych liczb.
Odpowiedź:
s=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-11169 ⋅ Poprawnie: 346/527 [65%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Ciąg
(a_n) jest geometryczny i niemonotoniczny,
w którym
a_{12}=-\frac{1}{25} i
a_{17}=125 .
Wówczas wyraz a_{16} jest równy:
Odpowiedź:
a_{k}=
(wpisz liczbę całkowitą)
Zadanie 13. 1 pkt ⋅ Numer: pp-12014 ⋅ Poprawnie: 293/412 [71%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Trzywyrazowy ciąg
(-1,2,x+2) jest arytmetyczny.
Trzywyrazowy ciąg
(-1,2,y-2) jest geometryczny.
Liczby x oraz y spełniają warunki:
Odpowiedzi:
A. x \lessdot -2 i y > 2
B. x > -2 i y\lessdot 2
C. x > -2 i y > 2
D. x \lessdot -2 i y\lessdot 2
Zadanie 14. 1 pkt ⋅ Numer: pp-11180 ⋅ Poprawnie: 730/1060 [68%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Suma pierwszych pięciu wyrazów ciągu geometrycznego jest równa
\frac{121}{4} , a jego iloraz wynosi
3 .
Wyznacz a_1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 15. 1 pkt ⋅ Numer: pp-11184 ⋅ Poprawnie: 262/407 [64%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
« Po
k latach z tytułu lokaty o wysokości
2800 zł oprocentowanej w wysokości
25\% w skali roku przy
rocznej kapitalizacji odsetek otrzymamy łączne odsetki (przed potrąceniem
podatków) w wysokości
m złotych.
Wyznacz liczbę m .
Odpowiedź:
m=
(liczba zapisana dziesiętnie)
Rozwiąż