Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11159 ⋅ Poprawnie: 232/392 [59%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Dany jest ciąg
a_n=\frac{n+13}{n+1} .
Ile wyrazów całkowitych występuje w tym ciągu?
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11160 ⋅ Poprawnie: 307/554 [55%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Wyznacz najmniejszy dodatni wyraz ciągu określonego wzorem
a_n=7n-187 .
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11788 ⋅ Poprawnie: 645/790 [81%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
\left(a_n\right) jest określony wzorem
a_n=\frac{n-9}{2} , dla każdej liczby naturalnej
n\geqslant 1 .
Liczba wyrazów tego ciągu mniejszych od 14 jest równa:
Odpowiedzi:
A. 36
B. 40
C. 39
D. 38
E. 34
F. 35
Zadanie 4. 1 pkt ⋅ Numer: pp-12090 ⋅ Poprawnie: 29/35 [82%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Dane są ciągi
(a_n) ,
(b_n) ,
(c_n) ,
(d_n) , określone dla każdej
liczby naturalnej
n\geqslant 1 wzorami:
a_n=20n+3 ,
b_n=2n^2-3 ,
c_n=n^2+10n-2 ,
d_n=\frac{n+187}{n} .
Liczba 142 jest 8 -tym wyrazem ciągu:
Odpowiedzi:
A. (c_n)
B. (d_n)
C. (b_n)
D. (a_n)
Zadanie 5. 1 pkt ⋅ Numer: pp-11386 ⋅ Poprawnie: 331/660 [50%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Oceń, które z podanych ciągów są rosnące?
Odpowiedzi:
T/N : a_n=\frac{n+1}{n+3}
T/N : a_n=\frac{n-3}{4}
T/N : a_n=1-\frac{4}{n+1}
Zadanie 6. 1 pkt ⋅ Numer: pp-11143 ⋅ Poprawnie: 709/933 [75%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
«« Ciąg
(\sqrt{108}, b,\sqrt{192})
jest arytmetyczny.
Oblicz b .
Odpowiedź:
b=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-11148 ⋅ Poprawnie: 643/902 [71%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« W ciągu arytmetycznym
(a_n) dane są:
a_{7}=-22 i
a_{14}=-50 .
Wówczas a_1+r jest równe:
Odpowiedź:
a_1+r=
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-12013 ⋅ Poprawnie: 390/452 [86%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
W ciągu arytmetycznym
(a_n) , określonym dla każdej liczby
naturalnej
n\geqslant 1 , dane są wyrazy:
a_1=6 oraz
a_3=0 .
Wyraz a_{10} jest równy:
Odpowiedzi:
A. -24
B. -9
C. -27
D. -3
E. -12
F. -30
G. -36
H. -21
I. -6
J. -33
Zadanie 9. 1 pkt ⋅ Numer: pp-12037 ⋅ Poprawnie: 208/202 [102%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Ciągi
(a_n) ,
(b_n) ,
(c_n) oraz
(d_n) są określone dla każdej liczby naturalnej
n > 1 następująco:
a_n=3n-5 ,
b_n=7n^2+2 ,
c_n=5^n ,
d_n=\frac{9}{n} .
Wskaż zdanie prawdziwe:
Odpowiedzi:
A. żaden z ciągów nie jest arytmetyczny
B. ciąg b_n jest arytmetyczny
C. ciąg d_n jest arytmetyczny
D. ciąg a_n jest arytmetyczny
Zadanie 10. 1 pkt ⋅ Numer: pp-12120 ⋅ Poprawnie: 75/138 [54%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Suma wszystkich liczb całkowitych dodatnich parzystych i jednocześnie mniejszych od
401 jest równa:
Odpowiedzi:
A. \frac{2+802}{2}\cdot 200
B. \frac{2+400}{2}\cdot 401
C. \frac{2+401}{2}\cdot 401
D. \frac{2+200}{2}\cdot 401
E. \frac{2+400}{2}\cdot 200
F. \frac{2+401}{2}\cdot 200
G. \frac{2+200}{2}\cdot 200
H. \frac{2+802}{2}\cdot 401
Zadanie 11. 1 pkt ⋅ Numer: pp-11542 ⋅ Poprawnie: 185/271 [68%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Liczby
\sqrt{17}-1 ,
4x+2 i
\sqrt{17}+1 ,
w podanej kolejności są trzema początkowymi wyrazami rosnącego ciągu geometrycznego.
Oblicz sumę tych liczb.
Odpowiedź:
s=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-11508 ⋅ Poprawnie: 493/840 [58%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
(1 pkt)
W ciągu geometrycznym
\left(a_n\right) , określonym
dla każdego
n\in\mathbb{N_+} , wyrazy drugi i szósty
są równe odpowiednio
a_2=9 i
a_6=36 .
Kwadrat wyrazu czwartego tego ciągu jest równy:
Odpowiedź:
a_4^2=
(wpisz liczbę całkowitą)
Zadanie 13. 1 pkt ⋅ Numer: pp-11838 ⋅ Poprawnie: 538/653 [82%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Trzywyrazowy ciąg
(-5-2a, 12, 48) jest geometryczny.
Liczba a jest równa:
Odpowiedzi:
A. -16
B. -8
C. -4
D. -1
E. -6
F. -2
Zadanie 14. 1 pkt ⋅ Numer: pp-11180 ⋅ Poprawnie: 727/1054 [68%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Suma pierwszych pięciu wyrazów ciągu geometrycznego jest równa
\frac{31}{2} , a jego iloraz wynosi
2 .
Wyznacz a_1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 15. 1 pkt ⋅ Numer: pp-11182 ⋅ Poprawnie: 314/497 [63%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
Kwotę 1000 zł ulokowano w banku na roczną lokatę oprocentowaną w wysokości
16\% w stosunku rocznym. Po zakończeniu lokaty od
naliczonych odsetek odprowadzany jest podatek w wysokości
19\% .
Maksymalna kwota, jaką po upływie roku będzie można wypłacić z banku, jest
równa:
Odpowiedzi:
A. 1000\cdot\left(1-\frac{81}{100}\cdot\frac{16}{100}\right)
B. 1000\cdot\left(1-\frac{19}{100}\cdot\frac{16}{100}\right)
C. 1000\cdot\left(1-\frac{19}{100}+\frac{16}{100}\right)
D. 1000\cdot\left(1+\frac{81}{100}\cdot\frac{16}{100}\right)
Rozwiąż