Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11156 ⋅ Poprawnie: 147/233 [63%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Dany jest ciąg
(b_n) , w którym
b_n=(n+5)(n-82) . Ciąg ten zawiera
k wyrazów ujemnych.
Wyznacz liczbę k .
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11160 ⋅ Poprawnie: 307/554 [55%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Wyznacz najmniejszy dodatni wyraz ciągu określonego wzorem
a_n=7n-159 .
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11767 ⋅ Poprawnie: 815/875 [93%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
\left(a_n\right) jest określony wzorem
a_n=2^n\cdot(n+3) , dla każdej dodatniej liczby
naturalnej
n .
Wyraz a_5 jest równy:
Odpowiedzi:
A. 512
B. 256
C. 576
D. 128
Zadanie 4. 1 pkt ⋅ Numer: pp-12090 ⋅ Poprawnie: 67/71 [94%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Dane są ciągi
(a_n) ,
(b_n) ,
(c_n) ,
(d_n) , określone dla każdej
liczby naturalnej
n\geqslant 1 wzorami:
a_n=20n+3 ,
b_n=2n^2-3 ,
c_n=n^2+10n-2 ,
d_n=\frac{n+187}{n} .
Liczba 239 jest 11 -tym wyrazem ciągu:
Odpowiedzi:
A. (d_n)
B. (a_n)
C. (b_n)
D. (c_n)
Zadanie 5. 1 pkt ⋅ Numer: pp-11991 ⋅ Poprawnie: 422/628 [67%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Ciąg
(a_n) jest określony wzorem
a_n=(-1)^n\cdot (n-2) dla każdej liczby
naturalnej
n\geqslant 1 .
Oceń prawdziwość poniższych stwierdzeń:
Odpowiedzi:
T/N : ciąg (a_n) jest rosnący
T/N : ciąg (a_n) zawiera wyraz dodatni i wyraz ujemny
Zadanie 6. 1 pkt ⋅ Numer: pp-11150 ⋅ Poprawnie: 893/1150 [77%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Oceń, które z podanych ciągów są arytmetyczne:
Odpowiedzi:
T/N : a_n=\sqrt{n+3}
T/N : a_n=n^2
Zadanie 7. 1 pkt ⋅ Numer: pp-11789 ⋅ Poprawnie: 861/1023 [84%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Trzywyrazowy ciąg
(2,7,a+1) jest arytmetyczny.
Liczba a jest równa:
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-11861 ⋅ Poprawnie: 440/449 [97%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
W ciągu arytmetycznym
(a_n) , określonym dla każdej liczby naturalnej
n\geqslant 1 ,
a_5=-6 oraz
a_{10}=-11 . Różnica tego ciągu jest równa:
Odpowiedzi:
A. -4
B. -1
C. 7
D. \frac{1}{2}
E. -\frac{1}{2}
F. -5
Zadanie 9. 1 pkt ⋅ Numer: pp-12066 ⋅ Poprawnie: 190/211 [90%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Ciąg arytmetyczny
(a_n) jest określony dla każdej liczby
naturalnej
n\geqslant 1 . Trzeci i piąty wyraz tego ciągu
spełniają warunek
a_3+a_5=132 .
Wtedy czwarty wyraz tego ciągu jest równy:
Odpowiedzi:
A. 49
B. 86
C. 59
D. 63
E. 47
F. 77
G. 76
H. 66
Zadanie 10. 1 pkt ⋅ Numer: pp-11151 ⋅ Poprawnie: 477/633 [75%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« W kinie jest
29 rzędów krzeseł. Rząd pierwszy
składa się z
15 krzeseł, a każdy następny rząd
zawiera o
9 krzeseł więcej niż rząd poprzedni.
Ile jest krzeseł w kinie?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 11. 1 pkt ⋅ Numer: pp-11179 ⋅ Poprawnie: 901/1213 [74%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
W ciągu geometrycznym
(a_n) , który zawiera dziewięć
wyrazów, wszystkie wyrazy są dodatnie i znane są dwa wyrazy
a_1=5 i
a_9=20 .
Oblicz a_5 .
Odpowiedź:
a_5=
(wpisz liczbę całkowitą)
Zadanie 12. 1 pkt ⋅ Numer: pp-11168 ⋅ Poprawnie: 117/163 [71%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Pewien gatunek liczy
1000 osobników i co roku
jego liczebność rośnie o
40\% .
Po upływie 7 lat liczebność tego gatunku wyniesie:
Odpowiedzi:
A. 1000\cdot (1.4)^7
B. 1000\cdot (1+7\cdot 1.4)
C. 1000\cdot (1+1.4)^7
D. 1000\cdot (1+1.4^7)
Zadanie 13. 1 pkt ⋅ Numer: pp-12091 ⋅ Poprawnie: 57/78 [73%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Ciąg geometryczny
(a_n) , określony dla każdej liczby naturalnej
n\geqslant 1 , jest rosnący i wszystkie jego wyrazy są dodatnie.
Ponadto spełniony jest warunek
a_3=a_1^{4}\cdot a_2 .
Niech
q oznacza iloraz ciągu
(a_n) .
Wtedy:
Odpowiedzi:
A. a_1=\frac{1}{q^4}
B. q^4=a_1
C. q=a_1^4
D. a_1=q
Zadanie 14. 1 pkt ⋅ Numer: pp-11412 ⋅ Poprawnie: 243/369 [65%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Ciąg liczbowy geometryczny
(a_n) zawiera
tylko wyrazy dodatnie oraz
\frac{a_{13}}{a_{11}}=
\frac{1}{64} .
Oblicz iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 15. 1 pkt ⋅ Numer: pp-11183 ⋅ Poprawnie: 531/874 [60%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
Na lokacie złożono 1000 zł przy rocznej stopie procentowej
16\% (procent składany). Odsetki naliczane są co
kwartał.
Po upływie roku wielkość kapitału na lokacie (przed potrąceniem podatków
będzie równa:
Odpowiedzi:
A. 1000\cdot\left(1+\frac{4}{100}\right)^4
B. 1000\cdot\left(1+\left(\frac{16}{100}\right)^4\right)
C. 1000\cdot\left(1+\frac{4}{100}\right)
D. 1000\cdot\left(1+\frac{4}{400}\right)^4
Rozwiąż