Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11159 ⋅ Poprawnie: 232/392 [59%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Dany jest ciąg
a_n=\frac{n+12}{n+3} .
Ile wyrazów całkowitych występuje w tym ciągu?
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11385 ⋅ Poprawnie: 274/413 [66%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Dany jest ciąg
(a_n) określony wzorem
a_n=\frac{1-4n}{-3n+2} .
Wyraz a_{2k+2} tego ciągu jest równy:
Odpowiedzi:
A. \frac{8k+9}{6k+4}
B. \frac{8k+7}{6k+4}
C. \frac{8k+9}{6k+8}
D. \frac{8k+7}{6k+8}
Zadanie 3. 1 pkt ⋅ Numer: pp-11860 ⋅ Poprawnie: 269/284 [94%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
\left(a_n\right) jest określony wzorem
a_n=\frac{3n^2+17n}{n} dla każdej liczby
naturalnej
n\geqslant 1 .
Wtedy wyraz a_7 jest równy:
Odpowiedzi:
A. 53
B. 32
C. 50
D. 38
E. 29
F. 41
Zadanie 4. 1 pkt ⋅ Numer: pp-11918 ⋅ Poprawnie: 204/253 [80%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Dane są ciągi
a_n=3n oraz
b_n=4n-2 , określone
dla każdej liczby naturalnej
n\geqslant 1 .
Liczba 25 :
Odpowiedzi:
A. jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n)
B. nie jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n)
C. nie jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n)
D. jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n)
Zadanie 5. 1 pkt ⋅ Numer: pp-11386 ⋅ Poprawnie: 331/661 [50%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Oceń, które z podanych ciągów są rosnące?
Odpowiedzi:
T/N : a_n=\frac{6-2n}{3}
T/N : a_n=2-\frac{1}{2-3n}
T/N : a_n=-\frac{1}{4}n+10
Zadanie 6. 1 pkt ⋅ Numer: pp-11144 ⋅ Poprawnie: 1049/1311 [80%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Ciąg
(a_n) jest arytmetyczny i spełnia warunek
3a_3=a_2+2a_1+13 .
Oblicz różnicę tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-11149 ⋅ Poprawnie: 769/967 [79%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Długości boków trójkąta prostokątnego tworzą ciąg arytmetyczny.
Boki tego trójkąta mają długość:
Odpowiedzi:
A. 22,29,36
B. 23,30,37
C. 20,27,34
D. 21,28,35
Zadanie 8. 1 pkt ⋅ Numer: pp-11836 ⋅ Poprawnie: 779/856 [91%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Ciąg arytmetyczny
\left(a_n\right) jest określony dla każdej liczby
naturalnej
n\geqslant 1 . W tym ciągu
a_2=6
oraz
a_3=10 .
8-ty wyraz tego ciągu a_{8} jest równy:
Odpowiedzi:
A. 22
B. 26
C. 38
D. 34
E. 30
F. 42
Zadanie 9. 1 pkt ⋅ Numer: pp-12037 ⋅ Poprawnie: 249/241 [103%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Ciągi
(a_n) ,
(b_n) ,
(c_n) oraz
(d_n) są określone dla każdej liczby naturalnej
n > 1 następująco:
a_n=8n^2-7 ,
b_n=4n+7 ,
c_n=5^n ,
d_n=\frac{9}{n} .
Wskaż zdanie prawdziwe:
Odpowiedzi:
A. ciąg b_n jest arytmetyczny
B. żaden z ciągów nie jest arytmetyczny
C. ciąg c_n jest arytmetyczny
D. ciąg a_n jest arytmetyczny
Zadanie 10. 1 pkt ⋅ Numer: pp-11153 ⋅ Poprawnie: 43/132 [32%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
» W ciągu arytmetycznym, w którym
r\neq 0 ,
zachodzi warunek
a_{15}=0 .
Wówczas:
Odpowiedzi:
A. S_{30} > a_{30}
B. S_{30} \lessdot a_{30}
C. S_{30}=a_{30}
D. S_{30}=0
Zadanie 11. 1 pkt ⋅ Numer: pp-11166 ⋅ Poprawnie: 103/162 [63%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
W ciągu geometrycznym
(a_n) wyraz
k=7 -ty jest równy
a_{7}=2\sqrt{3} .
Oblicz iloczyn pięciu kolejnych wyrazów tego ciągu
a_{5}\cdot a_{6}\cdot a_{7}\cdot a_{8}\cdot a_{9}
.
Odpowiedź:
a_{k-2}\cdot a_{k-1}\cdot a_k\cdot a_{k+1}\cdot a_{k+2}=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-11171 ⋅ Poprawnie: 568/727 [78%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
W monotonicznym ciągu geometrycznym
a_1=-2 , a
a_3=-\frac{81}{2} .
Oblicz iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 13. 1 pkt ⋅ Numer: pp-11790 ⋅ Poprawnie: 713/900 [79%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Ciąg geometryczny
(a_n) jest określony dla każdej liczby naturalnej
n\geqslant 1 . W tym ciągu
a_1=7.75 oraz
a_2=-31.00 .
Suma trzech początkowych wyrazów ciągu (a_n) jest równa:
Odpowiedzi:
A. \frac{405}{4}
B. \frac{411}{4}
C. \frac{401}{4}
D. \frac{403}{4}
E. \frac{407}{4}
F. \frac{201}{2}
Zadanie 14. 1 pkt ⋅ Numer: pp-11181 ⋅ Poprawnie: 536/837 [64%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Ciąg określony jest wzorem
a_n=3^n .
Oblicz S_{9} .
Odpowiedź:
S_k=
(wpisz liczbę całkowitą)
Zadanie 15. 1 pkt ⋅ Numer: pp-11780 ⋅ Poprawnie: 812/925 [87%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
Klient wpłacił do banku
13000 zł na lokatę dwuletnią. Po każdym rocznym okresie
oszczędzania bank dolicza odsetki w wysokości
5\% od kwoty bieżącego kapitału
znajdującego się na lokacie.
Po dwóch latach oszczędzania łączna wartość doliczonych odsetek na tej lokacie (bez
uwzględniania podatków) jest równa:
Odpowiedzi:
A. 1332.50 zł
B. 1665.63 zł
C. 1066.00 zł
D. 1599.00 zł
E. 1142.14 zł
F. 1110.42 zł
Rozwiąż