Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11155 ⋅ Poprawnie: 626/1060 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Ile wyrazów ciągu a_n=n^2-1089 jest mniejszych od 3136?
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11161 ⋅ Poprawnie: 949/1086 [87%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Pewien wyraz ciągu jest równy 401. Ciąg ten określony jest wzorem a_n=\frac{3n+7}{2}.

Wyznacz numer tego wyrazu.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11788 ⋅ Poprawnie: 682/835 [81%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=\frac{n-8}{2}, dla każdej liczby naturalnej n\geqslant 1.

Liczba wyrazów tego ciągu mniejszych od 24 jest równa:

Odpowiedzi:
A. 53 B. 58
C. 59 D. 55
E. 54 F. 57
Zadanie 4.  1 pkt ⋅ Numer: pp-12038 ⋅ Poprawnie: 69/84 [82%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=(-3)^n\cdot n-4 dla każdej liczby naturalnej n > 1.

Wtedy trzeci wyraz tego ciągu jest równy:

Odpowiedzi:
A. -95 B. -85
C. -88 D. -102
E. -71 F. -99
G. -76 H. -65
Zadanie 5.  1 pkt ⋅ Numer: pp-11991 ⋅ Poprawnie: 390/593 [65%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=(-1)^n\cdot (n-4) dla każdej liczby naturalnej n\geqslant 1.

Oceń prawdziwość poniższych stwierdzeń:

Odpowiedzi:
T/N : różnica a_{6}-a_5 jest równa 3 T/N : wyraz a_5 jest mniejszy od wyrazu a_{6}
Zadanie 6.  1 pkt ⋅ Numer: pp-11456 ⋅ Poprawnie: 1352/1530 [88%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Pomiędzy liczby 109 i 337 można wstawić pięć takich liczb, że wszystkie siedem liczb będą tworzyć ciąg arytmetyczny.

Wyznacz najmniejszą z wstawionych liczb.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-11433 ⋅ Poprawnie: 433/500 [86%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Dla ciągu arytmetycznego (a_n) określonego dla n\geqslant 1 spełniony jest warunek a_{8}+a_{9}+a_{10}=\frac{27}{2}.

Oblicz a_{9}.

Odpowiedź:
a_k=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11891 ⋅ Poprawnie: 336/347 [96%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Ciąg (a_n), określony dla każdej liczby naturalnej n \geqslant 1, jest arytmetyczny. Różnica tego ciągu jest równa -3 oraz a_8=-17.

Czwarty wyraz tego ciągu jest równy:

Odpowiedzi:
A. -2 B. -11
C. -17 D. -5
E. -14 F. -8
Zadanie 9.  1 pkt ⋅ Numer: pp-12037 ⋅ Poprawnie: 214/207 [103%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Ciągi (a_n), (b_n), (c_n) oraz (d_n) są określone dla każdej liczby naturalnej n > 1 następująco: a_n=3n+5, b_n=2n^2-3, c_n=2^n, d_n=\frac{5}{n}.

Wskaż zdanie prawdziwe:

Odpowiedzi:
A. ciąg d_n jest arytmetyczny B. ciąg c_n jest arytmetyczny
C. ciąg a_n jest arytmetyczny D. żaden z ciągów nie jest arytmetyczny
Zadanie 10.  1 pkt ⋅ Numer: pp-12120 ⋅ Poprawnie: 75/138 [54%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Suma wszystkich liczb całkowitych dodatnich parzystych i jednocześnie mniejszych od 401 jest równa:
Odpowiedzi:
A. \frac{2+400}{2}\cdot 200 B. \frac{2+400}{2}\cdot 401
C. \frac{2+401}{2}\cdot 200 D. \frac{2+401}{2}\cdot 401
E. \frac{2+802}{2}\cdot 200 F. \frac{2+200}{2}\cdot 200
G. \frac{2+802}{2}\cdot 401 H. \frac{2+200}{2}\cdot 401
Zadanie 11.  1 pkt ⋅ Numer: pp-11179 ⋅ Poprawnie: 901/1213 [74%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 W ciągu geometrycznym (a_n), który zawiera dziewięć wyrazów, wszystkie wyrazy są dodatnie i znane są dwa wyrazy a_1=12 i a_9=3.

Oblicz a_5.

Odpowiedź:
a_5= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-11434 ⋅ Poprawnie: 102/166 [61%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 W ciągu geometrycznym (a_n) dane sa wyrazy: a_1=\sqrt{m}, a_2=m\sqrt{m}, a_3=m^2\sqrt{m}.

Wzór na n-ty wyraz tego ciągu ma postać:

Odpowiedzi:
A. \frac{\left(\sqrt{5}\right)^n}{5} B. (\sqrt{5})^n
C. \left(\frac{\sqrt{5}}{5}\right)^n D. \frac{5^n}{\sqrt{5}}
Zadanie 13.  1 pkt ⋅ Numer: pp-12034 ⋅ Poprawnie: 93/105 [88%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Ciąg (x,y,z) jest geometryczny. Iloczyn wszystkich wyrazów tego ciągu jest równy -64.

Wynika z tego, że y jest równe:

Odpowiedzi:
A. 2 B. -4
C. 4 D. 8
E. -8 F. -2
Zadanie 14.  1 pkt ⋅ Numer: pp-11919 ⋅ Poprawnie: 186/228 [81%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Dany jest ciąg geometryczny (a_n), określony dla każdej liczby naturalnej n\geqslant 1. Drugi wyraz tego ciągu oraz iloraz ciągu (a_n) są równe 3.

Suma czterech początkowych kolejnych wyrazów tego ciągu jest równa:

Odpowiedzi:
A. 123 B. 40
C. 4 D. 13
E. 121 F. 364
Zadanie 15.  1 pkt ⋅ Numer: pp-11183 ⋅ Poprawnie: 531/874 [60%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Na lokacie złożono 1000 zł przy rocznej stopie procentowej 20\% (procent składany). Odsetki naliczane są co kwartał.

Po upływie roku wielkość kapitału na lokacie (przed potrąceniem podatków będzie równa:

Odpowiedzi:
A. 1000\cdot\left(1+\frac{5}{100}\right) B. 1000\cdot\left(1+\frac{5}{100}\right)^4
C. 1000\cdot\left(1+\left(\frac{20}{100}\right)^4\right) D. 1000\cdot\left(1+\frac{5}{400}\right)^4


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm