Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11158 ⋅ Poprawnie: 469/919 [51%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Ciąg liczbowy
(a_n) określony jest wzorem
a_n=\frac{2n^2-22n+48}{n^2+9} ,
a liczby
p i
q są odpowiednio najmniejszym
i największym numerem wyrazów ciągu, które są równe
0 .
Podaj liczby p i q .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11161 ⋅ Poprawnie: 949/1086 [87%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Pewien wyraz ciągu jest równy
389 . Ciąg ten określony
jest wzorem
a_n=\frac{3n+7}{2} .
Wyznacz numer tego wyrazu.
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11860 ⋅ Poprawnie: 222/235 [94%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
\left(a_n\right) jest określony wzorem
a_n=\frac{4n^2-n}{n} dla każdej liczby
naturalnej
n\geqslant 1 .
Wtedy wyraz a_7 jest równy:
Odpowiedzi:
A. 47
B. 27
C. 15
D. 39
E. 43
F. 19
Zadanie 4. 1 pkt ⋅ Numer: pp-12090 ⋅ Poprawnie: 68/72 [94%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Dane są ciągi
(a_n) ,
(b_n) ,
(c_n) ,
(d_n) , określone dla każdej
liczby naturalnej
n\geqslant 1 wzorami:
a_n=20n+3 ,
b_n=2n^2-3 ,
c_n=n^2+10n-2 ,
d_n=\frac{n+187}{n} .
Liczba 239 jest 11 -tym wyrazem ciągu:
Odpowiedzi:
A. (b_n)
B. (c_n)
C. (d_n)
D. (a_n)
Zadanie 5. 1 pkt ⋅ Numer: pp-11968 ⋅ Poprawnie: 114/145 [78%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Dany jest ciąg
(a_n) określony wzorem
a_n=3n^2+n dla każdej liczby naturalnej
n\geqslant 1 .
Oceń prawdziwość poniższych stwierdzeń:
Odpowiedzi:
T/N : wyraz a_{7} jest równy 154 :
T/N : ciąg (a_n) nie jest monotoniczny
Zadanie 6. 1 pkt ⋅ Numer: pp-11456 ⋅ Poprawnie: 1352/1530 [88%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Pomiędzy liczby
104 i
386
można wstawić pięć takich liczb, że wszystkie siedem liczb będą tworzyć
ciąg arytmetyczny.
Wyznacz najmniejszą z wstawionych liczb.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-11541 ⋅ Poprawnie: 489/742 [65%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Trzy liczby
x-2 ,
x+4
i
3x+2 ,
w podanej kolejności są trzema początkowymi wyrazami ciągu arytmetycznego
\left(c_n\right) .
Oblicz c_{70} .
Odpowiedź:
c_k=
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-11891 ⋅ Poprawnie: 369/379 [97%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Ciąg
(a_n) , określony dla każdej liczby naturalnej
n \geqslant 1 , jest arytmetyczny. Różnica tego ciągu jest równa
2 oraz
a_8=12 .
Czwarty wyraz tego ciągu jest równy:
Odpowiedzi:
A. 6
B. 4
C. 2
D. 12
E. 8
F. 10
Zadanie 9. 1 pkt ⋅ Numer: pp-12119 ⋅ Poprawnie: 151/178 [84%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Ciąg arytmetyczny
(a_n) jest określony dla każdej liczby
naturalnej
n\geqslant 1 . Różnica tego ciągu jest równa
-8 .
Wtedy:
Odpowiedzi:
A. a_{17}-a_{7}=-96
B. a_{17}-a_{7}=-56
C. a_{17}-a_{7}=-80
D. a_{17}-a_{7}=-88
E. a_{17}-a_{7}=-48
F. a_{17}-a_{7}=-104
G. a_{17}-a_{7}=-64
H. a_{17}-a_{7}=-112
Zadanie 10. 1 pkt ⋅ Numer: pp-11145 ⋅ Poprawnie: 163/254 [64%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
W ciągu arytmetycznym
a_{7}=29 oraz
a_{11}=49 .
Oblicz S_{12} .
Odpowiedź:
S_{12}=
(wpisz liczbę całkowitą)
Zadanie 11. 1 pkt ⋅ Numer: pp-11177 ⋅ Poprawnie: 484/722 [67%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Ciąg
(9-6\sqrt{2}, x, 9+6\sqrt{2})
jest geometryczny.
Oblicz x .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Zadanie 12. 1 pkt ⋅ Numer: pp-11165 ⋅ Poprawnie: 186/359 [51%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
« W ciągu
20 minut z jednej bakterii powstaje
3 innych.
Ile nowych bakterii powstanie w ciągu 120 minut z
jednej bakterii?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 13. 1 pkt ⋅ Numer: pp-12121 ⋅ Poprawnie: 74/80 [92%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Trójwyrazowy ciąg
(4,x,100) jest rosnącym ciągiem
geometrycznym.
Wtedy x jest równe:
Odpowiedzi:
A. 22
B. 17
C. 24
D. 23
E. 20
F. 19
Zadanie 14. 1 pkt ⋅ Numer: pp-11412 ⋅ Poprawnie: 243/369 [65%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Ciąg liczbowy geometryczny
(a_n) zawiera
tylko wyrazy dodatnie oraz
\frac{a_{13}}{a_{11}}=
\frac{1}{81} .
Oblicz iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 15. 1 pkt ⋅ Numer: pp-11182 ⋅ Poprawnie: 317/508 [62%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
Kwotę 1000 zł ulokowano w banku na roczną lokatę oprocentowaną w wysokości
13\% w stosunku rocznym. Po zakończeniu lokaty od
naliczonych odsetek odprowadzany jest podatek w wysokości
19\% .
Maksymalna kwota, jaką po upływie roku będzie można wypłacić z banku, jest
równa:
Odpowiedzi:
A. 1000\cdot\left(1-\frac{19}{100}\cdot\frac{13}{100}\right)
B. 1000\cdot\left(1+\frac{81}{100}\cdot\frac{13}{100}\right)
C. 1000\cdot\left(1+\frac{19}{100}\cdot\frac{13}{100}\right)
D. 1000\cdot\left(1-\frac{81}{100}\cdot\frac{13}{100}\right)
Rozwiąż