Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11159 ⋅ Poprawnie: 232/393 [59%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Dany jest ciąg
a_n=\frac{n+13}{n+2} .
Ile wyrazów całkowitych występuje w tym ciągu?
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11162 ⋅ Poprawnie: 53/111 [47%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Ogólny wyraz ciągu określony jest wzorem
a_n=7\left(\sqrt[3]{3}\right)^{n+6} , przy czym
n jest liczbą co najwyżej dwucyfrową.
Wyznacz ilość wyrazów wymiernych tego ciągu.
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11788 ⋅ Poprawnie: 755/904 [83%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
\left(a_n\right) jest określony wzorem
a_n=\frac{n-9}{3} , dla każdej liczby naturalnej
n\geqslant 1 .
Liczba wyrazów tego ciągu mniejszych od 26 jest równa:
Odpowiedzi:
A. 84
B. 90
C. 85
D. 88
E. 86
F. 89
Zadanie 4. 1 pkt ⋅ Numer: pp-12038 ⋅ Poprawnie: 108/119 [90%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Ciąg
(a_n) jest określony wzorem
a_n=(-3)^n\cdot n-2 dla każdej liczby
naturalnej
n > 1 .
Wtedy trzeci wyraz tego ciągu jest równy:
Odpowiedzi:
A. -71
B. -65
C. -83
D. -72
E. -91
F. -103
G. -80
H. -66
Zadanie 5. 1 pkt ⋅ Numer: pp-11991 ⋅ Poprawnie: 446/650 [68%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Ciąg
(a_n) jest określony wzorem
a_n=(-1)^n\cdot (n-2) dla każdej liczby
naturalnej
n\geqslant 1 .
Oceń prawdziwość poniższych stwierdzeń:
Odpowiedzi:
T/N : ciąg (a_n) jest monotoniczny
T/N : wszystkie wyrazy ciągu (a_n) są dodatnie
Zadanie 6. 1 pkt ⋅ Numer: pp-11150 ⋅ Poprawnie: 894/1151 [77%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Oceń, które z podanych ciągów są arytmetyczne:
Odpowiedzi:
T/N : a_n=\frac{-4n+16}{-2}
T/N : a_n=\sqrt{n+3}
Zadanie 7. 1 pkt ⋅ Numer: pp-11789 ⋅ Poprawnie: 903/1055 [85%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Trzywyrazowy ciąg
(3,7,a+5) jest arytmetyczny.
Liczba a jest równa:
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-11891 ⋅ Poprawnie: 384/389 [98%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Ciąg
(a_n) , określony dla każdej liczby naturalnej
n \geqslant 1 , jest arytmetyczny. Różnica tego ciągu jest równa
2 oraz
a_8=11 .
Czwarty wyraz tego ciągu jest równy:
Odpowiedzi:
A. 3
B. 11
C. 1
D. 5
E. 7
F. 9
Zadanie 9. 1 pkt ⋅ Numer: pp-12066 ⋅ Poprawnie: 201/214 [93%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Ciąg arytmetyczny
(a_n) jest określony dla każdej liczby
naturalnej
n\geqslant 1 . Piąty i siódmy wyraz tego ciągu
spełniają warunek
a_5+a_7=196 .
Wtedy szósty wyraz tego ciągu jest równy:
Odpowiedzi:
A. 112
B. 95
C. 98
D. 83
E. 89
F. 106
G. 108
H. 104
Zadanie 10. 1 pkt ⋅ Numer: pp-11151 ⋅ Poprawnie: 478/634 [75%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« W kinie jest
34 rzędów krzeseł. Rząd pierwszy
składa się z
14 krzeseł, a każdy następny rząd
zawiera o
12 krzeseł więcej niż rząd poprzedni.
Ile jest krzeseł w kinie?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 11. 1 pkt ⋅ Numer: pp-11166 ⋅ Poprawnie: 103/162 [63%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
W ciągu geometrycznym
(a_n) wyraz
k=12 -ty jest równy
a_{12}=\sqrt{6} .
Oblicz iloczyn pięciu kolejnych wyrazów tego ciągu
a_{10}\cdot a_{11}\cdot a_{12}\cdot a_{13}\cdot a_{14}
.
Odpowiedź:
a_{k-2}\cdot a_{k-1}\cdot a_k\cdot a_{k+1}\cdot a_{k+2}=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-11169 ⋅ Poprawnie: 346/528 [65%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Ciąg
(a_n) jest geometryczny i niemonotoniczny,
w którym
a_{10}=-\frac{1}{9} i
a_{15}=27 .
Wówczas wyraz a_{14} jest równy:
Odpowiedź:
a_{k}=
(wpisz liczbę całkowitą)
Zadanie 13. 1 pkt ⋅ Numer: pp-11790 ⋅ Poprawnie: 719/907 [79%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Ciąg geometryczny
(a_n) jest określony dla każdej liczby naturalnej
n\geqslant 1 . W tym ciągu
a_1=2.75 oraz
a_2=-16.50 .
Suma trzech początkowych wyrazów ciągu (a_n) jest równa:
Odpowiedzi:
A. \frac{345}{4}
B. 85
C. \frac{349}{4}
D. \frac{339}{4}
E. \frac{343}{4}
F. \frac{341}{4}
Zadanie 14. 1 pkt ⋅ Numer: pp-11181 ⋅ Poprawnie: 536/838 [63%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Ciąg określony jest wzorem
a_n=4^n .
Oblicz S_{7} .
Odpowiedź:
S_k=
(wpisz liczbę całkowitą)
Zadanie 15. 1 pkt ⋅ Numer: pp-11830 ⋅ Poprawnie: 645/752 [85%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
Pan Grzegorz wpłacił do banku pewną kwotę na lokatę dwuletnią. Po każdym rocznym okresie
oszczędzania bank doliczał odsetki w wysokości
30\% od kwoty bieżącego
kapitału znajdującego się na lokacie. Po dwóch latach oszczędzania pan Grzegorz odebrał z tego
banku wraz z odsetkami kwotę
8112.00 zł (bez uwzględnienia podatków).
Kwota wpłacona przez pana Grzegorza na tę lokatę była równa:
Odpowiedzi:
A. 5300 zł
B. 5000 zł
C. 4800 zł
D. 5200 zł
E. 4500 zł
F. 5100 zł
Rozwiąż