Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11156 ⋅ Poprawnie: 146/232 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Dany jest ciąg (b_n), w którym b_n=(n+8)(n-101). Ciąg ten zawiera k wyrazów ujemnych.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11385 ⋅ Poprawnie: 274/413 [66%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=\frac{1-4n}{-3n+2}.

Wyraz a_{2k+6} tego ciągu jest równy:

Odpowiedzi:
A. \frac{8k+25}{6k+20} B. \frac{8k+25}{6k+16}
C. \frac{8k+23}{6k+20} D. \frac{8k+23}{6k+16}
Zadanie 3.  1 pkt ⋅ Numer: pp-11904 ⋅ Poprawnie: 159/172 [92%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=\frac{n+4}{2n^2} dla każdej liczby naturalnej n \geqslant 1.

Piąty wyraz tego ciągu jest równy:

Odpowiedzi:
A. \frac{9}{50} B. \frac{5}{36}
C. \frac{11}{98} D. \frac{7}{18}
E. \frac{1}{4} F. \frac{3}{25}
Zadanie 4.  1 pkt ⋅ Numer: pp-11918 ⋅ Poprawnie: 165/219 [75%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dane są ciągi a_n=3n oraz b_n=4n-2, określone dla każdej liczby naturalnej n\geqslant 1.

Liczba 50:

Odpowiedzi:
A. jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n) B. nie jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n)
C. jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n) D. nie jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n)
Zadanie 5.  1 pkt ⋅ Numer: pp-11991 ⋅ Poprawnie: 389/592 [65%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=(-1)^n\cdot (n-3) dla każdej liczby naturalnej n\geqslant 1.

Oceń prawdziwość poniższych stwierdzeń:

Odpowiedzi:
T/N : wyraz a_2 jest mniejszy od wyrazu a_{3} T/N : ciąg (a_n) zawiera liczbę 0
Zadanie 6.  1 pkt ⋅ Numer: pp-11143 ⋅ Poprawnie: 718/942 [76%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 «« Ciąg (\sqrt{108}, b,\sqrt{300}) jest arytmetyczny.

Oblicz b.

Odpowiedź:
b= \cdot
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11789 ⋅ Poprawnie: 804/968 [83%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Trzywyrazowy ciąg (4,9,a-5) jest arytmetyczny.

Liczba a jest równa:

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11836 ⋅ Poprawnie: 691/769 [89%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Ciąg arytmetyczny \left(a_n\right) jest określony dla każdej liczby naturalnej n\geqslant 1. W tym ciągu a_2=5 oraz a_3=9.

7-ty wyraz tego ciągu a_{7} jest równy:

Odpowiedzi:
A. 25 B. 17
C. 21 D. 29
E. 37 F. 33
Zadanie 9.  1 pkt ⋅ Numer: pp-12119 ⋅ Poprawnie: 118/150 [78%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Różnica tego ciągu jest równa -5.

Wtedy:

Odpowiedzi:
A. a_{18}-a_{6}=-45 B. a_{18}-a_{6}=-80
C. a_{18}-a_{6}=-60 D. a_{18}-a_{6}=-50
E. a_{18}-a_{6}=-40 F. a_{18}-a_{6}=-65
G. a_{18}-a_{6}=-75 H. a_{18}-a_{6}=-70
Zadanie 10.  1 pkt ⋅ Numer: pp-11151 ⋅ Poprawnie: 477/633 [75%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « W kinie jest 35 rzędów krzeseł. Rząd pierwszy składa się z 15 krzeseł, a każdy następny rząd zawiera o 4 krzeseł więcej niż rząd poprzedni.

Ile jest krzeseł w kinie?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11542 ⋅ Poprawnie: 185/271 [68%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Liczby \sqrt{10}-1, 4x+3 i \sqrt{10}+1, w podanej kolejności są trzema początkowymi wyrazami rosnącego ciągu geometrycznego.

Oblicz sumę tych liczb.

Odpowiedź:
s= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-11170 ⋅ Poprawnie: 333/468 [71%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 » W ciągu geometrycznym (a_n) dane są: a_1=1296 i a_3=36, a czwarty wyraz tego ciągu jest ujemny.

Wyznacz a_4.

Odpowiedź:
a_4= (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-12121 ⋅ Poprawnie: 61/68 [89%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Trójwyrazowy ciąg (4,x,36) jest rosnącym ciągiem geometrycznym.

Wtedy x jest równe:

Odpowiedzi:
A. 14 B. 13
C. 16 D. 10
E. 12 F. 8
Zadanie 14.  1 pkt ⋅ Numer: pp-11412 ⋅ Poprawnie: 243/369 [65%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Ciąg liczbowy geometryczny (a_n) zawiera tylko wyrazy dodatnie oraz \frac{a_{13}}{a_{11}}= \frac{1}{121}.

Oblicz iloraz tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 15.  1 pkt ⋅ Numer: pp-11182 ⋅ Poprawnie: 314/498 [63%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Kwotę 1000 zł ulokowano w banku na roczną lokatę oprocentowaną w wysokości 17\% w stosunku rocznym. Po zakończeniu lokaty od naliczonych odsetek odprowadzany jest podatek w wysokości 19\%.

Maksymalna kwota, jaką po upływie roku będzie można wypłacić z banku, jest równa:

Odpowiedzi:
A. 1000\cdot\left(1+\frac{19}{100}\cdot\frac{17}{100}\right) B. 1000\cdot\left(1+\frac{81}{100}\cdot\frac{17}{100}\right)
C. 1000\cdot\left(1-\frac{19}{100}+\frac{17}{100}\right) D. 1000\cdot\left(1-\frac{81}{100}\cdot\frac{17}{100}\right)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm