Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11159 ⋅ Poprawnie: 232/392 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Dany jest ciąg a_n=\frac{n+11}{n+3}.

Ile wyrazów całkowitych występuje w tym ciągu?

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11163 ⋅ Poprawnie: 107/161 [66%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Liczba 10^{16} jest jednym z wyrazów ciągu kwadratów kolejnych liczb naturalnych 1,2,4,9,16,....

Poprzednim wyrazem tego ciągu jest liczba:

Odpowiedzi:
A. 10^{16}\right)-1 B. \left(10^{8}+1\right)^2
C. \left(10^{8}-1\right)^2 D. \left(10^{8}\right)^2
Zadanie 3.  1 pkt ⋅ Numer: pp-11904 ⋅ Poprawnie: 203/213 [95%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=\frac{n-4}{2n^2} dla każdej liczby naturalnej n \geqslant 1.

Piąty wyraz tego ciągu jest równy:

Odpowiedzi:
A. 0 B. \frac{1}{50}
C. \frac{1}{75} D. \frac{1}{36}
E. -\frac{1}{18} F. \frac{3}{98}
Zadanie 4.  1 pkt ⋅ Numer: pp-12038 ⋅ Poprawnie: 103/119 [86%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=(-1)^n\cdot n+4 dla każdej liczby naturalnej n > 1.

Wtedy trzeci wyraz tego ciągu jest równy:

Odpowiedzi:
A. 2 B. -15
C. 9 D. 8
E. 1 F. -5
G. -4 H. -8
Zadanie 5.  1 pkt ⋅ Numer: pp-11991 ⋅ Poprawnie: 440/648 [67%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=(-1)^n\cdot (n+4) dla każdej liczby naturalnej n\geqslant 1.

Oceń prawdziwość poniższych stwierdzeń:

Odpowiedzi:
T/N : wyraz a_4 jest większy od wyrazu a_{5} T/N : różnica a_{5}-a_4 jest równa -17
Zadanie 6.  1 pkt ⋅ Numer: pp-11150 ⋅ Poprawnie: 894/1151 [77%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
Oceń, które z podanych ciągów są arytmetyczne:
Odpowiedzi:
T/N : a_n=\sqrt{n+3} T/N : a_n=\frac{-4n+16}{-2}
Zadanie 7.  1 pkt ⋅ Numer: pp-11433 ⋅ Poprawnie: 434/501 [86%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Dla ciągu arytmetycznego (a_n) określonego dla n\geqslant 1 spełniony jest warunek a_{9}+a_{10}+a_{11}=\frac{27}{2}.

Oblicz a_{10}.

Odpowiedź:
a_k=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-12013 ⋅ Poprawnie: 451/509 [88%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 W ciągu arytmetycznym (a_n), określonym dla każdej liczby naturalnej n\geqslant 1, dane są wyrazy: a_1=-7 oraz a_3=-1.

Wyraz a_{15} jest równy:

Odpowiedzi:
A. 44 B. 23
C. 26 D. 47
E. 17 F. 35
G. 50 H. 14
I. 20 J. 38
Zadanie 9.  1 pkt ⋅ Numer: pp-12119 ⋅ Poprawnie: 154/183 [84%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Różnica tego ciągu jest równa 6.

Wtedy:

Odpowiedzi:
A. a_{18}-a_{7}=72 B. a_{18}-a_{7}=48
C. a_{18}-a_{7}=66 D. a_{18}-a_{7}=84
E. a_{18}-a_{7}=90 F. a_{18}-a_{7}=60
G. a_{18}-a_{7}=54 H. a_{18}-a_{7}=42
Zadanie 10.  1 pkt ⋅ Numer: pp-11145 ⋅ Poprawnie: 163/254 [64%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 W ciągu arytmetycznym a_{6}=25 oraz a_{10}=49.

Oblicz S_{12}.

Odpowiedź:
S_{12}= (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11172 ⋅ Poprawnie: 204/251 [81%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Ciąg określony wzorem a_n=n^2+4n-5 jest ciągiem:
Odpowiedzi:
A. rosnącym B. geometrycznym
C. arytmetycznym D. malejącym
Zadanie 12.  1 pkt ⋅ Numer: pp-11171 ⋅ Poprawnie: 568/727 [78%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 W monotonicznym ciągu geometrycznym a_1=-4, a a_3=-64.

Oblicz iloraz tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 13.  1 pkt ⋅ Numer: pp-12121 ⋅ Poprawnie: 78/84 [92%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Trójwyrazowy ciąg (5,x,180) jest rosnącym ciągiem geometrycznym.

Wtedy x jest równe:

Odpowiedzi:
A. 31 B. 32
C. 29 D. 30
E. 27 F. 28
Zadanie 14.  1 pkt ⋅ Numer: pp-11180 ⋅ Poprawnie: 730/1060 [68%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Suma pierwszych pięciu wyrazów ciągu geometrycznego jest równa -\frac{11}{5}, a jego iloraz wynosi -2.

Wyznacz a_1.

Odpowiedź:
a_1=
(wpisz dwie liczby całkowite)
Zadanie 15.  1 pkt ⋅ Numer: pp-11182 ⋅ Poprawnie: 320/512 [62%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Kwotę 1000 zł ulokowano w banku na roczną lokatę oprocentowaną w wysokości 7\% w stosunku rocznym. Po zakończeniu lokaty od naliczonych odsetek odprowadzany jest podatek w wysokości 19\%.

Maksymalna kwota, jaką po upływie roku będzie można wypłacić z banku, jest równa:

Odpowiedzi:
A. 1000\cdot\left(1+\frac{81}{100}\cdot\frac{7}{100}\right) B. 1000\cdot\left(1-\frac{81}{100}\cdot\frac{7}{100}\right)
C. 1000\cdot\left(1-\frac{19}{100}\cdot\frac{7}{100}\right) D. 1000\cdot\left(1+\frac{19}{100}\cdot\frac{7}{100}\right)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm