Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11157 ⋅ Poprawnie: 241/419 [57%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Ciąg
\left(a_n\right) określony jest wzorem
a_n=-216+48n-2n^2 .
Wyznacz numer największego wyrazu ciągu \left(a_n\right) .
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11162 ⋅ Poprawnie: 53/111 [47%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Ogólny wyraz ciągu określony jest wzorem
a_n=7\left(\sqrt[3]{3}\right)^{n+8} , przy czym
n jest liczbą co najwyżej dwucyfrową.
Wyznacz ilość wyrazów wymiernych tego ciągu.
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11788 ⋅ Poprawnie: 751/900 [83%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
\left(a_n\right) jest określony wzorem
a_n=\frac{n-12}{2} , dla każdej liczby naturalnej
n\geqslant 1 .
Liczba wyrazów tego ciągu mniejszych od 20 jest równa:
Odpowiedzi:
A. 55
B. 51
C. 53
D. 49
E. 54
F. 50
Zadanie 4. 1 pkt ⋅ Numer: pp-11918 ⋅ Poprawnie: 207/254 [81%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Dane są ciągi
a_n=3n oraz
b_n=4n-2 , określone
dla każdej liczby naturalnej
n\geqslant 1 .
Liczba 60 :
Odpowiedzi:
A. jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n)
B. jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n)
C. nie jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n)
D. nie jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n)
Zadanie 5. 1 pkt ⋅ Numer: pp-11968 ⋅ Poprawnie: 123/152 [80%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Dany jest ciąg
(a_n) określony wzorem
a_n=2n^2+n dla każdej liczby naturalnej
n\geqslant 1 .
Oceń prawdziwość poniższych stwierdzeń:
Odpowiedzi:
T/N : ciąg (a_n) nie jest monotoniczny
T/N : ciąg (a_n) jest monotoniczny
Zadanie 6. 1 pkt ⋅ Numer: pp-11146 ⋅ Poprawnie: 1727/2098 [82%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« W ciągu arytmetycznym
\left(a_n\right)
wyrazy pierwszy i trzeci są równe odpowiednio
12
i
16 , a pewien wyraz tego ciągu
a_k
jest równy
38 .
Wyznacz numer tego wyrazu.
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-11541 ⋅ Poprawnie: 497/746 [66%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Trzy liczby
x+8 ,
x+14
i
3x+32 ,
w podanej kolejności są trzema początkowymi wyrazami ciągu arytmetycznego
\left(c_n\right) .
Oblicz c_{61} .
Odpowiedź:
c_k=
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-11836 ⋅ Poprawnie: 783/856 [91%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Ciąg arytmetyczny
\left(a_n\right) jest określony dla każdej liczby
naturalnej
n\geqslant 1 . W tym ciągu
a_2=7
oraz
a_3=12 .
10-ty wyraz tego ciągu a_{10} jest równy:
Odpowiedzi:
A. 37
B. 42
C. 47
D. 52
E. 62
F. 57
Zadanie 9. 1 pkt ⋅ Numer: pp-12037 ⋅ Poprawnie: 254/241 [105%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Ciągi
(a_n) ,
(b_n) ,
(c_n) oraz
(d_n) są określone dla każdej liczby naturalnej
n > 1 następująco:
a_n=2n+2 ,
b_n=4n^2-3 ,
c_n=5^n ,
d_n=\frac{2}{n} .
Wskaż zdanie prawdziwe:
Odpowiedzi:
A. ciąg a_n jest arytmetyczny
B. ciąg d_n jest arytmetyczny
C. ciąg c_n jest arytmetyczny
D. ciąg b_n jest arytmetyczny
Zadanie 10. 1 pkt ⋅ Numer: pp-11142 ⋅ Poprawnie: 328/477 [68%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Kamil każdego dnia czytał o
26 stron książki
więcej niż przeczytał dnia poprzedniego. Do dwunastego dnia włącznie przeczytał
2064 stron.
Ile stron przeczytał pierwszego dnia?
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 11. 1 pkt ⋅ Numer: pp-11542 ⋅ Poprawnie: 185/271 [68%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Liczby
\sqrt{50}-1 ,
4x+1 i
\sqrt{50}+1 ,
w podanej kolejności są trzema początkowymi wyrazami rosnącego ciągu geometrycznego.
Oblicz sumę tych liczb.
Odpowiedź:
s=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-11165 ⋅ Poprawnie: 186/360 [51%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
« W ciągu
20 minut z jednej bakterii powstaje
3 innych.
Ile nowych bakterii powstanie w ciągu 60 minut z
jednej bakterii?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 13. 1 pkt ⋅ Numer: pp-12064 ⋅ Poprawnie: 104/116 [89%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Trzywyrzowy ciąg
\left(18,3x,\frac{1}{2}\right)
jest geometryczny i wszystkie jego wyrazy są dodatnie.
Wynika z tego, że x jest równe:
Odpowiedzi:
A. \frac{2}{3}
B. \frac{1}{2}
C. \frac{1}{4}
D. \frac{3}{2}
E. \frac{1}{3}
F. 1
Zadanie 14. 1 pkt ⋅ Numer: pp-11412 ⋅ Poprawnie: 243/369 [65%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Ciąg liczbowy geometryczny
(a_n) zawiera
tylko wyrazy dodatnie oraz
\frac{a_{5}}{a_{3}}=
\frac{1}{169} .
Oblicz iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 15. 1 pkt ⋅ Numer: pp-11184 ⋅ Poprawnie: 262/407 [64%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
« Po
k latach z tytułu lokaty o wysokości
4400 zł oprocentowanej w wysokości
25\% w skali roku przy
rocznej kapitalizacji odsetek otrzymamy łączne odsetki (przed potrąceniem
podatków) w wysokości
m złotych.
Wyznacz liczbę m .
Odpowiedź:
m=
(liczba zapisana dziesiętnie)
Rozwiąż