Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11157 ⋅ Poprawnie: 241/419 [57%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Ciąg \left(a_n\right) określony jest wzorem a_n=-56+32n-2n^2.

Wyznacz numer największego wyrazu ciągu \left(a_n\right).

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11161 ⋅ Poprawnie: 940/1077 [87%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Pewien wyraz ciągu jest równy 332. Ciąg ten określony jest wzorem a_n=\frac{3n+7}{2}.

Wyznacz numer tego wyrazu.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11767 ⋅ Poprawnie: 693/749 [92%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=2^n\cdot(n+1), dla każdej dodatniej liczby naturalnej n.

Wyraz a_5 jest równy:

Odpowiedzi:
A. 96 B. 192
C. 448 D. 384
Zadanie 4.  1 pkt ⋅ Numer: pp-12038 ⋅ Poprawnie: 57/72 [79%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=(-1)^n\cdot n-2 dla każdej liczby naturalnej n > 1.

Wtedy trzeci wyraz tego ciągu jest równy:

Odpowiedzi:
A. 15 B. 13
C. -7 D. -22
E. 1 F. -5
G. 14 H. 8
Zadanie 5.  1 pkt ⋅ Numer: pp-11386 ⋅ Poprawnie: 331/660 [50%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oceń, które z podanych ciągów są rosnące?
Odpowiedzi:
T/N : a_n=\frac{6-2n}{3} T/N : a_n=\frac{1}{1-4n}
T/N : a_n=7-(n-1)^2  
Zadanie 6.  1 pkt ⋅ Numer: pp-11144 ⋅ Poprawnie: 1032/1289 [80%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Ciąg (a_n) jest arytmetyczny i spełnia warunek 3a_3=a_2+2a_1+8.

Oblicz różnicę tego ciągu.

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11148 ⋅ Poprawnie: 639/896 [71%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « W ciągu arytmetycznym (a_n) dane są: a_{4}=18 i a_{11}=53.

Wówczas a_1+r jest równe:

Odpowiedź:
a_1+r= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-12013 ⋅ Poprawnie: 323/379 [85%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 W ciągu arytmetycznym (a_n), określonym dla każdej liczby naturalnej n\geqslant 1, dane są wyrazy: a_1=-8 oraz a_3=-12.

Wyraz a_{17} jest równy:

Odpowiedzi:
A. -40 B. -28
C. -42 D. -38
E. -46 F. -36
G. -48 H. -44
I. -34 J. -50
Zadanie 9.  1 pkt ⋅ Numer: pp-12066 ⋅ Poprawnie: 126/155 [81%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Trzeci i piąty wyraz tego ciągu spełniają warunek a_3+a_5=204.

Wtedy czwarty wyraz tego ciągu jest równy:

Odpowiedzi:
A. 87 B. 96
C. 94 D. 114
E. 113 F. 97
G. 104 H. 102
Zadanie 10.  1 pkt ⋅ Numer: pp-11154 ⋅ Poprawnie: 362/545 [66%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « W ciągu arytmetycznym (a_n) sumę n początkowych wyrazów można obliczyć korzystając ze wzoru S_n=n+2n^2, gdzie n\in\mathbb{N_{+}}.

Oblicz wyraz a_{5} tego ciągu.

Odpowiedź:
a_k= (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11178 ⋅ Poprawnie: 879/1143 [76%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Ciąg (b_n) jest geometryczny, w krórym dane są dwa wyrazy b_1=768 i b_5=3.

Wyznacz iloraz tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-11168 ⋅ Poprawnie: 114/160 [71%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Pewien gatunek liczy 1000 osobników i co roku jego liczebność rośnie o 20\%.

Po upływie 6 lat liczebność tego gatunku wyniesie:

Odpowiedzi:
A. 1000\cdot (1+1.2)^6 B. 1000\cdot (1.2)^6
C. 1000\cdot (1+1.2^6) D. 1000\cdot (1+6\cdot 1.2)
Zadanie 13.  1 pkt ⋅ Numer: pp-11790 ⋅ Poprawnie: 603/769 [78%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Ciąg geometryczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. W tym ciągu a_1=2.75 oraz a_2=-5.50.

Suma trzech początkowych wyrazów ciągu (a_n) jest równa:

Odpowiedzi:
A. \frac{35}{4} B. \frac{37}{4}
C. \frac{41}{4} D. 8
E. \frac{33}{4} F. \frac{31}{4}
Zadanie 14.  1 pkt ⋅ Numer: pp-11180 ⋅ Poprawnie: 709/1031 [68%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Suma pierwszych pięciu wyrazów ciągu geometrycznego jest równa -\frac{11}{3}, a jego iloraz wynosi -2.

Wyznacz a_1.

Odpowiedź:
a_1=
(wpisz dwie liczby całkowite)
Zadanie 15.  1 pkt ⋅ Numer: pp-11183 ⋅ Poprawnie: 521/860 [60%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Na lokacie złożono 1000 zł przy rocznej stopie procentowej 8\% (procent składany). Odsetki naliczane są co kwartał.

Po upływie roku wielkość kapitału na lokacie (przed potrąceniem podatków będzie równa:

Odpowiedzi:
A. 1000\cdot\left(1+\frac{2}{100}\right)^4 B. 1000\cdot\left(1+\frac{2}{400}\right)^4
C. 1000\cdot\left(1+\left(\frac{8}{100}\right)^4\right) D. 1000\cdot\left(1+\frac{2}{100}\right)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm