Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11156 ⋅ Poprawnie: 146/232 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Dany jest ciąg (b_n), w którym b_n=(n+6)(n-290). Ciąg ten zawiera k wyrazów ujemnych.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11162 ⋅ Poprawnie: 53/111 [47%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Ogólny wyraz ciągu określony jest wzorem a_n=7\left(\sqrt[3]{3}\right)^{n+5}, przy czym n jest liczbą co najwyżej dwucyfrową.

Wyznacz ilość wyrazów wymiernych tego ciągu.

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11767 ⋅ Poprawnie: 778/840 [92%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=2^n\cdot(n+3), dla każdej dodatniej liczby naturalnej n.

Wyraz a_7 jest równy:

Odpowiedzi:
A. 2816 B. 1280
C. 640 D. 2560
Zadanie 4.  1 pkt ⋅ Numer: pp-12065 ⋅ Poprawnie: 69/95 [72%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg (b_n) jest określony wzorem b_n=4n^2-71n dla każdej liczby naturalnej n\geqslant 1.

Liczba niedodatnich wyrazów ciągu b_n jest równa:

Odpowiedzi:
A. 22 B. 19
C. 13 D. 14
E. 28 F. 10
G. 25 H. 17
Zadanie 5.  1 pkt ⋅ Numer: pp-11387 ⋅ Poprawnie: 302/596 [50%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Oceń, które z podanych ciągów są malejące?
Odpowiedzi:
T/N : a_n=4-\frac{7}{n} T/N : a_n=\frac{n-3}{4}
T/N : a_n=\sqrt{3}n+1  
Zadanie 6.  1 pkt ⋅ Numer: pp-11143 ⋅ Poprawnie: 718/942 [76%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 «« Ciąg (\sqrt{75}, b,\sqrt{363}) jest arytmetyczny.

Oblicz b.

Odpowiedź:
b= \cdot
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11149 ⋅ Poprawnie: 752/952 [78%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Długości boków trójkąta prostokątnego tworzą ciąg arytmetyczny.

Boki tego trójkąta mają długość:

Odpowiedzi:
A. 34,45,56 B. 32,43,54
C. 33,44,55 D. 35,46,57
Zadanie 8.  1 pkt ⋅ Numer: pp-11891 ⋅ Poprawnie: 337/348 [96%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Ciąg (a_n), określony dla każdej liczby naturalnej n \geqslant 1, jest arytmetyczny. Różnica tego ciągu jest równa 4 oraz a_8=29.

Czwarty wyraz tego ciągu jest równy:

Odpowiedzi:
A. 17 B. 9
C. 29 D. 25
E. 13 F. 21
Zadanie 9.  1 pkt ⋅ Numer: pp-12119 ⋅ Poprawnie: 119/151 [78%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Różnica tego ciągu jest równa 10.

Wtedy:

Odpowiedzi:
A. a_{19}-a_{5}=150 B. a_{19}-a_{5}=170
C. a_{19}-a_{5}=110 D. a_{19}-a_{5}=160
E. a_{19}-a_{5}=140 F. a_{19}-a_{5}=180
G. a_{19}-a_{5}=130 H. a_{19}-a_{5}=100
Zadanie 10.  1 pkt ⋅ Numer: pp-11152 ⋅ Poprawnie: 496/864 [57%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Oblicz sumę 20 początkowych wyrazów ciągu arytmetycznego o wzorze ogólnym a_n=\frac{5}{2}-6\cdot n.
Odpowiedź:
S_k=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-11174 ⋅ Poprawnie: 1413/2171 [65%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Ciąg liczbowy \left(40,10,\frac{c}{2}-1\right) jest ciągiem geometrycznym.

Oblicz c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-11768 ⋅ Poprawnie: 767/847 [90%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Ciąg liczbowy (27, 9, a+11) jest ciągiem geometrycznym.

Liczba a jest równa:

Odpowiedzi:
A. -9 B. -4
C. -8 D. -10
E. -7 F. -12
Zadanie 13.  1 pkt ⋅ Numer: pp-12121 ⋅ Poprawnie: 61/68 [89%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Trójwyrazowy ciąg (6,x,96) jest rosnącym ciągiem geometrycznym.

Wtedy x jest równe:

Odpowiedzi:
A. 23 B. 21
C. 24 D. 22
E. 28 F. 25
Zadanie 14.  1 pkt ⋅ Numer: pp-11919 ⋅ Poprawnie: 187/229 [81%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Dany jest ciąg geometryczny (a_n), określony dla każdej liczby naturalnej n\geqslant 1. Drugi wyraz tego ciągu oraz iloraz ciągu (a_n) są równe 3.

Suma sześciu początkowych kolejnych wyrazów tego ciągu jest równa:

Odpowiedzi:
A. 3280 B. 364
C. 121 D. 1095
E. 40 F. 1093
Zadanie 15.  1 pkt ⋅ Numer: pp-11182 ⋅ Poprawnie: 314/498 [63%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Kwotę 1000 zł ulokowano w banku na roczną lokatę oprocentowaną w wysokości 12\% w stosunku rocznym. Po zakończeniu lokaty od naliczonych odsetek odprowadzany jest podatek w wysokości 19\%.

Maksymalna kwota, jaką po upływie roku będzie można wypłacić z banku, jest równa:

Odpowiedzi:
A. 1000\cdot\left(1-\frac{19}{100}+\frac{12}{100}\right) B. 1000\cdot\left(1+\frac{19}{100}\cdot\frac{12}{100}\right)
C. 1000\cdot\left(1-\frac{81}{100}\cdot\frac{12}{100}\right) D. 1000\cdot\left(1+\frac{81}{100}\cdot\frac{12}{100}\right)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm