Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11156 ⋅ Poprawnie: 137/223 [61%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Dany jest ciąg
(b_n) , w którym
b_n=(n+4)(n-122) . Ciąg ten zawiera
k wyrazów ujemnych.
Wyznacz liczbę k .
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11161 ⋅ Poprawnie: 940/1077 [87%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Pewien wyraz ciągu jest równy
362 . Ciąg ten określony
jest wzorem
a_n=\frac{3n+7}{2} .
Wyznacz numer tego wyrazu.
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11904 ⋅ Poprawnie: 144/158 [91%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
(a_n) jest określony wzorem
a_n=\frac{n-1}{2n^2} dla każdej liczby naturalnej
n \geqslant 1 .
Piąty wyraz tego ciągu jest równy:
Odpowiedzi:
A. \frac{1}{9}
B. \frac{2}{25}
C. \frac{3}{32}
D. \frac{5}{72}
E. \frac{3}{49}
F. \frac{4}{75}
Zadanie 4. 1 pkt ⋅ Numer: pp-12065 ⋅ Poprawnie: 54/83 [65%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Ciąg
(b_n) jest określony wzorem
b_n=3n^2-47n dla każdej liczby naturalnej
n\geqslant 1 .
Liczba niedodatnich wyrazów ciągu b_n jest równa:
Odpowiedzi:
A. 24
B. 10
C. 23
D. 18
E. 17
F. 9
G. 15
H. 25
Zadanie 5. 1 pkt ⋅ Numer: pp-11386 ⋅ Poprawnie: 331/660 [50%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Oceń, które z podanych ciągów są rosnące?
Odpowiedzi:
T/N : a_n=1+\frac{1}{n}
T/N : a_n=\frac{3}{2n+3}
T/N : a_n=\frac{6-2n}{3}
Zadanie 6. 1 pkt ⋅ Numer: pp-11143 ⋅ Poprawnie: 709/933 [75%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
«« Ciąg
(\sqrt{48}, b,\sqrt{192})
jest arytmetyczny.
Oblicz b .
Odpowiedź:
b=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-11789 ⋅ Poprawnie: 742/894 [82%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Trzywyrazowy ciąg
(2,8,a-5) jest arytmetyczny.
Liczba a jest równa:
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-11836 ⋅ Poprawnie: 678/754 [89%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Ciąg arytmetyczny
\left(a_n\right) jest określony dla każdej liczby
naturalnej
n\geqslant 1 . W tym ciągu
a_2=5
oraz
a_3=9 .
7-ty wyraz tego ciągu a_{7} jest równy:
Odpowiedzi:
A. 37
B. 17
C. 25
D. 29
E. 33
F. 21
Zadanie 9. 1 pkt ⋅ Numer: pp-12119 ⋅ Poprawnie: 108/140 [77%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Ciąg arytmetyczny
(a_n) jest określony dla każdej liczby
naturalnej
n\geqslant 1 . Różnica tego ciągu jest równa
4 .
Wtedy:
Odpowiedzi:
A. a_{15}-a_{8}=24
B. a_{15}-a_{8}=32
C. a_{15}-a_{8}=28
D. a_{15}-a_{8}=12
E. a_{15}-a_{8}=40
F. a_{15}-a_{8}=36
G. a_{15}-a_{8}=16
H. a_{15}-a_{8}=44
Zadanie 10. 1 pkt ⋅ Numer: pp-11152 ⋅ Poprawnie: 481/852 [56%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Oblicz sumę
17 początkowych wyrazów ciągu arytmetycznego
o wzorze ogólnym
a_n=\frac{5}{2}-4\cdot n .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-11174 ⋅ Poprawnie: 1413/2171 [65%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Ciąg liczbowy
\left(32,8,\frac{c}{2}-1\right) jest
ciągiem geometrycznym.
Oblicz c .
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 12. 1 pkt ⋅ Numer: pp-11508 ⋅ Poprawnie: 493/840 [58%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
(1 pkt)
W ciągu geometrycznym
\left(a_n\right) , określonym
dla każdego
n\in\mathbb{N_+} , wyrazy drugi i szósty
są równe odpowiednio
a_2=5 i
a_6=45 .
Kwadrat wyrazu czwartego tego ciągu jest równy:
Odpowiedź:
a_4^2=
(wpisz liczbę całkowitą)
Zadanie 13. 1 pkt ⋅ Numer: pp-12091 ⋅ Poprawnie: 42/60 [70%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Ciąg geometryczny
(a_n) , określony dla każdej liczby naturalnej
n\geqslant 1 , jest rosnący i wszystkie jego wyrazy są dodatnie.
Ponadto spełniony jest warunek
a_3=a_1^{4}\cdot a_2 .
Niech
q oznacza iloraz ciągu
(a_n) .
Wtedy:
Odpowiedzi:
A. a_1=\frac{1}{q^4}
B. a_1=q
C. q^4=a_1
D. q=a_1^4
Zadanie 14. 1 pkt ⋅ Numer: pp-11180 ⋅ Poprawnie: 726/1049 [69%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Suma pierwszych pięciu wyrazów ciągu geometrycznego jest równa
\frac{11}{4} , a jego iloraz wynosi
-2 .
Wyznacz a_1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 15. 1 pkt ⋅ Numer: pp-11182 ⋅ Poprawnie: 314/497 [63%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
Kwotę 1000 zł ulokowano w banku na roczną lokatę oprocentowaną w wysokości
10\% w stosunku rocznym. Po zakończeniu lokaty od
naliczonych odsetek odprowadzany jest podatek w wysokości
19\% .
Maksymalna kwota, jaką po upływie roku będzie można wypłacić z banku, jest
równa:
Odpowiedzi:
A. 1000\cdot\left(1-\frac{81}{100}\cdot\frac{10}{100}\right)
B. 1000\cdot\left(1-\frac{19}{100}+\frac{10}{100}\right)
C. 1000\cdot\left(1+\frac{81}{100}\cdot\frac{10}{100}\right)
D. 1000\cdot\left(1+\frac{19}{100}\cdot\frac{10}{100}\right)
Rozwiąż