Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11156 ⋅ Poprawnie: 147/234 [62%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Dany jest ciąg
(b_n) , w którym
b_n=(n+4)(n-37) . Ciąg ten zawiera
k wyrazów ujemnych.
Wyznacz liczbę k .
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11161 ⋅ Poprawnie: 949/1086 [87%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Pewien wyraz ciągu jest równy
350 . Ciąg ten określony
jest wzorem
a_n=\frac{3n+7}{2} .
Wyznacz numer tego wyrazu.
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11904 ⋅ Poprawnie: 204/213 [95%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
(a_n) jest określony wzorem
a_n=\frac{n-2}{2n^2} dla każdej liczby naturalnej
n \geqslant 1 .
Piąty wyraz tego ciągu jest równy:
Odpowiedzi:
A. \frac{1}{18}
B. \frac{5}{98}
C. \frac{1}{25}
D. \frac{3}{50}
E. \frac{1}{16}
F. \frac{1}{18}
Zadanie 4. 1 pkt ⋅ Numer: pp-12090 ⋅ Poprawnie: 71/76 [93%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Dane są ciągi
(a_n) ,
(b_n) ,
(c_n) ,
(d_n) , określone dla każdej
liczby naturalnej
n\geqslant 1 wzorami:
a_n=20n+3 ,
b_n=2n^2-3 ,
c_n=n^2+10n-2 ,
d_n=\frac{n+187}{n} .
Liczba 183 jest 9 -tym wyrazem ciągu:
Odpowiedzi:
A. (b_n)
B. (d_n)
C. (a_n)
D. (c_n)
Zadanie 5. 1 pkt ⋅ Numer: pp-11386 ⋅ Poprawnie: 331/661 [50%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Oceń, które z podanych ciągów są rosnące?
Odpowiedzi:
T/N : a_n=12+n-n^2
T/N : a_n=-\frac{1}{4}n+10
T/N : a_n=\frac{6-2n}{3}
Zadanie 6. 1 pkt ⋅ Numer: pp-11143 ⋅ Poprawnie: 719/944 [76%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
«« Ciąg
(\sqrt{48}, b,\sqrt{108})
jest arytmetyczny.
Oblicz b .
Odpowiedź:
b=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-11433 ⋅ Poprawnie: 434/501 [86%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Dla ciągu arytmetycznego
(a_n) określonego dla
n\geqslant 1 spełniony jest warunek
a_{15}+a_{16}+a_{17}=\frac{39}{2} .
Oblicz a_{16} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-11836 ⋅ Poprawnie: 779/856 [91%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Ciąg arytmetyczny
\left(a_n\right) jest określony dla każdej liczby
naturalnej
n\geqslant 1 . W tym ciągu
a_2=8
oraz
a_3=14 .
6-ty wyraz tego ciągu a_{6} jest równy:
Odpowiedzi:
A. 20
B. 32
C. 50
D. 38
E. 26
F. 44
Zadanie 9. 1 pkt ⋅ Numer: pp-12066 ⋅ Poprawnie: 196/214 [91%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Ciąg arytmetyczny
(a_n) jest określony dla każdej liczby
naturalnej
n\geqslant 1 . Trzeci i piąty wyraz tego ciągu
spełniają warunek
a_3+a_5=96 .
Wtedy czwarty wyraz tego ciągu jest równy:
Odpowiedzi:
A. 65
B. 37
C. 57
D. 64
E. 34
F. 43
G. 67
H. 48
Zadanie 10. 1 pkt ⋅ Numer: pp-11145 ⋅ Poprawnie: 163/254 [64%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
W ciągu arytmetycznym
a_{7}=-39 oraz
a_{11}=-63 .
Oblicz S_{12} .
Odpowiedź:
S_{12}=
(wpisz liczbę całkowitą)
Zadanie 11. 1 pkt ⋅ Numer: pp-11166 ⋅ Poprawnie: 103/162 [63%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
W ciągu geometrycznym
(a_n) wyraz
k=8 -ty jest równy
a_{8}=\sqrt{5} .
Oblicz iloczyn pięciu kolejnych wyrazów tego ciągu
a_{6}\cdot a_{7}\cdot a_{8}\cdot a_{9}\cdot a_{10}
.
Odpowiedź:
a_{k-2}\cdot a_{k-1}\cdot a_k\cdot a_{k+1}\cdot a_{k+2}=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-11171 ⋅ Poprawnie: 568/727 [78%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
W monotonicznym ciągu geometrycznym
a_1=-2 , a
a_3=-8 .
Oblicz iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 13. 1 pkt ⋅ Numer: pp-11790 ⋅ Poprawnie: 713/900 [79%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Ciąg geometryczny
(a_n) jest określony dla każdej liczby naturalnej
n\geqslant 1 . W tym ciągu
a_1=1.75 oraz
a_2=-7.00 .
Suma trzech początkowych wyrazów ciągu (a_n) jest równa:
Odpowiedzi:
A. \frac{99}{4}
B. \frac{93}{4}
C. \frac{95}{4}
D. \frac{89}{4}
E. \frac{91}{4}
F. \frac{45}{2}
Zadanie 14. 1 pkt ⋅ Numer: pp-11181 ⋅ Poprawnie: 536/837 [64%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Ciąg określony jest wzorem
a_n=3^n .
Oblicz S_{6} .
Odpowiedź:
S_k=
(wpisz liczbę całkowitą)
Zadanie 15. 1 pkt ⋅ Numer: pp-11183 ⋅ Poprawnie: 539/888 [60%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
Na lokacie złożono 1000 zł przy rocznej stopie procentowej
12\% (procent składany). Odsetki naliczane są co
kwartał.
Po upływie roku wielkość kapitału na lokacie (przed potrąceniem podatków
będzie równa:
Odpowiedzi:
A. 1000\cdot\left(1+\frac{3}{100}\right)^4
B. 1000\cdot\left(1+\left(\frac{12}{100}\right)^4\right)
C. 1000\cdot\left(1+\frac{3}{100}\right)
D. 1000\cdot\left(1+\frac{3}{400}\right)^4
Rozwiąż