Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11157 ⋅ Poprawnie: 241/419 [57%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Ciąg \left(a_n\right) określony jest wzorem a_n=-128+40n-2n^2.

Wyznacz numer największego wyrazu ciągu \left(a_n\right).

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11160 ⋅ Poprawnie: 307/554 [55%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wyznacz najmniejszy dodatni wyraz ciągu określonego wzorem a_n=7n-170.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11788 ⋅ Poprawnie: 689/845 [81%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=\frac{n-7}{3}, dla każdej liczby naturalnej n\geqslant 1.

Liczba wyrazów tego ciągu mniejszych od 16 jest równa:

Odpowiedzi:
A. 57 B. 58
C. 54 D. 52
E. 56 F. 53
Zadanie 4.  1 pkt ⋅ Numer: pp-12065 ⋅ Poprawnie: 69/95 [72%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg (b_n) jest określony wzorem b_n=4n^2-31n dla każdej liczby naturalnej n\geqslant 1.

Liczba niedodatnich wyrazów ciągu b_n jest równa:

Odpowiedzi:
A. 16 B. 17
C. 7 D. 9
E. 15 F. 13
G. 3 H. 6
Zadanie 5.  1 pkt ⋅ Numer: pp-11387 ⋅ Poprawnie: 302/596 [50%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Oceń, które z podanych ciągów są malejące?
Odpowiedzi:
T/N : a_n=n^2-124 T/N : a_n=\frac{n+1}{n+3}
T/N : a_n=4-\frac{7}{n}  
Zadanie 6.  1 pkt ⋅ Numer: pp-11143 ⋅ Poprawnie: 718/942 [76%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 «« Ciąg (\sqrt{75}, b,\sqrt{147}) jest arytmetyczny.

Oblicz b.

Odpowiedź:
b= \cdot
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11433 ⋅ Poprawnie: 433/500 [86%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Dla ciągu arytmetycznego (a_n) określonego dla n\geqslant 1 spełniony jest warunek a_{9}+a_{10}+a_{11}=\frac{39}{2}.

Oblicz a_{10}.

Odpowiedź:
a_k=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11891 ⋅ Poprawnie: 338/349 [96%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Ciąg (a_n), określony dla każdej liczby naturalnej n \geqslant 1, jest arytmetyczny. Różnica tego ciągu jest równa -2 oraz a_8=-12.

Czwarty wyraz tego ciągu jest równy:

Odpowiedzi:
A. -10 B. -12
C. -8 D. -6
E. -4 F. -2
Zadanie 9.  1 pkt ⋅ Numer: pp-12035 ⋅ Poprawnie: 199/220 [90%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Ciąg (a_n), określony dla każdej liczby naturalnej n > 1, jest arytmetyczny. Różnica tego ciągu jest równa -2, a pierwszy wyraz tego ciągu jest równy 1.

Wtedy iloraz \frac{a_4}{a_2} jest równy:

Odpowiedzi:
A. 10 B. 15
C. \frac{10}{3} D. 20
E. 5 F. \frac{15}{2}
Zadanie 10.  1 pkt ⋅ Numer: pp-11151 ⋅ Poprawnie: 477/633 [75%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « W kinie jest 31 rzędów krzeseł. Rząd pierwszy składa się z 13 krzeseł, a każdy następny rząd zawiera o 6 krzeseł więcej niż rząd poprzedni.

Ile jest krzeseł w kinie?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11166 ⋅ Poprawnie: 103/162 [63%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 W ciągu geometrycznym (a_n) wyraz k=10-ty jest równy a_{10}=\sqrt{6}.

Oblicz iloczyn pięciu kolejnych wyrazów tego ciągu a_{8}\cdot a_{9}\cdot a_{10}\cdot a_{11}\cdot a_{12} .

Odpowiedź:
a_{k-2}\cdot a_{k-1}\cdot a_k\cdot a_{k+1}\cdot a_{k+2}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-11768 ⋅ Poprawnie: 770/850 [90%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Ciąg liczbowy (27, 9, a+1) jest ciągiem geometrycznym.

Liczba a jest równa:

Odpowiedzi:
A. -2 B. 6
C. 1 D. 0
E. 3 F. 2
Zadanie 13.  1 pkt ⋅ Numer: pp-12034 ⋅ Poprawnie: 94/106 [88%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Ciąg (x,y,z) jest geometryczny. Iloczyn wszystkich wyrazów tego ciągu jest równy -8.

Wynika z tego, że y jest równe:

Odpowiedzi:
A. -4 B. 2
C. -1 D. 4
E. 1 F. -2
Zadanie 14.  1 pkt ⋅ Numer: pp-11180 ⋅ Poprawnie: 730/1059 [68%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Suma pierwszych pięciu wyrazów ciągu geometrycznego jest równa -\frac{11}{5}, a jego iloraz wynosi -2.

Wyznacz a_1.

Odpowiedź:
a_1=
(wpisz dwie liczby całkowite)
Zadanie 15.  1 pkt ⋅ Numer: pp-11184 ⋅ Poprawnie: 262/406 [64%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 « Po k latach z tytułu lokaty o wysokości 3100 zł oprocentowanej w wysokości 25\% w skali roku przy rocznej kapitalizacji odsetek otrzymamy łączne odsetki (przed potrąceniem podatków) w wysokości m złotych.

Wyznacz liczbę m.

Odpowiedź:
m= (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm