Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11159 ⋅ Poprawnie: 232/392 [59%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Dany jest ciąg
a_n=\frac{n+11}{n+3} .
Ile wyrazów całkowitych występuje w tym ciągu?
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11163 ⋅ Poprawnie: 107/161 [66%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Liczba
10^{16} jest jednym z wyrazów ciągu kwadratów
kolejnych liczb naturalnych
1,2,4,9,16,... .
Poprzednim wyrazem tego ciągu jest liczba:
Odpowiedzi:
A. 10^{16}\right)-1
B. \left(10^{8}+1\right)^2
C. \left(10^{8}-1\right)^2
D. \left(10^{8}\right)^2
Zadanie 3. 1 pkt ⋅ Numer: pp-11904 ⋅ Poprawnie: 203/213 [95%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
(a_n) jest określony wzorem
a_n=\frac{n-4}{2n^2} dla każdej liczby naturalnej
n \geqslant 1 .
Piąty wyraz tego ciągu jest równy:
Odpowiedzi:
A. 0
B. \frac{1}{50}
C. \frac{1}{75}
D. \frac{1}{36}
E. -\frac{1}{18}
F. \frac{3}{98}
Zadanie 4. 1 pkt ⋅ Numer: pp-12038 ⋅ Poprawnie: 103/119 [86%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Ciąg
(a_n) jest określony wzorem
a_n=(-1)^n\cdot n+4 dla każdej liczby
naturalnej
n > 1 .
Wtedy trzeci wyraz tego ciągu jest równy:
Odpowiedzi:
A. 2
B. -15
C. 9
D. 8
E. 1
F. -5
G. -4
H. -8
Zadanie 5. 1 pkt ⋅ Numer: pp-11991 ⋅ Poprawnie: 440/648 [67%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Ciąg
(a_n) jest określony wzorem
a_n=(-1)^n\cdot (n+4) dla każdej liczby
naturalnej
n\geqslant 1 .
Oceń prawdziwość poniższych stwierdzeń:
Odpowiedzi:
T/N : wyraz a_4 jest większy od wyrazu a_{5}
T/N : różnica a_{5}-a_4 jest równa -17
Zadanie 6. 1 pkt ⋅ Numer: pp-11150 ⋅ Poprawnie: 894/1151 [77%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Oceń, które z podanych ciągów są arytmetyczne:
Odpowiedzi:
T/N : a_n=\sqrt{n+3}
T/N : a_n=\frac{-4n+16}{-2}
Zadanie 7. 1 pkt ⋅ Numer: pp-11433 ⋅ Poprawnie: 434/501 [86%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Dla ciągu arytmetycznego
(a_n) określonego dla
n\geqslant 1 spełniony jest warunek
a_{9}+a_{10}+a_{11}=\frac{27}{2} .
Oblicz a_{10} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-12013 ⋅ Poprawnie: 451/509 [88%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
W ciągu arytmetycznym
(a_n) , określonym dla każdej liczby
naturalnej
n\geqslant 1 , dane są wyrazy:
a_1=-7 oraz
a_3=-1 .
Wyraz a_{15} jest równy:
Odpowiedzi:
A. 44
B. 23
C. 26
D. 47
E. 17
F. 35
G. 50
H. 14
I. 20
J. 38
Zadanie 9. 1 pkt ⋅ Numer: pp-12119 ⋅ Poprawnie: 154/183 [84%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Ciąg arytmetyczny
(a_n) jest określony dla każdej liczby
naturalnej
n\geqslant 1 . Różnica tego ciągu jest równa
6 .
Wtedy:
Odpowiedzi:
A. a_{18}-a_{7}=72
B. a_{18}-a_{7}=48
C. a_{18}-a_{7}=66
D. a_{18}-a_{7}=84
E. a_{18}-a_{7}=90
F. a_{18}-a_{7}=60
G. a_{18}-a_{7}=54
H. a_{18}-a_{7}=42
Zadanie 10. 1 pkt ⋅ Numer: pp-11145 ⋅ Poprawnie: 163/254 [64%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
W ciągu arytmetycznym
a_{6}=25 oraz
a_{10}=49 .
Oblicz S_{12} .
Odpowiedź:
S_{12}=
(wpisz liczbę całkowitą)
Zadanie 11. 1 pkt ⋅ Numer: pp-11172 ⋅ Poprawnie: 204/251 [81%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Ciąg określony wzorem
a_n=n^2+4n-5 jest ciągiem:
Odpowiedzi:
A. rosnącym
B. geometrycznym
C. arytmetycznym
D. malejącym
Zadanie 12. 1 pkt ⋅ Numer: pp-11171 ⋅ Poprawnie: 568/727 [78%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
W monotonicznym ciągu geometrycznym
a_1=-4 , a
a_3=-64 .
Oblicz iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 13. 1 pkt ⋅ Numer: pp-12121 ⋅ Poprawnie: 78/84 [92%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Trójwyrazowy ciąg
(5,x,180) jest rosnącym ciągiem
geometrycznym.
Wtedy x jest równe:
Odpowiedzi:
A. 31
B. 32
C. 29
D. 30
E. 27
F. 28
Zadanie 14. 1 pkt ⋅ Numer: pp-11180 ⋅ Poprawnie: 730/1060 [68%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Suma pierwszych pięciu wyrazów ciągu geometrycznego jest równa
-\frac{11}{5} , a jego iloraz wynosi
-2 .
Wyznacz a_1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 15. 1 pkt ⋅ Numer: pp-11182 ⋅ Poprawnie: 320/512 [62%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
Kwotę 1000 zł ulokowano w banku na roczną lokatę oprocentowaną w wysokości
7\% w stosunku rocznym. Po zakończeniu lokaty od
naliczonych odsetek odprowadzany jest podatek w wysokości
19\% .
Maksymalna kwota, jaką po upływie roku będzie można wypłacić z banku, jest
równa:
Odpowiedzi:
A. 1000\cdot\left(1+\frac{81}{100}\cdot\frac{7}{100}\right)
B. 1000\cdot\left(1-\frac{81}{100}\cdot\frac{7}{100}\right)
C. 1000\cdot\left(1-\frac{19}{100}\cdot\frac{7}{100}\right)
D. 1000\cdot\left(1+\frac{19}{100}\cdot\frac{7}{100}\right)
Rozwiąż