Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-11385 ⋅ Poprawnie: 256/394 [64%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Dany jest ciąg
(a_n) określony wzorem
a_n=\frac{1-4n}{-3n+2} .
Wyraz a_{2k+2} tego ciągu jest równy:
Odpowiedzi:
A. \frac{8k+9}{6k+4}
B. \frac{8k+9}{6k+8}
C. \frac{8k+7}{6k+4}
D. \frac{8k+7}{6k+8}
Zadanie 2. 1 pkt ⋅ Numer: pp-12066 ⋅ Poprawnie: 131/160 [81%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Ciąg arytmetyczny
(a_n) jest określony dla każdej liczby
naturalnej
n\geqslant 1 . Trzeci i piąty wyraz tego ciągu
spełniają warunek
a_3+a_5=108 .
Wtedy czwarty wyraz tego ciągu jest równy:
Odpowiedzi:
A. 74
B. 59
C. 54
D. 65
E. 43
F. 45
G. 41
H. 64
Zadanie 3. 1 pkt ⋅ Numer: pp-11154 ⋅ Poprawnie: 362/545 [66%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« W ciągu arytmetycznym
(a_n) sumę
n początkowych wyrazów
można obliczyć korzystając ze wzoru
S_n=n+2n^2 , gdzie
n\in\mathbb{N_{+}} .
Oblicz wyraz a_{6} tego ciągu.
Odpowiedź:
a_k=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11542 ⋅ Poprawnie: 185/271 [68%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Liczby
\sqrt{26}-1 ,
2x+4 i
\sqrt{26}+1 ,
w podanej kolejności są trzema początkowymi wyrazami rosnącego ciągu geometrycznego.
Oblicz sumę tych liczb.
Odpowiedź:
s=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11412 ⋅ Poprawnie: 237/359 [66%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Ciąg liczbowy geometryczny
(a_n) zawiera
tylko wyrazy dodatnie oraz
\frac{a_{15}}{a_{13}}=
\frac{1}{25} .
Oblicz iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20523 ⋅ Poprawnie: 57/109 [52%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
» Akcje firmy zyskują na wartości
7\% w ciągu
każdego roku.
Po ilu latach posiadacz akcji co najmniej podwoi zainwestowaną kwotę? Przyjmnij, że wartość
akcji wzrasta dopiero po upływie pełnego roku.
Odpowiedź:
Ilosc\ lat=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20503 ⋅ Poprawnie: 483/838 [57%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
«« Dany jest ciąg arytmetyczny
(-10, x-3, y, -7) .
Oblicz x .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Zadanie 8. 3 pkt ⋅ Numer: pp-20865 ⋅ Poprawnie: 112/219 [51%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
(1 pkt)
W rosnącym ciągu arytmetycznym
\left(a_n\right) , określonym dla każdej liczby naturalnej dodatniej
n , suma trzech początkowych wyrazów jest równa
3 , a iloczyn tych wyrazów jest równy
-35 .
Oblicz różnicę tego ciągu.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (2 pkt)
(2 pkt)
Wyznacz wyraz
a_{65} tego ciągu.
Odpowiedź:
a_{k}=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20821 ⋅ Poprawnie: 150/349 [42%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Suma stu kolejnych liczb naturalnych, które przy dzieleniu przez
8 dają resztę
6
jest równa
41800 .
Podaj najmniejszą z tych liczb.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj największą z tych liczb.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-21087 ⋅ Poprawnie: 53/92 [57%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Dany jest ciąg
(a_n) określony wzorem
a_n=\frac{5^n}{35} dla każdej liczby naturalnej
n\geqslant 1 .
Wyraz numer
58 ciągu
(a_n) jest równy:
Odpowiedzi:
A. \frac{5^{60}}{7}
B. \frac{5^{59}}{7}
C. \frac{5^{57}}{7}
D. \frac{5^{56}}{7}
E. \frac{5^{55}}{7}
F. \frac{5^{58}}{7}
Podpunkt 10.2 (1 pkt)
Oceń prawdziwość poniższych stwierdzeń:
Odpowiedzi:
T/N : suma pierwszych trzech wyrazów ciągu (a_n) jest równa \frac{22}{5}
T/N : suma pierwszych trzech wyrazów ciągu (a_n) jest równa \frac{162}{35}
Zadanie 11. 4 pkt ⋅ Numer: pp-30389 ⋅ Poprawnie: 35/157 [22%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
Suma kolejnych liczb naturalnych, które przy dzieleniu przez
d dają resztę
r
jest równa
S , a największa z tych liczb jest równa
m .
Podaj najmniejszą z tych liczb.
Dane
d=7
r=3
S=9945
m=388
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj ilość liczb tworzących tę sumę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pp-30390 ⋅ Poprawnie: 99/540 [18%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
« Pierwszy, drugi, czwarty i piąty wyraz ciągu geometrycznego
\left(a_n\right) są równe odpowiednio
a_1 ,
a_2 ,
a_4 i
a_5 .
Oblicz najmniejszy możliwy pierwszy wyraz tego ciągu.
Dane
a_1+a_5=246
a_2\cdot a_4=729
Odpowiedź:
a_{1}=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (1 pkt)
Oblicz najmniejszy możliwy iloraz tego ciągu.
Odpowiedź:
q_{min}=
(wpisz liczbę całkowitą)
Podpunkt 12.3 (1 pkt)
Podaj najmniejszy możliwy, dodatni iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż