Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11860 ⋅ Poprawnie: 217/229 [94%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=\frac{2n^2+12n}{n} dla każdej liczby naturalnej n\geqslant 1.

Wtedy wyraz a_7 jest równy:

Odpowiedzi:
A. 26 B. 20
C. 34 D. 22
E. 28 F. 36
Zadanie 2.  1 pkt ⋅ Numer: pp-12035 ⋅ Poprawnie: 232/248 [93%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg (a_n), określony dla każdej liczby naturalnej n > 1, jest arytmetyczny. Różnica tego ciągu jest równa 4, a pierwszy wyraz tego ciągu jest równy -8.

Wtedy iloraz \frac{a_4}{a_2} jest równy:

Odpowiedzi:
A. -3 B. -1
C. -\frac{2}{3} D. -\frac{3}{2}
E. -4 F. -\frac{1}{2}
Zadanie 3.  1 pkt ⋅ Numer: pp-11154 ⋅ Poprawnie: 363/546 [66%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « W ciągu arytmetycznym (a_n) sumę n początkowych wyrazów można obliczyć korzystając ze wzoru S_n=n+2n^2, gdzie n\in\mathbb{N_{+}}.

Oblicz wyraz a_{4} tego ciągu.

Odpowiedź:
a_k= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-12091 ⋅ Poprawnie: 57/78 [73%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg geometryczny (a_n), określony dla każdej liczby naturalnej n\geqslant 1, jest rosnący i wszystkie jego wyrazy są dodatnie. Ponadto spełniony jest warunek a_3=a_1^{5}\cdot a_2. Niech q oznacza iloraz ciągu (a_n).

Wtedy:

Odpowiedzi:
A. a_1=\frac{1}{q^5} B. q=a_1^5
C. a_1=q D. q^5=a_1
Zadanie 5.  1 pkt ⋅ Numer: pp-11180 ⋅ Poprawnie: 730/1059 [68%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Suma pierwszych pięciu wyrazów ciągu geometrycznego jest równa -\frac{61}{5}, a jego iloraz wynosi -3.

Wyznacz a_1.

Odpowiedź:
a_1=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20829 ⋅ Poprawnie: 98/269 [36%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Pan Kowalski złożył do banku kwotę 4096.00 zł na okres dwóch lat na procent składany. Oprocentowanie w banku wynosi p\% w skali roku, a odsetki kapitalizuje się co 6 miesięcy. Po upływie tego terminu bank wypłacił mu kwotę 6561.00 zł (pomiń podatek od usług kapitałowych).

Wyznacz p.

Odpowiedź:
p\ [\%]= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20503 ⋅ Poprawnie: 483/838 [57%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 «« Dany jest ciąg arytmetyczny (-18, x-3, y, -6).

Oblicz x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-21082 ⋅ Poprawnie: 135/264 [51%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Trójwyrazowy ciąg (x-6,y,y+4) jest arytmetyczny. Suma wszystkich wyrazów tego ciągu jest równa 6. Oblicz wszystkie wyrazy tego ciągu.

Wyznacz x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Wyznacz y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-21069 ⋅ Poprawnie: 164/286 [57%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 W ciągu arytmetycznym \left(a_n\right), określonym dla każdej liczby naturalnej n\geqslant 1, a_1=-8 i a_4=1.

Oblicz sumę stu początkowych kolejnych wyrazów tego ciągu.

Odpowiedź:
S_{100}= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20517 ⋅ Poprawnie: 81/158 [51%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Ciąg (a-b,a^2-2,k-b) jest ciągiem atytmetycznym i geometrycznym. Wyznacz a i b.

Podaj a.

Dane
k=4
Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30166 ⋅ Poprawnie: 182/424 [42%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Suma pierwszych pięciu wyrazów ciągu arytmetycznego (a_n) wynosi s1, a suma a_6+a_7+a_8+...+a_{12} wynosi s2.

Oblicz a_1.

Dane
s1=955
s2=1043
Odpowiedź:
a_{1}= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Oblicz różnicę tego ciągu.
Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30392 ⋅ Poprawnie: 6/63 [9%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 « Pan Kozłowski złożył do banku kwotę k zł na procent prosty. Po upływie każdego roku, po dopisaniu do lokaty należnych odsetek, dopłacał kwotę d zł, która powiększała jego kapitał podlegający oprocentowaniu. Przez cały okres oszczędzania oprocentowanie w banku było stałe i wynosiło p\%. Po n latach oszczędzania, po doliczeniu do lokaty należnych odsetek za ostatni rok kwota na lokacie była równa s zł (z pominięciem podatku od usług kapitałowych).

Oblicz n. Pamiętaj, że odsetki pomimo iż pozostają na lokacie, nie podlegają oprocentowaniu. Odsetki oblicza się tylko od wpłaconego kapitału.

Dane
k=7000
d=1000
p=9.5
s=40950.00
Odpowiedź:
n= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm