Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-11454 ⋅ Poprawnie: 247/410 [60%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wyznacz numer wyrazu, poczynając od którego ciąg liczbowy określony
wzorem
a_n=n^2-11n+11 jest rosnący.
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11146 ⋅ Poprawnie: 1654/2025 [81%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« W ciągu arytmetycznym
\left(a_n\right)
wyrazy pierwszy i trzeci są równe odpowiednio
-12
i
-2 , a pewien wyraz tego ciągu
a_k
jest równy
53 .
Wyznacz numer tego wyrazu.
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11147 ⋅ Poprawnie: 55/119 [46%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
(c_n) dany jest wzorem
c_n=(n-16)\cdot 6 dla
n\geqslant 1 .
Oblicz S_{20} .
Odpowiedź:
S_{20}=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11173 ⋅ Poprawnie: 187/321 [58%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Dany jest ciąg geometryczny o początkowych wyrazach
a_1=32 ,
a_2=16 ,
a_3=8 .
Oblicz numer największego wyrazu tego ciągu, który jest mniejszy od
\frac{1}{6} .
Odpowiedź:
max_{< \frac{1}{m}}=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11919 ⋅ Poprawnie: 176/217 [81%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Dany jest ciąg geometryczny
(a_n) , określony dla każdej liczby naturalnej
n\geqslant 1 . Drugi wyraz tego ciągu oraz iloraz ciągu
(a_n) są równe
2 .
Suma pięciu początkowych kolejnych wyrazów tego ciągu jest równa:
Odpowiedzi:
A. 127
B. 65
C. 7
D. 31
E. 63
F. 15
Zadanie 6. 2 pkt ⋅ Numer: pr-20270 ⋅ Poprawnie: 18/39 [46%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Dany jest ciąg
a_n=\frac{6n^2-5n+1}{3n-1} .
Ile wyrazów tego ciągu nie należy do zbioru liczb naturalnych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Które wyrazy tego ciągu są mniejsze od
17 ?
Podaj ilość takich wyrazów.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20512 ⋅ Poprawnie: 12/90 [13%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Dla podanej liczby parzystej
k wyznacz wartość
wyrażenia:
150^2-(150-1)^2+(150-2)^2-(150-3)^2+(150-4)^2-(150-5)^2+...+102^2-101^2
.
Odpowiedź:
s=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20819 ⋅ Poprawnie: 128/182 [70%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Dany jest ciąg arytmetyczny
(a_n) .
Wyznacz najmniejsze możliwe a_1 tego ciągu.
Dane
a_{3}+a_{5}=0
a_{3}\cdot a_{5}=-16
Odpowiedź:
a_1=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Wyznacz największą możliwą różnicę
r tego ciągu.
Odpowiedź:
r_{max}=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20821 ⋅ Poprawnie: 150/349 [42%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Suma stu kolejnych liczb naturalnych, które przy dzieleniu przez
8 dają resztę
4
jest równa
41600 .
Podaj najmniejszą z tych liczb.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj największą z tych liczb.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-20823 ⋅ Poprawnie: 77/175 [44%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Liczby dodatnie
a_1 ,
a_2 i
a_3 tworzą ciąg geometryczny.
Podaj najmniejszą z tych liczb.
Dane
a_1+a_2+a_3=39
a_1\cdot a_2\cdot a_3=729
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pp-30157 ⋅ Poprawnie: 38/123 [30%]
Rozwiąż
Podpunkt 11.1 (4 pkt)
«« W ciągu arytmetycznym
(a_n) mamy:
a_8=m .
Przy jakiej różnicy ciągu suma kwadratów wyrazów a_2
i a_6 jest najmniejsza możliwa?
Dane
m=10
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 5 pkt ⋅ Numer: pp-30418 ⋅ Poprawnie: 7/28 [25%]
Rozwiąż
Podpunkt 12.1 (3 pkt)
Dany jest ciąg
(a_n) określony wzorem
a_n=\frac{33}{4}n-\frac{143}{2} dla każdej liczby naturalnej
n\geqslant 1 . Trójwyrazowy ciąg
(a_{10}, x^2+2, a_{14}) , gdzie
x
jest liczbą rzeczywistą dodatnią, jest geometryczny i rosnący.
Oblicz x .
Odpowiedź:
x=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
Oblicz iloraz tego ciągu.
Odpowiedź:
Rozwiąż