Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11387 ⋅ Poprawnie: 302/596 [50%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Oceń, które z podanych ciągów są malejące?
Odpowiedzi:
T/N : a_n=\frac{1}{1-4n} T/N : a_n=7-(n-1)^2
T/N : a_n=\frac{n-3}{4}  
Zadanie 2.  1 pkt ⋅ Numer: pp-11789 ⋅ Poprawnie: 798/960 [83%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Trzywyrazowy ciąg (1,4,a-4) jest arytmetyczny.

Liczba a jest równa:

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11142 ⋅ Poprawnie: 314/462 [67%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Kamil każdego dnia czytał o 9 stron książki więcej niż przeczytał dnia poprzedniego. Do dwunastego dnia włącznie przeczytał 762 stron.

Ile stron przeczytał pierwszego dnia?

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11178 ⋅ Poprawnie: 900/1160 [77%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg (b_n) jest geometryczny, w krórym dane są dwa wyrazy b_1=512 i b_5=2.

Wyznacz iloraz tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11780 ⋅ Poprawnie: 770/877 [87%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Klient wpłacił do banku 14000 zł na lokatę dwuletnią. Po każdym rocznym okresie oszczędzania bank dolicza odsetki w wysokości 3\% od kwoty bieżącego kapitału znajdującego się na lokacie.

Po dwóch latach oszczędzania łączna wartość doliczonych odsetek na tej lokacie (bez uwzględniania podatków) jest równa:

Odpowiedzi:
A. 730.80 zł B. 1065.75 zł
C. 1023.12 zł D. 710.50 zł
E. 852.60 zł F. 682.08 zł
Zadanie 6.  3 pkt ⋅ Numer: pp-21084 ⋅ Poprawnie: 71/177 [40%] Rozwiąż 
Podpunkt 6.1 (0.5 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=-2n-4 dla każdej liczby naturalnej n \geqslant 1.

Ciąg (a_n) jest:

Odpowiedzi:
A. stały B. rosnący
C. malejący D. niemonotoniczny
Podpunkt 6.2 (0.5 pkt)
 Odpowiedź powyższa jest poprawna, ponieważ:
Odpowiedzi:
A. a_{n+1}-a_n=-1 B. a_{n+1}-a_n=3
C. a_{n+1}-a_n=-2 D. a_{n+1}-a_n=-3
Podpunkt 6.3 (1 pkt)
 Najmniejszą wartością n, dla której wyraz a_n jest mniejszy od -52, jest:
Odpowiedzi:
A. 20 B. 28
C. 23 D. 26
E. 24 F. 25
Podpunkt 6.4 (1 pkt)
 Suma n początkowych wyrazów ciągu (a_n) jest równa -374 dla n równego:
Odpowiedzi:
A. 18 B. 15
C. 16 D. 12
E. 17 F. 20
Zadanie 7.  2 pkt ⋅ Numer: pp-20503 ⋅ Poprawnie: 483/838 [57%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 «« Dany jest ciąg arytmetyczny (-16, x-3, y, -28).

Oblicz x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20817 ⋅ Poprawnie: 157/313 [50%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Dany jest ciąg arytmetyczny (a_n).

Wyznacz a_1.

Dane
a_{1}+a_{2}=19
a_{7}=26
a_{k}+a_{k+1}=109
Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Oblicz k.
Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20822 ⋅ Poprawnie: 141/304 [46%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Rowerzysta w ciągu pierwszej godziny przejechał s kilometrów, a ciągu każdej następnej godziny przejeżdżał o d metrów mniej. W ciągu ostatniej godziny jazdy ten rowerzysta przejechał drogę o długości p kilometrów.

Ile godzin trwała jazda tego rowerzysty?

Dane
s=31
d=220
p=27.70
Odpowiedź:
t\ [h]= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj długość trasy w kilometrach przejechanej przez tego rowerzystę?
Odpowiedź:
s\ [km]=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20519 ⋅ Poprawnie: 225/616 [36%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Ślimak w ciągu pierwszej godziny pokonał m metrów. W ciągu każdej następnej godziny pokonywał \frac{p}{q} drogi jaką pokonał w poprzedniej godzinie.

Oblicz drogę w metrach pokonaną przez ślimaka w pięć godzin.

Dane
m=2
p=3
q=4
Odpowiedź:
s\ [m]=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30304 ⋅ Poprawnie: 51/143 [35%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Ciąg (a_n) jest ciągiem liczbowym arytmetycznym o różnicy r, a S_6 sumą sześciu początkowych wyrazów tego ciągu. W ciągu (a_n) zachodzi warunek: \frac{S_6}{6}=m.

Oblicz a_1.

Dane
r=-12
m=-70
k=-304
Odpowiedź:
a_{1}= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Wyznacz numer wyrazu ciągu (a_n), który jest równy k. Jeżeli taki wyraz w ciągu nie istnieje, wpisz -1.
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30162 ⋅ Poprawnie: 209/809 [25%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 Liczby x, y i z w podanej kolejności tworzą trzy pierwsze wyrazy ciągu geometrycznego (a_n) o ilorazie 3. Liczby (x+a, y, z+a) tworzą ciąg arytmetyczny (b_n).

Podaj z.

Dane
a=8
Odpowiedź:
z=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm