Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-11156 ⋅ Poprawnie: 137/223 [61%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Dany jest ciąg
(b_n) , w którym
b_n=(n+9)(n-17) . Ciąg ten zawiera
k wyrazów ujemnych.
Wyznacz liczbę k .
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11861 ⋅ Poprawnie: 389/400 [97%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
W ciągu arytmetycznym
(a_n) , określonym dla każdej liczby naturalnej
n\geqslant 1 ,
a_5=-13 oraz
a_{10}=-48 . Różnica tego ciągu jest równa:
Odpowiedzi:
A. -\frac{11}{2}
B. 2
C. -1
D. -\frac{7}{2}
E. 0
F. -7
Zadanie 3. 1 pkt ⋅ Numer: pp-11154 ⋅ Poprawnie: 362/545 [66%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« W ciągu arytmetycznym
(a_n) sumę
n początkowych wyrazów
można obliczyć korzystając ze wzoru
S_n=n+2n^2 , gdzie
n\in\mathbb{N_{+}} .
Oblicz wyraz a_{13} tego ciągu.
Odpowiedź:
a_k=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11432 ⋅ Poprawnie: 352/503 [69%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Dany jest ciąg
(a_n) określony wzorem
a_n=\frac{2+n}{5} .
Ciąg ten jest:
Odpowiedzi:
A. geometryczny o ilorazie q=\frac{3}{5}
B. arytmetyczny o różnicy r=\frac{1}{5}
C. geometryczny o ilorazie q=\frac{4}{5}
D. arytmetyczny o różnicy r=\frac{2}{5}
Zadanie 5. 1 pkt ⋅ Numer: pp-11780 ⋅ Poprawnie: 716/816 [87%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Klient wpłacił do banku
44000 zł na lokatę dwuletnią. Po każdym rocznym okresie
oszczędzania bank dolicza odsetki w wysokości
2\% od kwoty bieżącego kapitału
znajdującego się na lokacie.
Po dwóch latach oszczędzania łączna wartość doliczonych odsetek na tej lokacie (bez
uwzględniania podatków) jest równa:
Odpowiedzi:
A. 1481.33 zł
B. 2133.12 zł
C. 2222.00 zł
D. 1422.08 zł
E. 1777.60 zł
F. 1523.66 zł
Zadanie 6. 2 pkt ⋅ Numer: pr-20815 ⋅ Poprawnie: 18/44 [40%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Ciąg liczbowy
(a_n) określony jest wzorem
a_n=n^2+bn+c .
Oblicz sumę wszystkich wyrazów ujemnych tego ciągu.
Dane
b=-\frac{29}{2}=-14.50000000000000
c=51=51.00000000000000
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20816 ⋅ Poprawnie: 904/1905 [47%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
W ciągu arytmetycznym
(a_n) dane są sumy:
a_{7}+a_{10}=39 oraz
a_{2}+a_{13}=65 .
Wyznacz różnicę tego ciągu.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Odpowiedź:
a_1=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20505 ⋅ Poprawnie: 45/112 [40%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Na okręgu o promieniu długości
r opisano
trójkąt o bokach długości
a\leqslant b\leqslant c , które są kolejnymi
wyrazami ciągu arytmetycznego.
Oblicz stosunek wysokości opuszczonej na bok długości
b , do długości promienia okręgu
r .
Odpowiedź:
\frac{h}{r}=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20787 ⋅ Poprawnie: 181/412 [43%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
» Dana jest liczba
k ,
k-ty
wyraz ciągu arytmetycznego
(a_n) oraz
suma
S_k ,
k początkowych
wyrazów tego ciągu.
Oblicz a_1 .
Dane
k=14
a_{14}=-36
S_{14}=-49
Odpowiedź:
a_{1}=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Oblicz różnicę
r tego ciągu.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-20518 ⋅ Poprawnie: 35/81 [43%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Dane są kwadraty
K_1 ,
K_2 ,
K_3 ,...,
K_{p} . Kwadrat
K_1 ma bok długości
a ,
zaś każdy kolejny kwadrat bok o połowę krótszy.
Oblicz pole powierzchni kwadratu K_{p} . Wynik zapisz
w postaci \frac{a^2}{2^m} .
Podaj m .
Dane
a=18
p=6
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pp-30389 ⋅ Poprawnie: 35/157 [22%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
Suma kolejnych liczb naturalnych, które przy dzieleniu przez
d dają resztę
r
jest równa
S , a największa z tych liczb jest równa
m .
Podaj najmniejszą z tych liczb.
Dane
d=9
r=2
S=9548
m=443
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj ilość liczb tworzących tę sumę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 12. 5 pkt ⋅ Numer: pp-30415 ⋅ Poprawnie: 28/52 [53%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
Rosnący ciąg arytmetyczny
(a_n) jest określony dla każdej
liczby naturalnej
n\geqslant 1 . Suma pierwszych pięciu
wyrazów tego ciągu jest równa
S_5=-20 .
Wyrazy
a_{5} ,
a_{7} ,
a_{15} tworzą – w podanej kolejności – ciąg geometryczny.
Wyznacz trzeci wyraz a_3 tego ciągu.
Odpowiedź:
a_3=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (1 pkt)
Wyznacz różnicę
r tego ciągu.
Odpowiedź:
a_3=
(wpisz liczbę całkowitą)
Podpunkt 12.3 (2 pkt)
Zapisz wzór na ogólny wyraz tego ciągu w postaci
a_n=an+b .
Podaj liczby a i b .
Odpowiedzi:
Rozwiąż