Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11455 ⋅ Poprawnie: 70/140 [50%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 «« Wskaż najmniejszy możliwy numer wyrazu, poczynając od którego ciąg liczbowy określony wzorem a_n=n^2-25n+25 jest monotoniczny:
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11433 ⋅ Poprawnie: 408/482 [84%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dla ciągu arytmetycznego (a_n) określonego dla n\geqslant 1 spełniony jest warunek a_{13}+a_{14}+a_{15}=\frac{33}{2}.

Oblicz a_{14}.

Odpowiedź:
a_k=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11509 ⋅ Poprawnie: 490/914 [53%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Oblicz sumę wszystkich liczb naturalnych trzycyfrowych parzystych, które są większe od 291.
Odpowiedź:
s= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11166 ⋅ Poprawnie: 103/162 [63%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 W ciągu geometrycznym (a_n) wyraz k=14-ty jest równy a_{14}=2\sqrt{2}.

Oblicz iloczyn pięciu kolejnych wyrazów tego ciągu a_{12}\cdot a_{13}\cdot a_{14}\cdot a_{15}\cdot a_{16} .

Odpowiedź:
a_{k-2}\cdot a_{k-1}\cdot a_k\cdot a_{k+1}\cdot a_{k+2}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11184 ⋅ Poprawnie: 262/406 [64%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Po k latach z tytułu lokaty o wysokości 4100 zł oprocentowanej w wysokości 25\% w skali roku przy rocznej kapitalizacji odsetek otrzymamy łączne odsetki (przed potrąceniem podatków) w wysokości m złotych.

Wyznacz liczbę m.

Odpowiedź:
m= (liczba zapisana dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20523 ⋅ Poprawnie: 57/109 [52%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Akcje firmy zyskują na wartości 15\% w ciągu każdego roku.

Po ilu latach posiadacz akcji co najmniej podwoi zainwestowaną kwotę? Przyjmnij, że wartość akcji wzrasta dopiero po upływie pełnego roku.

Odpowiedź:
Ilosc\ lat= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20512 ⋅ Poprawnie: 12/90 [13%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Dla podanej liczby parzystej k wyznacz wartość wyrażenia:
196^2-(196-1)^2+(196-2)^2-(196-3)^2+(196-4)^2-(196-5)^2+...+102^2-101^2 .
Odpowiedź:
s= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20819 ⋅ Poprawnie: 128/182 [70%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Dany jest ciąg arytmetyczny (a_n).

Wyznacz najmniejsze możliwe a_1 tego ciągu.

Dane
a_{3}+a_{5}=50
a_{3}\cdot a_{5}=609
Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Wyznacz największą możliwą różnicę r tego ciągu.
Odpowiedź:
r_{max}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20821 ⋅ Poprawnie: 150/349 [42%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Suma stu kolejnych liczb naturalnych, które przy dzieleniu przez 8 dają resztę 5 jest równa 42500.

Podaj najmniejszą z tych liczb.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj największą z tych liczb.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-21111 ⋅ Poprawnie: 185/322 [57%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=4\cdot(-1)^{n+1}+5 dla każdej liczby naturalnej n\geqslant 1.

Suma dziesięciu początkowych kolejnych wyrazów tego ciągu jest równa:

Odpowiedzi:
A. 59 B. 34
C. 42 D. 67
E. 66 F. 61
G. 32 H. 50
Podpunkt 10.2 (1 pkt)
 Oceń prawdziwość poniższych stwierdzeń.
Odpowiedzi:
T/N : ciąg (a_n) jest malejący T/N : ciąg (a_n) jest geometryczny
Zadanie 11.  4 pkt ⋅ Numer: pp-30157 ⋅ Poprawnie: 38/123 [30%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 «« W ciągu arytmetycznym (a_n) mamy: a_8=m.

Przy jakiej różnicy ciągu suma kwadratów wyrazów a_2 i a_6 jest najmniejsza możliwa?

Dane
m=38
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 12.  5 pkt ⋅ Numer: pp-30415 ⋅ Poprawnie: 28/50 [56%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Rosnący ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Suma pierwszych pięciu wyrazów tego ciągu jest równa S_5=-80. Wyrazy a_{9}, a_{11}, a_{19} tworzą – w podanej kolejności – ciąg geometryczny.

Wyznacz trzeci wyraz a_3 tego ciągu.

Odpowiedź:
a_3= (wpisz liczbę całkowitą)
Podpunkt 12.2 (1 pkt)
 Wyznacz różnicę r tego ciągu.
Odpowiedź:
a_3= (wpisz liczbę całkowitą)
Podpunkt 12.3 (2 pkt)
 Zapisz wzór na ogólny wyraz tego ciągu w postaci a_n=an+b.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm