Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11386 ⋅ Poprawnie: 331/660 [50%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Oceń, które z podanych ciągów są rosnące?
Odpowiedzi:
T/N : a_n=-\frac{1}{4}n+10 T/N : a_n=\frac{6-2n}{3}
T/N : a_n=\frac{3}{2n+3}  
Zadanie 2.  1 pkt ⋅ Numer: pp-11149 ⋅ Poprawnie: 752/952 [78%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Długości boków trójkąta prostokątnego tworzą ciąg arytmetyczny.

Boki tego trójkąta mają długość:

Odpowiedzi:
A. 29,39,49 B. 30,40,50
C. 34,44,54 D. 31,41,51
Zadanie 3.  1 pkt ⋅ Numer: pp-11142 ⋅ Poprawnie: 314/462 [67%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Kamil każdego dnia czytał o 16 stron książki więcej niż przeczytał dnia poprzedniego. Do dwunastego dnia włącznie przeczytał 1332 stron.

Ile stron przeczytał pierwszego dnia?

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11179 ⋅ Poprawnie: 901/1213 [74%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 W ciągu geometrycznym (a_n), który zawiera dziewięć wyrazów, wszystkie wyrazy są dodatnie i znane są dwa wyrazy a_1=16 i a_9=4.

Oblicz a_5.

Odpowiedź:
a_5= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11182 ⋅ Poprawnie: 314/498 [63%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Kwotę 1000 zł ulokowano w banku na roczną lokatę oprocentowaną w wysokości 11\% w stosunku rocznym. Po zakończeniu lokaty od naliczonych odsetek odprowadzany jest podatek w wysokości 19\%.

Maksymalna kwota, jaką po upływie roku będzie można wypłacić z banku, jest równa:

Odpowiedzi:
A. 1000\cdot\left(1-\frac{19}{100}\cdot\frac{11}{100}\right) B. 1000\cdot\left(1+\frac{81}{100}\cdot\frac{11}{100}\right)
C. 1000\cdot\left(1+\frac{19}{100}\cdot\frac{11}{100}\right) D. 1000\cdot\left(1-\frac{81}{100}\cdot\frac{11}{100}\right)
Zadanie 6.  3 pkt ⋅ Numer: pp-21084 ⋅ Poprawnie: 73/179 [40%] Rozwiąż 
Podpunkt 6.1 (0.5 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=-n-6 dla każdej liczby naturalnej n \geqslant 1.

Ciąg (a_n) jest:

Odpowiedzi:
A. rosnący B. niemonotoniczny
C. malejący D. stały
Podpunkt 6.2 (0.5 pkt)
 Odpowiedź powyższa jest poprawna, ponieważ:
Odpowiedzi:
A. a_{n+1}-a_n=-2 B. a_{n+1}-a_n=-1
C. a_{n+1}-a_n=1 D. a_{n+1}-a_n=2
Podpunkt 6.3 (1 pkt)
 Najmniejszą wartością n, dla której wyraz a_n jest mniejszy od -18, jest:
Odpowiedzi:
A. 11 B. 12
C. 17 D. 16
E. 8 F. 13
Podpunkt 6.4 (1 pkt)
 Suma n początkowych wyrazów ciągu (a_n) jest równa -132 dla n równego:
Odpowiedzi:
A. 15 B. 9
C. 14 D. 6
E. 11 F. 10
Zadanie 7.  2 pkt ⋅ Numer: pp-20513 ⋅ Poprawnie: 99/224 [44%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wyraz drugi ciągu arytmetycznego jest o 30 większy od wyrazu ósmego tego ciągu. Równocześnie wyraz drugi jest 6 razy większy od wyrazu ósmego tego ciągu.

Podaj równicę r tego ciągu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj drugi wyraz tego ciągu.
Odpowiedź:
a_2= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-21082 ⋅ Poprawnie: 134/263 [50%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Trójwyrazowy ciąg (x-6,y-8,y-4) jest arytmetyczny. Suma wszystkich wyrazów tego ciągu jest równa 6. Oblicz wszystkie wyrazy tego ciągu.

Wyznacz x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Wyznacz y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-21045 ⋅ Poprawnie: 566/950 [59%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Pan Stanisław spłacił pożyczkę w wysokości 16650 zł w osiemnastu ratach. Każda kolejna rata była mniejsza od poprzedniej o 30 zł.

Oblicz kwotę pierwszej raty.

Odpowiedź:
R_1= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-21111 ⋅ Poprawnie: 211/356 [59%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=3\cdot(-1)^{n+1}+4 dla każdej liczby naturalnej n\geqslant 1.

Suma dziesięciu początkowych kolejnych wyrazów tego ciągu jest równa:

Odpowiedzi:
A. 58 B. 25
C. 42 D. 45
E. 47 F. 38
G. 40 H. 53
Podpunkt 10.2 (1 pkt)
 Oceń prawdziwość poniższych stwierdzeń.
Odpowiedzi:
T/N : ciąg (a_n) jest malejący T/N : ciąg (a_n) jest geometryczny
Zadanie 11.  4 pkt ⋅ Numer: pp-30389 ⋅ Poprawnie: 35/157 [22%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Suma kolejnych liczb naturalnych, które przy dzieleniu przez d dają resztę r jest równa S, a największa z tych liczb jest równa m.

Podaj najmniejszą z tych liczb.

Dane
d=7
r=3
S=8399
m=353
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj ilość liczb tworzących tę sumę.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30170 ⋅ Poprawnie: 294/612 [48%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Paweł przez pięć dni zapisywał swoje wydatki. Zauważył, że każdego dnia wydatki były niższe o 20\% w stosunku do wydatków z poprzedniego dnia.

Oblicz kwotę, jaką Paweł wydał pierwszego dnia, jeśli piątego dnia wydał p zł.

Dane
p=40.96
Odpowiedź:
k= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Oblicz kwotę, jaką Paweł wydał w ciągu pięciu dni.
Odpowiedź:
k_5=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm