Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-12038 ⋅ Poprawnie: 54/69 [78%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=(-1)^n\cdot n-3 dla każdej liczby naturalnej n > 1.

Wtedy trzeci wyraz tego ciągu jest równy:

Odpowiedzi:
A. 14 B. -20
C. 6 D. -4
E. -25 F. 11
G. -6 H. -26
Zadanie 2.  1 pkt ⋅ Numer: pp-11144 ⋅ Poprawnie: 1032/1289 [80%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg (a_n) jest arytmetyczny i spełnia warunek 3a_3=a_2+2a_1+9.

Oblicz różnicę tego ciągu.

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11151 ⋅ Poprawnie: 445/597 [74%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « W kinie jest 22 rzędów krzeseł. Rząd pierwszy składa się z 12 krzeseł, a każdy następny rząd zawiera o 8 krzeseł więcej niż rząd poprzedni.

Ile jest krzeseł w kinie?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11542 ⋅ Poprawnie: 161/251 [64%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Liczby \sqrt{50}-1, 2x+2 i \sqrt{50}+1, w podanej kolejności są trzema początkowymi wyrazami rosnącego ciągu geometrycznego.

Oblicz sumę tych liczb.

Odpowiedź:
s= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11919 ⋅ Poprawnie: 176/217 [81%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dany jest ciąg geometryczny (a_n), określony dla każdej liczby naturalnej n\geqslant 1. Drugi wyraz tego ciągu oraz iloraz ciągu (a_n) są równe 2.

Suma czterech początkowych kolejnych wyrazów tego ciągu jest równa:

Odpowiedzi:
A. 3 B. 7
C. 33 D. 15
E. 31 F. 63
Zadanie 6.  2 pkt ⋅ Numer: pp-20827 ⋅ Poprawnie: 5/61 [8%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Pan Kozłowski złożył do banku kwotę k zł, na procent prosty, w którym odsetki nie podlegają oprocentowaniu. Po upływie pierwszego i każdego następnego roku (oprócz końca roku ostatniego) wpłacał kwotę d zł. Przez cały okres oszczędzania oprocentowanie w banku było stałe i wynosiło p\% w stosunku rocznym.

Oblicz wartość tej lokaty po n latach (przed opodatkowaniem, po n-tym roku pan Kozłowski nie dopłacił kwoty d zł, tylko wybrał z banku pieniądze na lokacie).

Dane
k=1000
d=1000
p=3.5
n=7
Odpowiedź:
s= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20506 ⋅ Poprawnie: 273/389 [70%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 W ciągu arytmetycznym (a_n) występują kolejne liczby naturalne dające resztę 2 przy dzieleniu przez 5.

Wiedząc, że a_{2}=102, oblicz a_{7}.

Odpowiedź:
a_k= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-21102 ⋅ Poprawnie: 368/595 [61%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Trzeci wyraz tego ciągu jest równy -11, a suma piętnastu początkowych kolejnych wyrazów tego ciągu jest równa -390.

Oblicz różnicę tego ciągu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20514 ⋅ Poprawnie: 241/1138 [21%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Liczby x-2, x+m i 3x-4 są trzema początkowymi wyrazami ciągu arytmetycznego (b_n).

Wyznacz b_{100}.

Dane
m=2
Odpowiedź:
b_{100}= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Wyznacz najmniejsze takie n, że S_n > 360.
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20521 ⋅ Poprawnie: 250/578 [43%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Liczby 3x-2, \sqrt{ax}, 3x+5 są kolejnymi dodatnimi wyrazami ciągu geometrycznego.

Podaj liczbę x.

Dane
a=52
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30167 ⋅ Poprawnie: 11/72 [15%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 « Suma n początkowych wyrazów ciągu arytmetycznego (a_n) dana jest wzorem S_n=\frac{n^2-25n}{4} (n > 0). Różnica ciągu arytmetycznego (b_n) jest równa \frac{3}{2} oraz jego piąty wyraz jest równy p. Wyznacz sumę 17 początkowych wyrazów ciągu arytmetycznego (c_n), wiedząc, że c_n=2b_n-a_8, gdzie n > 0.

Podaj wyznaczoną sumę.

Dane
p=20
Odpowiedź:
s=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30163 ⋅ Poprawnie: 61/213 [28%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Dany jest rosnący ciąg geometryczny (a,b,c). Suma a+b+c wynosi s. Liczby a, b i c w podanej kolejności są pierwszym, drugim i k-tym wyrazem pewnego ciągu arytmetycznego.

Podaj liczbę a.

Dane
s=124
k=7
Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Podaj liczbę b.
Odpowiedź:
b= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm