Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-11454 ⋅ Poprawnie: 250/414 [60%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wyznacz numer wyrazu, poczynając od którego ciąg liczbowy określony
wzorem
a_n=n^2-11n+11 jest rosnący.
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-12013 ⋅ Poprawnie: 388/449 [86%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
W ciągu arytmetycznym
(a_n) , określonym dla każdej liczby
naturalnej
n\geqslant 1 , dane są wyrazy:
a_1=-7 oraz
a_3=-13 .
Wyraz a_{13} jest równy:
Odpowiedzi:
A. -28
B. -31
C. -34
D. -25
E. -52
F. -43
G. -55
H. -49
I. -22
J. -58
Zadanie 3. 1 pkt ⋅ Numer: pp-11147 ⋅ Poprawnie: 55/119 [46%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
(c_n) dany jest wzorem
c_n=(n-16)\cdot 6 dla
n\geqslant 1 .
Oblicz S_{20} .
Odpowiedź:
S_{20}=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-12064 ⋅ Poprawnie: 71/90 [78%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Trzywyrzowy ciąg
\left(28,3x,\frac{7}{4}\right)
jest geometryczny i wszystkie jego wyrazy są dodatnie.
Wynika z tego, że x jest równe:
Odpowiedzi:
A. \frac{7}{3}
B. \frac{7}{6}
C. \frac{7}{2}
D. \frac{7}{12}
E. \frac{7}{9}
F. \frac{14}{3}
Zadanie 5. 1 pkt ⋅ Numer: pp-11919 ⋅ Poprawnie: 177/218 [81%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Dany jest ciąg geometryczny
(a_n) , określony dla każdej liczby naturalnej
n\geqslant 1 . Drugi wyraz tego ciągu oraz iloraz ciągu
(a_n) są równe
2 .
Suma pięciu początkowych kolejnych wyrazów tego ciągu jest równa:
Odpowiedzi:
A. 7
B. 65
C. 31
D. 63
E. 127
F. 15
Zadanie 6. 2 pkt ⋅ Numer: pp-20516 ⋅ Poprawnie: 470/1096 [42%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
« Dany jest ciąg
a_n=an^2+bn+c , dla
n\in\mathbb{N_{+}} .
Oblicz ilość wyrazów ujemnych tego ciągu.
Dane
a=1
b=-1
c=-56
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20506 ⋅ Poprawnie: 280/398 [70%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
W ciągu arytmetycznym
(a_n) występują kolejne
liczby naturalne dające resztę
2 przy dzieleniu
przez
5 .
Wiedząc, że a_{1}=102 , oblicz
a_{9} .
Odpowiedź:
a_k=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20818 ⋅ Poprawnie: 296/608 [48%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Dany jest ciąg arytmetyczny
(a_n) .
Wyznacz a_1 .
Dane
a_{2}=2
a_{6}=22
a_{k}=232
Odpowiedź:
a_1=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-21069 ⋅ Poprawnie: 159/280 [56%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
W ciągu arytmetycznym
\left(a_n\right) , określonym dla każdej liczby
naturalnej
n\geqslant 1 ,
a_1=-3 i
a_4=-9 .
Oblicz sumę stu początkowych kolejnych wyrazów tego ciągu.
Odpowiedź:
S_{100}=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-21095 ⋅ Poprawnie: 28/98 [28%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Dany jest ciąg geometryczny
(a_n) , określony dla
każdej liczby naturalnej
n\geqslant 1 .
W tym ciągu
a_1=-5 ,
a_2=10
a_3=-20 .
Wzór ogólny ciągu (a_n) ma postać:
Odpowiedzi:
T/N : a_n=5\cdot (-2)^{n}
T/N : a_n=-5\cdot 2^{n}
T/N : a_n=-5\cdot (-2)^{n-1}
T/N : a_n=-5\cdot (-2)^{n}
T/N : a_n=5\cdot \frac{(-2)^n}{2}
Zadanie 11. 4 pkt ⋅ Numer: pp-30304 ⋅ Poprawnie: 51/143 [35%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Ciąg
(a_n) jest ciągiem liczbowym arytmetycznym
o różnicy
r , a
S_6
sumą sześciu początkowych wyrazów tego ciągu. W ciągu
(a_n) zachodzi warunek:
\frac{S_6}{6}=m .
Oblicz a_1 .
Dane
r=-8
m=-60
k=-240
Odpowiedź:
a_{1}=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Wyznacz numer wyrazu ciągu
(a_n) , który jest równy
k . Jeżeli taki wyraz w ciągu nie istnieje,
wpisz
-1 .
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pp-30165 ⋅ Poprawnie: 24/106 [22%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
« Ciąg
(p,x,y) jest geometryczny, zaś ciąg
(b_n) , w którym
b_1=p ,
b_7=x i
b_9=y , jest
niestałym ciągiem arytmetycznym.
Oblicz x .
Dane
p=-9
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
Odpowiedź:
y=
(wpisz liczbę całkowitą)
Rozwiąż