Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11160 ⋅ Poprawnie: 307/554 [55%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Wyznacz najmniejszy dodatni wyraz ciągu określonego wzorem a_n=7n-198.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-12066 ⋅ Poprawnie: 201/214 [93%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Piąty i siódmy wyraz tego ciągu spełniają warunek a_5+a_7=108.

Wtedy szósty wyraz tego ciągu jest równy:

Odpowiedzi:
A. 45 B. 41
C. 65 D. 54
E. 72 F. 43
G. 34 H. 36
Zadanie 3.  1 pkt ⋅ Numer: pp-11411 ⋅ Poprawnie: 1310/1494 [87%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 W ciągu arytmetycznym (a_n) dane są wyrazy a_1=20 i a_8=-29.

Suma ośmiu początkowych wyrazów tego ciągu jest równa:

Odpowiedź:
S_8= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11434 ⋅ Poprawnie: 102/166 [61%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 W ciągu geometrycznym (a_n) dane sa wyrazy: a_1=\sqrt{m}, a_2=m\sqrt{m}, a_3=m^2\sqrt{m}.

Wzór na n-ty wyraz tego ciągu ma postać:

Odpowiedzi:
A. \left(\frac{\sqrt{5}}{5}\right)^n B. \frac{\left(\sqrt{5}\right)^n}{5}
C. \frac{5^n}{\sqrt{5}} D. (\sqrt{5})^n
Zadanie 5.  1 pkt ⋅ Numer: pp-11184 ⋅ Poprawnie: 262/407 [64%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Po k latach z tytułu lokaty o wysokości 3500 zł oprocentowanej w wysokości 25\% w skali roku przy rocznej kapitalizacji odsetek otrzymamy łączne odsetki (przed potrąceniem podatków) w wysokości m złotych.

Wyznacz liczbę m.

Odpowiedź:
m= (liczba zapisana dziesiętnie)
Zadanie 6.  3 pkt ⋅ Numer: pp-21084 ⋅ Poprawnie: 76/184 [41%] Rozwiąż 
Podpunkt 6.1 (0.5 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=-2n+6 dla każdej liczby naturalnej n \geqslant 1.

Ciąg (a_n) jest:

Odpowiedzi:
A. niemonotoniczny B. rosnący
C. malejący D. stały
Podpunkt 6.2 (0.5 pkt)
 Odpowiedź powyższa jest poprawna, ponieważ:
Odpowiedzi:
A. a_{n+1}-a_n=0 B. a_{n+1}-a_n=-4
C. a_{n+1}-a_n=-2 D. a_{n+1}-a_n=1
Podpunkt 6.3 (1 pkt)
 Najmniejszą wartością n, dla której wyraz a_n jest mniejszy od -22, jest:
Odpowiedzi:
A. 17 B. 15
C. 14 D. 11
E. 10 F. 12
Podpunkt 6.4 (1 pkt)
 Suma n początkowych wyrazów ciągu (a_n) jest równa -84 dla n równego:
Odpowiedzi:
A. 8 B. 12
C. 7 D. 14
E. 11 F. 9
Zadanie 7.  2 pkt ⋅ Numer: pp-20504 ⋅ Poprawnie: 240/432 [55%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » W ciągu arytmetycznym (a_n), określonym dla n\geqslant 1, dane są: wyraz a_1=15 oraz a_2+a_3=21.

Oblicz różnicę a_{18}-a_{15}.

Odpowiedź:
a_{18}-a_{15}= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20505 ⋅ Poprawnie: 46/113 [40%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
Na okręgu o promieniu długości r opisano trójkąt o bokach długości a\leqslant b\leqslant c, które są kolejnymi wyrazami ciągu arytmetycznego.

Oblicz stosunek wysokości opuszczonej na bok długości b, do długości promienia okręgu r.

Odpowiedź:
\frac{h}{r}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-21069 ⋅ Poprawnie: 202/344 [58%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 W ciągu arytmetycznym \left(a_n\right), określonym dla każdej liczby naturalnej n\geqslant 1, a_1=8 i a_4=2.

Oblicz sumę stu początkowych kolejnych wyrazów tego ciągu.

Odpowiedź:
S_{100}= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20520 ⋅ Poprawnie: 45/163 [27%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Ciąg geometryczny o wyrazach dodatnich (a_n) określony jest wzorem a_n=q^{n-1} i zawiera trzy kolejne wyrazy (x,y,2x).

Oblicz a_k.

Dane
k=18
Odpowiedź:
a_{k}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30166 ⋅ Poprawnie: 188/438 [42%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Suma pierwszych pięciu wyrazów ciągu arytmetycznego (a_n) wynosi s1, a suma a_6+a_7+a_8+...+a_{12} wynosi s2.

Oblicz a_1.

Dane
s1=1205
s2=763
Odpowiedź:
a_{1}= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Oblicz różnicę tego ciągu.
Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 12.  5 pkt ⋅ Numer: pp-30418 ⋅ Poprawnie: 10/36 [27%] Rozwiąż 
Podpunkt 12.1 (3 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=\frac{27}{2}n+\frac{57}{2} dla każdej liczby naturalnej n\geqslant 1. Trójwyrazowy ciąg (a_{5}, x^2+2, a_{9}), gdzie x jest liczbą rzeczywistą dodatnią, jest geometryczny i rosnący.

Oblicz x.

Odpowiedź:
x= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Oblicz iloraz tego ciągu.
Odpowiedź:
q= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm