Dane są ciągi (a_n), (b_n),
(c_n), (d_n), określone dla każdej
liczby naturalnej n\geqslant 1 wzorami:
a_n=20n+3,
b_n=2n^2-3,
c_n=n^2+10n-2,
d_n=\frac{n+187}{n}.
Liczba 143 jest 7-tym wyrazem ciągu:
Odpowiedzi:
A.(b_n)
B.(d_n)
C.(a_n)
D.(c_n)
Zadanie 2.1 pkt ⋅ Numer: pp-11861 ⋅ Poprawnie: 399/411 [97%]
« Piłka odbijając się od ziemi za każdym razem osiąga wysokość
równą p wysokości poprzedniej. Po szóstym odbiciu
od ziemi piłka wzniosła się na wysokość d.
Na jaką wysokość wzniosła się piłka po pierwszym odbiciu?
Dane
p=\frac{2}{5}=0.400000000000000 d=16
Odpowiedź:
h=
(wpisz dwie liczby całkowite)
Zadanie 11.4 pkt ⋅ Numer: pp-30304 ⋅ Poprawnie: 51/143 [35%]
« Ciąg (a_n) jest ciągiem liczbowym arytmetycznym
o różnicy r, a S_6
sumą sześciu początkowych wyrazów tego ciągu. W ciągu
(a_n) zachodzi warunek:
\frac{S_6}{6}=m.
Oblicz a_1.
Dane
r=-12 m=-66 k=-384
Odpowiedź:
a_{1}=(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Wyznacz numer wyrazu ciągu (a_n), który jest równy
k. Jeżeli taki wyraz w ciągu nie istnieje,
wpisz -1.
Odpowiedź:
n=(wpisz liczbę całkowitą)
Zadanie 12.4 pkt ⋅ Numer: pp-30392 ⋅ Poprawnie: 6/63 [9%]
« Pan Kozłowski złożył do banku kwotę k zł na procent
prosty. Po upływie każdego roku, po dopisaniu do lokaty należnych odsetek,
dopłacał kwotę d zł, która powiększała jego kapitał
podlegający oprocentowaniu. Przez cały okres oszczędzania oprocentowanie w banku
było stałe i wynosiło p\%. Po n
latach oszczędzania, po doliczeniu do lokaty należnych odsetek za ostatni rok
kwota na lokacie była równa s zł (z pominięciem podatku
od usług kapitałowych).
Oblicz n. Pamiętaj, że odsetki pomimo iż pozostają na
lokacie, nie podlegają oprocentowaniu. Odsetki oblicza się tylko od wpłaconego
kapitału.
Dane
k=3000 d=1000 p=5.5 s=23315.00
Odpowiedź:
n=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat