Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-12090 ⋅ Poprawnie: 29/35 [82%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dane są ciągi (a_n), (b_n), (c_n), (d_n), określone dla każdej liczby naturalnej n\geqslant 1 wzorami: a_n=20n+3, b_n=2n^2-3, c_n=n^2+10n-2, d_n=\frac{n+187}{n}.

Liczba 335 jest 13-tym wyrazem ciągu:

Odpowiedzi:
A. (b_n) B. (d_n)
C. (a_n) D. (c_n)
Zadanie 2.  1 pkt ⋅ Numer: pp-12035 ⋅ Poprawnie: 184/206 [89%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg (a_n), określony dla każdej liczby naturalnej n > 1, jest arytmetyczny. Różnica tego ciągu jest równa 2, a pierwszy wyraz tego ciągu jest równy 1.

Wtedy iloraz \frac{a_4}{a_2} jest równy:

Odpowiedzi:
A. \frac{7}{3} B. \frac{28}{3}
C. \frac{14}{3} D. \frac{7}{6}
E. 7 F. \frac{7}{2}
Zadanie 3.  1 pkt ⋅ Numer: pp-11411 ⋅ Poprawnie: 1309/1493 [87%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 W ciągu arytmetycznym (a_n) dane są wyrazy a_1=17 i a_8=-53.

Suma ośmiu początkowych wyrazów tego ciągu jest równa:

Odpowiedź:
S_8= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11862 ⋅ Poprawnie: 175/231 [75%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wszystkie wyrazy nieskończonego ciągu geometrycznego \left(a_n\right), określonego dla każdej liczby naturalnej n\geqslant 1, są dodatnie i 49a_5=36a_3.

Wtedy iloraz tego ciągu jest równy:

Odpowiedzi:
A. \frac{8}{7} B. \frac{6}{7}
C. \frac{9}{14} D. \frac{4}{7}
E. \frac{18}{35} F. \frac{9}{7}
Zadanie 5.  1 pkt ⋅ Numer: pp-11182 ⋅ Poprawnie: 314/497 [63%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Kwotę 1000 zł ulokowano w banku na roczną lokatę oprocentowaną w wysokości 13\% w stosunku rocznym. Po zakończeniu lokaty od naliczonych odsetek odprowadzany jest podatek w wysokości 19\%.

Maksymalna kwota, jaką po upływie roku będzie można wypłacić z banku, jest równa:

Odpowiedzi:
A. 1000\cdot\left(1+\frac{19}{100}\cdot\frac{13}{100}\right) B. 1000\cdot\left(1-\frac{19}{100}\cdot\frac{13}{100}\right)
C. 1000\cdot\left(1+\frac{81}{100}\cdot\frac{13}{100}\right) D. 1000\cdot\left(1-\frac{81}{100}\cdot\frac{13}{100}\right)
Zadanie 6.  2 pkt ⋅ Numer: pp-20829 ⋅ Poprawnie: 98/269 [36%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Pan Kowalski złożył do banku kwotę 1600.00 zł na okres dwóch lat na procent składany. Oprocentowanie w banku wynosi p\% w skali roku, a odsetki kapitalizuje się co 6 miesięcy. Po upływie tego terminu bank wypłacił mu kwotę 2798.41 zł (pomiń podatek od usług kapitałowych).

Wyznacz p.

Odpowiedź:
p\ [\%]= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20513 ⋅ Poprawnie: 99/224 [44%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wyraz drugi ciągu arytmetycznego jest o 72 większy od wyrazu ósmego tego ciągu. Równocześnie wyraz drugi jest 4 razy większy od wyrazu ósmego tego ciągu.

Podaj równicę r tego ciągu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj drugi wyraz tego ciągu.
Odpowiedź:
a_2= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20819 ⋅ Poprawnie: 134/189 [70%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Dany jest ciąg arytmetyczny (a_n).

Wyznacz najmniejsze możliwe a_1 tego ciągu.

Dane
a_{3}+a_{5}=36
a_{3}\cdot a_{5}=299
Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Wyznacz największą możliwą różnicę r tego ciągu.
Odpowiedź:
r_{max}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20821 ⋅ Poprawnie: 150/349 [42%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Suma stu kolejnych liczb naturalnych, które przy dzieleniu przez 9 dają resztę 7 jest równa 47050.

Podaj najmniejszą z tych liczb.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj największą z tych liczb.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20518 ⋅ Poprawnie: 35/81 [43%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Dane są kwadraty K_1, K_2, K_3,..., K_{p}. Kwadrat K_1 ma bok długości a, zaś każdy kolejny kwadrat bok o połowę krótszy.

Oblicz pole powierzchni kwadratu K_{p}. Wynik zapisz w postaci \frac{a^2}{2^m}. Podaj m.

Dane
a=12
p=12
Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30167 ⋅ Poprawnie: 11/72 [15%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 « Suma n początkowych wyrazów ciągu arytmetycznego (a_n) dana jest wzorem S_n=\frac{n^2-25n}{4} (n > 0). Różnica ciągu arytmetycznego (b_n) jest równa \frac{3}{2} oraz jego piąty wyraz jest równy p. Wyznacz sumę 17 początkowych wyrazów ciągu arytmetycznego (c_n), wiedząc, że c_n=2b_n-a_8, gdzie n > 0.

Podaj wyznaczoną sumę.

Dane
p=59
Odpowiedź:
s=
(wpisz dwie liczby całkowite)
Zadanie 12.  5 pkt ⋅ Numer: pp-30418 ⋅ Poprawnie: 7/29 [24%] Rozwiąż 
Podpunkt 12.1 (3 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=10n+2 dla każdej liczby naturalnej n\geqslant 1. Trójwyrazowy ciąg (a_{3}, x^2+2, a_{7}), gdzie x jest liczbą rzeczywistą dodatnią, jest geometryczny i rosnący.

Oblicz x.

Odpowiedź:
x= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Oblicz iloraz tego ciągu.
Odpowiedź:
q= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm