Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-11161 ⋅ Poprawnie: 949/1086 [87%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Pewien wyraz ciągu jest równy
305 . Ciąg ten określony
jest wzorem
a_n=\frac{3n+7}{2} .
Wyznacz numer tego wyrazu.
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11969 ⋅ Poprawnie: 314/271 [115%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Pięciowyrazowy ciąg
\left(-12,-\frac{17}{2},x,y,2\right)
jest arytmetyczny.
Liczby x i y są równe:
Odpowiedzi:
A. x=-4 oraz y=-1
B. x=-5 oraz y=-\frac{3}{2}
C. x=-\frac{9}{2} oraz y=-\frac{1}{2}
D. x=-\frac{9}{2} oraz y=-1
E. x=-4 oraz y=-\frac{3}{2}
F. x=-5 oraz y=-\frac{1}{2}
Zadanie 3. 1 pkt ⋅ Numer: pp-11154 ⋅ Poprawnie: 363/546 [66%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« W ciągu arytmetycznym
(a_n) sumę
n początkowych wyrazów
można obliczyć korzystając ze wzoru
S_n=n+2n^2 , gdzie
n\in\mathbb{N_{+}} .
Oblicz wyraz a_{4} tego ciągu.
Odpowiedź:
a_k=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11171 ⋅ Poprawnie: 568/727 [78%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
W monotonicznym ciągu geometrycznym
a_1=-6 , a
a_3=-\frac{243}{2} .
Oblicz iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11830 ⋅ Poprawnie: 625/729 [85%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Pan Grzegorz wpłacił do banku pewną kwotę na lokatę dwuletnią. Po każdym rocznym okresie
oszczędzania bank doliczał odsetki w wysokości
30\% od kwoty bieżącego
kapitału znajdującego się na lokacie. Po dwóch latach oszczędzania pan Grzegorz odebrał z tego
banku wraz z odsetkami kwotę
5408.00 zł (bez uwzględnienia podatków).
Kwota wpłacona przez pana Grzegorza na tę lokatę była równa:
Odpowiedzi:
A. 3700 zł
B. 2800 zł
C. 2900 zł
D. 3200 zł
E. 3100 zł
F. 3300 zł
Zadanie 6. 2 pkt ⋅ Numer: pp-20815 ⋅ Poprawnie: 14/44 [31%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Dany jest ciąg
a_n=|n-3|+|n-11| . Wyznacz te wyrazy
ciągu, które sa większe od
8 .
Ile spośród pierwszych stu wyrazów ciągu spełnia ten warunek.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20509 ⋅ Poprawnie: 493/1052 [46%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Oblicz sumę wszystkich liczb naturalnych trzycyfrowych nieparzystych,
nie większych od
927 .
Odpowiedź:
s_{\leqslant k}=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20818 ⋅ Poprawnie: 296/608 [48%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Dany jest ciąg arytmetyczny
(a_n) .
Wyznacz a_1 .
Dane
a_{2}=3
a_{6}=27
a_{k}=315
Odpowiedź:
a_1=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20508 ⋅ Poprawnie: 42/87 [48%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« W ciągu arytmetycznym
\left(a_n\right) mamy:
a_1=a oraz
3\cdot S_{5}=S_{10}-S_{5} .
Oblicz różnicę tego ciągu.
Dane
a=2
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-21095 ⋅ Poprawnie: 28/103 [27%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Dany jest ciąg geometryczny
(a_n) , określony dla
każdej liczby naturalnej
n\geqslant 1 .
W tym ciągu
a_1=-5 ,
a_2=-15
a_3=-45 .
Wzór ogólny ciągu (a_n) ma postać:
Odpowiedzi:
T/N : a_n=-5\cdot (-3)^{n}
T/N : a_n=5\cdot \frac{3^n}{-3}
T/N : a_n=-5\cdot 3^{n}
T/N : a_n=5\cdot 3^{n}
Zadanie 11. 4 pkt ⋅ Numer: pp-30166 ⋅ Poprawnie: 187/437 [42%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
Suma pierwszych pięciu wyrazów ciągu arytmetycznego
(a_n) wynosi
s1 ,
a suma
a_6+a_7+a_8+...+a_{12} wynosi
s2 .
Oblicz a_1 .
Dane
s1=960
s2=1176
Odpowiedź:
a_{1}=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Oblicz różnicę tego ciągu.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pp-30160 ⋅ Poprawnie: 21/108 [19%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
Dany jest ciąg geometryczny
(a,b,c) oraz ciąg
arytmetyczny
(a, 2b, k\cdot c) . Oblicz iloraz
ciągu
(a,b,c) .
Podaj najmniejsze możliwe q .
Dane
k=-45
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
Podaj największe możliwe
q .
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż