Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-12038 ⋅ Poprawnie: 100/115 [86%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Ciąg
(a_n) jest określony wzorem
a_n=(-4)^n\cdot n+2 dla każdej liczby
naturalnej
n > 1 .
Wtedy trzeci wyraz tego ciągu jest równy:
Odpowiedzi:
A. -186
B. -179
C. -184
D. -177
E. -201
F. -192
G. -189
H. -190
Zadanie 2. 1 pkt ⋅ Numer: pp-12066 ⋅ Poprawnie: 192/212 [90%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Ciąg arytmetyczny
(a_n) jest określony dla każdej liczby
naturalnej
n\geqslant 1 . Piąty i siódmy wyraz tego ciągu
spełniają warunek
a_5+a_7=180 .
Wtedy szósty wyraz tego ciągu jest równy:
Odpowiedzi:
A. 90
B. 101
C. 83
D. 96
E. 72
F. 105
G. 110
H. 80
Zadanie 3. 1 pkt ⋅ Numer: pp-11152 ⋅ Poprawnie: 496/864 [57%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Oblicz sumę
26 początkowych wyrazów ciągu arytmetycznego
o wzorze ogólnym
a_n=\frac{5}{2}-5\cdot n .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-11173 ⋅ Poprawnie: 187/321 [58%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Dany jest ciąg geometryczny o początkowych wyrazach
a_1=243 ,
a_2=81 ,
a_3=27 .
Oblicz numer największego wyrazu tego ciągu, który jest mniejszy od
\frac{1}{7} .
Odpowiedź:
max_{< \frac{1}{m}}=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11184 ⋅ Poprawnie: 262/407 [64%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Po
k latach z tytułu lokaty o wysokości
4800 zł oprocentowanej w wysokości
25\% w skali roku przy
rocznej kapitalizacji odsetek otrzymamy łączne odsetki (przed potrąceniem
podatków) w wysokości
m złotych.
Wyznacz liczbę m .
Odpowiedź:
m=
(liczba zapisana dziesiętnie)
Zadanie 6. 2 pkt ⋅ Numer: pp-20826 ⋅ Poprawnie: 34/226 [15%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Przez pięć lat (na początku każdego roku) pan Nowak lokuje w banku po
k zł na
p\% w skali
roku (procent prosty).
Jaką kwotę otrzyma po pięciu latach? Uwzględnij 18-procentowy podatek od
dochodów kapitałowych.
Dane
k=5000
p=10
Odpowiedź:
s=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20816 ⋅ Poprawnie: 926/1936 [47%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
W ciągu arytmetycznym
(a_n) dane są sumy:
a_{5}+a_{8}=82 oraz
a_{4}+a_{15}=10 .
Wyznacz różnicę tego ciągu.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Odpowiedź:
a_1=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20817 ⋅ Poprawnie: 157/313 [50%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Dany jest ciąg arytmetyczny
(a_n) .
Wyznacz a_1 .
Dane
a_{1}+a_{2}=48
a_{7}=46
a_{k}+a_{k+1}=216
Odpowiedź:
a_1=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20787 ⋅ Poprawnie: 190/422 [45%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
» Dana jest liczba
k ,
k-ty
wyraz ciągu arytmetycznego
(a_n) oraz
suma
S_k ,
k początkowych
wyrazów tego ciągu.
Oblicz a_1 .
Dane
k=16
a_{16}=57
S_{16}=672
Odpowiedź:
a_{1}=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Oblicz różnicę
r tego ciągu.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-21074 ⋅ Poprawnie: 133/203 [65%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Trójwyrazowy ciąg
(x+4,3x+14,9x+52) jest geometryczny.
Oblicz x .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pp-30166 ⋅ Poprawnie: 184/433 [42%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
Suma pierwszych pięciu wyrazów ciągu arytmetycznego
(a_n) wynosi
s1 ,
a suma
a_6+a_7+a_8+...+a_{12} wynosi
s2 .
Oblicz a_1 .
Dane
s1=1305
s2=1365
Odpowiedź:
a_{1}=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Oblicz różnicę tego ciągu.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pp-30168 ⋅ Poprawnie: 42/125 [33%]
Rozwiąż
Podpunkt 12.1 (4 pkt)
W pewnym ciągu geometrycznym
(a_n) wyraz
a_4 jest osiem razy większy od wyrazu
a_1 . Drugi wyraz tego ciągu jest równy
6 . Znajdź najmniejszą liczbę naturalną
k taką, że
a_k > 3\cdot 2^p .
Podaj k .
Dane
p=44
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Rozwiąż