Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11386 ⋅ Poprawnie: 331/660 [50%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Oceń, które z podanych ciągów są rosnące?
Odpowiedzi:
T/N : a_n=12+n-n^2 T/N : a_n=2-\frac{1}{2-3n}
T/N : a_n=\frac{n+1}{n+3}  
Zadanie 2.  1 pkt ⋅ Numer: pp-11541 ⋅ Poprawnie: 481/731 [65%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Trzy liczby x-3, x+3 i 3x-1, w podanej kolejności są trzema początkowymi wyrazami ciągu arytmetycznego \left(c_n\right).

Oblicz c_{80}.

Odpowiedź:
c_k= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11837 ⋅ Poprawnie: 412/630 [65%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony dla każdej liczby naturalnej n\geqslant 1. Suma n początkowych wyrazów tego ciągu jest określona wzorem S_n=3\cdot(7^n-1), dla każdej liczby naturalnej n\geqslant 1.

Oceń prawdziwość poniższych stwierdzeń:

Odpowiedzi:
T/N : pierwszy wyraz ciągu \left(a_n\right) jest równy 18 T/N : iloczyn a_1\cdot a_2 jest równy 2268
Zadanie 4.  1 pkt ⋅ Numer: pp-11768 ⋅ Poprawnie: 768/848 [90%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg liczbowy (27, 9, a+11) jest ciągiem geometrycznym.

Liczba a jest równa:

Odpowiedzi:
A. -7 B. -10
C. -9 D. -6
E. -12 F. -8
Zadanie 5.  1 pkt ⋅ Numer: pp-11183 ⋅ Poprawnie: 531/874 [60%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Na lokacie złożono 1000 zł przy rocznej stopie procentowej 16\% (procent składany). Odsetki naliczane są co kwartał.

Po upływie roku wielkość kapitału na lokacie (przed potrąceniem podatków będzie równa:

Odpowiedzi:
A. 1000\cdot\left(1+\frac{4}{100}\right)^4 B. 1000\cdot\left(1+\frac{4}{400}\right)^4
C. 1000\cdot\left(1+\frac{4}{100}\right) D. 1000\cdot\left(1+\left(\frac{16}{100}\right)^4\right)
Zadanie 6.  2 pkt ⋅ Numer: pr-20815 ⋅ Poprawnie: 18/44 [40%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Ciąg liczbowy (a_n) określony jest wzorem a_n=n^2+bn+c.

Oblicz sumę wszystkich wyrazów ujemnych tego ciągu.

Dane
b=-\frac{25}{2}=-12.50000000000000
c=\frac{75}{2}=37.50000000000000
Odpowiedź:
s=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20506 ⋅ Poprawnie: 280/398 [70%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 W ciągu arytmetycznym (a_n) występują kolejne liczby naturalne dające resztę 2 przy dzieleniu przez 5.

Wiedząc, że a_{9}=102, oblicz a_{21}.

Odpowiedź:
a_k= (wpisz liczbę całkowitą)
Zadanie 8.  3 pkt ⋅ Numer: pp-20865 ⋅ Poprawnie: 112/219 [51%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 (1 pkt) W rosnącym ciągu arytmetycznym \left(a_n\right), określonym dla każdej liczby naturalnej dodatniej n, suma trzech początkowych wyrazów jest równa 30, a iloczyn tych wyrazów jest równy 190.

Oblicz różnicę tego ciągu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Podpunkt 8.2 (2 pkt)
 (2 pkt) Wyznacz wyraz a_{89} tego ciągu.
Odpowiedź:
a_{k}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20822 ⋅ Poprawnie: 141/304 [46%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Rowerzysta w ciągu pierwszej godziny przejechał s kilometrów, a ciągu każdej następnej godziny przejeżdżał o d metrów mniej. W ciągu ostatniej godziny jazdy ten rowerzysta przejechał drogę o długości p kilometrów.

Ile godzin trwała jazda tego rowerzysty?

Dane
s=35
d=280
p=29.12
Odpowiedź:
t\ [h]= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj długość trasy w kilometrach przejechanej przez tego rowerzystę?
Odpowiedź:
s\ [km]=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-20823 ⋅ Poprawnie: 77/175 [44%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Liczby dodatnie a_1, a_2 i a_3 tworzą ciąg geometryczny.

Podaj najmniejszą z tych liczb.

Dane
a_1+a_2+a_3=65
a_1\cdot a_2\cdot a_3=3375
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30159 ⋅ Poprawnie: 11/33 [33%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « W ciągu suma n początkowych wyrazów wyraża się wzorem S_n=5n^2+kn. Wyznacz wzór ogólny tego ciągu i zapisz go w postaci a_n=an+b.

Podaj a+b.

Dane
k=13
Odpowiedź:
a+b= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Uzasadnij, że jest to ciąg arytmetyczny i podaj jego różnicę.
Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30164 ⋅ Poprawnie: 48/127 [37%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Suma pierwszych pięciu wyrazów niestałego ciągu arytmetycznego (a_n) jest równa s, a wyrazy trzeci, piąty i k-ty tego ciągu tworzą w podanej kolejności ciąg geometryczny.

Oblicz a_1.

Dane
s=140
k=8
Odpowiedź:
a_{1}= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Podaj różnicę r tego ciągu.
Odpowiedź:
r= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm