Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11455 ⋅ Poprawnie: 70/141 [49%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 «« Wskaż najmniejszy możliwy numer wyrazu, poczynając od którego ciąg liczbowy określony wzorem a_n=n^2-17n+17 jest monotoniczny:
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11541 ⋅ Poprawnie: 497/747 [66%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Trzy liczby x-12, x-6 i 3x-28, w podanej kolejności są trzema początkowymi wyrazami ciągu arytmetycznego \left(c_n\right).

Oblicz c_{64}.

Odpowiedź:
c_k= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11153 ⋅ Poprawnie: 43/132 [32%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » W ciągu arytmetycznym, w którym r\neq 0, zachodzi warunek a_{21}=0.

Wówczas:

Odpowiedzi:
A. S_{42}=a_{42} B. S_{42}=0
C. S_{42} > a_{42} D. S_{42} \lessdot a_{42}
Zadanie 4.  1 pkt ⋅ Numer: pp-11508 ⋅ Poprawnie: 493/840 [58%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 (1 pkt) W ciągu geometrycznym \left(a_n\right), określonym dla każdego n\in\mathbb{N_+}, wyrazy drugi i szósty są równe odpowiednio a_2=3 i a_6=12.

Kwadrat wyrazu czwartego tego ciągu jest równy:

Odpowiedź:
a_4^2= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11182 ⋅ Poprawnie: 324/518 [62%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Kwotę 1000 zł ulokowano w banku na roczną lokatę oprocentowaną w wysokości 10\% w stosunku rocznym. Po zakończeniu lokaty od naliczonych odsetek odprowadzany jest podatek w wysokości 19\%.

Maksymalna kwota, jaką po upływie roku będzie można wypłacić z banku, jest równa:

Odpowiedzi:
A. 1000\cdot\left(1-\frac{19}{100}+\frac{10}{100}\right) B. 1000\cdot\left(1+\frac{81}{100}\cdot\frac{10}{100}\right)
C. 1000\cdot\left(1+\frac{19}{100}\cdot\frac{10}{100}\right) D. 1000\cdot\left(1-\frac{19}{100}\cdot\frac{10}{100}\right)
Zadanie 6.  2 pkt ⋅ Numer: pr-20270 ⋅ Poprawnie: 20/42 [47%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
« Dany jest ciąg a_n=\frac{6n^2-5n+1}{3n-1}.

Ile wyrazów tego ciągu nie należy do zbioru liczb naturalnych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Które wyrazy tego ciągu są mniejsze od 17?

Podaj ilość takich wyrazów.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20506 ⋅ Poprawnie: 280/399 [70%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 W ciągu arytmetycznym (a_n) występują kolejne liczby naturalne dające resztę 2 przy dzieleniu przez 5.

Wiedząc, że a_{7}=102, oblicz a_{18}.

Odpowiedź:
a_k= (wpisz liczbę całkowitą)
Zadanie 8.  3 pkt ⋅ Numer: pp-20865 ⋅ Poprawnie: 113/221 [51%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 (1 pkt) W rosnącym ciągu arytmetycznym \left(a_n\right), określonym dla każdej liczby naturalnej dodatniej n, suma trzech początkowych wyrazów jest równa 18, a iloczyn tych wyrazów jest równy -168.

Oblicz różnicę tego ciągu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Podpunkt 8.2 (2 pkt)
 (2 pkt) Wyznacz wyraz a_{58} tego ciągu.
Odpowiedź:
a_{k}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20821 ⋅ Poprawnie: 150/350 [42%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Suma stu kolejnych liczb naturalnych, które przy dzieleniu przez 10 dają resztę 4 jest równa 51900.

Podaj najmniejszą z tych liczb.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj największą z tych liczb.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20519 ⋅ Poprawnie: 225/616 [36%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Ślimak w ciągu pierwszej godziny pokonał m metrów. W ciągu każdej następnej godziny pokonywał \frac{p}{q} drogi jaką pokonał w poprzedniej godzinie.

Oblicz drogę w metrach pokonaną przez ślimaka w pięć godzin.

Dane
m=5
p=6
q=7
Odpowiedź:
s\ [m]=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30158 ⋅ Poprawnie: 48/123 [39%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
«« W ciągu arytmetycznym (a_n) dane są wyrazy: a_1=x+3y, a_2=4x+y, a_3=3x+6y+1, a_4=9x-2y+1. Oblicz x i y. Wyznacz wzór ogólny ciągu i zapisz go w postaci a_n=an+b.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 12.  5 pkt ⋅ Numer: pp-30415 ⋅ Poprawnie: 33/60 [55%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Rosnący ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Suma pierwszych pięciu wyrazów tego ciągu jest równa S_5=-125. Wyrazy a_{12}, a_{14}, a_{22} tworzą – w podanej kolejności – ciąg geometryczny.

Wyznacz trzeci wyraz a_3 tego ciągu.

Odpowiedź:
a_3= (wpisz liczbę całkowitą)
Podpunkt 12.2 (1 pkt)
 Wyznacz różnicę r tego ciągu.
Odpowiedź:
a_3= (wpisz liczbę całkowitą)
Podpunkt 12.3 (2 pkt)
 Zapisz wzór na ogólny wyraz tego ciągu w postaci a_n=an+b.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm