Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11385 ⋅ Poprawnie: 273/412 [66%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=\frac{1-4n}{-3n+2}.

Wyraz a_{2k+7} tego ciągu jest równy:

Odpowiedzi:
A. \frac{8k+29}{6k+23} B. \frac{8k+27}{6k+19}
C. \frac{8k+29}{6k+19} D. \frac{8k+27}{6k+23}
Zadanie 2.  1 pkt ⋅ Numer: pp-11789 ⋅ Poprawnie: 774/931 [83%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Trzywyrazowy ciąg (4,8,a+5) jest arytmetyczny.

Liczba a jest równa:

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11151 ⋅ Poprawnie: 477/633 [75%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « W kinie jest 37 rzędów krzeseł. Rząd pierwszy składa się z 12 krzeseł, a każdy następny rząd zawiera o 12 krzeseł więcej niż rząd poprzedni.

Ile jest krzeseł w kinie?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11176 ⋅ Poprawnie: 536/816 [65%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 W ciągu geometrycznym (a_n) wyraz o numerze k=12 jest równy 5.

Oblicz a_{10}\cdot a_{14}.

Odpowiedź:
a_{k-2}\cdot a_{k+2}= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11919 ⋅ Poprawnie: 181/223 [81%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dany jest ciąg geometryczny (a_n), określony dla każdej liczby naturalnej n\geqslant 1. Drugi wyraz tego ciągu oraz iloraz ciągu (a_n) są równe 4.

Suma czterech początkowych kolejnych wyrazów tego ciągu jest równa:

Odpowiedzi:
A. 21 B. 343
C. 1365 D. 85
E. 341 F. 5
Zadanie 6.  2 pkt ⋅ Numer: pp-20826 ⋅ Poprawnie: 34/226 [15%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Przez pięć lat (na początku każdego roku) pan Nowak lokuje w banku po k zł na p\% w skali roku (procent prosty).

Jaką kwotę otrzyma po pięciu latach? Uwzględnij 18-procentowy podatek od dochodów kapitałowych.

Dane
k=4800
p=10
Odpowiedź:
s= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20512 ⋅ Poprawnie: 12/90 [13%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Dla podanej liczby parzystej k wyznacz wartość wyrażenia:
192^2-(192-1)^2+(192-2)^2-(192-3)^2+(192-4)^2-(192-5)^2+...+102^2-101^2 .
Odpowiedź:
s= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-21102 ⋅ Poprawnie: 375/606 [61%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Trzeci wyraz tego ciągu jest równy -1, a suma piętnastu początkowych kolejnych wyrazów tego ciągu jest równa -240.

Oblicz różnicę tego ciągu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-21069 ⋅ Poprawnie: 160/281 [56%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 W ciągu arytmetycznym \left(a_n\right), określonym dla każdej liczby naturalnej n\geqslant 1, a_1=8 i a_4=2.

Oblicz sumę stu początkowych kolejnych wyrazów tego ciągu.

Odpowiedź:
S_{100}= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20854 ⋅ Poprawnie: 146/923 [15%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 (1 pkt) Pierwszy wyraz malejącego ciągu geometrycznego \left(a_n\right) jest o 75 większy od wyrazu drugiego, a wyraz trzeci tego ciągu jest o 12 większy od wyrazu czwartego tego ciągu.

Wyznacz a_3.

Odpowiedź:
a_{k}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 (1 pkt) Wyznacz a_4.
Odpowiedź:
a_{k}= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30158 ⋅ Poprawnie: 46/120 [38%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
«« W ciągu arytmetycznym (a_n) dane są wyrazy: a_1=x+3y, a_2=4x+y, a_3=3x+6y+1, a_4=9x-2y+1. Oblicz x i y. Wyznacz wzór ogólny ciągu i zapisz go w postaci a_n=an+b.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30392 ⋅ Poprawnie: 6/63 [9%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 « Pan Kozłowski złożył do banku kwotę k zł na procent prosty. Po upływie każdego roku, po dopisaniu do lokaty należnych odsetek, dopłacał kwotę d zł, która powiększała jego kapitał podlegający oprocentowaniu. Przez cały okres oszczędzania oprocentowanie w banku było stałe i wynosiło p\%. Po n latach oszczędzania, po doliczeniu do lokaty należnych odsetek za ostatni rok kwota na lokacie była równa s zł (z pominięciem podatku od usług kapitałowych).

Oblicz n. Pamiętaj, że odsetki pomimo iż pozostają na lokacie, nie podlegają oprocentowaniu. Odsetki oblicza się tylko od wpłaconego kapitału.

Dane
k=5000
d=1000
p=11.0
s=42000.00
Odpowiedź:
n= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm