Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-12065 ⋅ Poprawnie: 50/78 [64%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Ciąg
(b_n) jest określony wzorem
b_n=2n^2-19n dla każdej liczby naturalnej
n\geqslant 1 .
Liczba niedodatnich wyrazów ciągu b_n jest równa:
Odpowiedzi:
A. 11
B. 20
C. 3
D. 5
E. 12
F. 19
G. 7
H. 9
Zadanie 2. 1 pkt ⋅ Numer: pp-11836 ⋅ Poprawnie: 673/749 [89%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Ciąg arytmetyczny
\left(a_n\right) jest określony dla każdej liczby
naturalnej
n\geqslant 1 . W tym ciągu
a_2=9
oraz
a_3=17 .
7-ty wyraz tego ciągu a_{7} jest równy:
Odpowiedzi:
A. 73
B. 41
C. 57
D. 49
E. 65
F. 33
Zadanie 3. 1 pkt ⋅ Numer: pp-11509 ⋅ Poprawnie: 490/914 [53%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Oblicz sumę wszystkich liczb naturalnych trzycyfrowych parzystych, które są większe od
147 .
Odpowiedź:
s=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11173 ⋅ Poprawnie: 166/304 [54%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Dany jest ciąg geometryczny o początkowych wyrazach
a_1=16 ,
a_2=8 ,
a_3=4 .
Oblicz numer największego wyrazu tego ciągu, który jest mniejszy od
\frac{1}{5} .
Odpowiedź:
max_{< \frac{1}{m}}=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11919 ⋅ Poprawnie: 176/217 [81%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Dany jest ciąg geometryczny
(a_n) , określony dla każdej liczby naturalnej
n\geqslant 1 . Drugi wyraz tego ciągu oraz iloraz ciągu
(a_n) są równe
2 .
Suma czterech początkowych kolejnych wyrazów tego ciągu jest równa:
Odpowiedzi:
A. 7
B. 31
C. 15
D. 3
E. 63
F. 33
Zadanie 6. 2 pkt ⋅ Numer: pr-20270 ⋅ Poprawnie: 18/39 [46%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Dany jest ciąg
a_n=\frac{6n^2-5n+1}{3n-1} .
Ile wyrazów tego ciągu nie należy do zbioru liczb naturalnych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Które wyrazy tego ciągu są mniejsze od
17 ?
Podaj ilość takich wyrazów.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20506 ⋅ Poprawnie: 273/389 [70%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
W ciągu arytmetycznym
(a_n) występują kolejne
liczby naturalne dające resztę
2 przy dzieleniu
przez
5 .
Wiedząc, że a_{1}=102 , oblicz
a_{5} .
Odpowiedź:
a_k=
(wpisz liczbę całkowitą)
Zadanie 8. 3 pkt ⋅ Numer: pp-20865 ⋅ Poprawnie: 112/219 [51%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
(1 pkt)
W rosnącym ciągu arytmetycznym
\left(a_n\right) , określonym dla każdej liczby naturalnej dodatniej
n , suma trzech początkowych wyrazów jest równa
-18 , a iloczyn tych wyrazów jest równy
-162 .
Oblicz różnicę tego ciągu.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (2 pkt)
(2 pkt)
Wyznacz wyraz
a_{62} tego ciągu.
Odpowiedź:
a_{k}=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-21069 ⋅ Poprawnie: 154/271 [56%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
W ciągu arytmetycznym
\left(a_n\right) , określonym dla każdej liczby
naturalnej
n\geqslant 1 ,
a_1=-9 i
a_4=-18 .
Oblicz sumę stu początkowych kolejnych wyrazów tego ciągu.
Odpowiedź:
S_{100}=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-21087 ⋅ Poprawnie: 50/88 [56%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Dany jest ciąg
(a_n) określony wzorem
a_n=\frac{2^n}{6} dla każdej liczby naturalnej
n\geqslant 1 .
Wyraz numer
55 ciągu
(a_n) jest równy:
Odpowiedzi:
A. \frac{2^{55}}{3}
B. \frac{2^{53}}{3}
C. \frac{2^{52}}{3}
D. \frac{2^{54}}{3}
E. \frac{2^{57}}{3}
F. \frac{2^{56}}{3}
Podpunkt 10.2 (1 pkt)
Oceń prawdziwość poniższych stwierdzeń:
Odpowiedzi:
T/N : ciąg (a_n) jest geometryczny
T/N : suma pierwszych trzech wyrazów ciągu (a_n) jest równa \frac{13}{6}
Zadanie 11. 4 pkt ⋅ Numer: pp-30166 ⋅ Poprawnie: 179/419 [42%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
Suma pierwszych pięciu wyrazów ciągu arytmetycznego
(a_n) wynosi
s1 ,
a suma
a_6+a_7+a_8+...+a_{12} wynosi
s2 .
Oblicz a_1 .
Dane
s1=750
s2=-84
Odpowiedź:
a_{1}=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Oblicz różnicę tego ciągu.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pp-30160 ⋅ Poprawnie: 21/108 [19%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
Dany jest ciąg geometryczny
(a,b,c) oraz ciąg
arytmetyczny
(a, 2b, k\cdot c) . Oblicz iloraz
ciągu
(a,b,c) .
Podaj najmniejsze możliwe q .
Dane
k=-12
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
Podaj największe możliwe
q .
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż