Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11157 ⋅ Poprawnie: 240/418 [57%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Ciąg \left(a_n\right) określony jest wzorem a_n=-290+68n-2n^2.

Wyznacz numer największego wyrazu ciągu \left(a_n\right).

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11433 ⋅ Poprawnie: 400/474 [84%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dla ciągu arytmetycznego (a_n) określonego dla n\geqslant 1 spełniony jest warunek a_{13}+a_{14}+a_{15}=\frac{39}{2}.

Oblicz a_{14}.

Odpowiedź:
a_k=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11152 ⋅ Poprawnie: 472/844 [55%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Oblicz sumę 21 początkowych wyrazów ciągu arytmetycznego o wzorze ogólnym a_n=\frac{5}{2}-6\cdot n.
Odpowiedź:
S_k=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-12064 ⋅ Poprawnie: 49/67 [73%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Trzywyrzowy ciąg \left(48,3x,3\right) jest geometryczny i wszystkie jego wyrazy są dodatnie.

Wynika z tego, że x jest równe:

Odpowiedzi:
A. 4 B. 6
C. 1 D. 2
E. 8 F. \frac{8}{3}
Zadanie 5.  1 pkt ⋅ Numer: pp-11184 ⋅ Poprawnie: 262/405 [64%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Po k latach z tytułu lokaty o wysokości 4900 zł oprocentowanej w wysokości 25\% w skali roku przy rocznej kapitalizacji odsetek otrzymamy łączne odsetki (przed potrąceniem podatków) w wysokości m złotych.

Wyznacz liczbę m.

Odpowiedź:
m= (liczba zapisana dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20827 ⋅ Poprawnie: 5/60 [8%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Pan Kozłowski złożył do banku kwotę k zł, na procent prosty, w którym odsetki nie podlegają oprocentowaniu. Po upływie pierwszego i każdego następnego roku (oprócz końca roku ostatniego) wpłacał kwotę d zł. Przez cały okres oszczędzania oprocentowanie w banku było stałe i wynosiło p\% w stosunku rocznym.

Oblicz wartość tej lokaty po n latach (przed opodatkowaniem, po n-tym roku pan Kozłowski nie dopłacił kwoty d zł, tylko wybrał z banku pieniądze na lokacie).

Dane
k=5000
d=1000
p=8.5
n=5
Odpowiedź:
s= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20507 ⋅ Poprawnie: 508/844 [60%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Suma trzydziestu początkowych wyrazów ciągu arytmetycznego (a_n) jest równa 135 oraz a_{30}=135.

Oblicz różnicę tego ciągu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20505 ⋅ Poprawnie: 45/111 [40%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
Na okręgu o promieniu długości r opisano trójkąt o bokach długości a\leqslant b\leqslant c, które są kolejnymi wyrazami ciągu arytmetycznego.

Oblicz stosunek wysokości opuszczonej na bok długości b, do długości promienia okręgu r.

Odpowiedź:
\frac{h}{r}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20787 ⋅ Poprawnie: 180/411 [43%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Dana jest liczba k, k-ty wyraz ciągu arytmetycznego (a_n) oraz suma S_k, k początkowych wyrazów tego ciągu.

Oblicz a_1.

Dane
k=13
a_{13}=76
S_{13}=520
Odpowiedź:
a_{1}= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Oblicz różnicę r tego ciągu.
Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-20823 ⋅ Poprawnie: 62/160 [38%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Liczby dodatnie a_1, a_2 i a_3 tworzą ciąg geometryczny.

Podaj najmniejszą z tych liczb.

Dane
a_1+a_2+a_3=49
a_1\cdot a_2\cdot a_3=3375
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30167 ⋅ Poprawnie: 10/71 [14%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 « Suma n początkowych wyrazów ciągu arytmetycznego (a_n) dana jest wzorem S_n=\frac{n^2-25n}{4} (n > 0). Różnica ciągu arytmetycznego (b_n) jest równa \frac{3}{2} oraz jego piąty wyraz jest równy p. Wyznacz sumę 17 początkowych wyrazów ciągu arytmetycznego (c_n), wiedząc, że c_n=2b_n-a_8, gdzie n > 0.

Podaj wyznaczoną sumę.

Dane
p=59
Odpowiedź:
s=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30162 ⋅ Poprawnie: 197/793 [24%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 Liczby x, y i z w podanej kolejności tworzą trzy pierwsze wyrazy ciągu geometrycznego (a_n) o ilorazie 3. Liczby (x+a, y, z+a) tworzą ciąg arytmetyczny (b_n).

Podaj z.

Dane
a=24
Odpowiedź:
z=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm