Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11160 ⋅ Poprawnie: 307/554 [55%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Wyznacz najmniejszy dodatni wyraz ciągu określonego wzorem a_n=7n-146.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11146 ⋅ Poprawnie: 1727/2098 [82%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « W ciągu arytmetycznym \left(a_n\right) wyrazy pierwszy i trzeci są równe odpowiednio -4 i 4, a pewien wyraz tego ciągu a_k jest równy 52.

Wyznacz numer tego wyrazu.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11151 ⋅ Poprawnie: 478/634 [75%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « W kinie jest 26 rzędów krzeseł. Rząd pierwszy składa się z 13 krzeseł, a każdy następny rząd zawiera o 10 krzeseł więcej niż rząd poprzedni.

Ile jest krzeseł w kinie?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11173 ⋅ Poprawnie: 187/321 [58%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Dany jest ciąg geometryczny o początkowych wyrazach a_1=16, a_2=8, a_3=4.

Oblicz numer największego wyrazu tego ciągu, który jest mniejszy od \frac{1}{7}.

Odpowiedź:
max_{< \frac{1}{m}}= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11184 ⋅ Poprawnie: 262/407 [64%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Po k latach z tytułu lokaty o wysokości 5800 zł oprocentowanej w wysokości 25\% w skali roku przy rocznej kapitalizacji odsetek otrzymamy łączne odsetki (przed potrąceniem podatków) w wysokości m złotych.

Wyznacz liczbę m.

Odpowiedź:
m= (liczba zapisana dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20523 ⋅ Poprawnie: 57/109 [52%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Akcje firmy zyskują na wartości 8\% w ciągu każdego roku.

Po ilu latach posiadacz akcji co najmniej podwoi zainwestowaną kwotę? Przyjmnij, że wartość akcji wzrasta dopiero po upływie pełnego roku.

Odpowiedź:
Ilosc\ lat= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20504 ⋅ Poprawnie: 239/430 [55%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » W ciągu arytmetycznym (a_n), określonym dla n\geqslant 1, dane są: wyraz a_1=-7 oraz a_2+a_3=-20.

Oblicz różnicę a_{18}-a_{15}.

Odpowiedź:
a_{18}-a_{15}= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20505 ⋅ Poprawnie: 45/112 [40%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
Na okręgu o promieniu długości r opisano trójkąt o bokach długości a\leqslant b\leqslant c, które są kolejnymi wyrazami ciągu arytmetycznego.

Oblicz stosunek wysokości opuszczonej na bok długości b, do długości promienia okręgu r.

Odpowiedź:
\frac{h}{r}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20508 ⋅ Poprawnie: 42/87 [48%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « W ciągu arytmetycznym \left(a_n\right) mamy: a_1=a oraz 3\cdot S_{5}=S_{10}-S_{5}.

Oblicz różnicę tego ciągu.

Dane
a=8
Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-21087 ⋅ Poprawnie: 69/117 [58%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=\frac{11^n}{22} dla każdej liczby naturalnej n\geqslant 1. Wyraz numer 55 ciągu (a_n) jest równy:
Odpowiedzi:
A. \frac{11^{56}}{2} B. \frac{11^{54}}{2}
C. \frac{11^{53}}{2} D. \frac{11^{55}}{2}
E. \frac{11^{52}}{2} F. \frac{11^{57}}{2}
Podpunkt 10.2 (1 pkt)
 Oceń prawdziwość poniższych stwierdzeń:
Odpowiedzi:
T/N : ciąg (a_n) jest monotoniczny T/N : suma pierwszych trzech wyrazów ciągu (a_n) jest równa \frac{1465}{22}
Zadanie 11.  4 pkt ⋅ Numer: pp-30159 ⋅ Poprawnie: 11/33 [33%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « W ciągu suma n początkowych wyrazów wyraża się wzorem S_n=5n^2+kn. Wyznacz wzór ogólny tego ciągu i zapisz go w postaci a_n=an+b.

Podaj a+b.

Dane
k=9
Odpowiedź:
a+b= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Uzasadnij, że jest to ciąg arytmetyczny i podaj jego różnicę.
Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30169 ⋅ Poprawnie: 17/321 [5%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 «« W ciągu geometrycznym (a_n), w którym a_1\neq 0, różnica pomiędzy wyrazami ósmym i szóstym jest k razy większa niż różnica między wyrazami siódmym i szóstym. Wyznacz iloraz tego ciągu.

Podaj najmniejsze możliwe q tego ciągu.

Dane
k=9
Odpowiedź:
q_{min}= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Podaj największe możliwe q tego ciągu.
Odpowiedź:
q_{max}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm