Ciąg \left(a_n\right) jest określony dla każdej liczby
naturalnej n\geqslant 1.
Suma n początkowych wyrazów tego ciągu jest określona wzorem
S_n=2\cdot(2^n-1), dla każdej liczby naturalnej n\geqslant 1.
Oceń prawdziwość poniższych stwierdzeń:
Odpowiedzi:
T/N : iloczyn a_1\cdot a_2 jest równy 8
T/N : pierwszy wyraz ciągu \left(a_n\right) jest równy 2
Zadanie 4.1 pkt ⋅ Numer: pp-11992 ⋅ Poprawnie: 463/604 [76%]
Pan Kowalski złożył do banku kwotę 2048.00 zł na okres
dwóch lat na procent składany. Oprocentowanie w banku wynosi
p\% w skali roku, a odsetki kapitalizuje się
co 6 miesięcy. Po upływie tego terminu bank wypłacił mu kwotę
3280.50 zł (pomiń podatek od usług kapitałowych).
Wyznacz p.
Odpowiedź:
p\ [\%]=(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pp-20512 ⋅ Poprawnie: 12/90 [13%]
(1 pkt)
Pierwszy wyraz malejącego ciągu geometrycznego \left(a_n\right)
jest o 567
większy od wyrazu drugiego, a wyraz trzeci tego ciągu jest o
28 większy od wyrazu czwartego tego ciągu.
Wyznacz a_2.
Odpowiedź:
a_{k}=(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
(1 pkt)
Wyznacz a_3.
Odpowiedź:
a_{k}=(wpisz liczbę całkowitą)
Zadanie 11.4 pkt ⋅ Numer: pp-30167 ⋅ Poprawnie: 11/72 [15%]
« Suma n początkowych wyrazów ciągu arytmetycznego
(a_n) dana jest wzorem
S_n=\frac{n^2-25n}{4}
(n > 0). Różnica ciągu arytmetycznego
(b_n) jest równa
\frac{3}{2} oraz jego piąty wyraz jest równy
p. Wyznacz sumę 17
początkowych wyrazów ciągu arytmetycznego
(c_n), wiedząc, że
c_n=2b_n-a_8, gdzie
n > 0.
Podaj wyznaczoną sumę.
Dane
p=26
Odpowiedź:
s=
(wpisz dwie liczby całkowite)
Zadanie 12.4 pkt ⋅ Numer: pp-30163 ⋅ Poprawnie: 61/213 [28%]
« Dany jest rosnący ciąg geometryczny (a,b,c).
Suma a+b+c wynosi s.
Liczby a, b i
c w podanej kolejności są pierwszym, drugim i
k-tym wyrazem pewnego ciągu arytmetycznego.
Podaj liczbę a.
Dane
s=785
k=14
Odpowiedź:
a=(wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
Podaj liczbę b.
Odpowiedź:
b=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat