« Ciąg liczbowy (a_n) określony jest wzorem
a_n=\frac{2n^2-20n+42}{n^2+9},
a liczby
p i q są odpowiednio najmniejszym
i największym numerem wyrazów ciągu, które są równe 0.
Podaj liczby p i q.
Odpowiedzi:
p
=
(wpisz liczbę całkowitą)
q
=
(wpisz liczbę całkowitą)
Zadanie 2.1 pkt ⋅ Numer: pp-11861 ⋅ Poprawnie: 494/501 [98%]
« Pan Kozłowski złożył do banku kwotę k zł, na procent prosty,
w którym odsetki nie podlegają oprocentowaniu. Po upływie pierwszego i każdego następnego
roku (oprócz końca roku ostatniego) wpłacał kwotę d zł.
Przez cały okres oszczędzania oprocentowanie w banku było stałe i wynosiło
p\% w stosunku rocznym.
Oblicz wartość tej lokaty po n latach
(przed opodatkowaniem, po n-tym roku pan Kozłowski
nie dopłacił kwoty d zł, tylko wybrał z banku
pieniądze na lokacie).
Dane
k=5000 d=1000 p=6.0 n=6
Odpowiedź:
s=(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pp-20506 ⋅ Poprawnie: 280/399 [70%]
(1 pkt)
W rosnącym ciągu arytmetycznym \left(a_n\right), określonym dla każdej liczby naturalnej dodatniej
n, suma trzech początkowych wyrazów jest równa
9, a iloczyn tych wyrazów jest równy
-21.
Oblicz różnicę tego ciągu.
Odpowiedź:
r=(wpisz liczbę całkowitą)
Podpunkt 8.2 (2 pkt)
(2 pkt)
Wyznacz wyraz a_{62} tego ciągu.
Odpowiedź:
a_{k}=(wpisz liczbę całkowitą)
Zadanie 9.3 pkt ⋅ Numer: pp-20810 ⋅ Poprawnie: 244/576 [42%]
W pewnym ciągu geometrycznym (a_n) wyraz
a_4 jest osiem razy większy od wyrazu
a_1. Drugi wyraz tego ciągu jest równy
6. Znajdź najmniejszą liczbę naturalną
k taką, że
a_k > 3\cdot 2^p.
Podaj k.
Dane
p=28
Odpowiedź:
k=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat