Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-11385 ⋅ Poprawnie: 257/395 [65%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Dany jest ciąg
(a_n) określony wzorem
a_n=\frac{1-4n}{-3n+2} .
Wyraz a_{2k+5} tego ciągu jest równy:
Odpowiedzi:
A. \frac{8k+19}{6k+17}
B. \frac{8k+21}{6k+17}
C. \frac{8k+19}{6k+13}
D. \frac{8k+21}{6k+13}
Zadanie 2. 1 pkt ⋅ Numer: pp-12037 ⋅ Poprawnie: 203/196 [103%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Ciągi
(a_n) ,
(b_n) ,
(c_n) oraz
(d_n) są określone dla każdej liczby naturalnej
n > 1 następująco:
a_n=2n+3 ,
b_n=4n^2+4 ,
c_n=5^n ,
d_n=\frac{5}{n} .
Wskaż zdanie prawdziwe:
Odpowiedzi:
A. ciąg c_n jest arytmetyczny
B. ciąg a_n jest arytmetyczny
C. ciąg d_n jest arytmetyczny
D. żaden z ciągów nie jest arytmetyczny
Zadanie 3. 1 pkt ⋅ Numer: pp-11509 ⋅ Poprawnie: 491/916 [53%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Oblicz sumę wszystkich liczb naturalnych trzycyfrowych parzystych, które są większe od
243 .
Odpowiedź:
s=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11178 ⋅ Poprawnie: 900/1160 [77%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Ciąg
(b_n) jest geometryczny, w krórym dane są
dwa wyrazy
b_1=567 i
b_5=7 .
Wyznacz iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11180 ⋅ Poprawnie: 726/1050 [69%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Suma pierwszych pięciu wyrazów ciągu geometrycznego jest równa
-\frac{31}{3} , a jego iloraz wynosi
2 .
Wyznacz a_1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 3 pkt ⋅ Numer: pp-21084 ⋅ Poprawnie: 69/174 [39%]
Rozwiąż
Podpunkt 6.1 (0.5 pkt)
Dany jest ciąg
(a_n) określony wzorem
a_n=-4n+2
dla każdej liczby naturalnej
n \geqslant 1 .
Ciąg (a_n) jest:
Odpowiedzi:
A. rosnący
B. niemonotoniczny
C. stały
D. malejący
Podpunkt 6.2 (0.5 pkt)
Odpowiedź powyższa jest poprawna, ponieważ:
Odpowiedzi:
A. a_{n+1}-a_n=3
B. a_{n+1}-a_n=5
C. a_{n+1}-a_n=-4
D. a_{n+1}-a_n=2
Podpunkt 6.3 (1 pkt)
Najmniejszą wartością
n , dla której wyraz
a_n jest
mniejszy od
-58 , jest:
Odpowiedzi:
A. 16
B. 12
C. 20
D. 19
E. 17
F. 13
Podpunkt 6.4 (1 pkt)
Suma
n początkowych wyrazów ciągu
(a_n)
jest równa
-288 dla
n równego:
Odpowiedzi:
A. 12
B. 9
C. 15
D. 13
E. 8
F. 16
Zadanie 7. 2 pkt ⋅ Numer: pp-20511 ⋅ Poprawnie: 356/951 [37%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Liczby
2x+1 ,
12x ,
14x+134 są w podanej kolejności pierwszym,
drugim i czwartym wyrazem ciągu arytmetycznego.
Oblicz x .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-21128 ⋅ Poprawnie: 57/131 [43%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Dany jest ciąg arytmetyczny
(a_n) , określony dla wszystkich liczb
naturalnych
n\geqslant 1 . Suma dwudziestu początkowych wyrazów
tego ciągu jest równa
20\cdot a_{21}-210 .
Oblicz różnicę ciągu (a_n) .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20508 ⋅ Poprawnie: 42/87 [48%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« W ciągu arytmetycznym
\left(a_n\right) mamy:
a_1=a oraz
3\cdot S_{5}=S_{10}-S_{5} .
Oblicz różnicę tego ciągu.
Dane
a=14
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-21111 ⋅ Poprawnie: 206/349 [59%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Ciąg
(a_n) jest określony wzorem
a_n=3\cdot(-1)^{n+1}+2 dla każdej liczby
naturalnej
n\geqslant 1 .
Suma dziesięciu początkowych kolejnych wyrazów tego ciągu jest równa:
Odpowiedzi:
A. 20
B. 3
C. 33
D. 40
E. 28
F. 19
G. 7
H. 24
Podpunkt 10.2 (1 pkt)
Oceń prawdziwość poniższych stwierdzeń.
Odpowiedzi:
T/N : ciąg (a_n) jest geometryczny
T/N : ciąg (a_n) jest malejący
Zadanie 11. 4 pkt ⋅ Numer: pp-30167 ⋅ Poprawnie: 11/72 [15%]
Rozwiąż
Podpunkt 11.1 (4 pkt)
« Suma
n początkowych wyrazów ciągu arytmetycznego
(a_n) dana jest wzorem
S_n=\frac{n^2-25n}{4}
(
n > 0 ). Różnica ciągu arytmetycznego
(b_n) jest równa
\frac{3}{2} oraz jego piąty wyraz jest równy
p . Wyznacz sumę
17
początkowych wyrazów ciągu arytmetycznego
(c_n) , wiedząc, że
c_n=2b_n-a_8 , gdzie
n > 0 .
Podaj wyznaczoną sumę.
Dane
p=68
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 4 pkt ⋅ Numer: pp-30165 ⋅ Poprawnie: 24/106 [22%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
« Ciąg
(p,x,y) jest geometryczny, zaś ciąg
(b_n) , w którym
b_1=p ,
b_7=x i
b_9=y , jest
niestałym ciągiem arytmetycznym.
Oblicz x .
Dane
p=-90
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
Odpowiedź:
y=
(wpisz liczbę całkowitą)
Rozwiąż