Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-11387 ⋅ Poprawnie: 301/594 [50%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Oceń, które z podanych ciągów są malejące?
Odpowiedzi:
T/N : a_n=\frac{n-3}{4}
T/N : a_n=n^2-n-2
T/N : a_n=\frac{n+1}{n+3}
Zadanie 2. 1 pkt ⋅ Numer: pp-11150 ⋅ Poprawnie: 884/1136 [77%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Oceń, które z podanych ciągów są arytmetyczne:
Odpowiedzi:
T/N : a_n=n^2
T/N : a_n=\sqrt{n+3}
Zadanie 3. 1 pkt ⋅ Numer: pp-11153 ⋅ Poprawnie: 43/131 [32%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
» W ciągu arytmetycznym, w którym
r\neq 0 ,
zachodzi warunek
a_{29}=0 .
Wówczas:
Odpowiedzi:
A. S_{58} \lessdot a_{58}
B. S_{58}=0
C. S_{58}=a_{58}
D. S_{58} > a_{58}
Zadanie 4. 1 pkt ⋅ Numer: pp-11165 ⋅ Poprawnie: 185/357 [51%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« W ciągu
20 minut z jednej bakterii powstaje
3 innych.
Ile nowych bakterii powstanie w ciągu 120 minut z
jednej bakterii?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11919 ⋅ Poprawnie: 176/217 [81%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Dany jest ciąg geometryczny
(a_n) , określony dla każdej liczby naturalnej
n\geqslant 1 . Drugi wyraz tego ciągu oraz iloraz ciągu
(a_n) są równe
3 .
Suma pięciu początkowych kolejnych wyrazów tego ciągu jest równa:
Odpowiedzi:
A. 364
B. 13
C. 1093
D. 121
E. 40
F. 366
Zadanie 6. 2 pkt ⋅ Numer: pp-20827 ⋅ Poprawnie: 5/61 [8%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
« Pan Kozłowski złożył do banku kwotę
k zł, na procent prosty,
w którym odsetki nie podlegają oprocentowaniu. Po upływie pierwszego i każdego następnego
roku (oprócz końca roku ostatniego) wpłacał kwotę
d zł.
Przez cały okres oszczędzania oprocentowanie w banku było stałe i wynosiło
p\% w stosunku rocznym.
Oblicz wartość tej lokaty po n latach
(przed opodatkowaniem, po n -tym roku pan Kozłowski
nie dopłacił kwoty d zł, tylko wybrał z banku
pieniądze na lokacie).
Dane
k=6000
d=1000
p=5.5
n=6
Odpowiedź:
s=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20816 ⋅ Poprawnie: 901/1902 [47%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
W ciągu arytmetycznym
(a_n) dane są sumy:
a_{7}+a_{10}=-50 oraz
a_{2}+a_{13}=-14 .
Wyznacz różnicę tego ciągu.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Odpowiedź:
a_1=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20819 ⋅ Poprawnie: 127/180 [70%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Dany jest ciąg arytmetyczny
(a_n) .
Wyznacz najmniejsze możliwe a_1 tego ciągu.
Dane
a_{3}+a_{5}=30
a_{3}\cdot a_{5}=209
Odpowiedź:
a_1=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Wyznacz największą możliwą różnicę
r tego ciągu.
Odpowiedź:
r_{max}=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20821 ⋅ Poprawnie: 147/347 [42%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Suma stu kolejnych liczb naturalnych, które przy dzieleniu przez
8 dają resztę
2
jest równa
42200 .
Podaj najmniejszą z tych liczb.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj największą z tych liczb.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-21095 ⋅ Poprawnie: 28/97 [28%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Dany jest ciąg geometryczny
(a_n) , określony dla
każdej liczby naturalnej
n\geqslant 1 .
W tym ciągu
a_1=-5 ,
a_2=-15
a_3=-45 .
Wzór ogólny ciągu (a_n) ma postać:
Odpowiedzi:
T/N : a_n=5\cdot 3^{n}
T/N : a_n=-5\cdot 3^{n}
T/N : a_n=5\cdot \frac{3^n}{-3}
T/N : a_n=-5\cdot (-3)^{n}
Zadanie 11. 4 pkt ⋅ Numer: pp-30159 ⋅ Poprawnie: 11/33 [33%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
« W ciągu suma
n początkowych wyrazów wyraża
się wzorem
S_n=5n^2+kn . Wyznacz wzór ogólny tego
ciągu i zapisz go w postaci
a_n=an+b .
Podaj a+b .
Dane
k=14
Odpowiedź:
a+b=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Uzasadnij, że jest to ciąg arytmetyczny i podaj jego różnicę.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pp-30165 ⋅ Poprawnie: 24/106 [22%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
« Ciąg
(p,x,y) jest geometryczny, zaś ciąg
(b_n) , w którym
b_1=p ,
b_7=x i
b_9=y , jest
niestałym ciągiem arytmetycznym.
Oblicz x .
Dane
p=-90
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
Odpowiedź:
y=
(wpisz liczbę całkowitą)
Rozwiąż