Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-11387 ⋅ Poprawnie: 302/596 [50%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Oceń, które z podanych ciągów są malejące?
Odpowiedzi:
T/N : a_n=\frac{1}{1-4n}
T/N : a_n=4-\frac{7}{n}
T/N : a_n=n^2-n-2
Zadanie 2. 1 pkt ⋅ Numer: pp-11789 ⋅ Poprawnie: 840/1004 [83%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Trzywyrazowy ciąg
(4,9,a+2) jest arytmetyczny.
Liczba a jest równa:
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11837 ⋅ Poprawnie: 428/651 [65%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
\left(a_n\right) jest określony dla każdej liczby
naturalnej
n\geqslant 1 .
Suma
n początkowych wyrazów tego ciągu jest określona wzorem
S_n=4\cdot(3^n-1) , dla każdej liczby naturalnej
n\geqslant 1 .
Oceń prawdziwość poniższych stwierdzeń:
Odpowiedzi:
T/N : drugi wyraz ciągu \left(a_n\right) jest równy 26
T/N : różnica a_2-a_1 jest równa 16
Zadanie 4. 1 pkt ⋅ Numer: pp-11170 ⋅ Poprawnie: 333/468 [71%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» W ciągu geometrycznym
(a_n) dane są:
a_1=2401 i
a_3=49 , a czwarty wyraz tego ciągu
jest ujemny.
Wyznacz a_4 .
Odpowiedź:
a_4=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11183 ⋅ Poprawnie: 531/874 [60%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Na lokacie złożono 1000 zł przy rocznej stopie procentowej
28\% (procent składany). Odsetki naliczane są co
kwartał.
Po upływie roku wielkość kapitału na lokacie (przed potrąceniem podatków
będzie równa:
Odpowiedzi:
A. 1000\cdot\left(1+\frac{7}{100}\right)^4
B. 1000\cdot\left(1+\left(\frac{28}{100}\right)^4\right)
C. 1000\cdot\left(1+\frac{7}{100}\right)
D. 1000\cdot\left(1+\frac{7}{400}\right)^4
Zadanie 6. 2 pkt ⋅ Numer: pp-20523 ⋅ Poprawnie: 57/109 [52%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
» Akcje firmy zyskują na wartości
15\% w ciągu
każdego roku.
Po ilu latach posiadacz akcji co najmniej podwoi zainwestowaną kwotę? Przyjmnij, że wartość
akcji wzrasta dopiero po upływie pełnego roku.
Odpowiedź:
Ilosc\ lat=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20504 ⋅ Poprawnie: 238/429 [55%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» W ciągu arytmetycznym
(a_n) , określonym
dla
n\geqslant 1 , dane są:
wyraz
a_1=7 oraz
a_2+a_3=8 .
Oblicz różnicę a_{18}-a_{15} .
Odpowiedź:
a_{18}-a_{15}=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-21082 ⋅ Poprawnie: 134/263 [50%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Trójwyrazowy ciąg
(x+2,y-6,y-2) jest arytmetyczny.
Suma wszystkich wyrazów tego ciągu jest równa
6 .
Oblicz wszystkie wyrazy tego ciągu.
Wyznacz x .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
y=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20514 ⋅ Poprawnie: 241/1138 [21%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
» Liczby
x-2 ,
x+m i
3x-4 są trzema początkowymi wyrazami ciągu
arytmetycznego
(b_n) .
Wyznacz b_{100} .
Dane
m=10
Odpowiedź:
b_{100}=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Wyznacz najmniejsze takie
n , że
S_n > 360 .
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-20854 ⋅ Poprawnie: 146/923 [15%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
(1 pkt)
Pierwszy wyraz malejącego ciągu geometrycznego
\left(a_n\right)
jest o
490
większy od wyrazu drugiego, a wyraz trzeci tego ciągu jest o
40 większy od wyrazu czwartego tego ciągu.
Wyznacz a_3 .
Odpowiedź:
a_{k}=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Odpowiedź:
a_{k}=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pp-30166 ⋅ Poprawnie: 182/424 [42%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
Suma pierwszych pięciu wyrazów ciągu arytmetycznego
(a_n) wynosi
s1 ,
a suma
a_6+a_7+a_8+...+a_{12} wynosi
s2 .
Oblicz a_1 .
Dane
s1=1300
s2=1106
Odpowiedź:
a_{1}=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Oblicz różnicę tego ciągu.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pp-30160 ⋅ Poprawnie: 21/108 [19%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
Dany jest ciąg geometryczny
(a,b,c) oraz ciąg
arytmetyczny
(a, 2b, k\cdot c) . Oblicz iloraz
ciągu
(a,b,c) .
Podaj najmniejsze możliwe q .
Dane
k=-21
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
Podaj największe możliwe
q .
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż