Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-12065 ⋅ Poprawnie: 54/83 [65%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Ciąg
(b_n) jest określony wzorem
b_n=2n^2-13n dla każdej liczby naturalnej
n\geqslant 1 .
Liczba niedodatnich wyrazów ciągu b_n jest równa:
Odpowiedzi:
A. 5
B. 2
C. 6
D. 7
E. 18
F. 16
G. 15
H. 8
Zadanie 2. 1 pkt ⋅ Numer: pp-11541 ⋅ Poprawnie: 468/711 [65%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Trzy liczby
x-14 ,
x-8
i
3x-34 ,
w podanej kolejności są trzema początkowymi wyrazami ciągu arytmetycznego
\left(c_n\right) .
Oblicz c_{60} .
Odpowiedź:
c_k=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11154 ⋅ Poprawnie: 362/545 [66%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« W ciągu arytmetycznym
(a_n) sumę
n początkowych wyrazów
można obliczyć korzystając ze wzoru
S_n=n+2n^2 , gdzie
n\in\mathbb{N_{+}} .
Oblicz wyraz a_{5} tego ciągu.
Odpowiedź:
a_k=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11432 ⋅ Poprawnie: 352/503 [69%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Dany jest ciąg
(a_n) określony wzorem
a_n=\frac{-5+6n}{2} .
Ciąg ten jest:
Odpowiedzi:
A. arytmetyczny o różnicy r=6
B. geometryczny o ilorazie q=9
C. arytmetyczny o różnicy r=3
D. geometryczny o ilorazie q=12
Zadanie 5. 1 pkt ⋅ Numer: pp-11180 ⋅ Poprawnie: 726/1050 [69%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Suma pierwszych pięciu wyrazów ciągu geometrycznego jest równa
-\frac{61}{2} , a jego iloraz wynosi
-3 .
Wyznacz a_1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20516 ⋅ Poprawnie: 470/1096 [42%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
« Dany jest ciąg
a_n=an^2+bn+c , dla
n\in\mathbb{N_{+}} .
Oblicz ilość wyrazów ujemnych tego ciągu.
Dane
a=1
b=2
c=-80
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20504 ⋅ Poprawnie: 238/429 [55%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» W ciągu arytmetycznym
(a_n) , określonym
dla
n\geqslant 1 , dane są:
wyraz
a_1=-16 oraz
a_2+a_3=-50 .
Oblicz różnicę a_{18}-a_{15} .
Odpowiedź:
a_{18}-a_{15}=
(wpisz liczbę całkowitą)
Zadanie 8. 3 pkt ⋅ Numer: pp-20865 ⋅ Poprawnie: 112/219 [51%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
(1 pkt)
W rosnącym ciągu arytmetycznym
\left(a_n\right) , określonym dla każdej liczby naturalnej dodatniej
n , suma trzech początkowych wyrazów jest równa
-15 , a iloczyn tych wyrazów jest równy
-80 .
Oblicz różnicę tego ciągu.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (2 pkt)
(2 pkt)
Wyznacz wyraz
a_{80} tego ciągu.
Odpowiedź:
a_{k}=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20508 ⋅ Poprawnie: 42/87 [48%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« W ciągu arytmetycznym
\left(a_n\right) mamy:
a_1=a oraz
3\cdot S_{5}=S_{10}-S_{5} .
Oblicz różnicę tego ciągu.
Dane
a=3
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-20517 ⋅ Poprawnie: 81/158 [51%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Ciąg
(a-b,a^2-2,k-b) jest ciągiem
atytmetycznym i geometrycznym. Wyznacz
a i
b .
Podaj a .
Dane
k=5
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pp-30304 ⋅ Poprawnie: 51/143 [35%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Ciąg
(a_n) jest ciągiem liczbowym arytmetycznym
o różnicy
r , a
S_6
sumą sześciu początkowych wyrazów tego ciągu. W ciągu
(a_n) zachodzi warunek:
\frac{S_6}{6}=m .
Oblicz a_1 .
Dane
r=-12
m=-70
k=-412
Odpowiedź:
a_{1}=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Wyznacz numer wyrazu ciągu
(a_n) , który jest równy
k . Jeżeli taki wyraz w ciągu nie istnieje,
wpisz
-1 .
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pp-30390 ⋅ Poprawnie: 99/540 [18%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
« Pierwszy, drugi, czwarty i piąty wyraz ciągu geometrycznego
\left(a_n\right) są równe odpowiednio
a_1 ,
a_2 ,
a_4 i
a_5 .
Oblicz najmniejszy możliwy pierwszy wyraz tego ciągu.
Dane
a_1+a_5=34
a_2\cdot a_4=64
Odpowiedź:
a_{1}=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (1 pkt)
Oblicz najmniejszy możliwy iloraz tego ciągu.
Odpowiedź:
q_{min}=
(wpisz liczbę całkowitą)
Podpunkt 12.3 (1 pkt)
Podaj najmniejszy możliwy, dodatni iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż