Ciąg \left(a_n\right) jest określony dla każdej liczby
naturalnej n\geqslant 1.
Suma n początkowych wyrazów tego ciągu jest określona wzorem
S_n=4\cdot(5^n-1), dla każdej liczby naturalnej n\geqslant 1.
Oceń prawdziwość poniższych stwierdzeń:
Odpowiedzi:
T/N : drugi wyraz ciągu \left(a_n\right) jest równy 83
T/N : suma a_1+a_2 jest równa 100
Zadanie 4.1 pkt ⋅ Numer: pp-11178 ⋅ Poprawnie: 900/1160 [77%]
Pan Grzegorz wpłacił do banku pewną kwotę na lokatę dwuletnią. Po każdym rocznym okresie
oszczędzania bank doliczał odsetki w wysokości 5\% od kwoty bieżącego
kapitału znajdującego się na lokacie. Po dwóch latach oszczędzania pan Grzegorz odebrał z tego
banku wraz z odsetkami kwotę 6615.00 zł (bez uwzględnienia podatków).
Kwota wpłacona przez pana Grzegorza na tę lokatę była równa:
Odpowiedzi:
A.5600 zł
B.6600 zł
C.6100 zł
D.6000 zł
E.6500 zł
F.6200 zł
Zadanie 6.2 pkt ⋅ Numer: pp-20826 ⋅ Poprawnie: 34/226 [15%]
(1 pkt)
W rosnącym ciągu arytmetycznym \left(a_n\right), określonym dla każdej liczby naturalnej dodatniej
n, suma trzech początkowych wyrazów jest równa
42, a iloczyn tych wyrazów jest równy
2058.
Oblicz różnicę tego ciągu.
Odpowiedź:
r=(wpisz liczbę całkowitą)
Podpunkt 8.2 (2 pkt)
(2 pkt)
Wyznacz wyraz a_{98} tego ciągu.
Odpowiedź:
a_{k}=(wpisz liczbę całkowitą)
Zadanie 9.3 pkt ⋅ Numer: pp-20810 ⋅ Poprawnie: 243/575 [42%]
«« W ciągu arytmetycznym (a_n) dane są wyrazy:
a_1=x+3y, a_2=4x+y,
a_3=3x+6y+1, a_4=9x-2y+1.
Oblicz x i y.
Wyznacz wzór ogólny ciągu i zapisz go w postaci
a_n=an+b.
Podaj a.
Odpowiedź:
a=(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj b.
Odpowiedź:
b=(wpisz liczbę całkowitą)
Zadanie 12.4 pkt ⋅ Numer: pp-30168 ⋅ Poprawnie: 42/125 [33%]
W pewnym ciągu geometrycznym (a_n) wyraz
a_4 jest osiem razy większy od wyrazu
a_1. Drugi wyraz tego ciągu jest równy
6. Znajdź najmniejszą liczbę naturalną
k taką, że
a_k > 3\cdot 2^p.
Podaj k.
Dane
p=44
Odpowiedź:
k=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat