Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-11860 ⋅ Poprawnie: 183/199 [91%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Ciąg
\left(a_n\right) jest określony wzorem
a_n=\frac{6n^2+14n}{n} dla każdej liczby
naturalnej
n\geqslant 1 .
Wtedy wyraz a_7 jest równy:
Odpowiedzi:
A. 56
B. 38
C. 86
D. 68
E. 74
F. 80
Zadanie 2. 1 pkt ⋅ Numer: pp-11456 ⋅ Poprawnie: 1352/1530 [88%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Pomiędzy liczby
125 i
473
można wstawić pięć takich liczb, że wszystkie siedem liczb będą tworzyć
ciąg arytmetyczny.
Wyznacz najmniejszą z wstawionych liczb.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11151 ⋅ Poprawnie: 477/633 [75%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« W kinie jest
38 rzędów krzeseł. Rząd pierwszy
składa się z
19 krzeseł, a każdy następny rząd
zawiera o
9 krzeseł więcej niż rząd poprzedni.
Ile jest krzeseł w kinie?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11768 ⋅ Poprawnie: 768/848 [90%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Ciąg liczbowy
(27, 9, a+10) jest ciągiem geometrycznym.
Liczba a jest równa:
Odpowiedzi:
A. -7
B. -6
C. -9
D. -3
E. -11
F. -8
Zadanie 5. 1 pkt ⋅ Numer: pp-11181 ⋅ Poprawnie: 536/836 [64%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Ciąg określony jest wzorem
a_n=5^n .
Oblicz S_{9} .
Odpowiedź:
S_k=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pr-20815 ⋅ Poprawnie: 18/44 [40%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Ciąg liczbowy
(a_n) określony jest wzorem
a_n=n^2+bn+c .
Oblicz sumę wszystkich wyrazów ujemnych tego ciągu.
Dane
b=-\frac{29}{2}=-14.50000000000000
c=51=51.00000000000000
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20513 ⋅ Poprawnie: 99/224 [44%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Wyraz drugi ciągu arytmetycznego jest o
60 większy
od wyrazu ósmego tego ciągu. Równocześnie wyraz drugi jest
5 razy większy od wyrazu ósmego tego ciągu.
Podaj równicę r tego ciągu.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj drugi wyraz tego ciągu.
Odpowiedź:
a_2=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20818 ⋅ Poprawnie: 296/608 [48%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Dany jest ciąg arytmetyczny
(a_n) .
Wyznacz a_1 .
Dane
a_{2}=-24
a_{6}=0
a_{k}=264
Odpowiedź:
a_1=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20787 ⋅ Poprawnie: 190/422 [45%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
» Dana jest liczba
k ,
k-ty
wyraz ciągu arytmetycznego
(a_n) oraz
suma
S_k ,
k początkowych
wyrazów tego ciągu.
Oblicz a_1 .
Dane
k=14
a_{14}=87
S_{14}=854
Odpowiedź:
a_{1}=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Oblicz różnicę
r tego ciągu.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-20823 ⋅ Poprawnie: 77/175 [44%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Liczby dodatnie
a_1 ,
a_2 i
a_3 tworzą ciąg geometryczny.
Podaj najmniejszą z tych liczb.
Dane
a_1+a_2+a_3=52
a_1\cdot a_2\cdot a_3=1728
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pp-30167 ⋅ Poprawnie: 11/72 [15%]
Rozwiąż
Podpunkt 11.1 (4 pkt)
« Suma
n początkowych wyrazów ciągu arytmetycznego
(a_n) dana jest wzorem
S_n=\frac{n^2-25n}{4}
(
n > 0 ). Różnica ciągu arytmetycznego
(b_n) jest równa
\frac{3}{2} oraz jego piąty wyraz jest równy
p . Wyznacz sumę
17
początkowych wyrazów ciągu arytmetycznego
(c_n) , wiedząc, że
c_n=2b_n-a_8 , gdzie
n > 0 .
Podaj wyznaczoną sumę.
Dane
p=92
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 4 pkt ⋅ Numer: pp-30170 ⋅ Poprawnie: 294/612 [48%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
Paweł przez pięć dni zapisywał swoje wydatki. Zauważył,
że każdego dnia wydatki były niższe o
20\% w
stosunku do wydatków z poprzedniego dnia.
Oblicz kwotę, jaką Paweł wydał pierwszego dnia, jeśli piątego dnia wydał
p zł.
Dane
p=40.96
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
Oblicz kwotę, jaką Paweł wydał w ciągu pięciu dni.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż