Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-12038 ⋅ Poprawnie: 65/80 [81%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=(-4)^n\cdot n+2 dla każdej liczby naturalnej n > 1.

Wtedy trzeci wyraz tego ciągu jest równy:

Odpowiedzi:
A. -188 B. -190
C. -180 D. -182
E. -174 F. -178
G. -196 H. -186
Zadanie 2.  1 pkt ⋅ Numer: pp-11146 ⋅ Poprawnie: 1707/2081 [82%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « W ciągu arytmetycznym \left(a_n\right) wyrazy pierwszy i trzeci są równe odpowiednio 9 i 21, a pewien wyraz tego ciągu a_k jest równy 99.

Wyznacz numer tego wyrazu.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11837 ⋅ Poprawnie: 408/625 [65%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony dla każdej liczby naturalnej n\geqslant 1. Suma n początkowych wyrazów tego ciągu jest określona wzorem S_n=4\cdot(5^n-1), dla każdej liczby naturalnej n\geqslant 1.

Oceń prawdziwość poniższych stwierdzeń:

Odpowiedzi:
T/N : drugi wyraz ciągu \left(a_n\right) jest równy 83 T/N : suma a_1+a_2 jest równa 100
Zadanie 4.  1 pkt ⋅ Numer: pp-11178 ⋅ Poprawnie: 900/1160 [77%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg (b_n) jest geometryczny, w krórym dane są dwa wyrazy b_1=10368 i b_5=8.

Wyznacz iloraz tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11830 ⋅ Poprawnie: 593/688 [86%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Pan Grzegorz wpłacił do banku pewną kwotę na lokatę dwuletnią. Po każdym rocznym okresie oszczędzania bank doliczał odsetki w wysokości 5\% od kwoty bieżącego kapitału znajdującego się na lokacie. Po dwóch latach oszczędzania pan Grzegorz odebrał z tego banku wraz z odsetkami kwotę 6615.00 zł (bez uwzględnienia podatków).

Kwota wpłacona przez pana Grzegorza na tę lokatę była równa:

Odpowiedzi:
A. 5600 B. 6600
C. 6100 D. 6000
E. 6500 F. 6200
Zadanie 6.  2 pkt ⋅ Numer: pp-20826 ⋅ Poprawnie: 34/226 [15%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Przez pięć lat (na początku każdego roku) pan Nowak lokuje w banku po k zł na p\% w skali roku (procent prosty).

Jaką kwotę otrzyma po pięciu latach? Uwzględnij 18-procentowy podatek od dochodów kapitałowych.

Dane
k=3500
p=10
Odpowiedź:
s= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20507 ⋅ Poprawnie: 509/845 [60%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Suma trzydziestu początkowych wyrazów ciągu arytmetycznego (a_n) jest równa 195 oraz a_{30}=195.

Oblicz różnicę tego ciągu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 8.  3 pkt ⋅ Numer: pp-20865 ⋅ Poprawnie: 112/219 [51%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 (1 pkt) W rosnącym ciągu arytmetycznym \left(a_n\right), określonym dla każdej liczby naturalnej dodatniej n, suma trzech początkowych wyrazów jest równa 42, a iloczyn tych wyrazów jest równy 2058.

Oblicz różnicę tego ciągu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Podpunkt 8.2 (2 pkt)
 (2 pkt) Wyznacz wyraz a_{98} tego ciągu.
Odpowiedź:
a_{k}= (wpisz liczbę całkowitą)
Zadanie 9.  3 pkt ⋅ Numer: pp-20810 ⋅ Poprawnie: 243/575 [42%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 «« Suma dwudziestu jeden początkowych wyrazów ciągu arytmetycznego \left(a_n\right) jest równa S_{21}, a wyraz dziewiąty tego ciągu jest równy a_9.

Oblicz różnicę tego ciągu.

Dane
S_{21}=651=651.00000000000000
a_9=30=30.00000000000000
d=\frac{79}{2}=39.50000000000000
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (2 pkt)
 (2 pkt) Podaj numer wyrazu ciągu, który jest równy d.
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-20823 ⋅ Poprawnie: 77/175 [44%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Liczby dodatnie a_1, a_2 i a_3 tworzą ciąg geometryczny.

Podaj najmniejszą z tych liczb.

Dane
a_1+a_2+a_3=52
a_1\cdot a_2\cdot a_3=1728
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30158 ⋅ Poprawnie: 46/120 [38%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
«« W ciągu arytmetycznym (a_n) dane są wyrazy: a_1=x+3y, a_2=4x+y, a_3=3x+6y+1, a_4=9x-2y+1. Oblicz x i y. Wyznacz wzór ogólny ciągu i zapisz go w postaci a_n=an+b.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30168 ⋅ Poprawnie: 42/125 [33%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 W pewnym ciągu geometrycznym (a_n) wyraz a_4 jest osiem razy większy od wyrazu a_1. Drugi wyraz tego ciągu jest równy 6. Znajdź najmniejszą liczbę naturalną k taką, że a_k > 3\cdot 2^p.

Podaj k.

Dane
p=44
Odpowiedź:
k= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm