Wyraz drugi ciągu arytmetycznego jest o 84 większy
od wyrazu ósmego tego ciągu. Równocześnie wyraz drugi jest
5 razy większy od wyrazu ósmego tego ciągu.
Podaj równicę r tego ciągu.
Odpowiedź:
r=(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj drugi wyraz tego ciągu.
Odpowiedź:
a_2=(wpisz liczbę całkowitą)
Zadanie 8.3 pkt ⋅ Numer: pp-20865 ⋅ Poprawnie: 112/219 [51%]
(1 pkt)
W rosnącym ciągu arytmetycznym \left(a_n\right), określonym dla każdej liczby naturalnej dodatniej
n, suma trzech początkowych wyrazów jest równa
-9, a iloczyn tych wyrazów jest równy
81.
Oblicz różnicę tego ciągu.
Odpowiedź:
r=(wpisz liczbę całkowitą)
Podpunkt 8.2 (2 pkt)
(2 pkt)
Wyznacz wyraz a_{65} tego ciągu.
Odpowiedź:
a_{k}=(wpisz liczbę całkowitą)
Zadanie 9.2 pkt ⋅ Numer: pp-20822 ⋅ Poprawnie: 140/303 [46%]
Rowerzysta w ciągu pierwszej godziny przejechał s
kilometrów, a ciągu każdej następnej godziny przejeżdżał o
d metrów mniej. W ciągu ostatniej godziny jazdy
ten rowerzysta przejechał drogę o długości p
kilometrów.
Ile godzin trwała jazda tego rowerzysty?
Dane
s=30 d=250 p=25.75
Odpowiedź:
t\ [h]=(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj długość trasy w kilometrach przejechanej przez tego rowerzystę?
Odpowiedź:
s\ [km]=
(wpisz dwie liczby całkowite)
Zadanie 10.2 pkt ⋅ Numer: pp-21111 ⋅ Poprawnie: 207/351 [58%]
« Suma n początkowych wyrazów ciągu arytmetycznego
(a_n) dana jest wzorem
S_n=\frac{n^2-25n}{4}
(n > 0). Różnica ciągu arytmetycznego
(b_n) jest równa
\frac{3}{2} oraz jego piąty wyraz jest równy
p. Wyznacz sumę 17
początkowych wyrazów ciągu arytmetycznego
(c_n), wiedząc, że
c_n=2b_n-a_8, gdzie
n > 0.
Podaj wyznaczoną sumę.
Dane
p=17
Odpowiedź:
s=
(wpisz dwie liczby całkowite)
Zadanie 12.4 pkt ⋅ Numer: pp-30169 ⋅ Poprawnie: 17/321 [5%]
«« W ciągu geometrycznym (a_n), w którym
a_1\neq 0, różnica pomiędzy wyrazami ósmym i szóstym
jest k razy większa niż różnica między wyrazami
siódmym i szóstym. Wyznacz iloraz tego ciągu.
Podaj najmniejsze możliwe q tego ciągu.
Dane
k=5
Odpowiedź:
q_{min}=(wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
Podaj największe możliwe q tego ciągu.
Odpowiedź:
q_{max}=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat