Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-12090 ⋅ Poprawnie: 67/71 [94%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dane są ciągi (a_n), (b_n), (c_n), (d_n), określone dla każdej liczby naturalnej n\geqslant 1 wzorami: a_n=20n+3, b_n=2n^2-3, c_n=n^2+10n-2, d_n=\frac{n+187}{n}.

Liczba 203 jest 10-tym wyrazem ciągu:

Odpowiedzi:
A. (b_n) B. (c_n)
C. (a_n) D. (d_n)
Zadanie 2.  1 pkt ⋅ Numer: pp-11861 ⋅ Poprawnie: 438/447 [97%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 W ciągu arytmetycznym (a_n), określonym dla każdej liczby naturalnej n\geqslant 1, a_5=-16 oraz a_{10}=-26. Różnica tego ciągu jest równa:
Odpowiedzi:
A. -4 B. -\frac{1}{2}
C. 5 D. -2
E. -7 F. 4
Zadanie 3.  1 pkt ⋅ Numer: pp-11151 ⋅ Poprawnie: 477/633 [75%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « W kinie jest 26 rzędów krzeseł. Rząd pierwszy składa się z 13 krzeseł, a każdy następny rząd zawiera o 13 krzeseł więcej niż rząd poprzedni.

Ile jest krzeseł w kinie?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11172 ⋅ Poprawnie: 204/251 [81%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg określony wzorem a_n=n^2+6n+5 jest ciągiem:
Odpowiedzi:
A. rosnącym B. niemonotonicznym
C. geometrycznym D. arytmetycznym
Zadanie 5.  1 pkt ⋅ Numer: pp-11830 ⋅ Poprawnie: 607/707 [85%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Pan Grzegorz wpłacił do banku pewną kwotę na lokatę dwuletnią. Po każdym rocznym okresie oszczędzania bank doliczał odsetki w wysokości 10\% od kwoty bieżącego kapitału znajdującego się na lokacie. Po dwóch latach oszczędzania pan Grzegorz odebrał z tego banku wraz z odsetkami kwotę 8470.00 zł (bez uwzględnienia podatków).

Kwota wpłacona przez pana Grzegorza na tę lokatę była równa:

Odpowiedzi:
A. 7500 B. 7000
C. 7600 D. 6700
E. 7200 F. 7100
Zadanie 6.  2 pkt ⋅ Numer: pp-20827 ⋅ Poprawnie: 5/61 [8%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Pan Kozłowski złożył do banku kwotę k zł, na procent prosty, w którym odsetki nie podlegają oprocentowaniu. Po upływie pierwszego i każdego następnego roku (oprócz końca roku ostatniego) wpłacał kwotę d zł. Przez cały okres oszczędzania oprocentowanie w banku było stałe i wynosiło p\% w stosunku rocznym.

Oblicz wartość tej lokaty po n latach (przed opodatkowaniem, po n-tym roku pan Kozłowski nie dopłacił kwoty d zł, tylko wybrał z banku pieniądze na lokacie).

Dane
k=3000
d=1000
p=5.5
n=7
Odpowiedź:
s= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20816 ⋅ Poprawnie: 926/1936 [47%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
  W ciągu arytmetycznym (a_n) dane są sumy: a_{9}+a_{12}=-73 oraz a_{2}+a_{13}=17.

Wyznacz różnicę tego ciągu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Oblicz a_1
Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-21082 ⋅ Poprawnie: 135/264 [51%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Trójwyrazowy ciąg (x-3,y-6,y-2) jest arytmetyczny. Suma wszystkich wyrazów tego ciągu jest równa 6. Oblicz wszystkie wyrazy tego ciągu.

Wyznacz x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Wyznacz y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 9.  3 pkt ⋅ Numer: pp-20810 ⋅ Poprawnie: 243/575 [42%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 «« Suma dwudziestu jeden początkowych wyrazów ciągu arytmetycznego \left(a_n\right) jest równa S_{21}, a wyraz dziewiąty tego ciągu jest równy a_9.

Oblicz różnicę tego ciągu.

Dane
S_{21}=441=441.00000000000000
a_9=20=20.00000000000000
d=\frac{57}{2}=28.50000000000000
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (2 pkt)
 (2 pkt) Podaj numer wyrazu ciągu, który jest równy d.
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20520 ⋅ Poprawnie: 45/163 [27%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Ciąg geometryczny o wyrazach dodatnich (a_n) określony jest wzorem a_n=q^{n-1} i zawiera trzy kolejne wyrazy (x,y,2x).

Oblicz a_k.

Dane
k=11
Odpowiedź:
a_{k}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30167 ⋅ Poprawnie: 11/72 [15%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 « Suma n początkowych wyrazów ciągu arytmetycznego (a_n) dana jest wzorem S_n=\frac{n^2-25n}{4} (n > 0). Różnica ciągu arytmetycznego (b_n) jest równa \frac{3}{2} oraz jego piąty wyraz jest równy p. Wyznacz sumę 17 początkowych wyrazów ciągu arytmetycznego (c_n), wiedząc, że c_n=2b_n-a_8, gdzie n > 0.

Podaj wyznaczoną sumę.

Dane
p=38
Odpowiedź:
s=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30392 ⋅ Poprawnie: 6/63 [9%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 « Pan Kozłowski złożył do banku kwotę k zł na procent prosty. Po upływie każdego roku, po dopisaniu do lokaty należnych odsetek, dopłacał kwotę d zł, która powiększała jego kapitał podlegający oprocentowaniu. Przez cały okres oszczędzania oprocentowanie w banku było stałe i wynosiło p\%. Po n latach oszczędzania, po doliczeniu do lokaty należnych odsetek za ostatni rok kwota na lokacie była równa s zł (z pominięciem podatku od usług kapitałowych).

Oblicz n. Pamiętaj, że odsetki pomimo iż pozostają na lokacie, nie podlegają oprocentowaniu. Odsetki oblicza się tylko od wpłaconego kapitału.

Dane
k=7000
d=1000
p=14.0
s=39000.00
Odpowiedź:
n= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm