Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11387 ⋅ Poprawnie: 302/596 [50%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Oceń, które z podanych ciągów są malejące?
Odpowiedzi:
T/N : a_n=\frac{1}{1-4n} T/N : a_n=4-\frac{7}{n}
T/N : a_n=n^2-n-2  
Zadanie 2.  1 pkt ⋅ Numer: pp-11789 ⋅ Poprawnie: 840/1004 [83%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Trzywyrazowy ciąg (4,9,a+2) jest arytmetyczny.

Liczba a jest równa:

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11837 ⋅ Poprawnie: 428/651 [65%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony dla każdej liczby naturalnej n\geqslant 1. Suma n początkowych wyrazów tego ciągu jest określona wzorem S_n=4\cdot(3^n-1), dla każdej liczby naturalnej n\geqslant 1.

Oceń prawdziwość poniższych stwierdzeń:

Odpowiedzi:
T/N : drugi wyraz ciągu \left(a_n\right) jest równy 26 T/N : różnica a_2-a_1 jest równa 16
Zadanie 4.  1 pkt ⋅ Numer: pp-11170 ⋅ Poprawnie: 333/468 [71%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » W ciągu geometrycznym (a_n) dane są: a_1=2401 i a_3=49, a czwarty wyraz tego ciągu jest ujemny.

Wyznacz a_4.

Odpowiedź:
a_4= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11183 ⋅ Poprawnie: 531/874 [60%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Na lokacie złożono 1000 zł przy rocznej stopie procentowej 28\% (procent składany). Odsetki naliczane są co kwartał.

Po upływie roku wielkość kapitału na lokacie (przed potrąceniem podatków będzie równa:

Odpowiedzi:
A. 1000\cdot\left(1+\frac{7}{100}\right)^4 B. 1000\cdot\left(1+\left(\frac{28}{100}\right)^4\right)
C. 1000\cdot\left(1+\frac{7}{100}\right) D. 1000\cdot\left(1+\frac{7}{400}\right)^4
Zadanie 6.  2 pkt ⋅ Numer: pp-20523 ⋅ Poprawnie: 57/109 [52%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Akcje firmy zyskują na wartości 15\% w ciągu każdego roku.

Po ilu latach posiadacz akcji co najmniej podwoi zainwestowaną kwotę? Przyjmnij, że wartość akcji wzrasta dopiero po upływie pełnego roku.

Odpowiedź:
Ilosc\ lat= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20504 ⋅ Poprawnie: 238/429 [55%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » W ciągu arytmetycznym (a_n), określonym dla n\geqslant 1, dane są: wyraz a_1=7 oraz a_2+a_3=8.

Oblicz różnicę a_{18}-a_{15}.

Odpowiedź:
a_{18}-a_{15}= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-21082 ⋅ Poprawnie: 134/263 [50%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Trójwyrazowy ciąg (x+2,y-6,y-2) jest arytmetyczny. Suma wszystkich wyrazów tego ciągu jest równa 6. Oblicz wszystkie wyrazy tego ciągu.

Wyznacz x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Wyznacz y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20514 ⋅ Poprawnie: 241/1138 [21%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Liczby x-2, x+m i 3x-4 są trzema początkowymi wyrazami ciągu arytmetycznego (b_n).

Wyznacz b_{100}.

Dane
m=10
Odpowiedź:
b_{100}= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Wyznacz najmniejsze takie n, że S_n > 360.
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20854 ⋅ Poprawnie: 146/923 [15%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 (1 pkt) Pierwszy wyraz malejącego ciągu geometrycznego \left(a_n\right) jest o 490 większy od wyrazu drugiego, a wyraz trzeci tego ciągu jest o 40 większy od wyrazu czwartego tego ciągu.

Wyznacz a_3.

Odpowiedź:
a_{k}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 (1 pkt) Wyznacz a_4.
Odpowiedź:
a_{k}= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30166 ⋅ Poprawnie: 182/424 [42%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Suma pierwszych pięciu wyrazów ciągu arytmetycznego (a_n) wynosi s1, a suma a_6+a_7+a_8+...+a_{12} wynosi s2.

Oblicz a_1.

Dane
s1=1300
s2=1106
Odpowiedź:
a_{1}= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Oblicz różnicę tego ciągu.
Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30160 ⋅ Poprawnie: 21/108 [19%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Dany jest ciąg geometryczny (a,b,c) oraz ciąg arytmetyczny (a, 2b, k\cdot c). Oblicz iloraz ciągu (a,b,c).

Podaj najmniejsze możliwe q.

Dane
k=-21
Odpowiedź:
q_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Podaj największe możliwe q.
Odpowiedź:
q_{max}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm