Ciąg geometryczny (a_n), określony dla każdej liczby naturalnej
n\geqslant 1, jest rosnący i wszystkie jego wyrazy są dodatnie.
Ponadto spełniony jest warunek a_3=a_1^{4}\cdot a_2.
Niech q oznacza iloraz ciągu (a_n).
Wtedy:
Odpowiedzi:
A.q=a_1^4
B.a_1=\frac{1}{q^4}
C.a_1=q
D.q^4=a_1
Zadanie 5.1 pkt ⋅ Numer: pp-11180 ⋅ Poprawnie: 730/1059 [68%]
(1 pkt)
W rosnącym ciągu arytmetycznym \left(a_n\right), określonym dla każdej liczby naturalnej dodatniej
n, suma trzech początkowych wyrazów jest równa
-9, a iloczyn tych wyrazów jest równy
48.
Oblicz różnicę tego ciągu.
Odpowiedź:
r=(wpisz liczbę całkowitą)
Podpunkt 8.2 (2 pkt)
(2 pkt)
Wyznacz wyraz a_{63} tego ciągu.
Odpowiedź:
a_{k}=(wpisz liczbę całkowitą)
Zadanie 9.2 pkt ⋅ Numer: pp-20822 ⋅ Poprawnie: 141/304 [46%]
Rowerzysta w ciągu pierwszej godziny przejechał s
kilometrów, a ciągu każdej następnej godziny przejeżdżał o
d metrów mniej. W ciągu ostatniej godziny jazdy
ten rowerzysta przejechał drogę o długości p
kilometrów.
Ile godzin trwała jazda tego rowerzysty?
Dane
s=31 d=240 p=27.16
Odpowiedź:
t\ [h]=(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj długość trasy w kilometrach przejechanej przez tego rowerzystę?
Odpowiedź:
s\ [km]=
(wpisz dwie liczby całkowite)
Zadanie 10.2 pkt ⋅ Numer: pp-20517 ⋅ Poprawnie: 81/158 [51%]
« Pan Kozłowski złożył do banku kwotę k zł na procent
prosty. Po upływie każdego roku, po dopisaniu do lokaty należnych odsetek,
dopłacał kwotę d zł, która powiększała jego kapitał
podlegający oprocentowaniu. Przez cały okres oszczędzania oprocentowanie w banku
było stałe i wynosiło p\%. Po n
latach oszczędzania, po doliczeniu do lokaty należnych odsetek za ostatni rok
kwota na lokacie była równa s zł (z pominięciem podatku
od usług kapitałowych).
Oblicz n. Pamiętaj, że odsetki pomimo iż pozostają na
lokacie, nie podlegają oprocentowaniu. Odsetki oblicza się tylko od wpłaconego
kapitału.
Dane
k=2000 d=1000 p=11.0 s=20470.00
Odpowiedź:
n=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat