Kwotę 1000 zł ulokowano w banku na roczną lokatę oprocentowaną w wysokości
10\% w stosunku rocznym. Po zakończeniu lokaty od
naliczonych odsetek odprowadzany jest podatek w wysokości
19\%.
Maksymalna kwota, jaką po upływie roku będzie można wypłacić z banku, jest
równa:
(1 pkt)
W rosnącym ciągu arytmetycznym \left(a_n\right), określonym dla każdej liczby naturalnej dodatniej
n, suma trzech początkowych wyrazów jest równa
6, a iloczyn tych wyrazów jest równy
-24.
Oblicz różnicę tego ciągu.
Odpowiedź:
r=(wpisz liczbę całkowitą)
Podpunkt 8.2 (2 pkt)
(2 pkt)
Wyznacz wyraz a_{55} tego ciągu.
Odpowiedź:
a_{k}=(wpisz liczbę całkowitą)
Zadanie 9.2 pkt ⋅ Numer: pp-20508 ⋅ Poprawnie: 42/87 [48%]
«« W ciągu arytmetycznym (a_n) dane są wyrazy:
a_1=x+3y, a_2=4x+y,
a_3=3x+6y+1, a_4=9x-2y+1.
Oblicz x i y.
Wyznacz wzór ogólny ciągu i zapisz go w postaci
a_n=an+b.
Podaj a.
Odpowiedź:
a=(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj b.
Odpowiedź:
b=(wpisz liczbę całkowitą)
Zadanie 12.4 pkt ⋅ Numer: pp-30162 ⋅ Poprawnie: 212/823 [25%]
Liczby x, y i
z w podanej kolejności tworzą trzy pierwsze wyrazy
ciągu geometrycznego (a_n) o ilorazie
3. Liczby
(x+a, y, z+a) tworzą ciąg arytmetyczny
(b_n).
Podaj z.
Dane
a=19
Odpowiedź:
z=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat