Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-12038 ⋅ Poprawnie: 108/119 [90%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=(-4)^n\cdot n-6 dla każdej liczby naturalnej n > 1.

Wtedy trzeci wyraz tego ciągu jest równy:

Odpowiedzi:
A. -206 B. -218
C. -198 D. -199
E. -197 F. -207
G. -194 H. -216
Zadanie 2.  1 pkt ⋅ Numer: pp-12037 ⋅ Poprawnie: 254/241 [105%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciągi (a_n), (b_n), (c_n) oraz (d_n) są określone dla każdej liczby naturalnej n > 1 następująco: a_n=5n^2+6, b_n=2n-1, c_n=4^n, d_n=\frac{5}{n}.

Wskaż zdanie prawdziwe:

Odpowiedzi:
A. ciąg c_n jest arytmetyczny B. ciąg d_n jest arytmetyczny
C. ciąg b_n jest arytmetyczny D. ciąg a_n jest arytmetyczny
Zadanie 3.  1 pkt ⋅ Numer: pp-11152 ⋅ Poprawnie: 497/867 [57%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Oblicz sumę 19 początkowych wyrazów ciągu arytmetycznego o wzorze ogólnym a_n=\frac{5}{2}-4\cdot n.
Odpowiedź:
S_k=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11838 ⋅ Poprawnie: 610/733 [83%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Trzywyrazowy ciąg (-7-2a, 12, 48) jest geometryczny.

Liczba a jest równa:

Odpowiedzi:
A. -\frac{5}{2} B. -\frac{5}{4}
C. -5 D. -10
E. -\frac{15}{2} F. -20
Zadanie 5.  1 pkt ⋅ Numer: pp-11183 ⋅ Poprawnie: 540/890 [60%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Na lokacie złożono 1000 zł przy rocznej stopie procentowej 16\% (procent składany). Odsetki naliczane są co kwartał.

Po upływie roku wielkość kapitału na lokacie (przed potrąceniem podatków będzie równa:

Odpowiedzi:
A. 1000\cdot\left(1+\frac{4}{100}\right) B. 1000\cdot\left(1+\left(\frac{16}{100}\right)^4\right)
C. 1000\cdot\left(1+\frac{4}{100}\right)^4 D. 1000\cdot\left(1+\frac{4}{400}\right)^4
Zadanie 6.  2 pkt ⋅ Numer: pp-20827 ⋅ Poprawnie: 6/62 [9%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Pan Kozłowski złożył do banku kwotę k zł, na procent prosty, w którym odsetki nie podlegają oprocentowaniu. Po upływie pierwszego i każdego następnego roku (oprócz końca roku ostatniego) wpłacał kwotę d zł. Przez cały okres oszczędzania oprocentowanie w banku było stałe i wynosiło p\% w stosunku rocznym.

Oblicz wartość tej lokaty po n latach (przed opodatkowaniem, po n-tym roku pan Kozłowski nie dopłacił kwoty d zł, tylko wybrał z banku pieniądze na lokacie).

Dane
k=5000
d=1000
p=6.5
n=7
Odpowiedź:
s= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20816 ⋅ Poprawnie: 927/1937 [47%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
  W ciągu arytmetycznym (a_n) dane są sumy: a_{9}+a_{12}=-105 oraz a_{2}+a_{13}=-3.

Wyznacz różnicę tego ciągu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Oblicz a_1
Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-21082 ⋅ Poprawnie: 139/269 [51%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Trójwyrazowy ciąg (x+4,y-10,y-6) jest arytmetyczny. Suma wszystkich wyrazów tego ciągu jest równa 6. Oblicz wszystkie wyrazy tego ciągu.

Wyznacz x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Wyznacz y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20821 ⋅ Poprawnie: 150/350 [42%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Suma stu kolejnych liczb naturalnych, które przy dzieleniu przez 6 dają resztę 4 jest równa 32500.

Podaj najmniejszą z tych liczb.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj największą z tych liczb.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-21095 ⋅ Poprawnie: 28/109 [25%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Dany jest ciąg geometryczny (a_n), określony dla każdej liczby naturalnej n\geqslant 1. W tym ciągu a_1=-5, a_2=20 a_3=-80.

Wzór ogólny ciągu (a_n) ma postać:

Odpowiedzi:
T/N : a_n=-5\cdot 4^{n} T/N : a_n=5\cdot \frac{(-4)^n}{4}
T/N : a_n=-5\cdot (-4)^{n} T/N : a_n=5\cdot (-4)^{n}
Zadanie 11.  4 pkt ⋅ Numer: pp-30158 ⋅ Poprawnie: 48/123 [39%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
«« W ciągu arytmetycznym (a_n) dane są wyrazy: a_1=x+3y, a_2=4x+y, a_3=3x+6y+1, a_4=9x-2y+1. Oblicz x i y. Wyznacz wzór ogólny ciągu i zapisz go w postaci a_n=an+b.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30390 ⋅ Poprawnie: 99/540 [18%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Pierwszy, drugi, czwarty i piąty wyraz ciągu geometrycznego \left(a_n\right) są równe odpowiednio a_1, a_2, a_4 i a_5.

Oblicz najmniejszy możliwy pierwszy wyraz tego ciągu.

Dane
a_1+a_5=246
a_2\cdot a_4=729
Odpowiedź:
a_{1}= (wpisz liczbę całkowitą)
Podpunkt 12.2 (1 pkt)
 Oblicz najmniejszy możliwy iloraz tego ciągu.
Odpowiedź:
q_{min}= (wpisz liczbę całkowitą)
Podpunkt 12.3 (1 pkt)
 Podaj najmniejszy możliwy, dodatni iloraz tego ciągu.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm