Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11918 ⋅ Poprawnie: 160/213 [75%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dane są ciągi a_n=3n oraz b_n=4n-2, określone dla każdej liczby naturalnej n\geqslant 1.

Liczba 22:

Odpowiedzi:
A. nie jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n) B. jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n)
C. nie jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n) D. jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n)
Zadanie 2.  1 pkt ⋅ Numer: pp-11541 ⋅ Poprawnie: 481/731 [65%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Trzy liczby x-11, x-5 i 3x-25, w podanej kolejności są trzema początkowymi wyrazami ciągu arytmetycznego \left(c_n\right).

Oblicz c_{60}.

Odpowiedź:
c_k= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11142 ⋅ Poprawnie: 314/462 [67%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Kamil każdego dnia czytał o 11 stron książki więcej niż przeczytał dnia poprzedniego. Do dwunastego dnia włącznie przeczytał 882 stron.

Ile stron przeczytał pierwszego dnia?

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11168 ⋅ Poprawnie: 117/163 [71%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Pewien gatunek liczy 1000 osobników i co roku jego liczebność rośnie o 20\%.

Po upływie 5 lat liczebność tego gatunku wyniesie:

Odpowiedzi:
A. 1000\cdot (1.2)^5 B. 1000\cdot (1+1.2)^5
C. 1000\cdot (1+5\cdot 1.2) D. 1000\cdot (1+1.2^5)
Zadanie 5.  1 pkt ⋅ Numer: pp-11780 ⋅ Poprawnie: 750/851 [88%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Klient wpłacił do banku 18000 zł na lokatę dwuletnią. Po każdym rocznym okresie oszczędzania bank dolicza odsetki w wysokości 1\% od kwoty bieżącego kapitału znajdującego się na lokacie.

Po dwóch latach oszczędzania łączna wartość doliczonych odsetek na tej lokacie (bez uwzględniania podatków) jest równa:

Odpowiedzi:
A. 301.50 zł B. 289.44 zł
C. 310.11 zł D. 452.25 zł
E. 361.80 zł F. 434.16 zł
Zadanie 6.  2 pkt ⋅ Numer: pp-20828 ⋅ Poprawnie: 47/275 [17%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Pan Kowalczyk ulokował w banku kwotę 2000 zł na okres dziesięciu lat na procent składany. Oprocentowanie w banku wynosi 10\% w skali roku, a odsetki kapitalizuje się co 12 miesięcy.

Jaką kwotę będzie miał na koncie pan Kowalczyk po tym okresie (bez pobierania podatku od usług kapitałowych).

Odpowiedź:
Kapital\ koncowy\ [zl]= (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Jaką kwotę miałby na koncie pan Kowalczyk po tym okresie, gdyby uwzględnić 18-procentowy podatek od usług kapitałowych?
Odpowiedź:
Kapital\ bez\ podatku\ [zl]= (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20509 ⋅ Poprawnie: 480/1037 [46%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Oblicz sumę wszystkich liczb naturalnych trzycyfrowych nieparzystych, nie większych od 963.
Odpowiedź:
s_{\leqslant k}= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-21102 ⋅ Poprawnie: 375/606 [61%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Trzeci wyraz tego ciągu jest równy -16, a suma piętnastu początkowych kolejnych wyrazów tego ciągu jest równa -690.

Oblicz różnicę tego ciągu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20822 ⋅ Poprawnie: 141/304 [46%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Rowerzysta w ciągu pierwszej godziny przejechał s kilometrów, a ciągu każdej następnej godziny przejeżdżał o d metrów mniej. W ciągu ostatniej godziny jazdy ten rowerzysta przejechał drogę o długości p kilometrów.

Ile godzin trwała jazda tego rowerzysty?

Dane
s=32
d=210
p=27.38
Odpowiedź:
t\ [h]= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj długość trasy w kilometrach przejechanej przez tego rowerzystę?
Odpowiedź:
s\ [km]=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-21074 ⋅ Poprawnie: 128/197 [64%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Trójwyrazowy ciąg (x-4,3x-10,9x-20) jest geometryczny.

Oblicz x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30167 ⋅ Poprawnie: 11/72 [15%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 « Suma n początkowych wyrazów ciągu arytmetycznego (a_n) dana jest wzorem S_n=\frac{n^2-25n}{4} (n > 0). Różnica ciągu arytmetycznego (b_n) jest równa \frac{3}{2} oraz jego piąty wyraz jest równy p. Wyznacz sumę 17 początkowych wyrazów ciągu arytmetycznego (c_n), wiedząc, że c_n=2b_n-a_8, gdzie n > 0.

Podaj wyznaczoną sumę.

Dane
p=29
Odpowiedź:
s=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30162 ⋅ Poprawnie: 209/809 [25%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 Liczby x, y i z w podanej kolejności tworzą trzy pierwsze wyrazy ciągu geometrycznego (a_n) o ilorazie 3. Liczby (x+a, y, z+a) tworzą ciąg arytmetyczny (b_n).

Podaj z.

Dane
a=12
Odpowiedź:
z=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm