Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11155 ⋅ Poprawnie: 627/1061 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Ile wyrazów ciągu a_n=n^2-1024 jest mniejszych od 15876?
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11836 ⋅ Poprawnie: 749/825 [90%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg arytmetyczny \left(a_n\right) jest określony dla każdej liczby naturalnej n\geqslant 1. W tym ciągu a_2=8 oraz a_3=14.

11-ty wyraz tego ciągu a_{11} jest równy:

Odpowiedzi:
A. 68 B. 50
C. 56 D. 62
E. 74 F. 80
Zadanie 3.  1 pkt ⋅ Numer: pp-11411 ⋅ Poprawnie: 1309/1493 [87%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 W ciągu arytmetycznym (a_n) dane są wyrazy a_1=13 i a_8=-71.

Suma ośmiu początkowych wyrazów tego ciągu jest równa:

Odpowiedź:
S_8= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-12064 ⋅ Poprawnie: 96/112 [85%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Trzywyrzowy ciąg \left(60,3x,\frac{12}{5}\right) jest geometryczny i wszystkie jego wyrazy są dodatnie.

Wynika z tego, że x jest równe:

Odpowiedzi:
A. \frac{4}{3} B. 2
C. \frac{8}{3} D. 1
E. 4 F. 8
Zadanie 5.  1 pkt ⋅ Numer: pp-11182 ⋅ Poprawnie: 318/511 [62%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Kwotę 1000 zł ulokowano w banku na roczną lokatę oprocentowaną w wysokości 5\% w stosunku rocznym. Po zakończeniu lokaty od naliczonych odsetek odprowadzany jest podatek w wysokości 19\%.

Maksymalna kwota, jaką po upływie roku będzie można wypłacić z banku, jest równa:

Odpowiedzi:
A. 1000\cdot\left(1-\frac{19}{100}\cdot\frac{5}{100}\right) B. 1000\cdot\left(1+\frac{19}{100}\cdot\frac{5}{100}\right)
C. 1000\cdot\left(1+\frac{81}{100}\cdot\frac{5}{100}\right) D. 1000\cdot\left(1-\frac{81}{100}\cdot\frac{5}{100}\right)
Zadanie 6.  2 pkt ⋅ Numer: pp-20829 ⋅ Poprawnie: 98/269 [36%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Pan Kowalski złożył do banku kwotę 6400.00 zł na okres dwóch lat na procent składany. Oprocentowanie w banku wynosi p\% w skali roku, a odsetki kapitalizuje się co 6 miesięcy. Po upływie tego terminu bank wypłacił mu kwotę 11193.64 zł (pomiń podatek od usług kapitałowych).

Wyznacz p.

Odpowiedź:
p\ [\%]= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20506 ⋅ Poprawnie: 280/398 [70%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 W ciągu arytmetycznym (a_n) występują kolejne liczby naturalne dające resztę 2 przy dzieleniu przez 5.

Wiedząc, że a_{3}=102, oblicz a_{15}.

Odpowiedź:
a_k= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-21058 ⋅ Poprawnie: 473/754 [62%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Ciąg \left(3x^2-19x+28,x^2-8x+16,-x^2+8x+4\right) jest arytmetyczny.

Oblicz x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Zadanie 9.  3 pkt ⋅ Numer: pp-20810 ⋅ Poprawnie: 243/575 [42%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 «« Suma dwudziestu jeden początkowych wyrazów ciągu arytmetycznego \left(a_n\right) jest równa S_{21}, a wyraz dziewiąty tego ciągu jest równy a_9.

Oblicz różnicę tego ciągu.

Dane
S_{21}=378=378.00000000000000
a_9=17=17.00000000000000
d=27=27.00000000000000
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (2 pkt)
 (2 pkt) Podaj numer wyrazu ciągu, który jest równy d.
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-21087 ⋅ Poprawnie: 66/112 [58%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=\frac{3^n}{6} dla każdej liczby naturalnej n\geqslant 1. Wyraz numer 58 ciągu (a_n) jest równy:
Odpowiedzi:
A. \frac{3^{55}}{2} B. \frac{3^{60}}{2}
C. \frac{3^{57}}{2} D. \frac{3^{58}}{2}
E. \frac{3^{59}}{2} F. \frac{3^{56}}{2}
Podpunkt 10.2 (1 pkt)
 Oceń prawdziwość poniższych stwierdzeń:
Odpowiedzi:
T/N : ciąg (a_n) jest rosnący T/N : ciąg (a_n) jest monotoniczny
Zadanie 11.  4 pkt ⋅ Numer: pp-30159 ⋅ Poprawnie: 11/33 [33%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « W ciągu suma n początkowych wyrazów wyraża się wzorem S_n=5n^2+kn. Wyznacz wzór ogólny tego ciągu i zapisz go w postaci a_n=an+b.

Podaj a+b.

Dane
k=6
Odpowiedź:
a+b= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Uzasadnij, że jest to ciąg arytmetyczny i podaj jego różnicę.
Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30391 ⋅ Poprawnie: 186/387 [48%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Ciąg liczbowy \left(a_n\right) jest ciągiem geometrycznym, a jego k-ty wyraz jest równy a_k.

Oblicz iloraz tego ciągu.

Dane
a_1=-3
a_k=-768
a_1+a_2+a_3+...+a_k=-1533
Odpowiedź:
q= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Oblicz k.
Odpowiedź:
k= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm