Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11160 ⋅ Poprawnie: 307/554 [55%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Wyznacz najmniejszy dodatni wyraz ciągu określonego wzorem a_n=7n-182.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11433 ⋅ Poprawnie: 433/500 [86%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dla ciągu arytmetycznego (a_n) określonego dla n\geqslant 1 spełniony jest warunek a_{15}+a_{16}+a_{17}=\frac{21}{2}.

Oblicz a_{16}.

Odpowiedź:
a_k=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11509 ⋅ Poprawnie: 490/914 [53%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Oblicz sumę wszystkich liczb naturalnych trzycyfrowych parzystych, które są większe od 251.
Odpowiedź:
s= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11175 ⋅ Poprawnie: 627/988 [63%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Ciąg geometryczny określony jest wzorem a_n=12\cdot 6^{8-n}, dla n\in\mathbb{N_{+}}.

Oblicz iloraz tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11780 ⋅ Poprawnie: 719/820 [87%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Klient wpłacił do banku 37000 zł na lokatę dwuletnią. Po każdym rocznym okresie oszczędzania bank dolicza odsetki w wysokości 11\% od kwoty bieżącego kapitału znajdującego się na lokacie.

Po dwóch latach oszczędzania łączna wartość doliczonych odsetek na tej lokacie (bez uwzględniania podatków) jest równa:

Odpowiedzi:
A. 10305.24 zł B. 6870.16 zł
C. 8587.70 zł D. 7360.89 zł
E. 10734.63 zł F. 7156.42 zł
Zadanie 6.  2 pkt ⋅ Numer: pp-20516 ⋅ Poprawnie: 469/1095 [42%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Dany jest ciąg a_n=an^2+bn+c, dla n\in\mathbb{N_{+}}.

Oblicz ilość wyrazów ujemnych tego ciągu.

Dane
a=3
b=-27
c=-270
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20507 ⋅ Poprawnie: 509/845 [60%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Suma trzydziestu początkowych wyrazów ciągu arytmetycznego (a_n) jest równa 165 oraz a_{30}=165.

Oblicz różnicę tego ciągu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-21128 ⋅ Poprawnie: 57/131 [43%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Dany jest ciąg arytmetyczny (a_n), określony dla wszystkich liczb naturalnych n\geqslant 1. Suma dwudziestu początkowych wyrazów tego ciągu jest równa 20\cdot a_{21}-2730.

Oblicz różnicę ciągu (a_n).

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20822 ⋅ Poprawnie: 121/274 [44%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Rowerzysta w ciągu pierwszej godziny przejechał s kilometrów, a ciągu każdej następnej godziny przejeżdżał o d metrów mniej. W ciągu ostatniej godziny jazdy ten rowerzysta przejechał drogę o długości p kilometrów.

Ile godzin trwała jazda tego rowerzysty?

Dane
s=36
d=270
p=29.79
Odpowiedź:
t\ [h]= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj długość trasy w kilometrach przejechanej przez tego rowerzystę?
Odpowiedź:
s\ [km]=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20824 ⋅ Poprawnie: 91/143 [63%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Piłka odbijając się od ziemi za każdym razem osiąga wysokość równą p wysokości poprzedniej. Po szóstym odbiciu od ziemi piłka wzniosła się na wysokość d.

Na jaką wysokość wzniosła się piłka po pierwszym odbiciu?

Dane
p=\frac{4}{5}=0.800000000000000
d=1024
Odpowiedź:
h=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30158 ⋅ Poprawnie: 46/120 [38%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
«« W ciągu arytmetycznym (a_n) dane są wyrazy: a_1=x+3y, a_2=4x+y, a_3=3x+6y+1, a_4=9x-2y+1. Oblicz x i y. Wyznacz wzór ogólny ciągu i zapisz go w postaci a_n=an+b.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30392 ⋅ Poprawnie: 6/63 [9%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 « Pan Kozłowski złożył do banku kwotę k zł na procent prosty. Po upływie każdego roku, po dopisaniu do lokaty należnych odsetek, dopłacał kwotę d zł, która powiększała jego kapitał podlegający oprocentowaniu. Przez cały okres oszczędzania oprocentowanie w banku było stałe i wynosiło p\%. Po n latach oszczędzania, po doliczeniu do lokaty należnych odsetek za ostatni rok kwota na lokacie była równa s zł (z pominięciem podatku od usług kapitałowych).

Oblicz n. Pamiętaj, że odsetki pomimo iż pozostają na lokacie, nie podlegają oprocentowaniu. Odsetki oblicza się tylko od wpłaconego kapitału.

Dane
k=4000
d=1000
p=13.5
s=19100.00
Odpowiedź:
n= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm