Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11788 ⋅ Poprawnie: 617/759 [81%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=\frac{n-8}{5}, dla każdej liczby naturalnej n\geqslant 1.

Liczba wyrazów tego ciągu mniejszych od 16 jest równa:

Odpowiedzi:
A. 89 B. 87
C. 90 D. 86
E. 85 F. 91
Zadanie 2.  1 pkt ⋅ Numer: pp-12013 ⋅ Poprawnie: 384/444 [86%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 W ciągu arytmetycznym (a_n), określonym dla każdej liczby naturalnej n\geqslant 1, dane są wyrazy: a_1=3 oraz a_3=11.

Wyraz a_{12} jest równy:

Odpowiedzi:
A. 39 B. 47
C. 23 D. 31
E. 43 F. 67
G. 27 H. 59
I. 55 J. 63
Zadanie 3.  1 pkt ⋅ Numer: pp-11142 ⋅ Poprawnie: 286/431 [66%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Kamil każdego dnia czytał o 19 stron książki więcej niż przeczytał dnia poprzedniego. Do dwunastego dnia włącznie przeczytał 1674 stron.

Ile stron przeczytał pierwszego dnia?

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11542 ⋅ Poprawnie: 185/271 [68%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Liczby \sqrt{26}-1, 3x+6 i \sqrt{26}+1, w podanej kolejności są trzema początkowymi wyrazami rosnącego ciągu geometrycznego.

Oblicz sumę tych liczb.

Odpowiedź:
s= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11780 ⋅ Poprawnie: 718/819 [87%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Klient wpłacił do banku 25000 zł na lokatę dwuletnią. Po każdym rocznym okresie oszczędzania bank dolicza odsetki w wysokości 5\% od kwoty bieżącego kapitału znajdującego się na lokacie.

Po dwóch latach oszczędzania łączna wartość doliczonych odsetek na tej lokacie (bez uwzględniania podatków) jest równa:

Odpowiedzi:
A. 2562.50 zł B. 2050.00 zł
C. 2196.43 zł D. 3203.13 zł
E. 2135.42 zł F. 3075.00 zł
Zadanie 6.  2 pkt ⋅ Numer: pp-20522 ⋅ Poprawnie: 114/203 [56%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Nominalna stopa oprocentowania lokaty wynosi 3\% w stosunku rocznym (bez uwzględnienia podatku). Odsetki kapitalizowane są na koniec każdego kolejnego okresu czteromiesięcznego.

Oblicz, jaką kwotę wpłacono na tę lokatę, jeśli na koniec ośmiu miesięcy oszczędzania na rachunku lokaty było o 116.58 zł więcej niż przy jej otwarciu. Odpowiedź podaj bez jednostki.

Odpowiedź:
Kapital\ poczatkowy\ [zl]= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20511 ⋅ Poprawnie: 352/944 [37%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Liczby 2x+1, 12x, 14x+80 są w podanej kolejności pierwszym, drugim i czwartym wyrazem ciągu arytmetycznego.

Oblicz x.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20819 ⋅ Poprawnie: 128/182 [70%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Dany jest ciąg arytmetyczny (a_n).

Wyznacz najmniejsze możliwe a_1 tego ciągu.

Dane
a_{3}+a_{5}=36
a_{3}\cdot a_{5}=299
Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Wyznacz największą możliwą różnicę r tego ciągu.
Odpowiedź:
r_{max}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20820 ⋅ Poprawnie: 26/82 [31%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Ile liczb niepodzielnych przez 3 zawiera przedział liczbowy \left\langle p,q\right)?
Dane
p=260
q=600
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Ile jest równa suma tych liczb?
Odpowiedź:
s= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20519 ⋅ Poprawnie: 225/616 [36%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Ślimak w ciągu pierwszej godziny pokonał m metrów. W ciągu każdej następnej godziny pokonywał \frac{p}{q} drogi jaką pokonał w poprzedniej godzinie.

Oblicz drogę w metrach pokonaną przez ślimaka w pięć godzin.

Dane
m=7
p=7
q=9
Odpowiedź:
s\ [m]=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30156 ⋅ Poprawnie: 303/688 [44%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Ciąg arytmetyczny (a_n) określony jest wzorem a_n=a-bn, dla n\geqslant 1.

Ile wyrazów dodatnich ma ten ciąg.

Dane
a=2019
b=9
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Wyznacz sumę wszystkich wyrazów dodatnich tego ciągu.
Odpowiedź:
s_{> 0}= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30390 ⋅ Poprawnie: 99/540 [18%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Pierwszy, drugi, czwarty i piąty wyraz ciągu geometrycznego \left(a_n\right) są równe odpowiednio a_1, a_2, a_4 i a_5.

Oblicz najmniejszy możliwy pierwszy wyraz tego ciągu.

Dane
a_1+a_5=1028
a_2\cdot a_4=4096
Odpowiedź:
a_{1}= (wpisz liczbę całkowitą)
Podpunkt 12.2 (1 pkt)
 Oblicz najmniejszy możliwy iloraz tego ciągu.
Odpowiedź:
q_{min}= (wpisz liczbę całkowitą)
Podpunkt 12.3 (1 pkt)
 Podaj najmniejszy możliwy, dodatni iloraz tego ciągu.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm