Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-11788 ⋅ Poprawnie: 747/900 [83%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Ciąg
\left(a_n\right) jest określony wzorem
a_n=\frac{n-6}{2} , dla każdej liczby naturalnej
n\geqslant 1 .
Liczba wyrazów tego ciągu mniejszych od 26 jest równa:
Odpowiedzi:
A. 59
B. 61
C. 60
D. 57
E. 55
F. 56
Zadanie 2. 1 pkt ⋅ Numer: pp-11149 ⋅ Poprawnie: 769/967 [79%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Długości boków trójkąta prostokątnego tworzą ciąg arytmetyczny.
Boki tego trójkąta mają długość:
Odpowiedzi:
A. 31,40,49
B. 27,36,45
C. 29,38,47
D. 26,35,44
Zadanie 3. 1 pkt ⋅ Numer: pp-11152 ⋅ Poprawnie: 496/864 [57%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Oblicz sumę
18 początkowych wyrazów ciągu arytmetycznego
o wzorze ogólnym
a_n=\frac{5}{2}-3\cdot n .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-11838 ⋅ Poprawnie: 605/729 [82%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Trzywyrazowy ciąg
(7-2a, 12, 48) jest geometryczny.
Liczba a jest równa:
Odpowiedzi:
A. \frac{1}{2}
B. 1
C. 8
D. 2
E. 3
F. 4
Zadanie 5. 1 pkt ⋅ Numer: pp-11412 ⋅ Poprawnie: 243/369 [65%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Ciąg liczbowy geometryczny
(a_n) zawiera
tylko wyrazy dodatnie oraz
\frac{a_{9}}{a_{7}}=
\frac{1}{49} .
Oblicz iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20523 ⋅ Poprawnie: 57/109 [52%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
» Akcje firmy zyskują na wartości
9\% w ciągu
każdego roku.
Po ilu latach posiadacz akcji co najmniej podwoi zainwestowaną kwotę? Przyjmnij, że wartość
akcji wzrasta dopiero po upływie pełnego roku.
Odpowiedź:
Ilosc\ lat=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20506 ⋅ Poprawnie: 280/398 [70%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
W ciągu arytmetycznym
(a_n) występują kolejne
liczby naturalne dające resztę
2 przy dzieleniu
przez
5 .
Wiedząc, że a_{7}=102 , oblicz
a_{12} .
Odpowiedź:
a_k=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-21128 ⋅ Poprawnie: 62/139 [44%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Dany jest ciąg arytmetyczny
(a_n) , określony dla wszystkich liczb
naturalnych
n\geqslant 1 . Suma dwudziestu początkowych wyrazów
tego ciągu jest równa
20\cdot a_{21}-945 .
Oblicz różnicę ciągu (a_n) .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20821 ⋅ Poprawnie: 150/350 [42%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Suma stu kolejnych liczb naturalnych, które przy dzieleniu przez
7 dają resztę
3
jest równa
37050 .
Podaj najmniejszą z tych liczb.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj największą z tych liczb.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-20518 ⋅ Poprawnie: 35/81 [43%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Dane są kwadraty
K_1 ,
K_2 ,
K_3 ,...,
K_{p} . Kwadrat
K_1 ma bok długości
a ,
zaś każdy kolejny kwadrat bok o połowę krótszy.
Oblicz pole powierzchni kwadratu K_{p} . Wynik zapisz
w postaci \frac{a^2}{2^m} .
Podaj m .
Dane
a=10
p=7
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pp-30304 ⋅ Poprawnie: 51/143 [35%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Ciąg
(a_n) jest ciągiem liczbowym arytmetycznym
o różnicy
r , a
S_6
sumą sześciu początkowych wyrazów tego ciągu. W ciągu
(a_n) zachodzi warunek:
\frac{S_6}{6}=m .
Oblicz a_1 .
Dane
r=-12
m=-62
k=-452
Odpowiedź:
a_{1}=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Wyznacz numer wyrazu ciągu
(a_n) , który jest równy
k . Jeżeli taki wyraz w ciągu nie istnieje,
wpisz
-1 .
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pp-30390 ⋅ Poprawnie: 99/540 [18%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
« Pierwszy, drugi, czwarty i piąty wyraz ciągu geometrycznego
\left(a_n\right) są równe odpowiednio
a_1 ,
a_2 ,
a_4 i
a_5 .
Oblicz najmniejszy możliwy pierwszy wyraz tego ciągu.
Dane
a_1+a_5=51
a_2\cdot a_4=144
Odpowiedź:
a_{1}=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (1 pkt)
Oblicz najmniejszy możliwy iloraz tego ciągu.
Odpowiedź:
q_{min}=
(wpisz liczbę całkowitą)
Podpunkt 12.3 (1 pkt)
Podaj najmniejszy możliwy, dodatni iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż