Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11162 ⋅ Poprawnie: 53/111 [47%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Ogólny wyraz ciągu określony jest wzorem a_n=7\left(\sqrt[3]{3}\right)^{n+4}, przy czym n jest liczbą co najwyżej dwucyfrową.

Wyznacz ilość wyrazów wymiernych tego ciągu.

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-12035 ⋅ Poprawnie: 236/252 [93%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg (a_n), określony dla każdej liczby naturalnej n > 1, jest arytmetyczny. Różnica tego ciągu jest równa 4, a pierwszy wyraz tego ciągu jest równy -1.

Wtedy iloraz \frac{a_4}{a_2} jest równy:

Odpowiedzi:
A. \frac{44}{3} B. \frac{11}{2}
C. \frac{11}{3} D. 11
E. \frac{22}{9} F. \frac{11}{6}
Zadanie 3.  1 pkt ⋅ Numer: pp-11153 ⋅ Poprawnie: 43/132 [32%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » W ciągu arytmetycznym, w którym r\neq 0, zachodzi warunek a_{23}=0.

Wówczas:

Odpowiedzi:
A. S_{46}=a_{46} B. S_{46} > a_{46}
C. S_{46} \lessdot a_{46} D. S_{46}=0
Zadanie 4.  1 pkt ⋅ Numer: pp-11170 ⋅ Poprawnie: 333/468 [71%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » W ciągu geometrycznym (a_n) dane są: a_1=625 i a_3=25, a czwarty wyraz tego ciągu jest ujemny.

Wyznacz a_4.

Odpowiedź:
a_4= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11182 ⋅ Poprawnie: 320/512 [62%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Kwotę 1000 zł ulokowano w banku na roczną lokatę oprocentowaną w wysokości 10\% w stosunku rocznym. Po zakończeniu lokaty od naliczonych odsetek odprowadzany jest podatek w wysokości 19\%.

Maksymalna kwota, jaką po upływie roku będzie można wypłacić z banku, jest równa:

Odpowiedzi:
A. 1000\cdot\left(1-\frac{19}{100}+\frac{10}{100}\right) B. 1000\cdot\left(1-\frac{19}{100}\cdot\frac{10}{100}\right)
C. 1000\cdot\left(1-\frac{81}{100}\cdot\frac{10}{100}\right) D. 1000\cdot\left(1+\frac{81}{100}\cdot\frac{10}{100}\right)
Zadanie 6.  3 pkt ⋅ Numer: pp-21084 ⋅ Poprawnie: 74/181 [40%] Rozwiąż 
Podpunkt 6.1 (0.5 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=3n-3 dla każdej liczby naturalnej n \geqslant 1.

Ciąg (a_n) jest:

Odpowiedzi:
A. rosnący B. niemonotoniczny
C. stały D. malejący
Podpunkt 6.2 (0.5 pkt)
 Odpowiedź powyższa jest poprawna, ponieważ:
Odpowiedzi:
A. a_{n+1}-a_n=-3 B. a_{n+1}-a_n=3
C. a_{n+1}-a_n=-4 D. a_{n+1}-a_n=4
Podpunkt 6.3 (1 pkt)
 Najmniejszą wartością n, dla której wyraz a_n jest większy od 27, jest:
Odpowiedzi:
A. 16 B. 12
C. 8 D. 11
E. 15 F. 6
Podpunkt 6.4 (1 pkt)
 Suma n początkowych wyrazów ciągu (a_n) jest równa 135 dla n równego:
Odpowiedzi:
A. 11 B. 14
C. 15 D. 5
E. 7 F. 10
Zadanie 7.  2 pkt ⋅ Numer: pp-20512 ⋅ Poprawnie: 12/90 [13%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Dla podanej liczby parzystej k wyznacz wartość wyrażenia:
170^2-(170-1)^2+(170-2)^2-(170-3)^2+(170-4)^2-(170-5)^2+...+102^2-101^2 .
Odpowiedź:
s= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20505 ⋅ Poprawnie: 45/112 [40%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
Na okręgu o promieniu długości r opisano trójkąt o bokach długości a\leqslant b\leqslant c, które są kolejnymi wyrazami ciągu arytmetycznego.

Oblicz stosunek wysokości opuszczonej na bok długości b, do długości promienia okręgu r.

Odpowiedź:
\frac{h}{r}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20820 ⋅ Poprawnie: 26/82 [31%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Ile liczb niepodzielnych przez 3 zawiera przedział liczbowy \left\langle p,q\right)?
Dane
p=240
q=550
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Ile jest równa suma tych liczb?
Odpowiedź:
s= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-21111 ⋅ Poprawnie: 213/359 [59%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=3\cdot(-1)^{n+1}+6 dla każdej liczby naturalnej n\geqslant 1.

Suma dziesięciu początkowych kolejnych wyrazów tego ciągu jest równa:

Odpowiedzi:
A. 57 B. 44
C. 58 D. 42
E. 47 F. 56
G. 60 H. 51
Podpunkt 10.2 (1 pkt)
 Oceń prawdziwość poniższych stwierdzeń.
Odpowiedzi:
T/N : ciąg (a_n) jest malejący T/N : ciąg (a_n) jest geometryczny
Zadanie 11.  4 pkt ⋅ Numer: pp-30157 ⋅ Poprawnie: 38/123 [30%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 «« W ciągu arytmetycznym (a_n) mamy: a_8=m.

Przy jakiej różnicy ciągu suma kwadratów wyrazów a_2 i a_6 jest najmniejsza możliwa?

Dane
m=22
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30163 ⋅ Poprawnie: 61/213 [28%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Dany jest rosnący ciąg geometryczny (a,b,c). Suma a+b+c wynosi s. Liczby a, b i c w podanej kolejności są pierwszym, drugim i k-tym wyrazem pewnego ciągu arytmetycznego.

Podaj liczbę a.

Dane
s=1830
k=15
Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Podaj liczbę b.
Odpowiedź:
b= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm