Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-11968 ⋅ Poprawnie: 123/152 [80%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Dany jest ciąg
(a_n) określony wzorem
a_n=3n^2+2n dla każdej liczby naturalnej
n\geqslant 1 .
Oceń prawdziwość poniższych stwierdzeń:
Odpowiedzi:
T/N : ciąg (a_n) nie jest monotoniczny
T/N : ciąg (a_n) jest rosnący
Zadanie 2. 1 pkt ⋅ Numer: pp-11146 ⋅ Poprawnie: 1727/2098 [82%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« W ciągu arytmetycznym
\left(a_n\right)
wyrazy pierwszy i trzeci są równe odpowiednio
-1
i
9 , a pewien wyraz tego ciągu
a_k
jest równy
69 .
Wyznacz numer tego wyrazu.
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11142 ⋅ Poprawnie: 328/477 [68%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Kamil każdego dnia czytał o
16 stron książki
więcej niż przeczytał dnia poprzedniego. Do dwunastego dnia włącznie przeczytał
1368 stron.
Ile stron przeczytał pierwszego dnia?
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11434 ⋅ Poprawnie: 102/166 [61%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
W ciągu geometrycznym
(a_n) dane sa wyrazy:
a_1=\sqrt{m} ,
a_2=m\sqrt{m} ,
a_3=m^2\sqrt{m} .
Wzór na n -ty wyraz tego ciągu ma postać:
Odpowiedzi:
A. \left(\frac{\sqrt{13}}{13}\right)^n
B. \frac{13^n}{\sqrt{13}}
C. \frac{\left(\sqrt{13}\right)^n}{13}
D. (\sqrt{13})^n
Zadanie 5. 1 pkt ⋅ Numer: pp-11412 ⋅ Poprawnie: 243/369 [65%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Ciąg liczbowy geometryczny
(a_n) zawiera
tylko wyrazy dodatnie oraz
\frac{a_{15}}{a_{13}}=
\frac{1}{64} .
Oblicz iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20522 ⋅ Poprawnie: 114/203 [56%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Nominalna stopa oprocentowania lokaty wynosi
3\% w stosunku rocznym
(bez uwzględnienia podatku). Odsetki kapitalizowane są na koniec każdego
kolejnego okresu czteromiesięcznego.
Oblicz, jaką kwotę wpłacono na tę lokatę, jeśli na koniec ośmiu miesięcy
oszczędzania na rachunku lokaty było o 96.48 zł więcej
niż przy jej otwarciu. Odpowiedź podaj bez jednostki.
Odpowiedź:
Kapital\ poczatkowy\ [zl]=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20510 ⋅ Poprawnie: 99/253 [39%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Wyznacz wzór ogólny ciągu arytmetycznego wiedząc, że suma jego
pięciu pierwszych wyrazów jest równa
75 , a drugi
wyraz tego ciągu jest równy
12 .
Wzór zapisz w postaci a_n=an+b . Podaj
a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20819 ⋅ Poprawnie: 152/210 [72%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Dany jest ciąg arytmetyczny
(a_n) .
Wyznacz najmniejsze możliwe a_1 tego ciągu.
Dane
a_{3}+a_{5}=20
a_{3}\cdot a_{5}=84
Odpowiedź:
a_1=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Wyznacz największą możliwą różnicę
r tego ciągu.
Odpowiedź:
r_{max}=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20820 ⋅ Poprawnie: 26/82 [31%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Ile liczb niepodzielnych przez 3 zawiera przedział liczbowy
\left\langle p,q\right) ?
Dane
p=240
q=490
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Ile jest równa suma tych liczb?
Odpowiedź:
s=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-20825 ⋅ Poprawnie: 54/425 [12%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Trzeci, piąty i siódmy wyraz ciągu geometrycznego
\left(a_n\right) są równe odpowiednio
a_3 ,
a_5 i
a_7 .
Oblicz najmniejszy możliwy iloraz tego ciągu.
Dane
a_7-a_3=1440
a_7-a_5=1296
Odpowiedź:
q_{min}=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Oblicz pierwszy wyraz tego ciągu.
Odpowiedź:
a_{1}=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pp-30166 ⋅ Poprawnie: 187/437 [42%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
Suma pierwszych pięciu wyrazów ciągu arytmetycznego
(a_n) wynosi
s1 ,
a suma
a_6+a_7+a_8+...+a_{12} wynosi
s2 .
Oblicz a_1 .
Dane
s1=1095
s2=945
Odpowiedź:
a_{1}=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Oblicz różnicę tego ciągu.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pp-30390 ⋅ Poprawnie: 99/540 [18%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
« Pierwszy, drugi, czwarty i piąty wyraz ciągu geometrycznego
\left(a_n\right) są równe odpowiednio
a_1 ,
a_2 ,
a_4 i
a_5 .
Oblicz najmniejszy możliwy pierwszy wyraz tego ciągu.
Dane
a_1+a_5=246
a_2\cdot a_4=729
Odpowiedź:
a_{1}=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (1 pkt)
Oblicz najmniejszy możliwy iloraz tego ciągu.
Odpowiedź:
q_{min}=
(wpisz liczbę całkowitą)
Podpunkt 12.3 (1 pkt)
Podaj najmniejszy możliwy, dodatni iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż