Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11788 ⋅ Poprawnie: 614/756 [81%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=\frac{n-3}{5}, dla każdej liczby naturalnej n\geqslant 1.

Liczba wyrazów tego ciągu mniejszych od 24 jest równa:

Odpowiedzi:
A. 120 B. 126
C. 125 D. 124
E. 122 F. 121
Zadanie 2.  1 pkt ⋅ Numer: pp-11836 ⋅ Poprawnie: 674/750 [89%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg arytmetyczny \left(a_n\right) jest określony dla każdej liczby naturalnej n\geqslant 1. W tym ciągu a_2=9 oraz a_3=16.

10-ty wyraz tego ciągu a_{10} jest równy:

Odpowiedzi:
A. 65 B. 72
C. 79 D. 86
E. 58 F. 51
Zadanie 3.  1 pkt ⋅ Numer: pp-11837 ⋅ Poprawnie: 397/611 [64%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony dla każdej liczby naturalnej n\geqslant 1. Suma n początkowych wyrazów tego ciągu jest określona wzorem S_n=2\cdot(2^n-1), dla każdej liczby naturalnej n\geqslant 1.

Oceń prawdziwość poniższych stwierdzeń:

Odpowiedzi:
T/N : iloczyn a_1\cdot a_2 jest równy 8 T/N : pierwszy wyraz ciągu \left(a_n\right) jest równy 2
Zadanie 4.  1 pkt ⋅ Numer: pp-11992 ⋅ Poprawnie: 463/604 [76%] Rozwiąż 
Podpunkt 4.1 (0.2 pkt)
 Trzywyrazowy ciąg (12, 6, 2m+7) jest geometryczny.

Ten ciąg jest:

Odpowiedzi:
A. rosnący B. malejący
Podpunkt 4.2 (0.8 pkt)
 Liczba m jest równa:
Odpowiedzi:
A. -5 B. 1
C. -2 D. 2
E. -6 F. -3
Zadanie 5.  1 pkt ⋅ Numer: pp-11180 ⋅ Poprawnie: 726/1049 [69%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Suma pierwszych pięciu wyrazów ciągu geometrycznego jest równa -\frac{11}{5}, a jego iloraz wynosi -2.

Wyznacz a_1.

Odpowiedź:
a_1=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20829 ⋅ Poprawnie: 98/269 [36%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Pan Kowalski złożył do banku kwotę 2048.00 zł na okres dwóch lat na procent składany. Oprocentowanie w banku wynosi p\% w skali roku, a odsetki kapitalizuje się co 6 miesięcy. Po upływie tego terminu bank wypłacił mu kwotę 3280.50 zł (pomiń podatek od usług kapitałowych).

Wyznacz p.

Odpowiedź:
p\ [\%]= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20512 ⋅ Poprawnie: 12/90 [13%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Dla podanej liczby parzystej k wyznacz wartość wyrażenia:
158^2-(158-1)^2+(158-2)^2-(158-3)^2+(158-4)^2-(158-5)^2+...+102^2-101^2 .
Odpowiedź:
s= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20817 ⋅ Poprawnie: 157/313 [50%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Dany jest ciąg arytmetyczny (a_n).

Wyznacz a_1.

Dane
a_{1}+a_{2}=21
a_{7}=38
a_{k}+a_{k+1}=231
Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Oblicz k.
Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-21069 ⋅ Poprawnie: 157/276 [56%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 W ciągu arytmetycznym \left(a_n\right), określonym dla każdej liczby naturalnej n\geqslant 1, a_1=-6 i a_4=0.

Oblicz sumę stu początkowych kolejnych wyrazów tego ciągu.

Odpowiedź:
S_{100}= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20854 ⋅ Poprawnie: 146/923 [15%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 (1 pkt) Pierwszy wyraz malejącego ciągu geometrycznego \left(a_n\right) jest o 567 większy od wyrazu drugiego, a wyraz trzeci tego ciągu jest o 28 większy od wyrazu czwartego tego ciągu.

Wyznacz a_2.

Odpowiedź:
a_{k}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 (1 pkt) Wyznacz a_3.
Odpowiedź:
a_{k}= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30167 ⋅ Poprawnie: 11/72 [15%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 « Suma n początkowych wyrazów ciągu arytmetycznego (a_n) dana jest wzorem S_n=\frac{n^2-25n}{4} (n > 0). Różnica ciągu arytmetycznego (b_n) jest równa \frac{3}{2} oraz jego piąty wyraz jest równy p. Wyznacz sumę 17 początkowych wyrazów ciągu arytmetycznego (c_n), wiedząc, że c_n=2b_n-a_8, gdzie n > 0.

Podaj wyznaczoną sumę.

Dane
p=26
Odpowiedź:
s=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30163 ⋅ Poprawnie: 61/213 [28%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Dany jest rosnący ciąg geometryczny (a,b,c). Suma a+b+c wynosi s. Liczby a, b i c w podanej kolejności są pierwszym, drugim i k-tym wyrazem pewnego ciągu arytmetycznego.

Podaj liczbę a.

Dane
s=785
k=14
Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Podaj liczbę b.
Odpowiedź:
b= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm