Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11904 ⋅ Poprawnie: 146/160 [91%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=\frac{n-2}{2n^2} dla każdej liczby naturalnej n \geqslant 1.

Piąty wyraz tego ciągu jest równy:

Odpowiedzi:
A. \frac{1}{16} B. \frac{1}{18}
C. \frac{1}{18} D. \frac{5}{98}
E. \frac{3}{50} F. \frac{1}{25}
Zadanie 2.  1 pkt ⋅ Numer: pp-11836 ⋅ Poprawnie: 678/754 [89%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg arytmetyczny \left(a_n\right) jest określony dla każdej liczby naturalnej n\geqslant 1. W tym ciągu a_2=9 oraz a_3=16.

11-ty wyraz tego ciągu a_{11} jest równy:

Odpowiedzi:
A. 65 B. 58
C. 86 D. 93
E. 79 F. 72
Zadanie 3.  1 pkt ⋅ Numer: pp-11411 ⋅ Poprawnie: 1307/1491 [87%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 W ciągu arytmetycznym (a_n) dane są wyrazy a_1=15 i a_8=-69.

Suma ośmiu początkowych wyrazów tego ciągu jest równa:

Odpowiedź:
S_8= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11172 ⋅ Poprawnie: 203/250 [81%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg określony wzorem a_n=n^2+4n-5 jest ciągiem:
Odpowiedzi:
A. malejącym B. arytmetycznym
C. niemonotonicznym D. rosnącym
Zadanie 5.  1 pkt ⋅ Numer: pp-11183 ⋅ Poprawnie: 525/863 [60%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Na lokacie złożono 1000 zł przy rocznej stopie procentowej 12\% (procent składany). Odsetki naliczane są co kwartał.

Po upływie roku wielkość kapitału na lokacie (przed potrąceniem podatków będzie równa:

Odpowiedzi:
A. 1000\cdot\left(1+\frac{3}{100}\right)^4 B. 1000\cdot\left(1+\frac{3}{100}\right)
C. 1000\cdot\left(1+\frac{3}{400}\right)^4 D. 1000\cdot\left(1+\left(\frac{12}{100}\right)^4\right)
Zadanie 6.  3 pkt ⋅ Numer: pp-21084 ⋅ Poprawnie: 69/174 [39%] Rozwiąż 
Podpunkt 6.1 (0.5 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=4n+3 dla każdej liczby naturalnej n \geqslant 1.

Ciąg (a_n) jest:

Odpowiedzi:
A. malejący B. niemonotoniczny
C. rosnący D. stały
Podpunkt 6.2 (0.5 pkt)
 Odpowiedź powyższa jest poprawna, ponieważ:
Odpowiedzi:
A. a_{n+1}-a_n=-6 B. a_{n+1}-a_n=0
C. a_{n+1}-a_n=-5 D. a_{n+1}-a_n=4
Podpunkt 6.3 (1 pkt)
 Najmniejszą wartością n, dla której wyraz a_n jest większy od 99, jest:
Odpowiedzi:
A. 21 B. 27
C. 25 D. 23
E. 26 F. 20
Podpunkt 6.4 (1 pkt)
 Suma n początkowych wyrazów ciągu (a_n) jest równa 663 dla n równego:
Odpowiedzi:
A. 15 B. 19
C. 17 D. 18
E. 12 F. 13
Zadanie 7.  2 pkt ⋅ Numer: pp-20512 ⋅ Poprawnie: 12/90 [13%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Dla podanej liczby parzystej k wyznacz wartość wyrażenia:
166^2-(166-1)^2+(166-2)^2-(166-3)^2+(166-4)^2-(166-5)^2+...+102^2-101^2 .
Odpowiedź:
s= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20818 ⋅ Poprawnie: 296/608 [48%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Dany jest ciąg arytmetyczny (a_n).

Wyznacz a_1.

Dane
a_{2}=-6
a_{6}=18
a_{k}=294
Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Oblicz k.
Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20514 ⋅ Poprawnie: 241/1138 [21%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Liczby x-2, x+m i 3x-4 są trzema początkowymi wyrazami ciągu arytmetycznego (b_n).

Wyznacz b_{100}.

Dane
m=4
Odpowiedź:
b_{100}= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Wyznacz najmniejsze takie n, że S_n > 360.
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20518 ⋅ Poprawnie: 35/81 [43%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Dane są kwadraty K_1, K_2, K_3,..., K_{p}. Kwadrat K_1 ma bok długości a, zaś każdy kolejny kwadrat bok o połowę krótszy.

Oblicz pole powierzchni kwadratu K_{p}. Wynik zapisz w postaci \frac{a^2}{2^m}. Podaj m.

Dane
a=8
p=15
Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30158 ⋅ Poprawnie: 46/120 [38%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
«« W ciągu arytmetycznym (a_n) dane są wyrazy: a_1=x+3y, a_2=4x+y, a_3=3x+6y+1, a_4=9x-2y+1. Oblicz x i y. Wyznacz wzór ogólny ciągu i zapisz go w postaci a_n=an+b.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30392 ⋅ Poprawnie: 6/63 [9%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 « Pan Kozłowski złożył do banku kwotę k zł na procent prosty. Po upływie każdego roku, po dopisaniu do lokaty należnych odsetek, dopłacał kwotę d zł, która powiększała jego kapitał podlegający oprocentowaniu. Przez cały okres oszczędzania oprocentowanie w banku było stałe i wynosiło p\%. Po n latach oszczędzania, po doliczeniu do lokaty należnych odsetek za ostatni rok kwota na lokacie była równa s zł (z pominięciem podatku od usług kapitałowych).

Oblicz n. Pamiętaj, że odsetki pomimo iż pozostają na lokacie, nie podlegają oprocentowaniu. Odsetki oblicza się tylko od wpłaconego kapitału.

Dane
k=1000
d=1000
p=19.0
s=55100.00
Odpowiedź:
n= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm