Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-11455 ⋅ Poprawnie: 70/141 [49%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
«« Wskaż najmniejszy możliwy numer wyrazu, poczynając od którego ciąg liczbowy określony
wzorem
a_n=n^2-17n+17 jest monotoniczny:
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11836 ⋅ Poprawnie: 784/858 [91%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Ciąg arytmetyczny
\left(a_n\right) jest określony dla każdej liczby
naturalnej
n\geqslant 1 . W tym ciągu
a_2=8
oraz
a_3=15 .
8-ty wyraz tego ciągu a_{8} jest równy:
Odpowiedzi:
A. 71
B. 57
C. 64
D. 36
E. 43
F. 50
Zadanie 3. 1 pkt ⋅ Numer: pp-11154 ⋅ Poprawnie: 364/547 [66%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« W ciągu arytmetycznym
(a_n) sumę
n początkowych wyrazów
można obliczyć korzystając ze wzoru
S_n=n+2n^2 , gdzie
n\in\mathbb{N_{+}} .
Oblicz wyraz a_{8} tego ciągu.
Odpowiedź:
a_k=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11175 ⋅ Poprawnie: 627/990 [63%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Ciąg geometryczny określony jest wzorem
a_n=10\cdot 4^{6-n} , dla
n\in\mathbb{N_{+}} .
Oblicz iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11182 ⋅ Poprawnie: 324/518 [62%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Kwotę 1000 zł ulokowano w banku na roczną lokatę oprocentowaną w wysokości
10\% w stosunku rocznym. Po zakończeniu lokaty od
naliczonych odsetek odprowadzany jest podatek w wysokości
19\% .
Maksymalna kwota, jaką po upływie roku będzie można wypłacić z banku, jest
równa:
Odpowiedzi:
A. 1000\cdot\left(1-\frac{19}{100}\cdot\frac{10}{100}\right)
B. 1000\cdot\left(1-\frac{19}{100}+\frac{10}{100}\right)
C. 1000\cdot\left(1-\frac{81}{100}\cdot\frac{10}{100}\right)
D. 1000\cdot\left(1+\frac{81}{100}\cdot\frac{10}{100}\right)
Zadanie 6. 2 pkt ⋅ Numer: pp-20829 ⋅ Poprawnie: 100/271 [36%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Pan Kowalski złożył do banku kwotę
3072.00 zł na okres
dwóch lat na procent składany. Oprocentowanie w banku wynosi
p\% w skali roku, a odsetki kapitalizuje się
co 6 miesięcy. Po upływie tego terminu bank wypłacił mu kwotę
4920.75 zł (pomiń podatek od usług kapitałowych).
Wyznacz p .
Odpowiedź:
p\ [\%]=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20511 ⋅ Poprawnie: 361/960 [37%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Liczby
2x+1 ,
12x ,
14x+107 są w podanej kolejności pierwszym,
drugim i czwartym wyrazem ciągu arytmetycznego.
Oblicz x .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-21128 ⋅ Poprawnie: 64/143 [44%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Dany jest ciąg arytmetyczny
(a_n) , określony dla wszystkich liczb
naturalnych
n\geqslant 1 . Suma dwudziestu początkowych wyrazów
tego ciągu jest równa
20\cdot a_{21}-1890 .
Oblicz różnicę ciągu (a_n) .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20515 ⋅ Poprawnie: 29/100 [29%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Suma
S_k dla ciągu arytmetycznego
(b_n) gdzie
n > 0 ,
jest równa
s .
Oblicz \frac{b_3+b_{k-2}}{2} .
Dane
k=37
s=740
Odpowiedź:
\frac{b_3+b_{k-2}}{2}=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-20517 ⋅ Poprawnie: 81/158 [51%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Ciąg
(a-b,a^2-2,k-b) jest ciągiem
atytmetycznym i geometrycznym. Wyznacz
a i
b .
Podaj a .
Dane
k=10
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pp-30166 ⋅ Poprawnie: 188/439 [42%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
Suma pierwszych pięciu wyrazów ciągu arytmetycznego
(a_n) wynosi
s1 ,
a suma
a_6+a_7+a_8+...+a_{12} wynosi
s2 .
Oblicz a_1 .
Dane
s1=1055
s2=889
Odpowiedź:
a_{1}=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Oblicz różnicę tego ciągu.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pp-30390 ⋅ Poprawnie: 99/540 [18%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
« Pierwszy, drugi, czwarty i piąty wyraz ciągu geometrycznego
\left(a_n\right) są równe odpowiednio
a_1 ,
a_2 ,
a_4 i
a_5 .
Oblicz najmniejszy możliwy pierwszy wyraz tego ciągu.
Dane
a_1+a_5=246
a_2\cdot a_4=729
Odpowiedź:
a_{1}=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (1 pkt)
Oblicz najmniejszy możliwy iloraz tego ciągu.
Odpowiedź:
q_{min}=
(wpisz liczbę całkowitą)
Podpunkt 12.3 (1 pkt)
Podaj najmniejszy możliwy, dodatni iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż