Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11385 ⋅ Poprawnie: 274/413 [66%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=\frac{1-4n}{-3n+2}.

Wyraz a_{2k+1} tego ciągu jest równy:

Odpowiedzi:
A. \frac{8k+5}{6k+1} B. \frac{8k+3}{6k+1}
C. \frac{8k+3}{6k+5} D. \frac{8k+5}{6k+5}
Zadanie 2.  1 pkt ⋅ Numer: pp-12066 ⋅ Poprawnie: 190/211 [90%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Trzeci i piąty wyraz tego ciągu spełniają warunek a_3+a_5=116.

Wtedy czwarty wyraz tego ciągu jest równy:

Odpowiedzi:
A. 42 B. 45
C. 50 D. 70
E. 58 F. 73
G. 62 H. 75
Zadanie 3.  1 pkt ⋅ Numer: pp-11147 ⋅ Poprawnie: 55/119 [46%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg (c_n) dany jest wzorem c_n=(n-16)\cdot 5 dla n\geqslant 1.

Oblicz S_{20}.

Odpowiedź:
S_{20}= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11174 ⋅ Poprawnie: 1413/2171 [65%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg liczbowy \left(8,2,\frac{c}{2}-1\right) jest ciągiem geometrycznym.

Oblicz c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11919 ⋅ Poprawnie: 200/244 [81%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dany jest ciąg geometryczny (a_n), określony dla każdej liczby naturalnej n\geqslant 1. Drugi wyraz tego ciągu oraz iloraz ciągu (a_n) są równe 2.

Suma pięciu początkowych kolejnych wyrazów tego ciągu jest równa:

Odpowiedzi:
A. 63 B. 65
C. 127 D. 7
E. 15 F. 31
Zadanie 6.  2 pkt ⋅ Numer: pr-20270 ⋅ Poprawnie: 18/39 [46%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
« Dany jest ciąg a_n=\frac{6n^2-5n+1}{3n-1}.

Ile wyrazów tego ciągu nie należy do zbioru liczb naturalnych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Które wyrazy tego ciągu są mniejsze od 17?

Podaj ilość takich wyrazów.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20504 ⋅ Poprawnie: 239/430 [55%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » W ciągu arytmetycznym (a_n), określonym dla n\geqslant 1, dane są: wyraz a_1=-18 oraz a_2+a_3=-42.

Oblicz różnicę a_{18}-a_{15}.

Odpowiedź:
a_{18}-a_{15}= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-21102 ⋅ Poprawnie: 381/617 [61%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Trzeci wyraz tego ciągu jest równy -10, a suma piętnastu początkowych kolejnych wyrazów tego ciągu jest równa -300.

Oblicz różnicę tego ciągu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20787 ⋅ Poprawnie: 190/422 [45%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Dana jest liczba k, k-ty wyraz ciągu arytmetycznego (a_n) oraz suma S_k, k początkowych wyrazów tego ciągu.

Oblicz a_1.

Dane
k=18
a_{18}=-69
S_{18}=-936
Odpowiedź:
a_{1}= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Oblicz różnicę r tego ciągu.
Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20825 ⋅ Poprawnie: 54/424 [12%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Trzeci, piąty i siódmy wyraz ciągu geometrycznego \left(a_n\right) są równe odpowiednio a_3, a_5 i a_7.

Oblicz najmniejszy możliwy iloraz tego ciągu.

Dane
a_7-a_3=60
a_7-a_5=48
Odpowiedź:
q_{min}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Oblicz pierwszy wyraz tego ciągu.
Odpowiedź:
a_{1}= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30167 ⋅ Poprawnie: 11/72 [15%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 « Suma n początkowych wyrazów ciągu arytmetycznego (a_n) dana jest wzorem S_n=\frac{n^2-25n}{4} (n > 0). Różnica ciągu arytmetycznego (b_n) jest równa \frac{3}{2} oraz jego piąty wyraz jest równy p. Wyznacz sumę 17 początkowych wyrazów ciągu arytmetycznego (c_n), wiedząc, że c_n=2b_n-a_8, gdzie n > 0.

Podaj wyznaczoną sumę.

Dane
p=14
Odpowiedź:
s=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30392 ⋅ Poprawnie: 6/63 [9%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 « Pan Kozłowski złożył do banku kwotę k zł na procent prosty. Po upływie każdego roku, po dopisaniu do lokaty należnych odsetek, dopłacał kwotę d zł, która powiększała jego kapitał podlegający oprocentowaniu. Przez cały okres oszczędzania oprocentowanie w banku było stałe i wynosiło p\%. Po n latach oszczędzania, po doliczeniu do lokaty należnych odsetek za ostatni rok kwota na lokacie była równa s zł (z pominięciem podatku od usług kapitałowych).

Oblicz n. Pamiętaj, że odsetki pomimo iż pozostają na lokacie, nie podlegają oprocentowaniu. Odsetki oblicza się tylko od wpłaconego kapitału.

Dane
k=1000
d=1000
p=12.0
s=41800.00
Odpowiedź:
n= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm