Klient wpłacił do banku 22000 zł na lokatę dwuletnią. Po każdym rocznym okresie
oszczędzania bank dolicza odsetki w wysokości 8\% od kwoty bieżącego kapitału
znajdującego się na lokacie.
Po dwóch latach oszczędzania łączna wartość doliczonych odsetek na tej lokacie (bez
uwzględniania podatków) jest równa:
Odpowiedzi:
A. 4392.96 zł
B. 3137.83 zł
C. 4576.00 zł
D. 2928.64 zł
E. 3660.80 zł
F. 3050.67 zł
Zadanie 6.2 pkt ⋅ Numer: pp-20826 ⋅ Poprawnie: 34/226 [15%]
(1 pkt)
W rosnącym ciągu arytmetycznym \left(a_n\right), określonym dla każdej liczby naturalnej dodatniej
n, suma trzech początkowych wyrazów jest równa
9, a iloczyn tych wyrazów jest równy
-120.
Oblicz różnicę tego ciągu.
Odpowiedź:
r=(wpisz liczbę całkowitą)
Podpunkt 8.2 (2 pkt)
(2 pkt)
Wyznacz wyraz a_{73} tego ciągu.
Odpowiedź:
a_{k}=(wpisz liczbę całkowitą)
Zadanie 9.2 pkt ⋅ Numer: pp-20821 ⋅ Poprawnie: 150/349 [42%]
« Ciąg (a_n) jest ciągiem liczbowym arytmetycznym
o różnicy r, a S_6
sumą sześciu początkowych wyrazów tego ciągu. W ciągu
(a_n) zachodzi warunek:
\frac{S_6}{6}=m.
Oblicz a_1.
Dane
r=-8 m=-56 k=-260
Odpowiedź:
a_{1}=(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Wyznacz numer wyrazu ciągu (a_n), który jest równy
k. Jeżeli taki wyraz w ciągu nie istnieje,
wpisz -1.
Odpowiedź:
n=(wpisz liczbę całkowitą)
Zadanie 12.4 pkt ⋅ Numer: pp-30162 ⋅ Poprawnie: 209/807 [25%]
Liczby x, y i
z w podanej kolejności tworzą trzy pierwsze wyrazy
ciągu geometrycznego (a_n) o ilorazie
3. Liczby
(x+a, y, z+a) tworzą ciąg arytmetyczny
(b_n).
Podaj z.
Dane
a=15
Odpowiedź:
z=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat