Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11158 ⋅ Poprawnie: 469/919 [51%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Ciąg liczbowy (a_n) określony jest wzorem a_n=\frac{2n^2-30n+88}{n^2+16}, a liczby p i q są odpowiednio najmniejszym i największym numerem wyrazów ciągu, które są równe 0.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11891 ⋅ Poprawnie: 369/379 [97%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg (a_n), określony dla każdej liczby naturalnej n \geqslant 1, jest arytmetyczny. Różnica tego ciągu jest równa -4 oraz a_8=-31.

Czwarty wyraz tego ciągu jest równy:

Odpowiedzi:
A. -19 B. -11
C. -31 D. -15
E. -23 F. -27
Zadanie 3.  1 pkt ⋅ Numer: pp-11147 ⋅ Poprawnie: 55/119 [46%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg (c_n) dany jest wzorem c_n=(n-13)\cdot 6 dla n\geqslant 1.

Oblicz S_{20}.

Odpowiedź:
S_{20}= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11173 ⋅ Poprawnie: 187/321 [58%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Dany jest ciąg geometryczny o początkowych wyrazach a_1=243, a_2=81, a_3=27.

Oblicz numer największego wyrazu tego ciągu, który jest mniejszy od \frac{1}{6}.

Odpowiedź:
max_{< \frac{1}{m}}= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11182 ⋅ Poprawnie: 318/508 [62%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Kwotę 1000 zł ulokowano w banku na roczną lokatę oprocentowaną w wysokości 14\% w stosunku rocznym. Po zakończeniu lokaty od naliczonych odsetek odprowadzany jest podatek w wysokości 19\%.

Maksymalna kwota, jaką po upływie roku będzie można wypłacić z banku, jest równa:

Odpowiedzi:
A. 1000\cdot\left(1-\frac{19}{100}+\frac{14}{100}\right) B. 1000\cdot\left(1+\frac{81}{100}\cdot\frac{14}{100}\right)
C. 1000\cdot\left(1-\frac{81}{100}\cdot\frac{14}{100}\right) D. 1000\cdot\left(1-\frac{19}{100}\cdot\frac{14}{100}\right)
Zadanie 6.  2 pkt ⋅ Numer: pp-20523 ⋅ Poprawnie: 57/109 [52%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Akcje firmy zyskują na wartości 12\% w ciągu każdego roku.

Po ilu latach posiadacz akcji co najmniej podwoi zainwestowaną kwotę? Przyjmnij, że wartość akcji wzrasta dopiero po upływie pełnego roku.

Odpowiedź:
Ilosc\ lat= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20509 ⋅ Poprawnie: 489/1048 [46%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Oblicz sumę wszystkich liczb naturalnych trzycyfrowych nieparzystych, nie większych od 891.
Odpowiedź:
s_{\leqslant k}= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20817 ⋅ Poprawnie: 157/313 [50%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Dany jest ciąg arytmetyczny (a_n).

Wyznacz a_1.

Dane
a_{1}+a_{2}=40
a_{7}=42
a_{k}+a_{k+1}=176
Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Oblicz k.
Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20821 ⋅ Poprawnie: 150/350 [42%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Suma stu kolejnych liczb naturalnych, które przy dzieleniu przez 9 dają resztę 8 jest równa 47150.

Podaj najmniejszą z tych liczb.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj największą z tych liczb.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-21095 ⋅ Poprawnie: 28/103 [27%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Dany jest ciąg geometryczny (a_n), określony dla każdej liczby naturalnej n\geqslant 1. W tym ciągu a_1=-5, a_2=20 a_3=-80.

Wzór ogólny ciągu (a_n) ma postać:

Odpowiedzi:
T/N : a_n=-5\cdot (-4)^{n} T/N : a_n=-5\cdot (-4)^{n-1}
T/N : a_n=-5\cdot 4^{n} T/N : a_n=5\cdot (-4)^{n}
Zadanie 11.  4 pkt ⋅ Numer: pp-30167 ⋅ Poprawnie: 11/72 [15%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 « Suma n początkowych wyrazów ciągu arytmetycznego (a_n) dana jest wzorem S_n=\frac{n^2-25n}{4} (n > 0). Różnica ciągu arytmetycznego (b_n) jest równa \frac{3}{2} oraz jego piąty wyraz jest równy p. Wyznacz sumę 17 początkowych wyrazów ciągu arytmetycznego (c_n), wiedząc, że c_n=2b_n-a_8, gdzie n > 0.

Podaj wyznaczoną sumę.

Dane
p=68
Odpowiedź:
s=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30391 ⋅ Poprawnie: 186/387 [48%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Ciąg liczbowy \left(a_n\right) jest ciągiem geometrycznym, a jego k-ty wyraz jest równy a_k.

Oblicz iloraz tego ciągu.

Dane
a_1=-3
a_k=-6144
a_1+a_2+a_3+...+a_k=-12285
Odpowiedź:
q= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Oblicz k.
Odpowiedź:
k= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm