Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-12090 ⋅ Poprawnie: 71/77 [92%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dane są ciągi (a_n), (b_n), (c_n), (d_n), określone dla każdej liczby naturalnej n\geqslant 1 wzorami: a_n=20n+3, b_n=2n^2-3, c_n=n^2+10n-2, d_n=\frac{n+187}{n}.

Liczba 334 jest 14-tym wyrazem ciągu:

Odpowiedzi:
A. (a_n) B. (b_n)
C. (d_n) D. (c_n)
Zadanie 2.  1 pkt ⋅ Numer: pp-12119 ⋅ Poprawnie: 155/184 [84%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Różnica tego ciągu jest równa 5.

Wtedy:

Odpowiedzi:
A. a_{16}-a_{5}=75 B. a_{16}-a_{5}=55
C. a_{16}-a_{5}=45 D. a_{16}-a_{5}=65
E. a_{16}-a_{5}=60 F. a_{16}-a_{5}=70
G. a_{16}-a_{5}=35 H. a_{16}-a_{5}=50
Zadanie 3.  1 pkt ⋅ Numer: pp-11153 ⋅ Poprawnie: 43/132 [32%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » W ciągu arytmetycznym, w którym r\neq 0, zachodzi warunek a_{43}=0.

Wówczas:

Odpowiedzi:
A. S_{86}=0 B. S_{86}=a_{86}
C. S_{86} \lessdot a_{86} D. S_{86} > a_{86}
Zadanie 4.  1 pkt ⋅ Numer: pp-12064 ⋅ Poprawnie: 99/113 [87%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Trzywyrzowy ciąg \left(18,3x,\frac{9}{2}\right) jest geometryczny i wszystkie jego wyrazy są dodatnie.

Wynika z tego, że x jest równe:

Odpowiedzi:
A. 1 B. \frac{9}{2}
C. 6 D. 3
E. \frac{3}{4} F. \frac{3}{2}
Zadanie 5.  1 pkt ⋅ Numer: pp-11830 ⋅ Poprawnie: 642/749 [85%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Pan Grzegorz wpłacił do banku pewną kwotę na lokatę dwuletnią. Po każdym rocznym okresie oszczędzania bank doliczał odsetki w wysokości 10\% od kwoty bieżącego kapitału znajdującego się na lokacie. Po dwóch latach oszczędzania pan Grzegorz odebrał z tego banku wraz z odsetkami kwotę 3993.00 zł (bez uwzględnienia podatków).

Kwota wpłacona przez pana Grzegorza na tę lokatę była równa:

Odpowiedzi:
A. 3400 B. 3200
C. 3500 D. 3100
E. 3700 F. 3300
Zadanie 6.  2 pkt ⋅ Numer: pr-20270 ⋅ Poprawnie: 18/39 [46%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
« Dany jest ciąg a_n=\frac{6n^2-5n+1}{3n-1}.

Ile wyrazów tego ciągu nie należy do zbioru liczb naturalnych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Które wyrazy tego ciągu są mniejsze od 17?

Podaj ilość takich wyrazów.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20507 ⋅ Poprawnie: 510/846 [60%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Suma trzydziestu początkowych wyrazów ciągu arytmetycznego (a_n) jest równa 225 oraz a_{30}=225.

Oblicz różnicę tego ciągu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 8.  3 pkt ⋅ Numer: pp-20865 ⋅ Poprawnie: 112/219 [51%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 (1 pkt) W rosnącym ciągu arytmetycznym \left(a_n\right), określonym dla każdej liczby naturalnej dodatniej n, suma trzech początkowych wyrazów jest równa 51, a iloczyn tych wyrazów jest równy 3825.

Oblicz różnicę tego ciągu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Podpunkt 8.2 (2 pkt)
 (2 pkt) Wyznacz wyraz a_{51} tego ciągu.
Odpowiedź:
a_{k}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20515 ⋅ Poprawnie: 28/99 [28%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Suma S_k dla ciągu arytmetycznego (b_n) gdzie n > 0, jest równa s.

Oblicz \frac{b_3+b_{k-2}}{2}.

Dane
k=59
s=1416
Odpowiedź:
\frac{b_3+b_{k-2}}{2}= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20520 ⋅ Poprawnie: 45/163 [27%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Ciąg geometryczny o wyrazach dodatnich (a_n) określony jest wzorem a_n=q^{n-1} i zawiera trzy kolejne wyrazy (x,y,2x).

Oblicz a_k.

Dane
k=19
Odpowiedź:
a_{k}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30159 ⋅ Poprawnie: 11/33 [33%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « W ciągu suma n początkowych wyrazów wyraża się wzorem S_n=5n^2+kn. Wyznacz wzór ogólny tego ciągu i zapisz go w postaci a_n=an+b.

Podaj a+b.

Dane
k=19
Odpowiedź:
a+b= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Uzasadnij, że jest to ciąg arytmetyczny i podaj jego różnicę.
Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30162 ⋅ Poprawnie: 212/823 [25%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 Liczby x, y i z w podanej kolejności tworzą trzy pierwsze wyrazy ciągu geometrycznego (a_n) o ilorazie 3. Liczby (x+a, y, z+a) tworzą ciąg arytmetyczny (b_n).

Podaj z.

Dane
a=38
Odpowiedź:
z=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm