Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-11158 ⋅ Poprawnie: 469/919 [51%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Ciąg liczbowy
(a_n) określony jest wzorem
a_n=\frac{2n^2-36n+130}{n^2+25} ,
a liczby
p i
q są odpowiednio najmniejszym
i największym numerem wyrazów ciągu, które są równe
0 .
Podaj liczby p i q .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11456 ⋅ Poprawnie: 1352/1530 [88%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Pomiędzy liczby
123 i
459
można wstawić pięć takich liczb, że wszystkie siedem liczb będą tworzyć
ciąg arytmetyczny.
Wyznacz najmniejszą z wstawionych liczb.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11145 ⋅ Poprawnie: 163/254 [64%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
W ciągu arytmetycznym
a_{6}=37 oraz
a_{10}=61 .
Oblicz S_{12} .
Odpowiedź:
S_{12}=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11434 ⋅ Poprawnie: 102/166 [61%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
W ciągu geometrycznym
(a_n) dane sa wyrazy:
a_1=\sqrt{m} ,
a_2=m\sqrt{m} ,
a_3=m^2\sqrt{m} .
Wzór na n -ty wyraz tego ciągu ma postać:
Odpowiedzi:
A. \frac{\left(\sqrt{17}\right)^n}{17}
B. \frac{17^n}{\sqrt{17}}
C. (\sqrt{17})^n
D. \left(\frac{\sqrt{17}}{17}\right)^n
Zadanie 5. 1 pkt ⋅ Numer: pp-11919 ⋅ Poprawnie: 187/229 [81%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Dany jest ciąg geometryczny
(a_n) , określony dla każdej liczby naturalnej
n\geqslant 1 . Drugi wyraz tego ciągu oraz iloraz ciągu
(a_n) są równe
4 .
Suma sześciu początkowych kolejnych wyrazów tego ciągu jest równa:
Odpowiedzi:
A. 341
B. 5463
C. 21845
D. 5461
E. 85
F. 1365
Zadanie 6. 2 pkt ⋅ Numer: pp-20815 ⋅ Poprawnie: 14/44 [31%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Dany jest ciąg
a_n=|n-3|+|n-11| . Wyznacz te wyrazy
ciągu, które sa większe od
8 .
Ile spośród pierwszych stu wyrazów ciągu spełnia ten warunek.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20507 ⋅ Poprawnie: 509/845 [60%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Suma trzydziestu początkowych wyrazów ciągu arytmetycznego
(a_n) jest równa
210 oraz
a_{30}=210 .
Oblicz różnicę tego ciągu.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20818 ⋅ Poprawnie: 296/608 [48%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Dany jest ciąg arytmetyczny
(a_n) .
Wyznacz a_1 .
Dane
a_{2}=-21
a_{6}=3
a_{k}=279
Odpowiedź:
a_1=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20820 ⋅ Poprawnie: 26/82 [31%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Ile liczb niepodzielnych przez 3 zawiera przedział liczbowy
\left\langle p,q\right) ?
Dane
p=280
q=580
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Ile jest równa suma tych liczb?
Odpowiedź:
s=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-21111 ⋅ Poprawnie: 210/354 [59%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Ciąg
(a_n) jest określony wzorem
a_n=4\cdot(-1)^{n+1}+6 dla każdej liczby
naturalnej
n\geqslant 1 .
Suma dziesięciu początkowych kolejnych wyrazów tego ciągu jest równa:
Odpowiedzi:
A. 60
B. 53
C. 64
D. 78
E. 47
F. 48
G. 62
H. 80
Podpunkt 10.2 (1 pkt)
Oceń prawdziwość poniższych stwierdzeń.
Odpowiedzi:
T/N : ciąg (a_n) jest malejący
T/N : ciąg (a_n) jest geometryczny
Zadanie 11. 4 pkt ⋅ Numer: pp-30156 ⋅ Poprawnie: 303/688 [44%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
Ciąg arytmetyczny
(a_n) określony jest wzorem
a_n=a-bn , dla
n\geqslant 1 .
Ile wyrazów dodatnich ma ten ciąg.
Dane
a=2020
b=8
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Wyznacz sumę wszystkich wyrazów dodatnich tego ciągu.
Odpowiedź:
s_{> 0}=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pp-30164 ⋅ Poprawnie: 48/127 [37%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
Suma pierwszych pięciu wyrazów niestałego ciągu arytmetycznego
(a_n) jest równa
s ,
a wyrazy trzeci, piąty i
k -ty tego ciągu tworzą
w podanej kolejności ciąg geometryczny.
Oblicz a_1 .
Dane
s=160
k=8
Odpowiedź:
a_{1}=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
Podaj różnicę
r tego ciągu.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Rozwiąż