Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11860 ⋅ Poprawnie: 272/284 [95%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=\frac{3n^2-6n}{n} dla każdej liczby naturalnej n\geqslant 1.

Wtedy wyraz a_7 jest równy:

Odpowiedzi:
A. 12 B. 18
C. 15 D. 30
E. 9 F. 21
Zadanie 2.  1 pkt ⋅ Numer: pp-12035 ⋅ Poprawnie: 244/254 [96%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg (a_n), określony dla każdej liczby naturalnej n > 1, jest arytmetyczny. Różnica tego ciągu jest równa -2, a pierwszy wyraz tego ciągu jest równy -3.

Wtedy iloraz \frac{a_4}{a_2} jest równy:

Odpowiedzi:
A. \frac{18}{5} B. \frac{27}{5}
C. \frac{27}{10} D. \frac{9}{5}
E. \frac{6}{5} F. \frac{9}{10}
Zadanie 3.  1 pkt ⋅ Numer: pp-11154 ⋅ Poprawnie: 363/546 [66%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « W ciągu arytmetycznym (a_n) sumę n początkowych wyrazów można obliczyć korzystając ze wzoru S_n=n+2n^2, gdzie n\in\mathbb{N_{+}}.

Oblicz wyraz a_{7} tego ciągu.

Odpowiedź:
a_k= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11168 ⋅ Poprawnie: 117/163 [71%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Pewien gatunek liczy 1000 osobników i co roku jego liczebność rośnie o 30\%.

Po upływie 6 lat liczebność tego gatunku wyniesie:

Odpowiedzi:
A. 1000\cdot (1+1.3)^6 B. 1000\cdot (1+6\cdot 1.3)
C. 1000\cdot (1.3)^6 D. 1000\cdot (1+1.3^6)
Zadanie 5.  1 pkt ⋅ Numer: pp-11181 ⋅ Poprawnie: 536/837 [64%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Ciąg określony jest wzorem a_n=3^n.

Oblicz S_{7}.

Odpowiedź:
S_k= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20829 ⋅ Poprawnie: 98/269 [36%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Pan Kowalski złożył do banku kwotę 8192.00 zł na okres dwóch lat na procent składany. Oprocentowanie w banku wynosi p\% w skali roku, a odsetki kapitalizuje się co 6 miesięcy. Po upływie tego terminu bank wypłacił mu kwotę 13122.00 zł (pomiń podatek od usług kapitałowych).

Wyznacz p.

Odpowiedź:
p\ [\%]= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20512 ⋅ Poprawnie: 12/90 [13%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Dla podanej liczby parzystej k wyznacz wartość wyrażenia:
166^2-(166-1)^2+(166-2)^2-(166-3)^2+(166-4)^2-(166-5)^2+...+102^2-101^2 .
Odpowiedź:
s= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20818 ⋅ Poprawnie: 296/608 [48%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Dany jest ciąg arytmetyczny (a_n).

Wyznacz a_1.

Dane
a_{2}=-8
a_{6}=8
a_{k}=172
Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Oblicz k.
Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-21069 ⋅ Poprawnie: 199/341 [58%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 W ciągu arytmetycznym \left(a_n\right), określonym dla każdej liczby naturalnej n\geqslant 1, a_1=-3 i a_4=-6.

Oblicz sumę stu początkowych kolejnych wyrazów tego ciągu.

Odpowiedź:
S_{100}= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20824 ⋅ Poprawnie: 91/143 [63%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Piłka odbijając się od ziemi za każdym razem osiąga wysokość równą p wysokości poprzedniej. Po szóstym odbiciu od ziemi piłka wzniosła się na wysokość d.

Na jaką wysokość wzniosła się piłka po pierwszym odbiciu?

Dane
p=\frac{2}{5}=0.400000000000000
d=16
Odpowiedź:
h=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30157 ⋅ Poprawnie: 38/123 [30%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 «« W ciągu arytmetycznym (a_n) mamy: a_8=m.

Przy jakiej różnicy ciągu suma kwadratów wyrazów a_2 i a_6 jest najmniejsza możliwa?

Dane
m=19
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30390 ⋅ Poprawnie: 99/540 [18%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Pierwszy, drugi, czwarty i piąty wyraz ciągu geometrycznego \left(a_n\right) są równe odpowiednio a_1, a_2, a_4 i a_5.

Oblicz najmniejszy możliwy pierwszy wyraz tego ciągu.

Dane
a_1+a_5=246
a_2\cdot a_4=729
Odpowiedź:
a_{1}= (wpisz liczbę całkowitą)
Podpunkt 12.2 (1 pkt)
 Oblicz najmniejszy możliwy iloraz tego ciągu.
Odpowiedź:
q_{min}= (wpisz liczbę całkowitą)
Podpunkt 12.3 (1 pkt)
 Podaj najmniejszy możliwy, dodatni iloraz tego ciągu.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm