« Po k latach z tytułu lokaty o wysokości
4900 zł oprocentowanej w wysokości
25\% w skali roku przy
rocznej kapitalizacji odsetek otrzymamy łączne odsetki (przed potrąceniem
podatków) w wysokości m złotych.
Wyznacz liczbę m.
Odpowiedź:
m=(liczba zapisana dziesiętnie)
Zadanie 6.2 pkt ⋅ Numer: pp-20827 ⋅ Poprawnie: 5/60 [8%]
« Pan Kozłowski złożył do banku kwotę k zł, na procent prosty,
w którym odsetki nie podlegają oprocentowaniu. Po upływie pierwszego i każdego następnego
roku (oprócz końca roku ostatniego) wpłacał kwotę d zł.
Przez cały okres oszczędzania oprocentowanie w banku było stałe i wynosiło
p\% w stosunku rocznym.
Oblicz wartość tej lokaty po n latach
(przed opodatkowaniem, po n-tym roku pan Kozłowski
nie dopłacił kwoty d zł, tylko wybrał z banku
pieniądze na lokacie).
Dane
k=5000 d=1000 p=8.5 n=5
Odpowiedź:
s=(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pp-20507 ⋅ Poprawnie: 508/844 [60%]
« Suma n początkowych wyrazów ciągu arytmetycznego
(a_n) dana jest wzorem
S_n=\frac{n^2-25n}{4}
(n > 0). Różnica ciągu arytmetycznego
(b_n) jest równa
\frac{3}{2} oraz jego piąty wyraz jest równy
p. Wyznacz sumę 17
początkowych wyrazów ciągu arytmetycznego
(c_n), wiedząc, że
c_n=2b_n-a_8, gdzie
n > 0.
Podaj wyznaczoną sumę.
Dane
p=59
Odpowiedź:
s=
(wpisz dwie liczby całkowite)
Zadanie 12.4 pkt ⋅ Numer: pp-30162 ⋅ Poprawnie: 197/793 [24%]
Liczby x, y i
z w podanej kolejności tworzą trzy pierwsze wyrazy
ciągu geometrycznego (a_n) o ilorazie
3. Liczby
(x+a, y, z+a) tworzą ciąg arytmetyczny
(b_n).
Podaj z.
Dane
a=24
Odpowiedź:
z=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat