Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11904 ⋅ Poprawnie: 142/156 [91%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=\frac{n+4}{2n^2} dla każdej liczby naturalnej n \geqslant 1.

Piąty wyraz tego ciągu jest równy:

Odpowiedzi:
A. \frac{1}{4} B. \frac{7}{18}
C. \frac{3}{25} D. \frac{11}{98}
E. \frac{5}{36} F. \frac{9}{50}
Zadanie 2.  1 pkt ⋅ Numer: pp-11836 ⋅ Poprawnie: 674/750 [89%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg arytmetyczny \left(a_n\right) jest określony dla każdej liczby naturalnej n\geqslant 1. W tym ciągu a_2=8 oraz a_3=14.

11-ty wyraz tego ciągu a_{11} jest równy:

Odpowiedzi:
A. 50 B. 80
C. 68 D. 62
E. 56 F. 74
Zadanie 3.  1 pkt ⋅ Numer: pp-11142 ⋅ Poprawnie: 281/425 [66%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Kamil każdego dnia czytał o 23 stron książki więcej niż przeczytał dnia poprzedniego. Do dwunastego dnia włącznie przeczytał 1842 stron.

Ile stron przeczytał pierwszego dnia?

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11169 ⋅ Poprawnie: 343/523 [65%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg (a_n) jest geometryczny i niemonotoniczny, w którym a_{11}=-\frac{1}{4} i a_{16}=8.

Wówczas wyraz a_{15} jest równy:

Odpowiedź:
a_{k}= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11180 ⋅ Poprawnie: 711/1032 [68%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Suma pierwszych pięciu wyrazów ciągu geometrycznego jest równa \frac{31}{2}, a jego iloraz wynosi 2.

Wyznacz a_1.

Odpowiedź:
a_1=
(wpisz dwie liczby całkowite)
Zadanie 6.  3 pkt ⋅ Numer: pp-21084 ⋅ Poprawnie: 69/174 [39%] Rozwiąż 
Podpunkt 6.1 (0.5 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=2n+6 dla każdej liczby naturalnej n \geqslant 1.

Ciąg (a_n) jest:

Odpowiedzi:
A. stały B. malejący
C. niemonotoniczny D. rosnący
Podpunkt 6.2 (0.5 pkt)
 Odpowiedź powyższa jest poprawna, ponieważ:
Odpowiedzi:
A. a_{n+1}-a_n=-4 B. a_{n+1}-a_n=2
C. a_{n+1}-a_n=3 D. a_{n+1}-a_n=-3
Podpunkt 6.3 (1 pkt)
 Najmniejszą wartością n, dla której wyraz a_n jest większy od 38, jest:
Odpowiedzi:
A. 16 B. 15
C. 20 D. 17
E. 14 F. 22
Podpunkt 6.4 (1 pkt)
 Suma n początkowych wyrazów ciągu (a_n) jest równa 260 dla n równego:
Odpowiedzi:
A. 12 B. 18
C. 16 D. 10
E. 11 F. 13
Zadanie 7.  2 pkt ⋅ Numer: pp-20512 ⋅ Poprawnie: 12/90 [13%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Dla podanej liczby parzystej k wyznacz wartość wyrażenia:
190^2-(190-1)^2+(190-2)^2-(190-3)^2+(190-4)^2-(190-5)^2+...+102^2-101^2 .
Odpowiedź:
s= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-21102 ⋅ Poprawnie: 371/599 [61%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Trzeci wyraz tego ciągu jest równy -4, a suma piętnastu początkowych kolejnych wyrazów tego ciągu jest równa -360.

Oblicz różnicę tego ciągu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20515 ⋅ Poprawnie: 28/99 [28%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Suma S_k dla ciągu arytmetycznego (b_n) gdzie n > 0, jest równa s.

Oblicz \frac{b_3+b_{k-2}}{2}.

Dane
k=55
s=715
Odpowiedź:
\frac{b_3+b_{k-2}}{2}= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20825 ⋅ Poprawnie: 54/424 [12%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Trzeci, piąty i siódmy wyraz ciągu geometrycznego \left(a_n\right) są równe odpowiednio a_3, a_5 i a_7.

Oblicz najmniejszy możliwy iloraz tego ciągu.

Dane
a_7-a_3=180
a_7-a_5=144
Odpowiedź:
q_{min}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Oblicz pierwszy wyraz tego ciągu.
Odpowiedź:
a_{1}= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30166 ⋅ Poprawnie: 179/419 [42%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Suma pierwszych pięciu wyrazów ciągu arytmetycznego (a_n) wynosi s1, a suma a_6+a_7+a_8+...+a_{12} wynosi s2.

Oblicz a_1.

Dane
s1=1160
s2=574
Odpowiedź:
a_{1}= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Oblicz różnicę tego ciągu.
Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 12.  5 pkt ⋅ Numer: pp-30415 ⋅ Poprawnie: 28/50 [56%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Rosnący ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Suma pierwszych pięciu wyrazów tego ciągu jest równa S_5=-20. Wyrazy a_{5}, a_{7}, a_{15} tworzą – w podanej kolejności – ciąg geometryczny.

Wyznacz trzeci wyraz a_3 tego ciągu.

Odpowiedź:
a_3= (wpisz liczbę całkowitą)
Podpunkt 12.2 (1 pkt)
 Wyznacz różnicę r tego ciągu.
Odpowiedź:
a_3= (wpisz liczbę całkowitą)
Podpunkt 12.3 (2 pkt)
 Zapisz wzór na ogólny wyraz tego ciągu w postaci a_n=an+b.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm