Ciąg arytmetyczny (a_n) jest określony dla każdej liczby
naturalnej n\geqslant 1. Trzeci wyraz tego ciągu jest równy
-1, a suma piętnastu początkowych kolejnych wyrazów
tego ciągu jest równa -240.
Oblicz różnicę tego ciągu.
Odpowiedź:
r=(wpisz liczbę całkowitą)
Zadanie 9.2 pkt ⋅ Numer: pp-21069 ⋅ Poprawnie: 160/281 [56%]
(1 pkt)
Pierwszy wyraz malejącego ciągu geometrycznego \left(a_n\right)
jest o 75
większy od wyrazu drugiego, a wyraz trzeci tego ciągu jest o
12 większy od wyrazu czwartego tego ciągu.
Wyznacz a_3.
Odpowiedź:
a_{k}=(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
(1 pkt)
Wyznacz a_4.
Odpowiedź:
a_{k}=(wpisz liczbę całkowitą)
Zadanie 11.4 pkt ⋅ Numer: pp-30158 ⋅ Poprawnie: 46/120 [38%]
«« W ciągu arytmetycznym (a_n) dane są wyrazy:
a_1=x+3y, a_2=4x+y,
a_3=3x+6y+1, a_4=9x-2y+1.
Oblicz x i y.
Wyznacz wzór ogólny ciągu i zapisz go w postaci
a_n=an+b.
Podaj a.
Odpowiedź:
a=(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj b.
Odpowiedź:
b=(wpisz liczbę całkowitą)
Zadanie 12.4 pkt ⋅ Numer: pp-30392 ⋅ Poprawnie: 6/63 [9%]
« Pan Kozłowski złożył do banku kwotę k zł na procent
prosty. Po upływie każdego roku, po dopisaniu do lokaty należnych odsetek,
dopłacał kwotę d zł, która powiększała jego kapitał
podlegający oprocentowaniu. Przez cały okres oszczędzania oprocentowanie w banku
było stałe i wynosiło p\%. Po n
latach oszczędzania, po doliczeniu do lokaty należnych odsetek za ostatni rok
kwota na lokacie była równa s zł (z pominięciem podatku
od usług kapitałowych).
Oblicz n. Pamiętaj, że odsetki pomimo iż pozostają na
lokacie, nie podlegają oprocentowaniu. Odsetki oblicza się tylko od wpłaconego
kapitału.
Dane
k=5000 d=1000 p=11.0 s=42000.00
Odpowiedź:
n=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat