Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11815 ⋅ Poprawnie: 686/750 [91%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=(-1)^n\cdot\frac{n+12}{3}, dla każdej liczby naturalnej n\geqslant 1.

Trzeci wyraz tego ciągu jest równy:

Odpowiedzi:
A. -5 B. -\frac{14}{3}
C. -\frac{19}{3} D. -\frac{17}{3}
E. -\frac{13}{3} F. 5
Zadanie 2.  1 pkt ⋅ Numer: pp-11891 ⋅ Poprawnie: 384/389 [98%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg (a_n), określony dla każdej liczby naturalnej n \geqslant 1, jest arytmetyczny. Różnica tego ciągu jest równa -3 oraz a_8=-13.

Czwarty wyraz tego ciągu jest równy:

Odpowiedzi:
A. 2 B. -13
C. -4 D. -1
E. -7 F. -10
Zadanie 3.  1 pkt ⋅ Numer: pp-11153 ⋅ Poprawnie: 43/132 [32%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » W ciągu arytmetycznym, w którym r\neq 0, zachodzi warunek a_{45}=0.

Wówczas:

Odpowiedzi:
A. S_{90} > a_{90} B. S_{90}=a_{90}
C. S_{90} \lessdot a_{90} D. S_{90}=0
Zadanie 4.  1 pkt ⋅ Numer: pp-11170 ⋅ Poprawnie: 333/468 [71%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » W ciągu geometrycznym (a_n) dane są: a_1=2401 i a_3=49, a czwarty wyraz tego ciągu jest ujemny.

Wyznacz a_4.

Odpowiedź:
a_4= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11780 ⋅ Poprawnie: 816/929 [87%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Klient wpłacił do banku 48000 zł na lokatę dwuletnią. Po każdym rocznym okresie oszczędzania bank dolicza odsetki w wysokości 6\% od kwoty bieżącego kapitału znajdującego się na lokacie.

Po dwóch latach oszczędzania łączna wartość doliczonych odsetek na tej lokacie (bez uwzględniania podatków) jest równa:

Odpowiedzi:
A. 4746.24 zł B. 7119.36 zł
C. 4944.00 zł D. 5085.26 zł
E. 5932.80 zł F. 7416.00 zł
Zadanie 6.  2 pkt ⋅ Numer: pp-20523 ⋅ Poprawnie: 57/109 [52%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Akcje firmy zyskują na wartości 15\% w ciągu każdego roku.

Po ilu latach posiadacz akcji co najmniej podwoi zainwestowaną kwotę? Przyjmnij, że wartość akcji wzrasta dopiero po upływie pełnego roku.

Odpowiedź:
Ilosc\ lat= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20507 ⋅ Poprawnie: 513/849 [60%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Suma trzydziestu początkowych wyrazów ciągu arytmetycznego (a_n) jest równa 225 oraz a_{30}=225.

Oblicz różnicę tego ciągu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20819 ⋅ Poprawnie: 153/211 [72%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Dany jest ciąg arytmetyczny (a_n).

Wyznacz najmniejsze możliwe a_1 tego ciągu.

Dane
a_{3}+a_{5}=50
a_{3}\cdot a_{5}=609
Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Wyznacz największą możliwą różnicę r tego ciągu.
Odpowiedź:
r_{max}= (wpisz liczbę całkowitą)
Zadanie 9.  3 pkt ⋅ Numer: pp-20810 ⋅ Poprawnie: 244/576 [42%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 «« Suma dwudziestu jeden początkowych wyrazów ciągu arytmetycznego \left(a_n\right) jest równa S_{21}, a wyraz dziewiąty tego ciągu jest równy a_9.

Oblicz różnicę tego ciągu.

Dane
S_{21}=714=714.00000000000000
a_9=33=33.00000000000000
d=42=42.00000000000000
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (2 pkt)
 (2 pkt) Podaj numer wyrazu ciągu, który jest równy d.
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20519 ⋅ Poprawnie: 225/616 [36%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Ślimak w ciągu pierwszej godziny pokonał m metrów. W ciągu każdej następnej godziny pokonywał \frac{p}{q} drogi jaką pokonał w poprzedniej godzinie.

Oblicz drogę w metrach pokonaną przez ślimaka w pięć godzin.

Dane
m=10
p=4
q=9
Odpowiedź:
s\ [m]=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30389 ⋅ Poprawnie: 36/160 [22%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Suma kolejnych liczb naturalnych, które przy dzieleniu przez d dają resztę r jest równa S, a największa z tych liczb jest równa m.

Podaj najmniejszą z tych liczb.

Dane
d=9
r=3
S=9483
m=453
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj ilość liczb tworzących tę sumę.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30162 ⋅ Poprawnie: 212/823 [25%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 Liczby x, y i z w podanej kolejności tworzą trzy pierwsze wyrazy ciągu geometrycznego (a_n) o ilorazie 3. Liczby (x+a, y, z+a) tworzą ciąg arytmetyczny (b_n).

Podaj z.

Dane
a=39
Odpowiedź:
z=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm