Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11387 ⋅ Poprawnie: 302/596 [50%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Oceń, które z podanych ciągów są malejące?
Odpowiedzi:
T/N : a_n=1-\frac{4}{n+1} T/N : a_n=2-\frac{1}{2-3n}
T/N : a_n=\frac{1}{1-4n}  
Zadanie 2.  1 pkt ⋅ Numer: pp-11969 ⋅ Poprawnie: 314/271 [115%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Pięciowyrazowy ciąg \left(7,\frac{17}{2},x,y,13\right) jest arytmetyczny.

Liczby x i y są równe:

Odpowiedzi:
A. x=\frac{21}{2} oraz y=\frac{25}{2} B. x=11 oraz y=12
C. x=\frac{21}{2} oraz y=12 D. x=10 oraz y=\frac{25}{2}
E. x=10 oraz y=\frac{23}{2} F. x=11 oraz y=\frac{23}{2}
Zadanie 3.  1 pkt ⋅ Numer: pp-11142 ⋅ Poprawnie: 314/462 [67%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Kamil każdego dnia czytał o 22 stron książki więcej niż przeczytał dnia poprzedniego. Do dwunastego dnia włącznie przeczytał 1848 stron.

Ile stron przeczytał pierwszego dnia?

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11432 ⋅ Poprawnie: 352/503 [69%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=\frac{4-2n}{-3}.

Ciąg ten jest:

Odpowiedzi:
A. arytmetyczny o różnicy r=\frac{4}{3} B. geometryczny o ilorazie q=\frac{8}{3}
C. arytmetyczny o różnicy r=\frac{2}{3} D. geometryczny o ilorazie q=2
Zadanie 5.  1 pkt ⋅ Numer: pp-11780 ⋅ Poprawnie: 795/908 [87%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Klient wpłacił do banku 41000 zł na lokatę dwuletnią. Po każdym rocznym okresie oszczędzania bank dolicza odsetki w wysokości 9\% od kwoty bieżącego kapitału znajdującego się na lokacie.

Po dwóch latach oszczędzania łączna wartość doliczonych odsetek na tej lokacie (bez uwzględniania podatków) jest równa:

Odpowiedzi:
A. 6610.37 zł B. 9254.52 zł
C. 9640.13 zł D. 6169.68 zł
E. 6426.75 zł F. 7712.10 zł
Zadanie 6.  2 pkt ⋅ Numer: pp-20826 ⋅ Poprawnie: 34/226 [15%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Przez pięć lat (na początku każdego roku) pan Nowak lokuje w banku po k zł na p\% w skali roku (procent prosty).

Jaką kwotę otrzyma po pięciu latach? Uwzględnij 18-procentowy podatek od dochodów kapitałowych.

Dane
k=5000
p=5
Odpowiedź:
s= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20504 ⋅ Poprawnie: 238/429 [55%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » W ciągu arytmetycznym (a_n), określonym dla n\geqslant 1, dane są: wyraz a_1=12 oraz a_2+a_3=30.

Oblicz różnicę a_{18}-a_{15}.

Odpowiedź:
a_{18}-a_{15}= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-21082 ⋅ Poprawnie: 134/263 [50%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Trójwyrazowy ciąg (x+4,y-2,y+2) jest arytmetyczny. Suma wszystkich wyrazów tego ciągu jest równa 6. Oblicz wszystkie wyrazy tego ciągu.

Wyznacz x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Wyznacz y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20508 ⋅ Poprawnie: 42/87 [48%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « W ciągu arytmetycznym \left(a_n\right) mamy: a_1=a oraz 3\cdot S_{5}=S_{10}-S_{5}.

Oblicz różnicę tego ciągu.

Dane
a=16
Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20825 ⋅ Poprawnie: 54/424 [12%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Trzeci, piąty i siódmy wyraz ciągu geometrycznego \left(a_n\right) są równe odpowiednio a_3, a_5 i a_7.

Oblicz najmniejszy możliwy iloraz tego ciągu.

Dane
a_7-a_3=2160
a_7-a_5=1944
Odpowiedź:
q_{min}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Oblicz pierwszy wyraz tego ciągu.
Odpowiedź:
a_{1}= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30167 ⋅ Poprawnie: 11/72 [15%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 « Suma n początkowych wyrazów ciągu arytmetycznego (a_n) dana jest wzorem S_n=\frac{n^2-25n}{4} (n > 0). Różnica ciągu arytmetycznego (b_n) jest równa \frac{3}{2} oraz jego piąty wyraz jest równy p. Wyznacz sumę 17 początkowych wyrazów ciągu arytmetycznego (c_n), wiedząc, że c_n=2b_n-a_8, gdzie n > 0.

Podaj wyznaczoną sumę.

Dane
p=80
Odpowiedź:
s=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30161 ⋅ Poprawnie: 92/261 [35%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 Dany jest niestały ciąg arytmetyczny (a_n) o pierwszym wyrazie a_1=a. Wiadomo że wyrazy: pierwszy, piąty i jedenasty tego ciągu są kolejnymi wyrazami ciągu geometrycznego.

Ile jest równy dziewiąty wyraz tego ciągu?

Dane
a=80
Odpowiedź:
a_{9}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm