Klient wpłacił do banku 14000 zł na lokatę dwuletnią. Po każdym rocznym okresie
oszczędzania bank dolicza odsetki w wysokości 3\% od kwoty bieżącego kapitału
znajdującego się na lokacie.
Po dwóch latach oszczędzania łączna wartość doliczonych odsetek na tej lokacie (bez
uwzględniania podatków) jest równa:
Odpowiedzi:
A. 730.80 zł
B. 1065.75 zł
C. 1023.12 zł
D. 710.50 zł
E. 852.60 zł
F. 682.08 zł
Zadanie 6.3 pkt ⋅ Numer: pp-21084 ⋅ Poprawnie: 71/177 [40%]
Rowerzysta w ciągu pierwszej godziny przejechał s
kilometrów, a ciągu każdej następnej godziny przejeżdżał o
d metrów mniej. W ciągu ostatniej godziny jazdy
ten rowerzysta przejechał drogę o długości p
kilometrów.
Ile godzin trwała jazda tego rowerzysty?
Dane
s=31 d=220 p=27.70
Odpowiedź:
t\ [h]=(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj długość trasy w kilometrach przejechanej przez tego rowerzystę?
Odpowiedź:
s\ [km]=
(wpisz dwie liczby całkowite)
Zadanie 10.2 pkt ⋅ Numer: pp-20519 ⋅ Poprawnie: 225/616 [36%]
« Ciąg (a_n) jest ciągiem liczbowym arytmetycznym
o różnicy r, a S_6
sumą sześciu początkowych wyrazów tego ciągu. W ciągu
(a_n) zachodzi warunek:
\frac{S_6}{6}=m.
Oblicz a_1.
Dane
r=-12 m=-70 k=-304
Odpowiedź:
a_{1}=(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Wyznacz numer wyrazu ciągu (a_n), który jest równy
k. Jeżeli taki wyraz w ciągu nie istnieje,
wpisz -1.
Odpowiedź:
n=(wpisz liczbę całkowitą)
Zadanie 12.4 pkt ⋅ Numer: pp-30162 ⋅ Poprawnie: 209/809 [25%]
Liczby x, y i
z w podanej kolejności tworzą trzy pierwsze wyrazy
ciągu geometrycznego (a_n) o ilorazie
3. Liczby
(x+a, y, z+a) tworzą ciąg arytmetyczny
(b_n).
Podaj z.
Dane
a=8
Odpowiedź:
z=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat