Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-12038 ⋅ Poprawnie: 98/112 [87%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=(-1)^n\cdot n+2 dla każdej liczby naturalnej n > 1.

Wtedy trzeci wyraz tego ciągu jest równy:

Odpowiedzi:
A. -18 B. 1
C. 0 D. 8
E. -1 F. 17
G. -2 H. -12
Zadanie 2.  1 pkt ⋅ Numer: pp-11150 ⋅ Poprawnie: 893/1150 [77%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
Oceń, które z podanych ciągów są arytmetyczne:
Odpowiedzi:
T/N : a_n=\frac{1}{n} T/N : a_n=\sqrt{n+3}
Zadanie 3.  1 pkt ⋅ Numer: pp-11147 ⋅ Poprawnie: 55/119 [46%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg (c_n) dany jest wzorem c_n=(n-16)\cdot 6 dla n\geqslant 1.

Oblicz S_{20}.

Odpowiedź:
S_{20}= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-12064 ⋅ Poprawnie: 93/110 [84%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Trzywyrzowy ciąg \left(63,3x,\frac{9}{7}\right) jest geometryczny i wszystkie jego wyrazy są dodatnie.

Wynika z tego, że x jest równe:

Odpowiedzi:
A. 6 B. \frac{3}{4}
C. 1 D. 3
E. \frac{9}{2} F. \frac{3}{2}
Zadanie 5.  1 pkt ⋅ Numer: pp-11184 ⋅ Poprawnie: 262/406 [64%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Po k latach z tytułu lokaty o wysokości 3900 zł oprocentowanej w wysokości 25\% w skali roku przy rocznej kapitalizacji odsetek otrzymamy łączne odsetki (przed potrąceniem podatków) w wysokości m złotych.

Wyznacz liczbę m.

Odpowiedź:
m= (liczba zapisana dziesiętnie)
Zadanie 6.  3 pkt ⋅ Numer: pp-21084 ⋅ Poprawnie: 73/179 [40%] Rozwiąż 
Podpunkt 6.1 (0.5 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=n+2 dla każdej liczby naturalnej n \geqslant 1.

Ciąg (a_n) jest:

Odpowiedzi:
A. stały B. rosnący
C. niemonotoniczny D. malejący
Podpunkt 6.2 (0.5 pkt)
 Odpowiedź powyższa jest poprawna, ponieważ:
Odpowiedzi:
A. a_{n+1}-a_n=0 B. a_{n+1}-a_n=-3
C. a_{n+1}-a_n=-2 D. a_{n+1}-a_n=1
Podpunkt 6.3 (1 pkt)
 Najmniejszą wartością n, dla której wyraz a_n jest większy od 13, jest:
Odpowiedzi:
A. 12 B. 7
C. 11 D. 10
E. 17 F. 16
Podpunkt 6.4 (1 pkt)
 Suma n początkowych wyrazów ciągu (a_n) jest równa 75 dla n równego:
Odpowiedzi:
A. 10 B. 8
C. 14 D. 9
E. 15 F. 5
Zadanie 7.  2 pkt ⋅ Numer: pp-20509 ⋅ Poprawnie: 481/1038 [46%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Oblicz sumę wszystkich liczb naturalnych trzycyfrowych nieparzystych, nie większych od 945.
Odpowiedź:
s_{\leqslant k}= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-21128 ⋅ Poprawnie: 58/134 [43%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Dany jest ciąg arytmetyczny (a_n), określony dla wszystkich liczb naturalnych n\geqslant 1. Suma dwudziestu początkowych wyrazów tego ciągu jest równa 20\cdot a_{21}-2205.

Oblicz różnicę ciągu (a_n).

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-21045 ⋅ Poprawnie: 566/950 [59%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Pan Stanisław spłacił pożyczkę w wysokości 12960 zł w osiemnastu ratach. Każda kolejna rata była mniejsza od poprzedniej o 40 zł.

Oblicz kwotę pierwszej raty.

Odpowiedź:
R_1= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20520 ⋅ Poprawnie: 45/163 [27%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Ciąg geometryczny o wyrazach dodatnich (a_n) określony jest wzorem a_n=q^{n-1} i zawiera trzy kolejne wyrazy (x,y,2x).

Oblicz a_k.

Dane
k=9
Odpowiedź:
a_{k}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30304 ⋅ Poprawnie: 51/143 [35%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Ciąg (a_n) jest ciągiem liczbowym arytmetycznym o różnicy r, a S_6 sumą sześciu początkowych wyrazów tego ciągu. W ciągu (a_n) zachodzi warunek: \frac{S_6}{6}=m.

Oblicz a_1.

Dane
r=-8
m=-60
k=-296
Odpowiedź:
a_{1}= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Wyznacz numer wyrazu ciągu (a_n), który jest równy k. Jeżeli taki wyraz w ciągu nie istnieje, wpisz -1.
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 12.  5 pkt ⋅ Numer: pp-30418 ⋅ Poprawnie: 7/29 [24%] Rozwiąż 
Podpunkt 12.1 (3 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=36n-138 dla każdej liczby naturalnej n\geqslant 1. Trójwyrazowy ciąg (a_{4}, x^2+2, a_{8}), gdzie x jest liczbą rzeczywistą dodatnią, jest geometryczny i rosnący.

Oblicz x.

Odpowiedź:
x= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Oblicz iloraz tego ciągu.
Odpowiedź:
q= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm