Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11455 ⋅ Poprawnie: 70/139 [50%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 «« Wskaż najmniejszy możliwy numer wyrazu, poczynając od którego ciąg liczbowy określony wzorem a_n=n^2-25n+25 jest monotoniczny:
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11143 ⋅ Poprawnie: 678/909 [74%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 «« Ciąg (\sqrt{147}, b,\sqrt{507}) jest arytmetyczny.

Oblicz b.

Odpowiedź:
b= \cdot
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11142 ⋅ Poprawnie: 281/425 [66%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Kamil każdego dnia czytał o 25 stron książki więcej niż przeczytał dnia poprzedniego. Do dwunastego dnia włącznie przeczytał 2118 stron.

Ile stron przeczytał pierwszego dnia?

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11171 ⋅ Poprawnie: 564/723 [78%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 W monotonicznym ciągu geometrycznym a_1=8, a a_3=128.

Oblicz iloraz tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11183 ⋅ Poprawnie: 521/860 [60%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Na lokacie złożono 1000 zł przy rocznej stopie procentowej 28\% (procent składany). Odsetki naliczane są co kwartał.

Po upływie roku wielkość kapitału na lokacie (przed potrąceniem podatków będzie równa:

Odpowiedzi:
A. 1000\cdot\left(1+\left(\frac{28}{100}\right)^4\right) B. 1000\cdot\left(1+\frac{7}{400}\right)^4
C. 1000\cdot\left(1+\frac{7}{100}\right) D. 1000\cdot\left(1+\frac{7}{100}\right)^4
Zadanie 6.  2 pkt ⋅ Numer: pp-20815 ⋅ Poprawnie: 14/44 [31%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
Dany jest ciąg a_n=|n-3|+|n-11|. Wyznacz te wyrazy ciągu, które sa większe od 8.

Ile spośród pierwszych stu wyrazów ciągu spełnia ten warunek.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20506 ⋅ Poprawnie: 273/389 [70%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 W ciągu arytmetycznym (a_n) występują kolejne liczby naturalne dające resztę 2 przy dzieleniu przez 5.

Wiedząc, że a_{15}=102, oblicz a_{26}.

Odpowiedź:
a_k= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20505 ⋅ Poprawnie: 45/112 [40%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
Na okręgu o promieniu długości r opisano trójkąt o bokach długości a\leqslant b\leqslant c, które są kolejnymi wyrazami ciągu arytmetycznego.

Oblicz stosunek wysokości opuszczonej na bok długości b, do długości promienia okręgu r.

Odpowiedź:
\frac{h}{r}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20821 ⋅ Poprawnie: 147/347 [42%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Suma stu kolejnych liczb naturalnych, które przy dzieleniu przez 10 dają resztę 9 jest równa 52400.

Podaj najmniejszą z tych liczb.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj największą z tych liczb.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-21095 ⋅ Poprawnie: 28/97 [28%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Dany jest ciąg geometryczny (a_n), określony dla każdej liczby naturalnej n\geqslant 1. W tym ciągu a_1=-5, a_2=-15 a_3=-45.

Wzór ogólny ciągu (a_n) ma postać:

Odpowiedzi:
T/N : a_n=-5\cdot 3^{n-1} T/N : a_n=-5\cdot 3^{n}
T/N : a_n=5\cdot 3^{n} T/N : a_n=-5\cdot (-3)^{n}
Zadanie 11.  4 pkt ⋅ Numer: pp-30157 ⋅ Poprawnie: 38/123 [30%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 «« W ciągu arytmetycznym (a_n) mamy: a_8=m.

Przy jakiej różnicy ciągu suma kwadratów wyrazów a_2 i a_6 jest najmniejsza możliwa?

Dane
m=38
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30170 ⋅ Poprawnie: 280/595 [47%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Paweł przez pięć dni zapisywał swoje wydatki. Zauważył, że każdego dnia wydatki były niższe o 20\% w stosunku do wydatków z poprzedniego dnia.

Oblicz kwotę, jaką Paweł wydał pierwszego dnia, jeśli piątego dnia wydał p zł.

Dane
p=30.72
Odpowiedź:
k= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Oblicz kwotę, jaką Paweł wydał w ciągu pięciu dni.
Odpowiedź:
k_5=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm