Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11156 ⋅ Poprawnie: 147/234 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Dany jest ciąg (b_n), w którym b_n=(n+8)(n-17). Ciąg ten zawiera k wyrazów ujemnych.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-12035 ⋅ Poprawnie: 244/254 [96%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg (a_n), określony dla każdej liczby naturalnej n > 1, jest arytmetyczny. Różnica tego ciągu jest równa -5, a pierwszy wyraz tego ciągu jest równy 4.

Wtedy iloraz \frac{a_4}{a_2} jest równy:

Odpowiedzi:
A. \frac{22}{3} B. 11
C. \frac{11}{2} D. 33
E. \frac{33}{2} F. 44
Zadanie 3.  1 pkt ⋅ Numer: pp-11151 ⋅ Poprawnie: 478/634 [75%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « W kinie jest 34 rzędów krzeseł. Rząd pierwszy składa się z 11 krzeseł, a każdy następny rząd zawiera o 8 krzeseł więcej niż rząd poprzedni.

Ile jest krzeseł w kinie?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11768 ⋅ Poprawnie: 826/904 [91%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg liczbowy (27, 9, a+5) jest ciągiem geometrycznym.

Liczba a jest równa:

Odpowiedzi:
A. -1 B. -6
C. -3 D. -4
E. 2 F. -2
Zadanie 5.  1 pkt ⋅ Numer: pp-11180 ⋅ Poprawnie: 730/1061 [68%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Suma pierwszych pięciu wyrazów ciągu geometrycznego jest równa \frac{31}{2}, a jego iloraz wynosi 2.

Wyznacz a_1.

Odpowiedź:
a_1=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-20815 ⋅ Poprawnie: 18/45 [40%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Ciąg liczbowy (a_n) określony jest wzorem a_n=n^2+bn+c.

Oblicz sumę wszystkich wyrazów ujemnych tego ciągu.

Dane
b=-\frac{29}{2}=-14.50000000000000
c=51=51.00000000000000
Odpowiedź:
s=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20816 ⋅ Poprawnie: 927/1937 [47%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
  W ciągu arytmetycznym (a_n) dane są sumy: a_{7}+a_{10}=33 oraz a_{2}+a_{13}=59.

Wyznacz różnicę tego ciągu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Oblicz a_1
Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20817 ⋅ Poprawnie: 157/314 [50%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Dany jest ciąg arytmetyczny (a_n).

Wyznacz a_1.

Dane
a_{1}+a_{2}=43
a_{7}=38
a_{k}+a_{k+1}=151
Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Oblicz k.
Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20515 ⋅ Poprawnie: 29/100 [29%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Suma S_k dla ciągu arytmetycznego (b_n) gdzie n > 0, jest równa s.

Oblicz \frac{b_3+b_{k-2}}{2}.

Dane
k=51
s=612
Odpowiedź:
\frac{b_3+b_{k-2}}{2}= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-21087 ⋅ Poprawnie: 70/119 [58%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=\frac{3^n}{21} dla każdej liczby naturalnej n\geqslant 1. Wyraz numer 52 ciągu (a_n) jest równy:
Odpowiedzi:
A. \frac{3^{54}}{7} B. \frac{3^{52}}{7}
C. \frac{3^{49}}{7} D. \frac{3^{50}}{7}
E. \frac{3^{51}}{7} F. \frac{3^{53}}{7}
Podpunkt 10.2 (1 pkt)
 Oceń prawdziwość poniższych stwierdzeń:
Odpowiedzi:
T/N : suma pierwszych trzech wyrazów ciągu (a_n) jest równa \frac{46}{21} T/N : suma pierwszych trzech wyrazów ciągu (a_n) jest równa \frac{38}{21}
Zadanie 11.  4 pkt ⋅ Numer: pp-30304 ⋅ Poprawnie: 52/144 [36%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Ciąg (a_n) jest ciągiem liczbowym arytmetycznym o różnicy r, a S_6 sumą sześciu początkowych wyrazów tego ciągu. W ciągu (a_n) zachodzi warunek: \frac{S_6}{6}=m.

Oblicz a_1.

Dane
r=-12
m=-54
k=-360
Odpowiedź:
a_{1}= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Wyznacz numer wyrazu ciągu (a_n), który jest równy k. Jeżeli taki wyraz w ciągu nie istnieje, wpisz -1.
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 12.  5 pkt ⋅ Numer: pp-30418 ⋅ Poprawnie: 10/36 [27%] Rozwiąż 
Podpunkt 12.1 (3 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=18n-174 dla każdej liczby naturalnej n\geqslant 1. Trójwyrazowy ciąg (a_{11}, x^2+2, a_{15}), gdzie x jest liczbą rzeczywistą dodatnią, jest geometryczny i rosnący.

Oblicz x.

Odpowiedź:
x= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Oblicz iloraz tego ciągu.
Odpowiedź:
q= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm