Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-11455 ⋅ Poprawnie: 70/139 [50%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
«« Wskaż najmniejszy możliwy numer wyrazu, poczynając od którego ciąg liczbowy określony
wzorem
a_n=n^2-21n+21 jest monotoniczny:
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11143 ⋅ Poprawnie: 678/909 [74%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
«« Ciąg
(\sqrt{108}, b,\sqrt{192})
jest arytmetyczny.
Oblicz b .
Odpowiedź:
b=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11411 ⋅ Poprawnie: 1245/1427 [87%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
W ciągu arytmetycznym
(a_n) dane są wyrazy
a_1=19 i
a_8=-16 .
Suma ośmiu początkowych wyrazów tego ciągu jest równa:
Odpowiedź:
S_8=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11508 ⋅ Poprawnie: 490/837 [58%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
(1 pkt)
W ciągu geometrycznym
\left(a_n\right) , określonym
dla każdego
n\in\mathbb{N_+} , wyrazy drugi i szósty
są równe odpowiednio
a_2=9 i
a_6=36 .
Kwadrat wyrazu czwartego tego ciągu jest równy:
Odpowiedź:
a_4^2=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11180 ⋅ Poprawnie: 711/1032 [68%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Suma pierwszych pięciu wyrazów ciągu geometrycznego jest równa
\frac{31}{2} , a jego iloraz wynosi
2 .
Wyznacz a_1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 3 pkt ⋅ Numer: pp-21084 ⋅ Poprawnie: 69/174 [39%]
Rozwiąż
Podpunkt 6.1 (0.5 pkt)
Dany jest ciąg
(a_n) określony wzorem
a_n=-4n-2
dla każdej liczby naturalnej
n \geqslant 1 .
Ciąg (a_n) jest:
Odpowiedzi:
A. malejący
B. rosnący
C. niemonotoniczny
D. stały
Podpunkt 6.2 (0.5 pkt)
Odpowiedź powyższa jest poprawna, ponieważ:
Odpowiedzi:
A. a_{n+1}-a_n=-3
B. a_{n+1}-a_n=2
C. a_{n+1}-a_n=0
D. a_{n+1}-a_n=-4
Podpunkt 6.3 (1 pkt)
Najmniejszą wartością
n , dla której wyraz
a_n jest
mniejszy od
-86 , jest:
Odpowiedzi:
A. 27
B. 22
C. 17
D. 26
E. 18
F. 21
Podpunkt 6.4 (1 pkt)
Suma
n początkowych wyrazów ciągu
(a_n)
jest równa
-576 dla
n równego:
Odpowiedzi:
A. 20
B. 16
C. 11
D. 15
E. 12
F. 21
Zadanie 7. 2 pkt ⋅ Numer: pp-20512 ⋅ Poprawnie: 12/90 [13%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Dla podanej liczby parzystej
k wyznacz wartość
wyrażenia:
186^2-(186-1)^2+(186-2)^2-(186-3)^2+(186-4)^2-(186-5)^2+...+102^2-101^2
.
Odpowiedź:
s=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20817 ⋅ Poprawnie: 157/313 [50%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Dany jest ciąg arytmetyczny
(a_n) .
Wyznacz a_1 .
Dane
a_{1}+a_{2}=43
a_{7}=38
a_{k}+a_{k+1}=145
Odpowiedź:
a_1=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-21069 ⋅ Poprawnie: 154/271 [56%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
W ciągu arytmetycznym
\left(a_n\right) , określonym dla każdej liczby
naturalnej
n\geqslant 1 ,
a_1=5 i
a_4=-7 .
Oblicz sumę stu początkowych kolejnych wyrazów tego ciągu.
Odpowiedź:
S_{100}=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-20854 ⋅ Poprawnie: 135/906 [14%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
(1 pkt)
Pierwszy wyraz malejącego ciągu geometrycznego
\left(a_n\right)
jest o
1134
większy od wyrazu drugiego, a wyraz trzeci tego ciągu jest o
56 większy od wyrazu czwartego tego ciągu.
Wyznacz a_2 .
Odpowiedź:
a_{k}=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Odpowiedź:
a_{k}=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pp-30159 ⋅ Poprawnie: 11/33 [33%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
« W ciągu suma
n początkowych wyrazów wyraża
się wzorem
S_n=5n^2+kn . Wyznacz wzór ogólny tego
ciągu i zapisz go w postaci
a_n=an+b .
Podaj a+b .
Dane
k=16
Odpowiedź:
a+b=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Uzasadnij, że jest to ciąg arytmetyczny i podaj jego różnicę.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pp-30162 ⋅ Poprawnie: 208/804 [25%]
Rozwiąż
Podpunkt 12.1 (4 pkt)
Liczby
x ,
y i
z w podanej kolejności tworzą trzy pierwsze wyrazy
ciągu geometrycznego
(a_n) o ilorazie
3 . Liczby
(x+a, y, z+a) tworzą ciąg arytmetyczny
(b_n) .
Podaj z .
Dane
a=31
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż