Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-12038 ⋅ Poprawnie: 102/118 [86%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=(-4)^n\cdot n-2 dla każdej liczby naturalnej n > 1.

Wtedy trzeci wyraz tego ciągu jest równy:

Odpowiedzi:
A. -197 B. -201
C. -180 D. -198
E. -195 F. -204
G. -194 H. -175
Zadanie 2.  1 pkt ⋅ Numer: pp-11861 ⋅ Poprawnie: 487/499 [97%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 W ciągu arytmetycznym (a_n), określonym dla każdej liczby naturalnej n\geqslant 1, a_5=8 oraz a_{10}=-7. Różnica tego ciągu jest równa:
Odpowiedzi:
A. -12 B. -3
C. -\frac{3}{2} D. -10
E. -9 F. -13
Zadanie 3.  1 pkt ⋅ Numer: pp-12120 ⋅ Poprawnie: 79/143 [55%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Suma wszystkich liczb całkowitych dodatnich parzystych i jednocześnie mniejszych od 501 jest równa:
Odpowiedzi:
A. \frac{2+1002}{2}\cdot 250 B. \frac{2+501}{2}\cdot 501
C. \frac{2+250}{2}\cdot 501 D. \frac{2+500}{2}\cdot 501
E. \frac{2+1002}{2}\cdot 501 F. \frac{2+500}{2}\cdot 250
G. \frac{2+501}{2}\cdot 250 H. \frac{2+250}{2}\cdot 250
Zadanie 4.  1 pkt ⋅ Numer: pp-11169 ⋅ Poprawnie: 346/527 [65%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg (a_n) jest geometryczny i niemonotoniczny, w którym a_{12}=-\frac{1}{9} i a_{17}=27.

Wówczas wyraz a_{16} jest równy:

Odpowiedź:
a_{k}= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11830 ⋅ Poprawnie: 642/749 [85%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Pan Grzegorz wpłacił do banku pewną kwotę na lokatę dwuletnią. Po każdym rocznym okresie oszczędzania bank doliczał odsetki w wysokości 10\% od kwoty bieżącego kapitału znajdującego się na lokacie. Po dwóch latach oszczędzania pan Grzegorz odebrał z tego banku wraz z odsetkami kwotę 8591.00 zł (bez uwzględnienia podatków).

Kwota wpłacona przez pana Grzegorza na tę lokatę była równa:

Odpowiedzi:
A. 7700 B. 6700
C. 7500 D. 7100
E. 7200 F. 6900
Zadanie 6.  2 pkt ⋅ Numer: pp-20828 ⋅ Poprawnie: 47/275 [17%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Pan Kowalczyk ulokował w banku kwotę 5000 zł na okres dziesięciu lat na procent składany. Oprocentowanie w banku wynosi 9\% w skali roku, a odsetki kapitalizuje się co 20 miesięcy.

Jaką kwotę będzie miał na koncie pan Kowalczyk po tym okresie (bez pobierania podatku od usług kapitałowych).

Odpowiedź:
Kapital\ koncowy\ [zl]= (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Jaką kwotę miałby na koncie pan Kowalczyk po tym okresie, gdyby uwzględnić 18-procentowy podatek od usług kapitałowych?
Odpowiedź:
Kapital\ bez\ podatku\ [zl]= (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20507 ⋅ Poprawnie: 510/846 [60%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Suma trzydziestu początkowych wyrazów ciągu arytmetycznego (a_n) jest równa 225 oraz a_{30}=225.

Oblicz różnicę tego ciągu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-21082 ⋅ Poprawnie: 136/264 [51%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Trójwyrazowy ciąg (x+6,y-6,y-2) jest arytmetyczny. Suma wszystkich wyrazów tego ciągu jest równa 6. Oblicz wszystkie wyrazy tego ciągu.

Wyznacz x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Wyznacz y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20508 ⋅ Poprawnie: 42/87 [48%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « W ciągu arytmetycznym \left(a_n\right) mamy: a_1=a oraz 3\cdot S_{5}=S_{10}-S_{5}.

Oblicz różnicę tego ciągu.

Dane
a=20
Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20518 ⋅ Poprawnie: 35/81 [43%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Dane są kwadraty K_1, K_2, K_3,..., K_{p}. Kwadrat K_1 ma bok długości a, zaś każdy kolejny kwadrat bok o połowę krótszy.

Oblicz pole powierzchni kwadratu K_{p}. Wynik zapisz w postaci \frac{a^2}{2^m}. Podaj m.

Dane
a=20
p=8
Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30156 ⋅ Poprawnie: 303/688 [44%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Ciąg arytmetyczny (a_n) określony jest wzorem a_n=a-bn, dla n\geqslant 1.

Ile wyrazów dodatnich ma ten ciąg.

Dane
a=2020
b=5
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Wyznacz sumę wszystkich wyrazów dodatnich tego ciągu.
Odpowiedź:
s_{> 0}= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30162 ⋅ Poprawnie: 212/823 [25%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 Liczby x, y i z w podanej kolejności tworzą trzy pierwsze wyrazy ciągu geometrycznego (a_n) o ilorazie 3. Liczby (x+a, y, z+a) tworzą ciąg arytmetyczny (b_n).

Podaj z.

Dane
a=40
Odpowiedź:
z=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm