Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-11159 ⋅ Poprawnie: 232/392 [59%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Dany jest ciąg
a_n=\frac{n+13}{n+1} .
Ile wyrazów całkowitych występuje w tym ciągu?
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11456 ⋅ Poprawnie: 1352/1530 [88%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Pomiędzy liczby
114 i
336
można wstawić pięć takich liczb, że wszystkie siedem liczb będą tworzyć
ciąg arytmetyczny.
Wyznacz najmniejszą z wstawionych liczb.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-12120 ⋅ Poprawnie: 79/144 [54%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Suma wszystkich liczb całkowitych dodatnich parzystych i jednocześnie mniejszych od
401 jest równa:
Odpowiedzi:
A. \frac{2+401}{2}\cdot 200
B. \frac{2+400}{2}\cdot 401
C. \frac{2+200}{2}\cdot 401
D. \frac{2+401}{2}\cdot 401
E. \frac{2+802}{2}\cdot 401
F. \frac{2+200}{2}\cdot 200
G. \frac{2+802}{2}\cdot 200
H. \frac{2+400}{2}\cdot 200
Zadanie 4. 1 pkt ⋅ Numer: pp-11179 ⋅ Poprawnie: 901/1213 [74%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
W ciągu geometrycznym
(a_n) , który zawiera dziewięć
wyrazów, wszystkie wyrazy są dodatnie i znane są dwa wyrazy
a_1=12 i
a_9=3 .
Oblicz a_5 .
Odpowiedź:
a_5=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11182 ⋅ Poprawnie: 321/513 [62%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Kwotę 1000 zł ulokowano w banku na roczną lokatę oprocentowaną w wysokości
16\% w stosunku rocznym. Po zakończeniu lokaty od
naliczonych odsetek odprowadzany jest podatek w wysokości
19\% .
Maksymalna kwota, jaką po upływie roku będzie można wypłacić z banku, jest
równa:
Odpowiedzi:
A. 1000\cdot\left(1+\frac{81}{100}\cdot\frac{16}{100}\right)
B. 1000\cdot\left(1-\frac{81}{100}\cdot\frac{16}{100}\right)
C. 1000\cdot\left(1-\frac{19}{100}+\frac{16}{100}\right)
D. 1000\cdot\left(1-\frac{19}{100}\cdot\frac{16}{100}\right)
Zadanie 6. 2 pkt ⋅ Numer: pp-20828 ⋅ Poprawnie: 47/275 [17%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Pan Kowalczyk ulokował w banku kwotę
8000 zł na okres
dziesięciu lat na procent składany. Oprocentowanie w banku wynosi
3\% w skali roku, a odsetki kapitalizuje się
co
20 miesięcy.
Jaką kwotę będzie miał na koncie pan Kowalczyk po tym okresie (bez pobierania
podatku od usług kapitałowych).
Odpowiedź:
Kapital\ koncowy\ [zl]=
(liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
Jaką kwotę miałby na koncie pan Kowalczyk po tym okresie, gdyby uwzględnić 18-procentowy podatek
od usług kapitałowych?
Odpowiedź:
Kapital\ bez\ podatku\ [zl]=
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pp-20503 ⋅ Poprawnie: 483/838 [57%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
«« Dany jest ciąg arytmetyczny
(10, x-3, y, -5) .
Oblicz x .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Zadanie 8. 3 pkt ⋅ Numer: pp-20865 ⋅ Poprawnie: 112/219 [51%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
(1 pkt)
W rosnącym ciągu arytmetycznym
\left(a_n\right) , określonym dla każdej liczby naturalnej dodatniej
n , suma trzech początkowych wyrazów jest równa
24 , a iloczyn tych wyrazów jest równy
440 .
Oblicz różnicę tego ciągu.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (2 pkt)
(2 pkt)
Wyznacz wyraz
a_{85} tego ciągu.
Odpowiedź:
a_{k}=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20787 ⋅ Poprawnie: 190/422 [45%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
» Dana jest liczba
k ,
k-ty
wyraz ciągu arytmetycznego
(a_n) oraz
suma
S_k ,
k początkowych
wyrazów tego ciągu.
Oblicz a_1 .
Dane
k=16
a_{16}=-56
S_{16}=-296
Odpowiedź:
a_{1}=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Oblicz różnicę
r tego ciągu.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-21111 ⋅ Poprawnie: 227/376 [60%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Ciąg
(a_n) jest określony wzorem
a_n=4\cdot(-1)^{n+1}+2 dla każdej liczby
naturalnej
n\geqslant 1 .
Suma dziesięciu początkowych kolejnych wyrazów tego ciągu jest równa:
Odpowiedzi:
A. 27
B. 26
C. 12
D. 20
E. 34
F. 18
G. 40
H. 14
Podpunkt 10.2 (1 pkt)
Oceń prawdziwość poniższych stwierdzeń.
Odpowiedzi:
T/N : ciąg (a_n) jest malejący
T/N : ciąg (a_n) jest geometryczny
Zadanie 11. 4 pkt ⋅ Numer: pp-30157 ⋅ Poprawnie: 38/123 [30%]
Rozwiąż
Podpunkt 11.1 (4 pkt)
«« W ciągu arytmetycznym
(a_n) mamy:
a_8=m .
Przy jakiej różnicy ciągu suma kwadratów wyrazów a_2
i a_6 jest najmniejsza możliwa?
Dane
m=32
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 4 pkt ⋅ Numer: pp-30391 ⋅ Poprawnie: 186/387 [48%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
Ciąg liczbowy
\left(a_n\right) jest ciągiem geometrycznym,
a jego
k -ty wyraz jest równy
a_k .
Oblicz iloraz tego ciągu.
Dane
a_1=-3
a_k=-12288
a_1+a_2+a_3+...+a_k=-24573
Odpowiedź:
q=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Rozwiąż