Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11163 ⋅ Poprawnie: 107/161 [66%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Liczba 10^{12} jest jednym z wyrazów ciągu kwadratów kolejnych liczb naturalnych 1,2,4,9,16,....

Poprzednim wyrazem tego ciągu jest liczba:

Odpowiedzi:
A. 10^{12}\right)-1 B. \left(10^{6}\right)^2
C. \left(10^{6}+1\right)^2 D. \left(10^{6}-1\right)^2
Zadanie 2.  1 pkt ⋅ Numer: pp-11969 ⋅ Poprawnie: 314/271 [115%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Pięciowyrazowy ciąg \left(-12,-\frac{17}{2},x,y,2\right) jest arytmetyczny.

Liczby x i y są równe:

Odpowiedzi:
A. x=-5 oraz y=-\frac{1}{2} B. x=-4 oraz y=-\frac{3}{2}
C. x=-4 oraz y=-1 D. x=-\frac{9}{2} oraz y=-\frac{1}{2}
E. x=-5 oraz y=-\frac{3}{2} F. x=-\frac{9}{2} oraz y=-1
Zadanie 3.  1 pkt ⋅ Numer: pp-11509 ⋅ Poprawnie: 497/926 [53%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Oblicz sumę wszystkich liczb naturalnych trzycyfrowych parzystych, które są większe od 141.
Odpowiedź:
s= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11172 ⋅ Poprawnie: 204/251 [81%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg określony wzorem a_n=n^2+6n+5 jest ciągiem:
Odpowiedzi:
A. niemonotonicznym B. geometrycznym
C. rosnącym D. arytmetycznym
Zadanie 5.  1 pkt ⋅ Numer: pp-11830 ⋅ Poprawnie: 612/714 [85%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Pan Grzegorz wpłacił do banku pewną kwotę na lokatę dwuletnią. Po każdym rocznym okresie oszczędzania bank doliczał odsetki w wysokości 25\% od kwoty bieżącego kapitału znajdującego się na lokacie. Po dwóch latach oszczędzania pan Grzegorz odebrał z tego banku wraz z odsetkami kwotę 5000.00 zł (bez uwzględnienia podatków).

Kwota wpłacona przez pana Grzegorza na tę lokatę była równa:

Odpowiedzi:
A. 3200 B. 2800
C. 3700 D. 3600
E. 2900 F. 3100
Zadanie 6.  2 pkt ⋅ Numer: pp-20826 ⋅ Poprawnie: 34/226 [15%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Przez pięć lat (na początku każdego roku) pan Nowak lokuje w banku po k zł na p\% w skali roku (procent prosty).

Jaką kwotę otrzyma po pięciu latach? Uwzględnij 18-procentowy podatek od dochodów kapitałowych.

Dane
k=2000
p=11
Odpowiedź:
s= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20507 ⋅ Poprawnie: 509/845 [60%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Suma trzydziestu początkowych wyrazów ciągu arytmetycznego (a_n) jest równa 30 oraz a_{30}=30.

Oblicz różnicę tego ciągu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20817 ⋅ Poprawnie: 157/313 [50%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Dany jest ciąg arytmetyczny (a_n).

Wyznacz a_1.

Dane
a_{1}+a_{2}=17
a_{7}=36
a_{k}+a_{k+1}=177
Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Oblicz k.
Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20821 ⋅ Poprawnie: 150/350 [42%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Suma stu kolejnych liczb naturalnych, które przy dzieleniu przez 8 dają resztę 6 jest równa 41800.

Podaj najmniejszą z tych liczb.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj największą z tych liczb.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20825 ⋅ Poprawnie: 54/424 [12%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Trzeci, piąty i siódmy wyraz ciągu geometrycznego \left(a_n\right) są równe odpowiednio a_3, a_5 i a_7.

Oblicz najmniejszy możliwy iloraz tego ciągu.

Dane
a_7-a_3=720
a_7-a_5=648
Odpowiedź:
q_{min}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Oblicz pierwszy wyraz tego ciągu.
Odpowiedź:
a_{1}= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30156 ⋅ Poprawnie: 303/688 [44%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Ciąg arytmetyczny (a_n) określony jest wzorem a_n=a-bn, dla n\geqslant 1.

Ile wyrazów dodatnich ma ten ciąg.

Dane
a=2016
b=8
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Wyznacz sumę wszystkich wyrazów dodatnich tego ciągu.
Odpowiedź:
s_{> 0}= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30168 ⋅ Poprawnie: 42/125 [33%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 W pewnym ciągu geometrycznym (a_n) wyraz a_4 jest osiem razy większy od wyrazu a_1. Drugi wyraz tego ciągu jest równy 6. Znajdź najmniejszą liczbę naturalną k taką, że a_k > 3\cdot 2^p.

Podaj k.

Dane
p=10
Odpowiedź:
k= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm