Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11815 ⋅ Poprawnie: 579/645 [89%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=(-1)^n\cdot\frac{n+9}{4}, dla każdej liczby naturalnej n\geqslant 1.

Trzeci wyraz tego ciągu jest równy:

Odpowiedzi:
A. -\frac{11}{4} B. 3
C. -4 D. -\frac{7}{2}
E. -3 F. -\frac{5}{2}
Zadanie 2.  1 pkt ⋅ Numer: pp-11146 ⋅ Poprawnie: 1707/2081 [82%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « W ciągu arytmetycznym \left(a_n\right) wyrazy pierwszy i trzeci są równe odpowiednio 5 i 19, a pewien wyraz tego ciągu a_k jest równy 103.

Wyznacz numer tego wyrazu.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11154 ⋅ Poprawnie: 362/545 [66%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « W ciągu arytmetycznym (a_n) sumę n początkowych wyrazów można obliczyć korzystając ze wzoru S_n=n+2n^2, gdzie n\in\mathbb{N_{+}}.

Oblicz wyraz a_{11} tego ciągu.

Odpowiedź:
a_k= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-12034 ⋅ Poprawnie: 92/104 [88%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg (x,y,z) jest geometryczny. Iloczyn wszystkich wyrazów tego ciągu jest równy 27.

Wynika z tego, że y jest równe:

Odpowiedzi:
A. \frac{3}{2} B. -\frac{3}{2}
C. 3 D. -3
E. -6 F. 6
Zadanie 5.  1 pkt ⋅ Numer: pp-11412 ⋅ Poprawnie: 243/369 [65%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Ciąg liczbowy geometryczny (a_n) zawiera tylko wyrazy dodatnie oraz \frac{a_{19}}{a_{17}}= \frac{1}{100}.

Oblicz iloraz tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20522 ⋅ Poprawnie: 114/203 [56%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Nominalna stopa oprocentowania lokaty wynosi 3\% w stosunku rocznym (bez uwzględnienia podatku). Odsetki kapitalizowane są na koniec każdego kolejnego okresu czteromiesięcznego.

Oblicz, jaką kwotę wpłacono na tę lokatę, jeśli na koniec ośmiu miesięcy oszczędzania na rachunku lokaty było o 124.62 zł więcej niż przy jej otwarciu. Odpowiedź podaj bez jednostki.

Odpowiedź:
Kapital\ poczatkowy\ [zl]= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20513 ⋅ Poprawnie: 99/224 [44%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wyraz drugi ciągu arytmetycznego jest o 66 większy od wyrazu ósmego tego ciągu. Równocześnie wyraz drugi jest 23 razy większy od wyrazu ósmego tego ciągu.

Podaj równicę r tego ciągu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj drugi wyraz tego ciągu.
Odpowiedź:
a_2= (wpisz liczbę całkowitą)
Zadanie 8.  3 pkt ⋅ Numer: pp-20865 ⋅ Poprawnie: 112/219 [51%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 (1 pkt) W rosnącym ciągu arytmetycznym \left(a_n\right), określonym dla każdej liczby naturalnej dodatniej n, suma trzech początkowych wyrazów jest równa 36, a iloczyn tych wyrazów jest równy 960.

Oblicz różnicę tego ciągu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Podpunkt 8.2 (2 pkt)
 (2 pkt) Wyznacz wyraz a_{84} tego ciągu.
Odpowiedź:
a_{k}= (wpisz liczbę całkowitą)
Zadanie 9.  3 pkt ⋅ Numer: pp-20810 ⋅ Poprawnie: 243/575 [42%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 «« Suma dwudziestu jeden początkowych wyrazów ciągu arytmetycznego \left(a_n\right) jest równa S_{21}, a wyraz dziewiąty tego ciągu jest równy a_9.

Oblicz różnicę tego ciągu.

Dane
S_{21}=588=588.00000000000000
a_9=27=27.00000000000000
d=\frac{73}{2}=36.50000000000000
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (2 pkt)
 (2 pkt) Podaj numer wyrazu ciągu, który jest równy d.
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20825 ⋅ Poprawnie: 54/424 [12%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Trzeci, piąty i siódmy wyraz ciągu geometrycznego \left(a_n\right) są równe odpowiednio a_3, a_5 i a_7.

Oblicz najmniejszy możliwy iloraz tego ciągu.

Dane
a_7-a_3=2160
a_7-a_5=1944
Odpowiedź:
q_{min}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Oblicz pierwszy wyraz tego ciągu.
Odpowiedź:
a_{1}= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30166 ⋅ Poprawnie: 182/424 [42%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Suma pierwszych pięciu wyrazów ciągu arytmetycznego (a_n) wynosi s1, a suma a_6+a_7+a_8+...+a_{12} wynosi s2.

Oblicz a_1.

Dane
s1=1255
s2=1379
Odpowiedź:
a_{1}= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Oblicz różnicę tego ciągu.
Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30164 ⋅ Poprawnie: 48/127 [37%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Suma pierwszych pięciu wyrazów niestałego ciągu arytmetycznego (a_n) jest równa s, a wyrazy trzeci, piąty i k-ty tego ciągu tworzą w podanej kolejności ciąg geometryczny.

Oblicz a_1.

Dane
s=40
k=8
Odpowiedź:
a_{1}= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Podaj różnicę r tego ciągu.
Odpowiedź:
r= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm