Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-11158 ⋅ Poprawnie: 469/919 [51%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Ciąg liczbowy
(a_n) określony jest wzorem
a_n=\frac{2n^2-30n+88}{n^2+16} ,
a liczby
p i
q są odpowiednio najmniejszym
i największym numerem wyrazów ciągu, które są równe
0 .
Podaj liczby p i q .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11891 ⋅ Poprawnie: 369/379 [97%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Ciąg
(a_n) , określony dla każdej liczby naturalnej
n \geqslant 1 , jest arytmetyczny. Różnica tego ciągu jest równa
-4 oraz
a_8=-31 .
Czwarty wyraz tego ciągu jest równy:
Odpowiedzi:
A. -19
B. -11
C. -31
D. -15
E. -23
F. -27
Zadanie 3. 1 pkt ⋅ Numer: pp-11147 ⋅ Poprawnie: 55/119 [46%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
(c_n) dany jest wzorem
c_n=(n-13)\cdot 6 dla
n\geqslant 1 .
Oblicz S_{20} .
Odpowiedź:
S_{20}=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11173 ⋅ Poprawnie: 187/321 [58%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Dany jest ciąg geometryczny o początkowych wyrazach
a_1=243 ,
a_2=81 ,
a_3=27 .
Oblicz numer największego wyrazu tego ciągu, który jest mniejszy od
\frac{1}{6} .
Odpowiedź:
max_{< \frac{1}{m}}=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11182 ⋅ Poprawnie: 318/508 [62%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Kwotę 1000 zł ulokowano w banku na roczną lokatę oprocentowaną w wysokości
14\% w stosunku rocznym. Po zakończeniu lokaty od
naliczonych odsetek odprowadzany jest podatek w wysokości
19\% .
Maksymalna kwota, jaką po upływie roku będzie można wypłacić z banku, jest
równa:
Odpowiedzi:
A. 1000\cdot\left(1-\frac{19}{100}+\frac{14}{100}\right)
B. 1000\cdot\left(1+\frac{81}{100}\cdot\frac{14}{100}\right)
C. 1000\cdot\left(1-\frac{81}{100}\cdot\frac{14}{100}\right)
D. 1000\cdot\left(1-\frac{19}{100}\cdot\frac{14}{100}\right)
Zadanie 6. 2 pkt ⋅ Numer: pp-20523 ⋅ Poprawnie: 57/109 [52%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
» Akcje firmy zyskują na wartości
12\% w ciągu
każdego roku.
Po ilu latach posiadacz akcji co najmniej podwoi zainwestowaną kwotę? Przyjmnij, że wartość
akcji wzrasta dopiero po upływie pełnego roku.
Odpowiedź:
Ilosc\ lat=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20509 ⋅ Poprawnie: 489/1048 [46%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Oblicz sumę wszystkich liczb naturalnych trzycyfrowych nieparzystych,
nie większych od
891 .
Odpowiedź:
s_{\leqslant k}=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20817 ⋅ Poprawnie: 157/313 [50%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Dany jest ciąg arytmetyczny
(a_n) .
Wyznacz a_1 .
Dane
a_{1}+a_{2}=40
a_{7}=42
a_{k}+a_{k+1}=176
Odpowiedź:
a_1=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20821 ⋅ Poprawnie: 150/350 [42%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Suma stu kolejnych liczb naturalnych, które przy dzieleniu przez
9 dają resztę
8
jest równa
47150 .
Podaj najmniejszą z tych liczb.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj największą z tych liczb.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-21095 ⋅ Poprawnie: 28/103 [27%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Dany jest ciąg geometryczny
(a_n) , określony dla
każdej liczby naturalnej
n\geqslant 1 .
W tym ciągu
a_1=-5 ,
a_2=20
a_3=-80 .
Wzór ogólny ciągu (a_n) ma postać:
Odpowiedzi:
T/N : a_n=-5\cdot (-4)^{n}
T/N : a_n=-5\cdot (-4)^{n-1}
T/N : a_n=-5\cdot 4^{n}
T/N : a_n=5\cdot (-4)^{n}
Zadanie 11. 4 pkt ⋅ Numer: pp-30167 ⋅ Poprawnie: 11/72 [15%]
Rozwiąż
Podpunkt 11.1 (4 pkt)
« Suma
n początkowych wyrazów ciągu arytmetycznego
(a_n) dana jest wzorem
S_n=\frac{n^2-25n}{4}
(
n > 0 ). Różnica ciągu arytmetycznego
(b_n) jest równa
\frac{3}{2} oraz jego piąty wyraz jest równy
p . Wyznacz sumę
17
początkowych wyrazów ciągu arytmetycznego
(c_n) , wiedząc, że
c_n=2b_n-a_8 , gdzie
n > 0 .
Podaj wyznaczoną sumę.
Dane
p=68
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 4 pkt ⋅ Numer: pp-30391 ⋅ Poprawnie: 186/387 [48%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
Ciąg liczbowy
\left(a_n\right) jest ciągiem geometrycznym,
a jego
k -ty wyraz jest równy
a_k .
Oblicz iloraz tego ciągu.
Dane
a_1=-3
a_k=-6144
a_1+a_2+a_3+...+a_k=-12285
Odpowiedź:
q=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Rozwiąż