Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11386 ⋅ Poprawnie: 331/661 [50%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Oceń, które z podanych ciągów są rosnące?
Odpowiedzi:
T/N : a_n=n^2-124 T/N : a_n=\frac{n+4}{n+1}
T/N : a_n=7-(n-1)^2  
Zadanie 2.  1 pkt ⋅ Numer: pp-12035 ⋅ Poprawnie: 239/254 [94%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg (a_n), określony dla każdej liczby naturalnej n > 1, jest arytmetyczny. Różnica tego ciągu jest równa -6, a pierwszy wyraz tego ciągu jest równy 8.

Wtedy iloraz \frac{a_4}{a_2} jest równy:

Odpowiedzi:
A. -15 B. -\frac{15}{2}
C. -10 D. -\frac{5}{2}
E. -5 F. -20
Zadanie 3.  1 pkt ⋅ Numer: pp-11509 ⋅ Poprawnie: 497/926 [53%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Oblicz sumę wszystkich liczb naturalnych trzycyfrowych parzystych, które są większe od 285.
Odpowiedź:
s= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-12014 ⋅ Poprawnie: 293/412 [71%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Trzywyrazowy ciąg (-1,2,x-5) jest arytmetyczny. Trzywyrazowy ciąg (-1,2,y-1) jest geometryczny.

Liczby x oraz y spełniają warunki:

Odpowiedzi:
A. x \lessdot 5 i y\lessdot 1 B. x > 5 i y > 1
C. x > 5 i y\lessdot 1 D. x \lessdot 5 i y > 1
Zadanie 5.  1 pkt ⋅ Numer: pp-11183 ⋅ Poprawnie: 539/888 [60%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Na lokacie złożono 1000 zł przy rocznej stopie procentowej 28\% (procent składany). Odsetki naliczane są co kwartał.

Po upływie roku wielkość kapitału na lokacie (przed potrąceniem podatków będzie równa:

Odpowiedzi:
A. 1000\cdot\left(1+\frac{7}{100}\right) B. 1000\cdot\left(1+\frac{7}{100}\right)^4
C. 1000\cdot\left(1+\frac{7}{400}\right)^4 D. 1000\cdot\left(1+\left(\frac{28}{100}\right)^4\right)
Zadanie 6.  2 pkt ⋅ Numer: pp-20828 ⋅ Poprawnie: 47/275 [17%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Pan Kowalczyk ulokował w banku kwotę 9000 zł na okres dziesięciu lat na procent składany. Oprocentowanie w banku wynosi 10\% w skali roku, a odsetki kapitalizuje się co 20 miesięcy.

Jaką kwotę będzie miał na koncie pan Kowalczyk po tym okresie (bez pobierania podatku od usług kapitałowych).

Odpowiedź:
Kapital\ koncowy\ [zl]= (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Jaką kwotę miałby na koncie pan Kowalczyk po tym okresie, gdyby uwzględnić 18-procentowy podatek od usług kapitałowych?
Odpowiedź:
Kapital\ bez\ podatku\ [zl]= (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20506 ⋅ Poprawnie: 280/398 [70%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 W ciągu arytmetycznym (a_n) występują kolejne liczby naturalne dające resztę 2 przy dzieleniu przez 5.

Wiedząc, że a_{14}=102, oblicz a_{21}.

Odpowiedź:
a_k= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20818 ⋅ Poprawnie: 296/608 [48%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Dany jest ciąg arytmetyczny (a_n).

Wyznacz a_1.

Dane
a_{2}=-26
a_{6}=-10
a_{k}=182
Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Oblicz k.
Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20822 ⋅ Poprawnie: 141/304 [46%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Rowerzysta w ciągu pierwszej godziny przejechał s kilometrów, a ciągu każdej następnej godziny przejeżdżał o d metrów mniej. W ciągu ostatniej godziny jazdy ten rowerzysta przejechał drogę o długości p kilometrów.

Ile godzin trwała jazda tego rowerzysty?

Dane
s=39
d=240
p=33.48
Odpowiedź:
t\ [h]= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj długość trasy w kilometrach przejechanej przez tego rowerzystę?
Odpowiedź:
s\ [km]=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-21095 ⋅ Poprawnie: 28/109 [25%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Dany jest ciąg geometryczny (a_n), określony dla każdej liczby naturalnej n\geqslant 1. W tym ciągu a_1=-5, a_2=20 a_3=-80.

Wzór ogólny ciągu (a_n) ma postać:

Odpowiedzi:
T/N : a_n=-5\cdot (-4)^{n-1} T/N : a_n=5\cdot \frac{(-4)^n}{4}
T/N : a_n=5\cdot (-4)^{n} T/N : a_n=-5\cdot 4^{n}
T/N : a_n=-5\cdot (-4)^{n}  
Zadanie 11.  4 pkt ⋅ Numer: pp-30156 ⋅ Poprawnie: 303/688 [44%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Ciąg arytmetyczny (a_n) określony jest wzorem a_n=a-bn, dla n\geqslant 1.

Ile wyrazów dodatnich ma ten ciąg.

Dane
a=2020
b=6
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Wyznacz sumę wszystkich wyrazów dodatnich tego ciągu.
Odpowiedź:
s_{> 0}= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30162 ⋅ Poprawnie: 212/823 [25%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 Liczby x, y i z w podanej kolejności tworzą trzy pierwsze wyrazy ciągu geometrycznego (a_n) o ilorazie 3. Liczby (x+a, y, z+a) tworzą ciąg arytmetyczny (b_n).

Podaj z.

Dane
a=37
Odpowiedź:
z=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm