Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-12090 ⋅ Poprawnie: 76/80 [95%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dane są ciągi (a_n), (b_n), (c_n), (d_n), określone dla każdej liczby naturalnej n\geqslant 1 wzorami: a_n=20n+3, b_n=2n^2-3, c_n=n^2+10n-2, d_n=\frac{n+187}{n}.

Liczba 223 jest 11-tym wyrazem ciągu:

Odpowiedzi:
A. (c_n) B. (a_n)
C. (b_n) D. (d_n)
Zadanie 2.  1 pkt ⋅ Numer: pp-12119 ⋅ Poprawnie: 161/185 [87%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Różnica tego ciągu jest równa -4.

Wtedy:

Odpowiedzi:
A. a_{16}-a_{5}=-28 B. a_{16}-a_{5}=-44
C. a_{16}-a_{5}=-36 D. a_{16}-a_{5}=-56
E. a_{16}-a_{5}=-32 F. a_{16}-a_{5}=-52
G. a_{16}-a_{5}=-60 H. a_{16}-a_{5}=-40
Zadanie 3.  1 pkt ⋅ Numer: pp-12120 ⋅ Poprawnie: 80/145 [55%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Suma wszystkich liczb całkowitych dodatnich parzystych i jednocześnie mniejszych od 601 jest równa:
Odpowiedzi:
A. \frac{2+300}{2}\cdot 300 B. \frac{2+300}{2}\cdot 601
C. \frac{2+601}{2}\cdot 601 D. \frac{2+600}{2}\cdot 601
E. \frac{2+1202}{2}\cdot 601 F. \frac{2+600}{2}\cdot 300
G. \frac{2+1202}{2}\cdot 300 H. \frac{2+601}{2}\cdot 300
Zadanie 4.  1 pkt ⋅ Numer: pp-12091 ⋅ Poprawnie: 66/89 [74%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg geometryczny (a_n), określony dla każdej liczby naturalnej n\geqslant 1, jest rosnący i wszystkie jego wyrazy są dodatnie. Ponadto spełniony jest warunek a_3=a_1^{4}\cdot a_2. Niech q oznacza iloraz ciągu (a_n).

Wtedy:

Odpowiedzi:
A. a_1=q B. q=a_1^4
C. a_1=\frac{1}{q^4} D. q^4=a_1
Zadanie 5.  1 pkt ⋅ Numer: pp-11184 ⋅ Poprawnie: 262/407 [64%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Po k latach z tytułu lokaty o wysokości 3500 zł oprocentowanej w wysokości 25\% w skali roku przy rocznej kapitalizacji odsetek otrzymamy łączne odsetki (przed potrąceniem podatków) w wysokości m złotych.

Wyznacz liczbę m.

Odpowiedź:
m= (liczba zapisana dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20516 ⋅ Poprawnie: 470/1097 [42%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Dany jest ciąg a_n=an^2+bn+c, dla n\in\mathbb{N_{+}}.

Oblicz ilość wyrazów ujemnych tego ciągu.

Dane
a=1
b=3
c=-40
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20510 ⋅ Poprawnie: 99/253 [39%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Wyznacz wzór ogólny ciągu arytmetycznego wiedząc, że suma jego pięciu pierwszych wyrazów jest równa -105, a drugi wyraz tego ciągu jest równy -20.

Wzór zapisz w postaci a_n=an+b. Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-21058 ⋅ Poprawnie: 484/771 [62%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Ciąg \left(3x^2-31x+78,x^2-12x+36,-x^2+12x-16\right) jest arytmetyczny.

Oblicz x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20508 ⋅ Poprawnie: 42/87 [48%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « W ciągu arytmetycznym \left(a_n\right) mamy: a_1=a oraz 3\cdot S_{5}=S_{10}-S_{5}.

Oblicz różnicę tego ciągu.

Dane
a=2
Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20519 ⋅ Poprawnie: 225/616 [36%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Ślimak w ciągu pierwszej godziny pokonał m metrów. W ciągu każdej następnej godziny pokonywał \frac{p}{q} drogi jaką pokonał w poprzedniej godzinie.

Oblicz drogę w metrach pokonaną przez ślimaka w pięć godzin.

Dane
m=2
p=4
q=5
Odpowiedź:
s\ [m]=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30158 ⋅ Poprawnie: 48/123 [39%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
«« W ciągu arytmetycznym (a_n) dane są wyrazy: a_1=x+3y, a_2=4x+y, a_3=3x+6y+1, a_4=9x-2y+1. Oblicz x i y. Wyznacz wzór ogólny ciągu i zapisz go w postaci a_n=an+b.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30169 ⋅ Poprawnie: 17/322 [5%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 «« W ciągu geometrycznym (a_n), w którym a_1\neq 0, różnica pomiędzy wyrazami ósmym i szóstym jest k razy większa niż różnica między wyrazami siódmym i szóstym. Wyznacz iloraz tego ciągu.

Podaj najmniejsze możliwe q tego ciągu.

Dane
k=4
Odpowiedź:
q_{min}= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Podaj największe możliwe q tego ciągu.
Odpowiedź:
q_{max}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm