Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11455 ⋅ Poprawnie: 70/140 [50%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 «« Wskaż najmniejszy możliwy numer wyrazu, poczynając od którego ciąg liczbowy określony wzorem a_n=n^2-11n+11 jest monotoniczny:
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11456 ⋅ Poprawnie: 1352/1530 [88%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Pomiędzy liczby 77 i 323 można wstawić pięć takich liczb, że wszystkie siedem liczb będą tworzyć ciąg arytmetyczny.

Wyznacz najmniejszą z wstawionych liczb.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11153 ⋅ Poprawnie: 43/132 [32%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » W ciągu arytmetycznym, w którym r\neq 0, zachodzi warunek a_{9}=0.

Wówczas:

Odpowiedzi:
A. S_{18} > a_{18} B. S_{18} \lessdot a_{18}
C. S_{18}=a_{18} D. S_{18}=0
Zadanie 4.  1 pkt ⋅ Numer: pp-11177 ⋅ Poprawnie: 477/712 [66%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg (6-3\sqrt{3}, x, 6+3\sqrt{3}) jest geometryczny.

Oblicz x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11412 ⋅ Poprawnie: 243/369 [65%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Ciąg liczbowy geometryczny (a_n) zawiera tylko wyrazy dodatnie oraz \frac{a_{9}}{a_{7}}= \frac{1}{16}.

Oblicz iloraz tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20828 ⋅ Poprawnie: 47/275 [17%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Pan Kowalczyk ulokował w banku kwotę 5000 zł na okres dziesięciu lat na procent składany. Oprocentowanie w banku wynosi 4\% w skali roku, a odsetki kapitalizuje się co 15 miesięcy.

Jaką kwotę będzie miał na koncie pan Kowalczyk po tym okresie (bez pobierania podatku od usług kapitałowych).

Odpowiedź:
Kapital\ koncowy\ [zl]= (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Jaką kwotę miałby na koncie pan Kowalczyk po tym okresie, gdyby uwzględnić 18-procentowy podatek od usług kapitałowych?
Odpowiedź:
Kapital\ bez\ podatku\ [zl]= (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20510 ⋅ Poprawnie: 99/253 [39%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Wyznacz wzór ogólny ciągu arytmetycznego wiedząc, że suma jego pięciu pierwszych wyrazów jest równa -110, a drugi wyraz tego ciągu jest równy -19.

Wzór zapisz w postaci a_n=an+b. Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 8.  3 pkt ⋅ Numer: pp-20865 ⋅ Poprawnie: 112/219 [51%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 (1 pkt) W rosnącym ciągu arytmetycznym \left(a_n\right), określonym dla każdej liczby naturalnej dodatniej n, suma trzech początkowych wyrazów jest równa -9, a iloczyn tych wyrazów jest równy 48.

Oblicz różnicę tego ciągu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Podpunkt 8.2 (2 pkt)
 (2 pkt) Wyznacz wyraz a_{76} tego ciągu.
Odpowiedź:
a_{k}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-21045 ⋅ Poprawnie: 567/953 [59%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Pan Stanisław spłacił pożyczkę w wysokości 14130 zł w osiemnastu ratach. Każda kolejna rata była mniejsza od poprzedniej o 30 zł.

Oblicz kwotę pierwszej raty.

Odpowiedź:
R_1= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20521 ⋅ Poprawnie: 250/578 [43%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Liczby 3x-2, \sqrt{ax}, 3x+5 są kolejnymi dodatnimi wyrazami ciągu geometrycznego.

Podaj liczbę x.

Dane
a=10
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30304 ⋅ Poprawnie: 51/143 [35%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Ciąg (a_n) jest ciągiem liczbowym arytmetycznym o różnicy r, a S_6 sumą sześciu początkowych wyrazów tego ciągu. W ciągu (a_n) zachodzi warunek: \frac{S_6}{6}=m.

Oblicz a_1.

Dane
r=-12
m=-70
k=-388
Odpowiedź:
a_{1}= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Wyznacz numer wyrazu ciągu (a_n), który jest równy k. Jeżeli taki wyraz w ciągu nie istnieje, wpisz -1.
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 12.  5 pkt ⋅ Numer: pp-30418 ⋅ Poprawnie: 7/30 [23%] Rozwiąż 
Podpunkt 12.1 (3 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=\frac{15}{2}n-21 dla każdej liczby naturalnej n\geqslant 1. Trójwyrazowy ciąg (a_{6}, x^2+2, a_{10}), gdzie x jest liczbą rzeczywistą dodatnią, jest geometryczny i rosnący.

Oblicz x.

Odpowiedź:
x= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Oblicz iloraz tego ciągu.
Odpowiedź:
q= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm