Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11767 ⋅ Poprawnie: 767/830 [92%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=2^n\cdot(n+2), dla każdej dodatniej liczby naturalnej n.

Wyraz a_5 jest równy:

Odpowiedzi:
A. 112 B. 512
C. 448 D. 224
Zadanie 2.  1 pkt ⋅ Numer: pp-12037 ⋅ Poprawnie: 209/203 [102%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciągi (a_n), (b_n), (c_n) oraz (d_n) są określone dla każdej liczby naturalnej n > 1 następująco: a_n=4n^2+4, b_n=6n+4, c_n=2^n, d_n=\frac{4}{n}.

Wskaż zdanie prawdziwe:

Odpowiedzi:
A. żaden z ciągów nie jest arytmetyczny B. ciąg b_n jest arytmetyczny
C. ciąg c_n jest arytmetyczny D. ciąg a_n jest arytmetyczny
Zadanie 3.  1 pkt ⋅ Numer: pp-11153 ⋅ Poprawnie: 43/131 [32%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » W ciągu arytmetycznym, w którym r\neq 0, zachodzi warunek a_{21}=0.

Wówczas:

Odpowiedzi:
A. S_{42}=0 B. S_{42}=a_{42}
C. S_{42} > a_{42} D. S_{42} \lessdot a_{42}
Zadanie 4.  1 pkt ⋅ Numer: pp-11862 ⋅ Poprawnie: 177/233 [75%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wszystkie wyrazy nieskończonego ciągu geometrycznego \left(a_n\right), określonego dla każdej liczby naturalnej n\geqslant 1, są dodatnie i 9a_5=64a_3.

Wtedy iloraz tego ciągu jest równy:

Odpowiedzi:
A. \frac{32}{9} B. \frac{16}{3}
C. \frac{16}{9} D. 2
E. \frac{8}{3} F. \frac{8}{5}
Zadanie 5.  1 pkt ⋅ Numer: pp-11180 ⋅ Poprawnie: 730/1059 [68%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Suma pierwszych pięciu wyrazów ciągu geometrycznego jest równa \frac{121}{5}, a jego iloraz wynosi 3.

Wyznacz a_1.

Odpowiedź:
a_1=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-20270 ⋅ Poprawnie: 18/39 [46%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
« Dany jest ciąg a_n=\frac{6n^2-5n+1}{3n-1}.

Ile wyrazów tego ciągu nie należy do zbioru liczb naturalnych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Które wyrazy tego ciągu są mniejsze od 17?

Podaj ilość takich wyrazów.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20816 ⋅ Poprawnie: 926/1936 [47%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
  W ciągu arytmetycznym (a_n) dane są sumy: a_{8}+a_{11}=-147 oraz a_{3}+a_{14}=-105.

Wyznacz różnicę tego ciągu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Oblicz a_1
Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-21058 ⋅ Poprawnie: 434/695 [62%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Ciąg \left(3x^2-x-2,x^2-2x+1,-x^2+2x+19\right) jest arytmetyczny.

Oblicz x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-21045 ⋅ Poprawnie: 555/939 [59%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Pan Stanisław spłacił pożyczkę w wysokości 15930 zł w osiemnastu ratach. Każda kolejna rata była mniejsza od poprzedniej o 30 zł.

Oblicz kwotę pierwszej raty.

Odpowiedź:
R_1= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20518 ⋅ Poprawnie: 35/81 [43%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Dane są kwadraty K_1, K_2, K_3,..., K_{p}. Kwadrat K_1 ma bok długości a, zaś każdy kolejny kwadrat bok o połowę krótszy.

Oblicz pole powierzchni kwadratu K_{p}. Wynik zapisz w postaci \frac{a^2}{2^m}. Podaj m.

Dane
a=9
p=9
Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30159 ⋅ Poprawnie: 11/33 [33%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « W ciągu suma n początkowych wyrazów wyraża się wzorem S_n=5n^2+kn. Wyznacz wzór ogólny tego ciągu i zapisz go w postaci a_n=an+b.

Podaj a+b.

Dane
k=10
Odpowiedź:
a+b= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Uzasadnij, że jest to ciąg arytmetyczny i podaj jego różnicę.
Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30168 ⋅ Poprawnie: 42/125 [33%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 W pewnym ciągu geometrycznym (a_n) wyraz a_4 jest osiem razy większy od wyrazu a_1. Drugi wyraz tego ciągu jest równy 6. Znajdź najmniejszą liczbę naturalną k taką, że a_k > 3\cdot 2^p.

Podaj k.

Dane
p=26
Odpowiedź:
k= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm