Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pr-10263 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 1.1 (1 pkt)
» Ogólny wyraz ciągu
(a_n) spełnia warunek
a_{n+1}=2a_n-3n .
Oblicz piąty wyraz tego ciągu.
Dane
a_1=6
Odpowiedź:
a_{5}=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pr-10265 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 2.1 (1 pkt)
Ciąg liczbowy
(a_n) określony wzorem
\begin{cases}
a_1=a \\
a_{n+1}=\frac{b}{a_n}
\end{cases}
jest:
Dane
a=\frac{1}{11}=0.09090909090909
b=10
Odpowiedzi:
A. niemonotoniczny
B. rosnący
C. nierosnący
D. malejący
Zadanie 3. 1 pkt ⋅ Numer: pr-10139 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
b_n=\frac{2n-9}{n+9} jest zbieżny i
\lim_{n\to\infty} b_n=2 . Nierówności
|b_n-2| \lessdot 0,02 nie spełnia
p wyrazów tego ciągu.
Wyznacz liczbę p .
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Zadanie 4. 2 pkt ⋅ Numer: pr-11627 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (2 pkt)
Granicą ciągu liczbowego
\lim_{n\to+\infty} \frac{5}{\sqrt{64n^2+1}-8}
jest:
Odpowiedzi:
A. +\infty
B. 8
C. 5
D. -\infty
Zadanie 5. 1 pkt ⋅ Numer: pr-10141 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Dany jest nieskończony ciąg geometryczny
(a_n)
określony wzorem
a_n=\frac{8}{\left(\sqrt{7}\right)^n}
, dla
n=1,2,3,... .
Suma wszystkich wyrazów tego ciągu jest równa
\frac{c}{\sqrt{d}+e} ,
gdzie
c,d,e\in\mathbb{Z} .
Podaj liczby c ,d i e .
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pr-20271 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (2 pkt)
«« W ciągu
(c_n) czwarty wyraz jest równy
4 oraz zachodzi równość
c_{n+2}-c_{n+1}=n+4 dla każdej liczby naturalnej
n .
Oblicz c_1 .
Odpowiedź:
c_{1}=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pr-20274 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (2 pkt)
«« Dany jest nieskończony ciąg określony wzorem
r_n=\left(0,5\right)^n . Wyrazy tego ciągu są
długościami promieni kół. Suma pól powierzchni wszystkich tych kół jest równa
p\cdot \pi .
Podaj liczbę p .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pr-20812 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Ciąg liczbowy
(a,b+m,1) jest arytmetyczny, zaś ciąg
(1,a,b+m) jest geometryczny.
Podaj najmniejsze możliwe b .
Dane
m=5
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Podaj największe możliwe
b .
Odpowiedź:
b_{max}=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20823 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (2 pkt)
Oblicz
\lim_{n\to+\infty} \frac{1+5+9+...+(4n-3)}{6+(6+7)+(6+14)+...+6+(7n-7)}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pr-20488 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Iloraz ciągu geometrycznego
(b_n) wynosi
\frac{\sqrt{5}}{5} , a suma jego wszystkich wyrazów
jest równa
10+2\sqrt{5} .
Oblicz b_5 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż