Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pr-10305 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dany jest ciąg (a_n), który spełnia warunki: a_{n+1}-a_{n+2}=a\cdot n oraz a_{n+1}+a_{n+2}=b\cdot n+c.

Oblicz dziesiąty wyraz tego ciągu.

Dane
a=-5
b=5
c=2
Odpowiedź:
a_{10}= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pr-10265 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg liczbowy (a_n) określony wzorem \begin{cases} a_1=a \\ a_{n+1}=\frac{b}{a_n} \end{cases} jest:
Dane
a=\frac{1}{2}=0.50000000000000
b=2
Odpowiedzi:
A. rosnący B. niemonotoniczny
C. malejący D. niemalejący
Zadanie 3.  1 pkt ⋅ Numer: pr-10139 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg b_n=\frac{2n-1}{n+1} jest zbieżny i \lim_{n\to\infty} b_n=2. Nierówności |b_n-2| \lessdot 0,02 nie spełnia p wyrazów tego ciągu.

Wyznacz liczbę p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10140 ⋅ Poprawnie: 18/16 [112%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oblicz granicę \lim_{n\to+\infty}\frac{\left(-10n^2+4n\right)^2}{12n^4-4} .
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10142 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz sumę szeregu 27-9+3-....
Odpowiedź:
a-b+c-...=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-20804 ⋅ Poprawnie: 9/11 [81%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Ciąg liczbowy \left(a_n\right) określony jest następująco: \begin{cases} a_1=1 \\ a_{n+1}=a_n+0,15\text{, dla } n\in\mathbb{N_{+}} \end{cases} . Oblicz sumę s=a_{k}+a_{k+1}+a_{k+2}+...+a_{l}.
Dane
k=30
l=50
Odpowiedź:
s=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20485 ⋅ Poprawnie: 46/34 [135%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Dany jest ciąg (b_n): \begin{cases} b_1=1 \\ b_{n+1}=b_n+\frac{a}{b} \end{cases} .

Oblicz s=b_{30}+b_{31}+b_{32}+...+b_{50}.

Dane
a=1
b=2
Odpowiedź:
s=
(wpisz dwie liczby całkowite)
Zadanie 8.  3 pkt ⋅ Numer: pr-20265 ⋅ Poprawnie: 19/28 [67%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 W trzywyrazowym ciągu arytmetycznym (x,y,z) liczba z jest równa -13. Po przestawieniu wyrazów ciąg (z,x,y) jest ciągiem geometrycznym.

Podaj najmniejsze możliwe x.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj najmniejsze możliwe y.
Odpowiedź:
y_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 8.3 (1 pkt)
 Podaj największe możliwe y.
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20484 ⋅ Poprawnie: 14/15 [93%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » Oblicz \lim_{n\to+\infty}\left(\sqrt{4n^2+6n}-\sqrt{4n^2+2}\right) .
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pr-21200 ⋅ Poprawnie: 9/18 [50%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Suma wszystkich wyrazów nieskończonego ciągu geometrycznego (a_n), określonego dla n\geqslant 1, jest równa 3, a suma kwadratów wszystkich wyrazów tego ciągu jest równa 7.

Oblicz iloraz ciągu (a_n).

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30193 ⋅ Poprawnie: 6/8 [75%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 « W ciągu arytmetycznym mamy: a_3=4 i a_7=16. Rozwiąż nierówność S_n \lessdot k.

Podaj największe n spełniające tę nierówność.

Dane
k=443
Odpowiedź:
n_{max}= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30826 ⋅ Poprawnie: 4/5 [80%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 (2 pkt) Liczby rzeczywiste spełniają warunki: a+b=16 i x+y=8. Wiadomo, że ciąg liczbowy (a, x, y) jest ciągiem arytmetycznym, zaś ciąg liczbowy (x, y, b) jest ciągiem geometrycznym.

Podaj najmniejszy możliwy iloraz ciągu geometrycznego.

Odpowiedź:
q_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
 (2 pkt) Podaj największy możliwy iloraz ciągu geometrycznego.
Odpowiedź:
q_{max}= (wpisz liczbę całkowitą)
Zadanie 13.  4 pkt ⋅ Numer: pr-31025 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 13.1 (4 pkt)
 Dany jest nieskończony ciąg geometryczny (a_n), określony dla każdej liczby naturalnej n\geqslant 1. Suma trzech początkowych wyrazów ciągu (a_n) jest równa 7, a suma S wszystkich wyrazów tego ciągu jest równa 8. Wyznacz wszystkie wartości n, dla których spełniona jest nierówność \left|\frac{S-S_n}{S_n}\right|\lessdot \frac{1}{32}, gdzie S_n oznacza sumę n początkowych wyrazów ciągu (a_n).

Podaj najmniejszą możliwą wartość n, która spełnia tę nierówność.

Odpowiedź:
n_{min}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm