» Pierwszy wyraz ciągu (a_n) wynosi 0. Każdy z kolejnych
wyrazów tego ciągu jest równy sumie numerów wszystkich wyrazów go
poprzedzających. Wyznacz wzór tego ciągu.
Podaj a_{90}.
Odpowiedź:
a_{k}=(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj a_{181}.
Odpowiedź:
a_{k}=(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pr-20273 ⋅ Poprawnie: 7/8 [87%]
« Ciąg (a_1,a_2,a_3) jest rosnącym ciągiem
geometrycznym oraz a_1+a_2+a_3=126. Ciąg
(a_1+2,a_2-14,a_3-84) jest arytmetyczny. Wyznacz
wyrazy tego ciągu.
Podaj pierwszy wyraz ciągu (a_n).
Odpowiedź:
a_{1}=(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj trzeci wyraz ciągu (a_n).
Odpowiedź:
a_3=(wpisz liczbę całkowitą)
Zadanie 9.2 pkt ⋅ Numer: pr-20823 ⋅ Poprawnie: 7/9 [77%]
» Dany jest ciąg
c_n=\left(-\frac{1}{-11-2m}\right)^n,
w którym wszystkie wyrazy są dodatnie, a m jest
parametrem. Wyznacz te wartości parametru m, dla
których szereg c_1+c_2+c_3+... jest zbieżny.
Podaj najmniejsze całkowite m spełniające warunki
zadania.
Odpowiedź:
m_{min}=(wpisz liczbę całkowitą)
Zadanie 11.4 pkt ⋅ Numer: pr-30177 ⋅ Poprawnie: 51/44 [115%]
Boki AB, BC,
CD i DA czworokąta
wpisanego w okrąg mają długości odpowiednio 2a,
2a, a\sqrt{5} i
a\sqrt{3}, zaś kąty przy wierzchołkach
A, B i
C tworzą ciąg arytmetyczny.
Oblicz pole powierzchni tego czworokąta.
Dane
a=10
Odpowiedź:
P=
+\cdot√
(wpisz cztery liczby całkowite)
Zadanie 12.5 pkt ⋅ Numer: pr-31063 ⋅ Poprawnie: 0/0
W trzywyrazowym ciągu geometrycznym (a_1, a_2, a_3), spełniona jest równość
a_1+a_2+a_3=\frac{189}{16}. Wyrazy a_1,
a_2, a_3 są – odpowiednio –szóstym
, drugim i pierwszym wyrazem rosnącego ciągu arytmetycznego.
Oblicz iloraz ciągu geometrycznego.
Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (3 pkt)
Oblicz a_1.
Odpowiedź:
a_1=
(wpisz dwie liczby całkowite)
Zadanie 13.4 pkt ⋅ Numer: pr-30880 ⋅ Poprawnie: 8/49 [16%]
K_2jest kwadratem, którego każdy wierzchołek leży na innym boku
kwadratu K_1 i dzieli ten bok w stosunku 1:7
K_3 jest kwadratem, którego każdy wierzchołek leży na innym boku
kwadratu K_2 i dzieli ten bok w stosunku 1:7
i ogólnie, dla każdej liczby naturalnej n\geqslant 2:
K_n jest kwadratem, którego każdy wierzchołek leży na innym boku
kwadratu K_{n-1} i dzieli ten bok w stosunku 1:7
Obwody wszystkich kwadratów określonych powyżej tworzą nieskończony ciąg geometryczny. Na rysunku
przedstawiono kwadraty utworzone w sposób opisany powyżej:
Wyznacz iloraz tego ciągu.
Odpowiedź:
q=
\cdot√
(wpisz trzy liczby całkowite)
Podpunkt 13.2 (2 pkt)
Przyjmując, że a=5, oblicz sumę obwodów wszystkich kwadratów.
Odpowiedź:
S=
+\cdot√
(wpisz cztery liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat