Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pr-10305 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dany jest ciąg (a_n), który spełnia warunki: a_{n+1}-a_{n+2}=a\cdot n oraz a_{n+1}+a_{n+2}=b\cdot n+c.

Oblicz dziesiąty wyraz tego ciągu.

Dane
a=-1
b=1
c=4
Odpowiedź:
a_{10}= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pr-10265 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg liczbowy (a_n) określony wzorem \begin{cases} a_1=a \\ a_{n+1}=\frac{b}{a_n} \end{cases} jest:
Dane
a=\frac{1}{5}=0.20000000000000
b=10
Odpowiedzi:
A. niemonotoniczny B. niemalejący
C. malejący D. rosnący
Zadanie 3.  1 pkt ⋅ Numer: pr-10139 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg b_n=\frac{2n-4}{n+9} jest zbieżny i \lim_{n\to\infty} b_n=2. Nierówności |b_n-2| \lessdot 0,02 nie spełnia p wyrazów tego ciągu.

Wyznacz liczbę p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-11653 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=\frac{5n^2-n-1}{-4+3n-n^2} dla każdej liczby naturalnej n\geqslant 1.

Granica g tego ciągu jest równa:

Odpowiedzi:
A. -5 B. \frac{10}{3}
C. -\frac{5}{2} D. -\frac{20}{3}
E. -\frac{10}{3} F. 10
Zadanie 5.  1 pkt ⋅ Numer: pr-10328 ⋅ Poprawnie: 13/14 [92%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Pierwszy wyraz ciągu geometrycznego jest równy 5, a suma wszystkich jego wyrazów jest równa 16.

Oblicz iloraz tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-20809 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Dany jest ciąg (a_n), w którym S_n=a_1+a_2+a_3+...+a_n, dla każdego n\in\mathbb{N_{+}}. Ponadto dla każdej liczby naturalnej dodatniej zachodzi wzór: S_n=\frac{n+1}{p\cdot(n+1)+q}.

Oblicz a_2.

Dane
p=3
q=-3
Odpowiedź:
a_{2}=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Ogólny wyraz tego ciągu określony jest wzorem a_n=\frac{-1}{bn^2+cn}.

Podaj c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20811 ⋅ Poprawnie: 1/3 [33%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Dany jest ciąg geometryczny (a_n) o ilorazie q.

Oblicz najmniejszą możliwą wartość liczby q^2.

Dane
a_1+a_2+a_3+a_4+a_5=155
\frac{a_1+a_5}{a_3}=\frac{17}{4}=4.25000000000000
Odpowiedź:
q^2_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Dla wyznaczonej najmniejszej wartości liczby q^2, oblicz pierwszy wyraz tego ciągu o ilorazie |q|.
Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20264 ⋅ Poprawnie: 27/25 [108%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Ciąg (a_1,a_2,a_3) jest rosnącym ciągiem geometrycznym oraz a_1+a_2+a_3=129. Ciąg (a_1+2,a_2-14,a_3-105) jest arytmetyczny. Wyznacz wyrazy tego ciągu.

Podaj pierwszy wyraz ciągu (a_n).

Odpowiedź:
a_{1}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj trzeci wyraz ciągu (a_n).
Odpowiedź:
a_3= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20816 ⋅ Poprawnie: 14/14 [100%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Oblicz \lim_{n\to+\infty} \frac{1+3+5+...+(2\cdot(n+4)-1)}{(4n-1)^2} .
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pr-20837 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Rozwiąż nierówność \left(\sqrt{\frac{x}{a}}\right)^2+\left(\sqrt{\frac{x}{a}}\right)^3+ \left(\sqrt{\frac{x}{a}}\right)^4+... \lessdot 1+\sqrt{\frac{x}{a}} .

Podaj najmniejszą liczbę spełniającą tę nierówność.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj najmniejszą liczbę dodatnią, która nie spełnia tej nierówności.
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30190 ⋅ Poprawnie: 51/39 [130%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
« Ciąg (a_1,a_2,a_3,...,a_{100}) jest ciągiem geometrycznym, którego wszystkie wyrazy są dodatnie. Ciąg ten spełnia warunki: 100\cdot (a_2+a_4+a_6+...+a_{100})=a_1+a_3+a_5+...+a_{99} oraz \log{a_1}+\log{a_2}+\log{a_3}+...+\log{a_{100}}=100. Wyznacz a_1.

Z ilu cyfr składa się liczba a_1?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30179 ⋅ Poprawnie: 4/5 [80%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 W niestałym ciągu arytmetycznym a_1=a. Ponadto wyrazy a_2, a_3 i a_6 sa trzema kolejnymi wyrazami ciągu geometrycznego. Ostatni k-ty wyraz tego ciągu jest równy a_k=p.

Oblicz a_1+a_2+a_3+...+a_k.

Dane
a=-3
p=135
Odpowiedź:
a_1+a_2+a_3+...+a_k= (wpisz liczbę całkowitą)
Zadanie 13.  4 pkt ⋅ Numer: pr-30801 ⋅ Poprawnie: 17/23 [73%] Rozwiąż 
Podpunkt 13.1 (2 pkt)
 « Suma wszystkich wyrazów o numerach nieparzystych zbieżnego ciągu geometrycznego jest równa \frac{3}{5}, zaś suma wszystkich wyrazów tego ciągu o numerach parzystych jest równa \frac{2}{5}.

Oblicz pierwszy wyraz tego ciągu.

Odpowiedź:
a_1=
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (2 pkt)
 Podaj iloraz tego ciągu.
Odpowiedź:
q=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm