Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pr-10261 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 1.1 (1 pkt)
Dany jest ciąg liczbowy
(a_n) określony wzorem
a_n=4n-n^3 . Wyraz
a_{2k-p} tego ciągu
jest równy
ak^3+bk^2+ck+d .
Podaj liczby b , c i d .
Dane
p=4
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pr-10266 ⋅ Poprawnie: 2/3 [66%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Ciąg liczbowy
(b_n) określony wzorem
\begin{cases}
b_1=a \\
b_{n+1}=\frac{1}{b}b_n
\end{cases}
jest:
Dane
a=-\frac{1}{9}=-0.11111111111111
b=12
Odpowiedzi:
A. niemonotoniczny
B. malejący
C. nierosnący
D. rosnący
Zadanie 3. 1 pkt ⋅ Numer: pr-10306 ⋅ Poprawnie: 2/2 [100%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
a_n=\frac{n}{n+5} jest zbieżny i
\lim_{n\to\infty} a_n=1 . Nierówności
|a_n-1| \lessdot \frac{1}{180} nie spełnia
k wyrazów tego ciągu.
Wyznacz liczbę k .
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pr-11653 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (1 pkt)
Ciąg
(a_n) jest określony wzorem
a_n=\frac{-5n^2-2n+2}{3+5n+4n^2} dla
każdej liczby naturalnej
n\geqslant 1 .
Granica g tego ciągu jest równa:
Odpowiedzi:
A. -\frac{5}{8}
B. -\frac{15}{8}
C. \frac{5}{12}
D. -\frac{5}{4}
E. -\frac{5}{3}
F. \frac{5}{6}
Zadanie 5. 1 pkt ⋅ Numer: pr-10299 ⋅ Poprawnie: 1/1 [100%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Nieskończony ciąg geometryczny
(a_n) jest określony
w następujący sposób:
\begin{cases}
a_1=\frac{7}{9} \\
a_{n+1}=\frac{2}{3}\cdot a_n \text{, dla } n\in\mathbb{N_+}
\end{cases}
.
Oblicz sumę wszystkich wyrazów tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pr-20809 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Dany jest ciąg
(a_n) , w którym
S_n=a_1+a_2+a_3+...+a_n , dla każdego
n\in\mathbb{N_{+}} . Ponadto dla każdej liczby
naturalnej dodatniej zachodzi wzór:
S_n=\frac{n+1}{p\cdot(n+1)+q} .
Oblicz a_2 .
Dane
p=7
q=-7
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Ogólny wyraz tego ciągu określony jest wzorem
a_n=\frac{-1}{bn^2+cn} .
Podaj c .
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pr-20755 ⋅ Poprawnie: 52/36 [144%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Dany jest ciąg geometryczny
(a_n) .
Oblicz
k .
Dane
a_3+a_6=-168
a_4+a_7=336
S_k=65538
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pr-20266 ⋅ Poprawnie: 10/10 [100%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Ciąg
(x,y,z) jest rosnącym ciągiem geometrycznym,
zaś ciąg
(b_n) ciągiem arytmetycznym. Zachodzą
równości:
x+y+z=258 ,
b_1=x ,
b_{6}=y i
b_{36}=z .
Oblicz
x,y,z .
Podaj x .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
y=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20483 ⋅ Poprawnie: 7/10 [70%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Oblicz
\lim_{n\to+\infty}\left(\frac{3n^2+1}{3n+5}-\frac{n^2}{n+6}\right)
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pr-20837 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
Rozwiąż nierówność
\left(\sqrt{\frac{x}{a}}\right)^2+\left(\sqrt{\frac{x}{a}}\right)^3+
\left(\sqrt{\frac{x}{a}}\right)^4+... \lessdot 1+\sqrt{\frac{x}{a}}
.
Podaj najmniejszą liczbę spełniającą tę nierówność.
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj najmniejszą liczbę dodatnią, która
nie spełnia tej nierówności.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30191 ⋅ Poprawnie: 9/12 [75%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Dany jest ciąg określony wzorem
a_n=(-1)^n\cdot (2n-1) . Uzasadnij, że ciąg
b_n=a_{2n+1} jest arytmetyczny.
Oblicz S_{k} ciągu (b_n) .
Dane
k=93
Odpowiedź:
S_{k}=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Oblicz
S_{k} ciągu
(a_n) .
Odpowiedź:
S_{k}=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pr-30183 ⋅ Poprawnie: 2/2 [100%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
W ciągu geometrycznym
(a+k,b+4,c) zachodzi warunek
a+b+c=22-k . Ciąg liczbowy
(a+k-5,b,c-11) jest ciągiem arytmetycznym.
Oblicz
a,b,c .
Podaj najmniejsze możliwe a .
Dane
k=6
Odpowiedź:
a_{min}=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
Podaj największe możliwe
a .
Odpowiedź:
a_{max}=
(wpisz liczbę całkowitą)
Zadanie 13. 4 pkt ⋅ Numer: pr-30801 ⋅ Poprawnie: 17/23 [73%]
Rozwiąż
Podpunkt 13.1 (2 pkt)
« Suma wszystkich wyrazów o numerach nieparzystych zbieżnego ciągu geometrycznego
jest równa
\frac{3}{2} , zaś suma wszystkich wyrazów tego ciągu
o numerach parzystych jest równa
1 .
Oblicz pierwszy wyraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż