Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pr-10262 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 O ciągu (a_n) wiadomo, że a_{n+p}=\frac{1-3n}{4n-2}. Wówczas ogólny wyraz tego ciągu a_n jest równy \frac{-3n+c}{4n+d}.

Wyznacz liczby c i d.

Dane
p=3
Odpowiedzi:
c= (wpisz liczbę całkowitą)
d= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pr-10265 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg liczbowy (a_n) określony wzorem \begin{cases} a_1=a \\ a_{n+1}=\frac{b}{a_n} \end{cases} jest:
Dane
a=\frac{1}{7}=0.14285714285714
b=7
Odpowiedzi:
A. niemonotoniczny B. rosnący
C. malejący D. niemalejący
Zadanie 3.  1 pkt ⋅ Numer: pr-10306 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg a_n=\frac{n}{n+5} jest zbieżny i \lim_{n\to\infty} a_n=1. Nierówności |a_n-1| \lessdot \frac{1}{120} nie spełnia k wyrazów tego ciągu.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 4.  2 pkt ⋅ Numer: pr-11627 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (2 pkt)
 Granicą ciągu liczbowego \lim_{n\to+\infty} \frac{1}{\sqrt{25n^2+1}-5} jest:
Odpowiedzi:
A. -\infty B. 1
C. +\infty D. 5
Zadanie 5.  1 pkt ⋅ Numer: pr-10299 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Nieskończony ciąg geometryczny (a_n) jest określony w następujący sposób: \begin{cases} a_1=\frac{5}{7} \\ a_{n+1}=\frac{2}{3}\cdot a_n \text{, dla } n\in\mathbb{N_+} \end{cases} .

Oblicz sumę wszystkich wyrazów tego ciągu.

Odpowiedź:
S=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-20271 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 «« W ciągu (c_n) czwarty wyraz jest równy 1 oraz zachodzi równość c_{n+2}-c_{n+1}=n+1 dla każdej liczby naturalnej n.

Oblicz c_1.

Odpowiedź:
c_{1}= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20486 ⋅ Poprawnie: 45/35 [128%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 «« Oblicz sumę wszystkich liczb naturalnych trzycyfrowych podzielnych przez a lub przez b.
Dane
a=7
b=9
Odpowiedź:
s= (wpisz liczbę całkowitą)
Zadanie 8.  3 pkt ⋅ Numer: pr-20265 ⋅ Poprawnie: 19/27 [70%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 W trzywyrazowym ciągu arytmetycznym (x,y,z) liczba z jest równa 3. Po przestawieniu wyrazów ciąg (z,x,y) jest ciągiem geometrycznym.

Podaj najmniejsze możliwe x.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj najmniejsze możliwe y.
Odpowiedź:
y_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 8.3 (1 pkt)
 Podaj największe możliwe y.
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20822 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Oblicz \lim_{n\to+\infty} \frac{2+5+8+...+(3\cdot(n+6)-1)}{(\sqrt{6}n+1)^2} .
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pr-21200 ⋅ Poprawnie: 9/18 [50%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Suma wszystkich wyrazów nieskończonego ciągu geometrycznego (a_n), określonego dla n\geqslant 1, jest równa 6, a suma kwadratów wszystkich wyrazów tego ciągu jest równa 9.

Oblicz iloraz ciągu (a_n).

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30895 ⋅ Poprawnie: 46/62 [74%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Nieskończony ciąg geometryczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Suma wszystkich wyrazów ciągu (a_n) o numerach nieparzystych jest równa 144, tj. a_1+a_3+a_5+...=144. Ponadto a_1+a_3=\frac{37}{6}\cdot a_2.

Wyznacz iloraz q tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Wyznacz pierwszy wyraz tego ciągu.
Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30182 ⋅ Poprawnie: 7/8 [87%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Ciąg liczbowy (a,b,c+x) jest arytmetyczny i a+b+c+x=33. Ciąg liczbowy (a-1,b+5,c+x+19) jest geometryczny. Wyznacz a,b,c.

Podaj najmniejsze możliwe c.

Dane
x=1
Odpowiedź:
c_{min}= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Podaj największe możliwe c.
Odpowiedź:
c_{max}= (wpisz liczbę całkowitą)
Zadanie 13.  4 pkt ⋅ Numer: pr-31004 ⋅ Poprawnie: 0/6 [0%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Ciąg (a_n), określony dla każdej liczby naturalnej n\geqslant 1, jest geometryczny i ma wszystkie wyrazy dodatnie. Ponadto a_1=1175 i a_{22}=\frac{5}{4}a_{23}+\frac{1}{5}a_{21}. Ciąg (b_n), określony dla każdej liczby naturalnej n\geqslant 1, jest arytmetyczny. Suma wszystkich wyrazów ciągu (a_n) jest równa sumie k=11 początkowych kolejnych wyrazów ciągu (b_n). Ponadto a_3=b_4.

Oblicz iloraz q ciągu (a_n).

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (1 pkt)
 Oblicz sumę wszystkich wyrazów ciągu (a_n).
Odpowiedź:
S=
(wpisz dwie liczby całkowite)
Podpunkt 13.3 (2 pkt)
 Wyznacz b_1.
Odpowiedź:
b_1= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm