Dany jest nieskończony ciąg geometryczny (a_n)
określony wzorem
a_n=\frac{7}{\left(\sqrt{2}\right)^n}
, dla n=1,2,3,....
Suma wszystkich wyrazów tego ciągu jest równa \frac{c}{\sqrt{d}+e},
gdzie c,d,e\in\mathbb{Z}.
Podaj liczby c,d i e.
Odpowiedzi:
c
=
(wpisz liczbę całkowitą)
d
=
(wpisz liczbę całkowitą)
e
=
(wpisz liczbę całkowitą)
Zadanie 6.2 pkt ⋅ Numer: pr-20810 ⋅ Poprawnie: 1/1 [100%]
« Dany jest ciąg (a_n), w którym
S_n=a_1+a_2+a_3+...+a_n, dla każdego
n\in\mathbb{N_{+}}. Ponadto dla każdej liczby
naturalnej dodatniej zachodzi wzór:
S_n=n^2(n+k).
Oblicz a_3.
Dane
k=4 m=747
Odpowiedź:
a_{3}=(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Pewien wyraz ciagu (a_n) jest równy
m.
Wyznacz numer tego wyrazu.
Odpowiedź:
n=(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pr-20485 ⋅ Poprawnie: 46/34 [135%]
» Suma wszystkich wyrazów ciągu geometrycznego \left(a_n\right) wynosi
4, zaś suma wszystkich wyrazów o numerach
parzystych tego ciągu wynosi \frac{12}{7}.
Oblicz a_4.
Odpowiedź:
a_4=
(wpisz dwie liczby całkowite)
Zadanie 11.4 pkt ⋅ Numer: pr-30188 ⋅ Poprawnie: 7/7 [100%]
Ciąg (a,b,c+8) jest trzywyrazowym ciągiem geometrycznym o wyrazach
dodatnich. Ciąg (2a,2b,c+9) jest trzywyrazowym ciągiem arytmetycznym.
Ponadto spełniony jest warunek c-b=-2.
Podaj liczby a i b.
Odpowiedzi:
a
=
(wpisz liczbę całkowitą)
b
=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (3 pkt)
Podaj liczbę c.
Odpowiedź:
c=(wpisz liczbę całkowitą)
Zadanie 13.4 pkt ⋅ Numer: pr-30880 ⋅ Poprawnie: 7/24 [29%]
K_2jest kwadratem, którego każdy wierzchołek leży na innym boku
kwadratu K_1 i dzieli ten bok w stosunku 1:9
K_3 jest kwadratem, którego każdy wierzchołek leży na innym boku
kwadratu K_2 i dzieli ten bok w stosunku 1:9
i ogólnie, dla każdej liczby naturalnej n\geqslant 2:
K_n jest kwadratem, którego każdy wierzchołek leży na innym boku
kwadratu K_{n-1} i dzieli ten bok w stosunku 1:9
Obwody wszystkich kwadratów określonych powyżej tworzą nieskończony ciąg geometryczny. Na rysunku
przedstawiono kwadraty utworzone w sposób opisany powyżej:
Wyznacz iloraz tego ciągu.
Odpowiedź:
q=
\cdot√
(wpisz trzy liczby całkowite)
Podpunkt 13.2 (2 pkt)
Przyjmując, że a=5, oblicz sumę obwodów wszystkich kwadratów.
Odpowiedź:
S=
+\cdot√
(wpisz cztery liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat