Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pr-10263 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Ogólny wyraz ciągu (a_n) spełnia warunek a_{n+1}=2a_n-3n.

Oblicz piąty wyraz tego ciągu.

Dane
a_1=5
Odpowiedź:
a_{5}= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pr-10265 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg liczbowy (a_n) określony wzorem \begin{cases} a_1=a \\ a_{n+1}=\frac{b}{a_n} \end{cases} jest:
Dane
a=\frac{1}{9}=0.11111111111111
b=4
Odpowiedzi:
A. rosnący B. nierosnący
C. niemonotoniczny D. niemalejący
Zadanie 3.  1 pkt ⋅ Numer: pr-10306 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg a_n=\frac{n}{n+5} jest zbieżny i \lim_{n\to\infty} a_n=1. Nierówności |a_n-1| \lessdot \frac{1}{160} nie spełnia k wyrazów tego ciągu.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10140 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oblicz granicę \lim_{n\to+\infty}\frac{\left(6n^2+4n\right)^2}{12n^4-4} .
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10141 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dany jest nieskończony ciąg geometryczny (a_n) określony wzorem a_n=\frac{8}{\left(\sqrt{3}\right)^n} , dla n=1,2,3,.... Suma wszystkich wyrazów tego ciągu jest równa \frac{c}{\sqrt{d}+e}, gdzie c,d,e\in\mathbb{Z}.

Podaj liczby c,d i e.

Odpowiedzi:
c= (wpisz liczbę całkowitą)
d= (wpisz liczbę całkowitą)
e= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pr-20810 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Dany jest ciąg (a_n), w którym S_n=a_1+a_2+a_3+...+a_n, dla każdego n\in\mathbb{N_{+}}. Ponadto dla każdej liczby naturalnej dodatniej zachodzi wzór: S_n=n^2(n+k).

Oblicz a_3.

Dane
k=3
m=394
Odpowiedź:
a_{3}= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Pewien wyraz ciagu (a_n) jest równy m.

Wyznacz numer tego wyrazu.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20811 ⋅ Poprawnie: 1/3 [33%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Dany jest ciąg geometryczny (a_n) o ilorazie q.

Oblicz najmniejszą możliwą wartość liczby q^2.

Dane
a_1+a_2+a_3+a_4+a_5=124
\frac{a_1+a_5}{a_3}=\frac{17}{4}=4.25000000000000
Odpowiedź:
q^2_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Dla wyznaczonej najmniejszej wartości liczby q^2, oblicz pierwszy wyraz tego ciągu o ilorazie |q|.
Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20264 ⋅ Poprawnie: 26/23 [113%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Ciąg (a_1,a_2,a_3) jest rosnącym ciągiem geometrycznym oraz a_1+a_2+a_3=65. Ciąg (a_1+2,a_2-3,a_3-28) jest arytmetyczny. Wyznacz wyrazy tego ciągu.

Podaj pierwszy wyraz ciągu (a_n).

Odpowiedź:
a_{1}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj trzeci wyraz ciągu (a_n).
Odpowiedź:
a_3= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-21186 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Oblicz granicę g=\lim_{n\to\infty}{\frac{(3n+2)^2+(1-7n)^2}{(7n-1)^2}}.
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pr-20488 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Iloraz ciągu geometrycznego (b_n) wynosi \frac{\sqrt{7}}{7}, a suma jego wszystkich wyrazów jest równa 14+2\sqrt{7}.

Oblicz b_5.

Odpowiedź:
b_5=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30187 ⋅ Poprawnie: 40/36 [111%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 «« Pierwiastki wielomianu W(x)=x^3+bx^2+cx+d+k tworzą ciąg geometryczny o ilorazie 2. Ponadto W(1)=-110. Wyznacz wzór tego wielomianu.

Podaj d.

Dane
k=57
Odpowiedź:
d= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30179 ⋅ Poprawnie: 4/5 [80%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 W niestałym ciągu arytmetycznym a_1=a. Ponadto wyrazy a_2, a_3 i a_6 sa trzema kolejnymi wyrazami ciągu geometrycznego. Ostatni k-ty wyraz tego ciągu jest równy a_k=p.

Oblicz a_1+a_2+a_3+...+a_k.

Dane
a=6
p=-150
Odpowiedź:
a_1+a_2+a_3+...+a_k= (wpisz liczbę całkowitą)
Zadanie 13.  4 pkt ⋅ Numer: pr-31004 ⋅ Poprawnie: 0/3 [0%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Ciąg (a_n), określony dla każdej liczby naturalnej n\geqslant 1, jest geometryczny i ma wszystkie wyrazy dodatnie. Ponadto a_1=1550 i a_{22}=\frac{5}{4}a_{23}+\frac{1}{5}a_{21}. Ciąg (b_n), określony dla każdej liczby naturalnej n\geqslant 1, jest arytmetyczny. Suma wszystkich wyrazów ciągu (a_n) jest równa sumie k=18 początkowych kolejnych wyrazów ciągu (b_n). Ponadto a_3=b_4.

Oblicz iloraz q ciągu (a_n).

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (1 pkt)
 Oblicz sumę wszystkich wyrazów ciągu (a_n).
Odpowiedź:
S=
(wpisz dwie liczby całkowite)
Podpunkt 13.3 (2 pkt)
 Wyznacz b_1.
Odpowiedź:
b_1= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm