W chwili początkowej (t=0) masa substancji jest równa
3 gram. Wskutek rozpadu cząsteczek tej substancji jej
masa się zmniejsza. Po każdej kolejnej dobie ubywa 22\% masy,
jaka była na koniec doby poprzedniej. Dla każdej liczby całkowitej t\geqslant 0
funkcja m(t) określa masę substancji w gramach po
t pełnych dobach (czas liczymy od chwili początkowej). Wyznacz wzór
funkcji m(t).
Oblicz, po ilu pełnych dobach masa tej substancji będzie po raz pierwszy mniejsza od
1,5 grama.
Odpowiedź:
t=(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pr-20486 ⋅ Poprawnie: 47/37 [127%]
« Ciąg (a_1,a_2,a_3,...,a_{100}) jest ciągiem
geometrycznym, którego wszystkie wyrazy są dodatnie. Ciąg ten spełnia warunki:
100\cdot (a_2+a_4+a_6+...+a_{100})=a_1+a_3+a_5+...+a_{99}
oraz
\log{a_1}+\log{a_2}+\log{a_3}+...+\log{a_{100}}=100.
Wyznacz a_1.
Z ilu cyfr składa się liczba a_1?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 12.4 pkt ⋅ Numer: pr-30179 ⋅ Poprawnie: 4/5 [80%]
W niestałym ciągu arytmetycznym a_1=a. Ponadto
wyrazy a_2, a_3 i
a_6 sa trzema kolejnymi wyrazami ciągu
geometrycznego. Ostatni k-ty wyraz tego ciągu
jest równy a_k=p.
Oblicz a_1+a_2+a_3+...+a_k.
Dane
a=-1
p=23
Odpowiedź:
a_1+a_2+a_3+...+a_k=(wpisz liczbę całkowitą)
Zadanie 13.4 pkt ⋅ Numer: pr-31010 ⋅ Poprawnie: 2/4 [50%]
Dany jest nieskończony ciąg geometryczny (a_n), określony dla każdej
liczby naturalnej n\geqslant 1, którego iloraz q
jest 12 razy mniejszy od pierwszego wyrazu ciągu i spełnia warunek
|q|\lessdot 1. Stosunek sumy S_{N} wszystkich
wyrazów tego ciągu o numerach nieparzystych do sumy S_{P} wszystkich
wyrazów tego ciągu o numerach parzystych jest równy różnicy tych sum, tj.
\frac{S_{N}}{S_{P}}=S_{N}-S_{P}. Wyznacz iloraz q tego ciągu.
Podaj najmniejszą możliwą wartość q.
Odpowiedź:
q_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (2 pkt)
Podaj największą możliwą wartość q.
Odpowiedź:
q_{max}=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat