Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pr-10261 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 1.1 (1 pkt)
Dany jest ciąg liczbowy
(a_n) określony wzorem
a_n=4n-n^3 . Wyraz
a_{2k-p} tego ciągu
jest równy
ak^3+bk^2+ck+d .
Podaj liczby b , c i d .
Dane
p=1
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pr-10266 ⋅ Poprawnie: 2/3 [66%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Ciąg liczbowy
(b_n) określony wzorem
\begin{cases}
b_1=a \\
b_{n+1}=\frac{1}{b}b_n
\end{cases}
jest:
Dane
a=-\frac{1}{2}=-0.50000000000000
b=10
Odpowiedzi:
A. niemonotoniczny
B. malejący
C. nierosnący
D. rosnący
Zadanie 3. 1 pkt ⋅ Numer: pr-10306 ⋅ Poprawnie: 1/1 [100%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
a_n=\frac{n}{n+5} jest zbieżny i
\lim_{n\to\infty} a_n=1 . Nierówności
|a_n-1| \lessdot \frac{1}{30} nie spełnia
k wyrazów tego ciągu.
Wyznacz liczbę k .
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pr-11653 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (1 pkt)
Ciąg
(a_n) jest określony wzorem
a_n=\frac{2n^2+2n+2}{4-n+3n^2} dla
każdej liczby naturalnej
n\geqslant 1 .
Granica g tego ciągu jest równa:
Odpowiedzi:
A. \frac{4}{9}
B. \frac{8}{9}
C. -\frac{4}{9}
D. -\frac{2}{9}
E. 1
F. \frac{2}{3}
Zadanie 5. 1 pkt ⋅ Numer: pr-10328 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Pierwszy wyraz ciągu geometrycznego jest równy
9 , a suma
wszystkich jego wyrazów jest równa
7 .
Oblicz iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pr-20804 ⋅ Poprawnie: 9/11 [81%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
« Ciąg liczbowy
\left(a_n\right) określony jest następująco:
\begin{cases}
a_1=1 \\
a_{n+1}=a_n+0,15\text{, dla } n\in\mathbb{N_{+}}
\end{cases}
.
Oblicz sumę
s=a_{k}+a_{k+1}+a_{k+2}+...+a_{l} .
Dane
k=30
l=50
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pr-20485 ⋅ Poprawnie: 46/34 [135%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Dany jest ciąg
(b_n) :
\begin{cases}
b_1=1 \\
b_{n+1}=b_n+\frac{a}{b}
\end{cases}
.
Oblicz s=b_{30}+b_{31}+b_{32}+...+b_{50} .
Dane
a=1
b=7
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pr-20812 ⋅ Poprawnie: 8/9 [88%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Ciąg liczbowy
(a,b+m,1) jest arytmetyczny, zaś ciąg
(1,a,b+m) jest geometryczny.
Podaj najmniejsze możliwe b .
Dane
m=-4
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Podaj największe możliwe
b .
Odpowiedź:
b_{max}=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20822 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (2 pkt)
Oblicz
\lim_{n\to+\infty} \frac{2+5+8+...+(3\cdot(n+2)-1)}{(\sqrt{2}n+1)^2}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pr-20835 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
Rozwiąż równanie
1+\frac{1}{1+\frac{1}{6}x}+\frac{1}{\left(1+\frac{1}{6}x\right)^2}+...=1+\frac{1}{3}x
.
Podaj rozwiązanie tego równania.
Odpowiedź:
Zadanie 11. 4 pkt ⋅ Numer: pr-30190 ⋅ Poprawnie: 51/39 [130%]
Rozwiąż
Podpunkt 11.1 (4 pkt)
« Ciąg
(a_1,a_2,a_3,...,a_{100}) jest ciągiem
geometrycznym, którego wszystkie wyrazy są dodatnie. Ciąg ten spełnia warunki:
100\cdot (a_2+a_4+a_6+...+a_{100})=a_1+a_3+a_5+...+a_{99}
oraz
\log{a_1}+\log{a_2}+\log{a_3}+...+\log{a_{100}}=100 .
Wyznacz
a_1 .
Z ilu cyfr składa się liczba a_1 ?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pr-30184 ⋅ Poprawnie: 1/4 [25%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
« Ciąg
(a,b,c+64+k) jest ciągiem geometrycznym,
natomiast ciąg
(a,b,c+k) jest ciągiem arytmetycznym.
Ponadto ciąg
(a,b-8,c+k) jest geometryczny.
Podaj najmniejsze możliwe c .
Dane
k=-64
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
Podaj największe możliwe
c .
Odpowiedź:
c_{max}=
(wpisz liczbę całkowitą)
Zadanie 13. 4 pkt ⋅ Numer: pr-30801 ⋅ Poprawnie: 8/9 [88%]
Rozwiąż
Podpunkt 13.1 (2 pkt)
« Suma wszystkich wyrazów o numerach nieparzystych zbieżnego ciągu geometrycznego
jest równa
\frac{2}{9} , zaś suma wszystkich wyrazów tego ciągu
o numerach parzystych jest równa
\frac{1}{9} .
Oblicz pierwszy wyraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż