Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pr-10305 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dany jest ciąg (a_n), który spełnia warunki: a_{n+1}-a_{n+2}=a\cdot n oraz a_{n+1}+a_{n+2}=b\cdot n+c.

Oblicz dziesiąty wyraz tego ciągu.

Dane
a=-1
b=-3
c=-8
Odpowiedź:
a_{10}= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pr-10265 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg liczbowy (a_n) określony wzorem \begin{cases} a_1=a \\ a_{n+1}=\frac{b}{a_n} \end{cases} jest:
Dane
a=\frac{1}{7}=0.14285714285714
b=2
Odpowiedzi:
A. nierosnący B. niemonotoniczny
C. malejący D. niemalejący
Zadanie 3.  1 pkt ⋅ Numer: pr-10306 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg a_n=\frac{n}{n+5} jest zbieżny i \lim_{n\to\infty} a_n=1. Nierówności |a_n-1| \lessdot \frac{1}{120} nie spełnia k wyrazów tego ciągu.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10140 ⋅ Poprawnie: 18/16 [112%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oblicz granicę \lim_{n\to+\infty}\frac{\left(-10n^2+4n\right)^2}{12n^4-4} .
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10299 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Nieskończony ciąg geometryczny (a_n) jest określony w następujący sposób: \begin{cases} a_1=\frac{3}{7} \\ a_{n+1}=\frac{2}{3}\cdot a_n \text{, dla } n\in\mathbb{N_+} \end{cases} .

Oblicz sumę wszystkich wyrazów tego ciągu.

Odpowiedź:
S=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-20268 ⋅ Poprawnie: 43/41 [104%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
Ciąg \left( \sqrt[3]{12}+\sqrt[3]{6}, \frac{\sqrt{2}(m+3)}{4}, \sqrt[3]{144}-2\sqrt[3]{9}+\sqrt[3]{36} \right) jest ciągiem geometrycznym.

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe m.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20485 ⋅ Poprawnie: 46/34 [135%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Dany jest ciąg (b_n): \begin{cases} b_1=1 \\ b_{n+1}=b_n+\frac{a}{b} \end{cases} .

Oblicz s=b_{30}+b_{31}+b_{32}+...+b_{50}.

Dane
a=3
b=4
Odpowiedź:
s=
(wpisz dwie liczby całkowite)
Zadanie 8.  3 pkt ⋅ Numer: pr-20265 ⋅ Poprawnie: 19/28 [67%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 W trzywyrazowym ciągu arytmetycznym (x,y,z) liczba z jest równa -5. Po przestawieniu wyrazów ciąg (z,x,y) jest ciągiem geometrycznym.

Podaj najmniejsze możliwe x.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj najmniejsze możliwe y.
Odpowiedź:
y_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 8.3 (1 pkt)
 Podaj największe możliwe y.
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20483 ⋅ Poprawnie: 7/10 [70%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Oblicz \lim_{n\to+\infty}\left(\frac{3n^2+1}{3n+1}-\frac{n^2}{n-7}\right) .
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pr-20837 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Rozwiąż nierówność \left(\sqrt{\frac{x}{a}}\right)^2+\left(\sqrt{\frac{x}{a}}\right)^3+ \left(\sqrt{\frac{x}{a}}\right)^4+... \lessdot 1+\sqrt{\frac{x}{a}} .

Podaj najmniejszą liczbę spełniającą tę nierówność.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj najmniejszą liczbę dodatnią, która nie spełnia tej nierówności.
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30187 ⋅ Poprawnie: 40/36 [111%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 «« Pierwiastki wielomianu W(x)=x^3+bx^2+cx+d+k tworzą ciąg geometryczny o ilorazie 2. Ponadto W(1)=-110. Wyznacz wzór tego wielomianu.

Podaj d.

Dane
k=11
Odpowiedź:
d= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Podaj c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30182 ⋅ Poprawnie: 7/8 [87%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Ciąg liczbowy (a,b,c+x) jest arytmetyczny i a+b+c+x=33. Ciąg liczbowy (a-1,b+5,c+x+19) jest geometryczny. Wyznacz a,b,c.

Podaj najmniejsze możliwe c.

Dane
x=1
Odpowiedź:
c_{min}= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Podaj największe możliwe c.
Odpowiedź:
c_{max}= (wpisz liczbę całkowitą)
Zadanie 13.  4 pkt ⋅ Numer: pr-31025 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 13.1 (4 pkt)
 Dany jest nieskończony ciąg geometryczny (a_n), określony dla każdej liczby naturalnej n\geqslant 1. Suma trzech początkowych wyrazów ciągu (a_n) jest równa 7, a suma S wszystkich wyrazów tego ciągu jest równa 8. Wyznacz wszystkie wartości n, dla których spełniona jest nierówność \left|\frac{S-S_n}{S_n}\right|\lessdot \frac{1}{32}, gdzie S_n oznacza sumę n początkowych wyrazów ciągu (a_n).

Podaj najmniejszą możliwą wartość n, która spełnia tę nierówność.

Odpowiedź:
n_{min}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm