« Dany jest ciąg (a_n) oraz ciąg
(b_n) określony następująco:
b_n=a_1+a_2+a_3+...+a_n. O ciągu
(b_n) wiadomo, że spełnia warunek
b_n=\frac{(n+1)(2n+3)}{6} dla każdego
n\in\mathbb{N_{+}}.
Oblicz wyraz a_k tego ciągu.
Dane
k=14
Odpowiedź:
a_{k}=
(wpisz dwie liczby całkowite)
Zadanie 2.1 pkt ⋅ Numer: pr-10265 ⋅ Poprawnie: 1/1 [100%]
» Pierwszy wyraz ciągu (a_n) wynosi 0. Każdy z kolejnych
wyrazów tego ciągu jest równy sumie numerów wszystkich wyrazów go
poprzedzających. Wyznacz wzór tego ciągu.
Podaj a_{90}.
Odpowiedź:
a_{k}=(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj a_{181}.
Odpowiedź:
a_{k}=(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pr-20274 ⋅ Poprawnie: 3/3 [100%]
«« Dany jest nieskończony ciąg określony wzorem
r_n=\left(0,5\right)^n . Wyrazy tego ciągu są
długościami promieni kół. Suma pól powierzchni wszystkich tych kół jest równa
p\cdot \pi.
Podaj liczbę p.
Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 8.2 pkt ⋅ Numer: pr-20479 ⋅ Poprawnie: 6/7 [85%]
« Ciąg (a_1,a_2,a_3,...,a_{100}) jest ciągiem
geometrycznym, którego wszystkie wyrazy są dodatnie. Ciąg ten spełnia warunki:
100\cdot (a_2+a_4+a_6+...+a_{100})=a_1+a_3+a_5+...+a_{99}
oraz
\log{a_1}+\log{a_2}+\log{a_3}+...+\log{a_{100}}=100.
Wyznacz a_1.
Z ilu cyfr składa się liczba a_1?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 12.4 pkt ⋅ Numer: pr-30181 ⋅ Poprawnie: 4/5 [80%]