Liczba x jest sumą wszystkich wyrazów nieskończonego ciągu geometrycznego
o pierwszym wyrazie równym 1 i ilorazie \frac{1}{\sqrt{13}}.
Liczba y jest sumą wszystkich wyrazów nieskończonego ciągu geometrycznego
o pierwszym wyrazie równym 1 i ilorazie -\frac{1}{\sqrt{13}}.
Wynika stąd, że liczba x\cdot y jest równa:
Odpowiedzi:
A.\frac{91}{6}
B.\frac{13}{18}
C.\frac{13}{12}
D.\frac{169}{12}
E.\frac{1}{12}
F.\frac{13}{24}
Zadanie 6.2 pkt ⋅ Numer: pr-20804 ⋅ Poprawnie: 9/11 [81%]
» Suma wszystkich wyrazów ciągu geometrycznego \left(a_n\right) wynosi
5, zaś suma wszystkich wyrazów o numerach
parzystych tego ciągu wynosi \frac{10}{7}.
Oblicz a_4.
Odpowiedź:
a_4=
(wpisz dwie liczby całkowite)
Zadanie 11.4 pkt ⋅ Numer: pr-30190 ⋅ Poprawnie: 51/39 [130%]
« Ciąg (a_1,a_2,a_3,...,a_{100}) jest ciągiem
geometrycznym, którego wszystkie wyrazy są dodatnie. Ciąg ten spełnia warunki:
100\cdot (a_2+a_4+a_6+...+a_{100})=a_1+a_3+a_5+...+a_{99}
oraz
\log{a_1}+\log{a_2}+\log{a_3}+...+\log{a_{100}}=100.
Wyznacz a_1.
Z ilu cyfr składa się liczba a_1?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 12.4 pkt ⋅ Numer: pr-30182 ⋅ Poprawnie: 7/8 [87%]
Dany jest nieskończony ciąg geometryczny (a_n), określony dla każdej
liczby naturalnej n\geqslant 1. Suma trzech początkowych wyrazów ciągu
(a_n) jest równa 7, a suma S
wszystkich wyrazów tego ciągu jest równa 8. Wyznacz wszystkie wartości
n, dla których spełniona jest nierówność
\left|\frac{S-S_n}{S_n}\right|\lessdot \frac{1}{1024}, gdzie
S_n oznacza sumę n początkowych wyrazów ciągu
(a_n).
Podaj najmniejszą możliwą wartość n, która spełnia tę nierówność.
Odpowiedź:
n_{min}=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat