Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pr-10264 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Dany jest ciąg (a_n) oraz ciąg (b_n) określony następująco: b_n=a_1+a_2+a_3+...+a_n. O ciągu (b_n) wiadomo, że spełnia warunek b_n=\frac{(n+1)(2n+3)}{6} dla każdego n\in\mathbb{N_{+}}.

Oblicz wyraz a_k tego ciągu.

Dane
k=13
Odpowiedź:
a_{k}=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pr-10266 ⋅ Poprawnie: 2/3 [66%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Ciąg liczbowy (b_n) określony wzorem \begin{cases} b_1=a \\ b_{n+1}=\frac{1}{b}b_n \end{cases} jest:
Dane
a=-\frac{1}{9}=-0.11111111111111
b=2
Odpowiedzi:
A. malejący B. niemonotoniczny
C. nierosnący D. rosnący
Zadanie 3.  1 pkt ⋅ Numer: pr-10139 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg b_n=\frac{2n-8}{n+1} jest zbieżny i \lim_{n\to\infty} b_n=2. Nierówności |b_n-2| \lessdot 0,02 nie spełnia p wyrazów tego ciągu.

Wyznacz liczbę p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 4.  2 pkt ⋅ Numer: pr-11627 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (2 pkt)
 Granicą ciągu liczbowego \lim_{n\to+\infty} \frac{3}{\sqrt{n^2+1}-1} jest:
Odpowiedzi:
A. 1 B. +\infty
C. 3 D. -\infty
Zadanie 5.  1 pkt ⋅ Numer: pr-10143 ⋅ Poprawnie: 9/15 [60%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Oblicz sumę wszystkich wyrazów ciągu określonego wzorem a_n=8\cdot 2^{-n}.
Odpowiedź:
S=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-20271 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 «« W ciągu (c_n) czwarty wyraz jest równy 3 oraz zachodzi równość c_{n+2}-c_{n+1}=n-4 dla każdej liczby naturalnej n.

Oblicz c_1.

Odpowiedź:
c_{1}= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20274 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
«« Dany jest nieskończony ciąg określony wzorem r_n=\left(0,5\right)^n . Wyrazy tego ciągu są długościami promieni kół. Suma pól powierzchni wszystkich tych kół jest równa p\cdot \pi.

Podaj liczbę p.

Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20264 ⋅ Poprawnie: 26/23 [113%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Ciąg (a_1,a_2,a_3) jest rosnącym ciągiem geometrycznym oraz a_1+a_2+a_3=42. Ciąg (a_1+2,a_2-3,a_3-14) jest arytmetyczny. Wyznacz wyrazy tego ciągu.

Podaj pierwszy wyraz ciągu (a_n).

Odpowiedź:
a_{1}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj trzeci wyraz ciągu (a_n).
Odpowiedź:
a_3= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20481 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Oblicz granicę \lim_{n\to+\infty}\frac{10n^2-5n+2}{(2n+7)(-6n+4)} .
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pr-20488 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Iloraz ciągu geometrycznego (b_n) wynosi \frac{\sqrt{2}}{2}, a suma jego wszystkich wyrazów jest równa 12+6\sqrt{2}.

Oblicz b_5.

Odpowiedź:
b_5=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30191 ⋅ Poprawnie: 9/12 [75%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Dany jest ciąg określony wzorem a_n=(-1)^n\cdot (2n-1). Uzasadnij, że ciąg b_n=a_{2n+1} jest arytmetyczny.

Oblicz S_{k} ciągu (b_n).

Dane
k=91
Odpowiedź:
S_{k}= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Oblicz S_{k} ciągu (a_n).
Odpowiedź:
S_{k}= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30183 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 W ciągu geometrycznym (a+k,b+4,c) zachodzi warunek a+b+c=22-k. Ciąg liczbowy (a+k-5,b,c-11) jest ciągiem arytmetycznym. Oblicz a,b,c.

Podaj najmniejsze możliwe a.

Dane
k=5
Odpowiedź:
a_{min}= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Podaj największe możliwe a.
Odpowiedź:
a_{max}= (wpisz liczbę całkowitą)
Zadanie 13.  4 pkt ⋅ Numer: pr-31025 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 13.1 (4 pkt)
 Dany jest nieskończony ciąg geometryczny (a_n), określony dla każdej liczby naturalnej n\geqslant 1. Suma trzech początkowych wyrazów ciągu (a_n) jest równa 7, a suma S wszystkich wyrazów tego ciągu jest równa 8. Wyznacz wszystkie wartości n, dla których spełniona jest nierówność \left|\frac{S-S_n}{S_n}\right|\lessdot \frac{1}{32}, gdzie S_n oznacza sumę n początkowych wyrazów ciągu (a_n).

Podaj najmniejszą możliwą wartość n, która spełnia tę nierówność.

Odpowiedź:
n_{min}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm