« Dany jest ciąg (a_n) oraz ciąg
(b_n) określony następująco:
b_n=a_1+a_2+a_3+...+a_n. O ciągu
(b_n) wiadomo, że spełnia warunek
b_n=\frac{(n+1)(2n+3)}{6} dla każdego
n\in\mathbb{N_{+}}.
Oblicz wyraz a_k tego ciągu.
Dane
k=6
Odpowiedź:
a_{k}=
(wpisz dwie liczby całkowite)
Zadanie 2.1 pkt ⋅ Numer: pr-10265 ⋅ Poprawnie: 6/6 [100%]
W trzywyrazowym ciągu geometrycznym (a_1, a_2, a_3), spełniona jest równość
a_1+a_2+a_3=\frac{279}{25}. Wyrazy a_1,
a_2, a_3 są – odpowiednio –siódmym
, drugim i pierwszym wyrazem rosnącego ciągu arytmetycznego.
Oblicz iloraz ciągu geometrycznego.
Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (3 pkt)
Oblicz a_1.
Odpowiedź:
a_1=
(wpisz dwie liczby całkowite)
Zadanie 13.4 pkt ⋅ Numer: pr-30801 ⋅ Poprawnie: 18/24 [75%]
« Suma wszystkich wyrazów o numerach nieparzystych zbieżnego ciągu geometrycznego
jest równa \frac{2}{9}, zaś suma wszystkich wyrazów tego ciągu
o numerach parzystych jest równa \frac{1}{9}.
Oblicz pierwszy wyraz tego ciągu.
Odpowiedź:
a_1=
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (2 pkt)
Podaj iloraz tego ciągu.
Odpowiedź:
q=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat