Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pr-10261 ⋅ Poprawnie: 2/2 [100%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Dany jest ciąg liczbowy
(a_n) określony wzorem
a_n=4n-n^3 . Wyraz
a_{2k-p} tego ciągu
jest równy
ak^3+bk^2+ck+d .
Podaj liczby b , c i d .
Dane
p=1
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pr-10266 ⋅ Poprawnie: 4/6 [66%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Ciąg liczbowy
(b_n) określony wzorem
\begin{cases}
b_1=a \\
b_{n+1}=\frac{1}{b}b_n
\end{cases}
jest:
Dane
a=-\frac{1}{2}=-0.50000000000000
b=13
Odpowiedzi:
A. nierosnący
B. niemonotoniczny
C. malejący
D. rosnący
Zadanie 3. 1 pkt ⋅ Numer: pr-10306 ⋅ Poprawnie: 2/3 [66%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
a_n=\frac{n}{n+5} jest zbieżny i
\lim_{n\to\infty} a_n=1 . Nierówności
|a_n-1| \lessdot \frac{1}{20} nie spełnia
k wyrazów tego ciągu.
Wyznacz liczbę k .
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pr-10140 ⋅ Poprawnie: 20/18 [111%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Oblicz granicę
\lim_{n\to+\infty}\frac{\left(6n^2+4n\right)^2}{12n^4-4}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pr-10329 ⋅ Poprawnie: 9/10 [90%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Drugi wyraz ciągu geometrycznego jest równy
\frac{1}{2} , a suma
wszystkich jego wyrazów jest równa
\frac{25}{8} .
Wyznacz najmniejszy możliwy iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pr-20804 ⋅ Poprawnie: 9/12 [75%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
« Ciąg liczbowy
\left(a_n\right) określony jest następująco:
\begin{cases}
a_1=1 \\
a_{n+1}=a_n+0,15\text{, dla } n\in\mathbb{N_{+}}
\end{cases}
.
Oblicz sumę
s=a_{k}+a_{k+1}+a_{k+2}+...+a_{l} .
Dane
k=30
l=50
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pr-20755 ⋅ Poprawnie: 53/37 [143%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Dany jest ciąg geometryczny
(a_n) .
Oblicz
k .
Dane
a_3+a_6=-56
a_4+a_7=112
S_k=21846
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pr-20479 ⋅ Poprawnie: 8/9 [88%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Ciąg
(a+p,b+q,10) jest arytmetyczny, zaś ciąg
(10,b+q+5,2(a+p)) jest geometryczny.
Oblicz a\cdot b .
Dane
p=1
q=10
Odpowiedź:
a\cdot b=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20482 ⋅ Poprawnie: 15/17 [88%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Oblicz
\lim_{n\to+\infty}\frac{-14n^3+3n}{(1+4n)^3}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pr-20276 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
Wyznacz rozwiązania równania
\tan 2x+\tan^2 2x+\tan^3 2x+...=\frac{1}{2}\cdot (\sqrt{3}+1) , gdzie
x\in\left(-\frac{\pi}{2},\frac{\pi}{4}\right)-
\left\{-\frac{\pi}{4}\right\} .
Najmniejsze rozwiązanie tego równania jest równe a\cdot \pi .
Podaj liczbę a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Największe rozwiązanie tego równania jest równe b\cdot \pi .
Podaj liczbę b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30191 ⋅ Poprawnie: 9/13 [69%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Dany jest ciąg określony wzorem
a_n=(-1)^n\cdot (2n-1) . Uzasadnij, że ciąg
b_n=a_{2n+1} jest arytmetyczny.
Oblicz S_{k} ciągu (b_n) .
Dane
k=53
Odpowiedź:
S_{k}=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Oblicz
S_{k} ciągu
(a_n) .
Odpowiedź:
S_{k}=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pr-30179 ⋅ Poprawnie: 4/5 [80%]
Rozwiąż
Podpunkt 12.1 (4 pkt)
W niestałym ciągu arytmetycznym
a_1=a . Ponadto
wyrazy
a_2 ,
a_3 i
a_6 sa trzema kolejnymi wyrazami ciągu
geometrycznego. Ostatni
k-ty wyraz tego ciągu
jest równy
a_k=p .
Oblicz a_1+a_2+a_3+...+a_k .
Dane
a=-9
p=387
Odpowiedź:
a_1+a_2+a_3+...+a_k=
(wpisz liczbę całkowitą)
Zadanie 13. 4 pkt ⋅ Numer: pr-30795 ⋅ Poprawnie: 4/4 [100%]
Rozwiąż
Podpunkt 13.1 (2 pkt)
Ciąg liczbowy
\left(a_n\right) jest nieskończonym
ciągiem geometrycznym malejącym.
Suma trzech jego pierwszych wyrazów jest równa
35 , a iloczyn tych wyrazów
jest równy
1000 .
Wyznacz iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (1 pkt)
Wyznacz trzeci wyraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 13.3 (1 pkt)
Oblicz sumę wszystkich wyrazów tego ciągu o numerach
nieparzystych.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż