Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pr-10262 ⋅ Poprawnie: 2/2 [100%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
O ciągu
(a_n) wiadomo, że
a_{n+p}=\frac{1-3n}{4n-2} .
Wówczas ogólny wyraz tego ciągu
a_n jest równy
\frac{-3n+c}{4n+d} .
Wyznacz liczby c i d .
Dane
p=4
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pr-10266 ⋅ Poprawnie: 2/3 [66%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Ciąg liczbowy
(b_n) określony wzorem
\begin{cases}
b_1=a \\
b_{n+1}=\frac{1}{b}b_n
\end{cases}
jest:
Dane
a=-\frac{1}{9}=-0.11111111111111
b=8
Odpowiedzi:
A. malejący
B. niemonotoniczny
C. nierosnący
D. rosnący
Zadanie 3. 1 pkt ⋅ Numer: pr-10306 ⋅ Poprawnie: 2/2 [100%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
a_n=\frac{n}{n+5} jest zbieżny i
\lim_{n\to\infty} a_n=1 . Nierówności
|a_n-1| \lessdot \frac{1}{160} nie spełnia
k wyrazów tego ciągu.
Wyznacz liczbę k .
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pr-11653 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (1 pkt)
Ciąg
(a_n) jest określony wzorem
a_n=\frac{-4n^2-n-3}{-3+3n-3n^2} dla
każdej liczby naturalnej
n\geqslant 1 .
Granica g tego ciągu jest równa:
Odpowiedzi:
A. \frac{16}{9}
B. -\frac{4}{9}
C. \frac{4}{3}
D. -\frac{8}{3}
E. -\frac{8}{9}
F. \frac{8}{9}
Zadanie 5. 1 pkt ⋅ Numer: pr-10328 ⋅ Poprawnie: 13/14 [92%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Pierwszy wyraz ciągu geometrycznego jest równy
9 , a suma
wszystkich jego wyrazów jest równa
5 .
Oblicz iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 3 pkt ⋅ Numer: pr-21203 ⋅ Poprawnie: 2/4 [50%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Pierwszy wyraz ciągu
(a_n) , określonego dla
n\geqslant 1 ,
jest równy
2 . Wszystkie wyrazy tego ciągu spełniają warunek
a_n=3a_{n+1}+5n^2+1 .
Oblicz a_3 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pr-20272 ⋅ Poprawnie: 6/7 [85%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Rozwiąż równanie
2^1\cdot 2^3\cdot 2^5\cdot ...\cdot 2^{2x+23}=64\cdot 4^{x+13}
.
Podaj największe x spełniające to równanie.
Odpowiedź:
x_{max}=
(wpisz liczbę całkowitą)
Zadanie 8. 3 pkt ⋅ Numer: pr-20265 ⋅ Poprawnie: 19/27 [70%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
W trzywyrazowym ciągu arytmetycznym
(x,y,z) liczba
z jest równa
9 . Po
przestawieniu wyrazów ciąg
(z,x,y) jest ciągiem
geometrycznym.
Podaj najmniejsze możliwe x .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Podaj najmniejsze możliwe
y .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.3 (1 pkt)
Podaj największe możliwe
y .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pr-20484 ⋅ Poprawnie: 14/15 [93%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
» Oblicz
\lim_{n\to+\infty}\left(\sqrt{36n^2+9n}-\sqrt{36n^2+2}\right)
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pr-20488 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Iloraz ciągu geometrycznego
(b_n) wynosi
\frac{\sqrt{7}}{7} , a suma jego wszystkich wyrazów
jest równa
7+\sqrt{7} .
Oblicz b_5 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30191 ⋅ Poprawnie: 9/12 [75%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Dany jest ciąg określony wzorem
a_n=(-1)^n\cdot (2n-1) . Uzasadnij, że ciąg
b_n=a_{2n+1} jest arytmetyczny.
Oblicz S_{k} ciągu (b_n) .
Dane
k=89
Odpowiedź:
S_{k}=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Oblicz
S_{k} ciągu
(a_n) .
Odpowiedź:
S_{k}=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pr-30183 ⋅ Poprawnie: 2/2 [100%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
W ciągu geometrycznym
(a+k,b+4,c) zachodzi warunek
a+b+c=22-k . Ciąg liczbowy
(a+k-5,b,c-11) jest ciągiem arytmetycznym.
Oblicz
a,b,c .
Podaj najmniejsze możliwe a .
Dane
k=5
Odpowiedź:
a_{min}=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
Podaj największe możliwe
a .
Odpowiedź:
a_{max}=
(wpisz liczbę całkowitą)
Zadanie 13. 4 pkt ⋅ Numer: pr-31057 ⋅ Poprawnie: 13/29 [44%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Dany jest nieskończony ciąg okręgów
(o_n) o równaniach
x^2+y^2=3^{25-n} , gdzie
n\geqslant 1 .
Niech
P_k będzie pierścieniem ograniczonym zewnętrznym okręgiem
o_{2k-1} i wewnętrznym okręgiem
o_{2k} .
Wzór na pole powierzchni pierścienia P_k można zapisać w postaci
S_k=a\cdot \pi\cdot 3^{25-2k} .
Podaj liczbę a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (1 pkt)
Pola powierzchni wszystkich pierścieni tworzą ciąg geometryczny.
Wyznacz iloraz q tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 13.3 (2 pkt)
Suma pól powierzchni wszystkich pierścieni jest równa
\frac{3^m}{n} , gdzie
m,n\in\mathbb{Z_{+}} i
n jest najmniejszą możliwą
liczbą całkowitą dodatnią.
Podaj liczby m i n .
Odpowiedzi:
Rozwiąż