Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pr-10264 ⋅ Poprawnie: 2/4 [50%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Dany jest ciąg (a_n) oraz ciąg (b_n) określony następująco: b_n=a_1+a_2+a_3+...+a_n. O ciągu (b_n) wiadomo, że spełnia warunek b_n=\frac{(n+1)(2n+3)}{6} dla każdego n\in\mathbb{N_{+}}.

Oblicz wyraz a_k tego ciągu.

Dane
k=6
Odpowiedź:
a_{k}=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pr-10265 ⋅ Poprawnie: 6/6 [100%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg liczbowy (a_n) określony wzorem \begin{cases} a_1=a \\ a_{n+1}=\frac{b}{a_n} \end{cases} jest:
Dane
a=\frac{1}{3}=0.33333333333333
b=6
Odpowiedzi:
A. niemonotoniczny B. malejący
C. nierosnący D. niemalejący
Zadanie 3.  1 pkt ⋅ Numer: pr-10139 ⋅ Poprawnie: 5/9 [55%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg b_n=\frac{2n-2}{n+5} jest zbieżny i \lim_{n\to\infty} b_n=2. Nierówności |b_n-2| \lessdot 0,02 nie spełnia p wyrazów tego ciągu.

Wyznacz liczbę p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-11653 ⋅ Poprawnie: 3/3 [100%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=\frac{-3n^2+n+2}{2-5n+n^2} dla każdej liczby naturalnej n\geqslant 1.

Granica g tego ciągu jest równa:

Odpowiedzi:
A. 1 B. 6
C. -4 D. -\frac{3}{2}
E. -3 F. -\frac{9}{2}
Zadanie 5.  1 pkt ⋅ Numer: pr-10329 ⋅ Poprawnie: 10/11 [90%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Drugi wyraz ciągu geometrycznego jest równy \frac{5}{8}, a suma wszystkich jego wyrazów jest równa \frac{10}{3}.

Wyznacz najmniejszy możliwy iloraz tego ciągu.

Odpowiedź:
q_{min}=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-20268 ⋅ Poprawnie: 43/43 [100%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
Ciąg \left( \sqrt[3]{12}+\sqrt[3]{6}, \frac{\sqrt{2}(m+3)}{4}, \sqrt[3]{144}-2\sqrt[3]{9}+\sqrt[3]{36} \right) jest ciągiem geometrycznym.

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe m.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20272 ⋅ Poprawnie: 7/8 [87%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Rozwiąż równanie 2^1\cdot 2^3\cdot 2^5\cdot ...\cdot 2^{2x+5}=64\cdot 4^{x+4} .

Podaj największe x spełniające to równanie.

Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20264 ⋅ Poprawnie: 27/26 [103%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Ciąg (a_1,a_2,a_3) jest rosnącym ciągiem geometrycznym oraz a_1+a_2+a_3=42. Ciąg (a_1+2,a_2+2,a_3-16) jest arytmetyczny. Wyznacz wyrazy tego ciągu.

Podaj pierwszy wyraz ciągu (a_n).

Odpowiedź:
a_{1}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj trzeci wyraz ciągu (a_n).
Odpowiedź:
a_3= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20482 ⋅ Poprawnie: 15/17 [88%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Oblicz \lim_{n\to+\infty}\frac{14n^3+3n}{(1+3n)^3} .
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pr-20835 ⋅ Poprawnie: 10/15 [66%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Rozwiąż równanie 1+\frac{1}{1+\frac{1}{4}x}+\frac{1}{\left(1+\frac{1}{4}x\right)^2}+...=1+\frac{1}{2}x .

Podaj rozwiązanie tego równania.

Odpowiedź:
x= \cdot
(wpisz trzy liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30192 ⋅ Poprawnie: 8/10 [80%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 «« W ciągu arytmetycznym \left(a_n\right) zachodzi wzór S_n=-\frac{7}{4}n+\frac{1}{4}n^2, dla każdej liczby naturalnej dodatniej.

Oblicz sumę k początkowych wyrazów tego ciągu o numerach nieparzystych.

Dane
k=36
Odpowiedź:
S_{k}= (wpisz liczbę całkowitą)
Zadanie 12.  5 pkt ⋅ Numer: pr-31063 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
 W trzywyrazowym ciągu geometrycznym (a_1, a_2, a_3), spełniona jest równość a_1+a_2+a_3=\frac{279}{25}. Wyrazy a_1, a_2, a_3 są – odpowiednio –siódmym , drugim i pierwszym wyrazem rosnącego ciągu arytmetycznego.

Oblicz iloraz ciągu geometrycznego.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (3 pkt)
 Oblicz a_1.
Odpowiedź:
a_1=
(wpisz dwie liczby całkowite)
Zadanie 13.  4 pkt ⋅ Numer: pr-30801 ⋅ Poprawnie: 18/24 [75%] Rozwiąż 
Podpunkt 13.1 (2 pkt)
 « Suma wszystkich wyrazów o numerach nieparzystych zbieżnego ciągu geometrycznego jest równa \frac{2}{9}, zaś suma wszystkich wyrazów tego ciągu o numerach parzystych jest równa \frac{1}{9}.

Oblicz pierwszy wyraz tego ciągu.

Odpowiedź:
a_1=
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (2 pkt)
 Podaj iloraz tego ciągu.
Odpowiedź:
q=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm