W chwili początkowej (t=0) masa substancji jest równa
6 gram. Wskutek rozpadu cząsteczek tej substancji jej
masa się zmniejsza. Po każdej kolejnej dobie ubywa 21\% masy,
jaka była na koniec doby poprzedniej. Dla każdej liczby całkowitej t\geqslant 0
funkcja m(t) określa masę substancji w gramach po
t pełnych dobach (czas liczymy od chwili początkowej). Wyznacz wzór
funkcji m(t).
Oblicz, po ilu pełnych dobach masa tej substancji będzie po raz pierwszy mniejsza od
1,5 grama.
Odpowiedź:
t=(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pr-20273 ⋅ Poprawnie: 7/8 [87%]
Trzywyrazowy ciąg (x,y,z) jest geometryczny i rosnący. Suma
wyrazów tego ciągu jest równa 155. Liczby
x, y oraz z
są - odpowiednio – wyrazami a_1, a_2
oraz a_{7} ciągu arytmetycznego
(a_n), określonego dla każdej liczby naturalnej
n \geqslant 1.
Oblicz x, y oraz z.
Podaj iloraz q ciągu geometrycznego.
Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
Podaj różnicę r ciągu arytmetycznego.
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 13.4 pkt ⋅ Numer: pr-31057 ⋅ Poprawnie: 13/29 [44%]
Dany jest nieskończony ciąg okręgów (o_n) o równaniach
x^2+y^2=3^{39-n}, gdzie n\geqslant 1.
Niech P_k będzie pierścieniem ograniczonym zewnętrznym okręgiem
o_{2k-1} i wewnętrznym okręgiem o_{2k}.
Wzór na pole powierzchni pierścienia P_k można zapisać w postaci
S_k=a\cdot \pi\cdot 3^{39-2k}.
Podaj liczbę a.
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (1 pkt)
Pola powierzchni wszystkich pierścieni tworzą ciąg geometryczny.
Wyznacz iloraz q tego ciągu.
Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Podpunkt 13.3 (2 pkt)
Suma pól powierzchni wszystkich pierścieni jest równa \frac{3^m}{n}, gdzie
m,n\in\mathbb{Z_{+}} i n jest najmniejszą możliwą
liczbą całkowitą dodatnią.
Podaj liczby m i n.
Odpowiedzi:
m
=
(wpisz liczbę całkowitą)
n
=
(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat