Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pr-10261 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 1.1 (1 pkt)
Dany jest ciąg liczbowy
(a_n) określony wzorem
a_n=4n-n^3 . Wyraz
a_{2k-p} tego ciągu
jest równy
ak^3+bk^2+ck+d .
Podaj liczby b , c i d .
Dane
p=2
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pr-10266 ⋅ Poprawnie: 2/3 [66%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Ciąg liczbowy
(b_n) określony wzorem
\begin{cases}
b_1=a \\
b_{n+1}=\frac{1}{b}b_n
\end{cases}
jest:
Dane
a=-\frac{1}{5}=-0.20000000000000
b=2
Odpowiedzi:
A. rosnący
B. nierosnący
C. malejący
D. niemonotoniczny
Zadanie 3. 1 pkt ⋅ Numer: pr-10139 ⋅ Poprawnie: 1/1 [100%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
b_n=\frac{2n-4}{n+1} jest zbieżny i
\lim_{n\to\infty} b_n=2 . Nierówności
|b_n-2| \lessdot 0,02 nie spełnia
p wyrazów tego ciągu.
Wyznacz liczbę p .
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pr-11653 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (1 pkt)
Ciąg
(a_n) jest określony wzorem
a_n=\frac{-3n^2-4n+1}{-2+3n-n^2} dla
każdej liczby naturalnej
n\geqslant 1 .
Granica g tego ciągu jest równa:
Odpowiedzi:
A. -6
B. 3
C. 2
D. -2
E. \frac{9}{2}
F. 4
Zadanie 5. 1 pkt ⋅ Numer: pr-10329 ⋅ Poprawnie: 9/9 [100%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Drugi wyraz ciągu geometrycznego jest równy
\frac{9}{4} , a suma
wszystkich jego wyrazów jest równa
9 .
Wyznacz najmniejszy możliwy iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pr-20277 ⋅ Poprawnie: 6/8 [75%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Pierwszy wyraz ciągu
(a_n) wynosi
0 . Każdy z kolejnych
wyrazów tego ciągu jest równy sumie numerów wszystkich wyrazów go
poprzedzających. Wyznacz wzór tego ciągu.
Podaj a_{50} .
Odpowiedź:
a_{k}=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
a_{k}=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pr-20811 ⋅ Poprawnie: 1/3 [33%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Dany jest ciąg geometryczny
(a_n) o ilorazie
q .
Oblicz najmniejszą możliwą wartość liczby q^2 .
Dane
a_1+a_2+a_3+a_4+a_5=155
\frac{a_1+a_5}{a_3}=\frac{17}{4}=4.25000000000000
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Dla wyznaczonej najmniejszej wartości liczby
q^2 ,
oblicz pierwszy wyraz tego ciągu o ilorazie
|q| .
Odpowiedź:
a_1=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pr-20813 ⋅ Poprawnie: 9/8 [112%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Ciąg liczbowy
(x+3, y+m, z+3) jest ciągiem arytmetycznym, zaś ciąg
liczbowy
(x,y-5+m,z) jest geometryczny.
Podaj największe możliwe x .
Dane
m=3
x+y+z=30
Odpowiedź:
x_{max}=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj największe możliwe
y .
Odpowiedź:
y_{max}=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20814 ⋅ Poprawnie: 8/9 [88%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Oblicz
\lim_{n\to+\infty}\left(\sqrt{9n^2-8n}-3n\right)
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pr-20276 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
Wyznacz rozwiązania równania
\tan 2x+\tan^2 2x+\tan^3 2x+...=\frac{1}{2}\cdot (\sqrt{3}+1) , gdzie
x\in\left(-\frac{\pi}{2},\frac{\pi}{4}\right)-
\left\{-\frac{\pi}{4}\right\} .
Najmniejsze rozwiązanie tego równania jest równe a\cdot \pi .
Podaj liczbę a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Największe rozwiązanie tego równania jest równe b\cdot \pi .
Podaj liczbę b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30188 ⋅ Poprawnie: 7/7 [100%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
Ciąg
(a,b,c) jest rosnącym ciągiem geometrycznym.
Suma jego wyrazów wynosi
s , a ich iloczyn
t . Wyznacz ten ciąg.
Podaj a .
Dane
s=28.0
t=512
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Odpowiedź:
q=
(wpisz liczbę całkowitą)
Zadanie 12. 5 pkt ⋅ Numer: pr-30886 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 12.1 (2 pkt)
Ciąg
(a,b,c-9) jest trzywyrazowym ciągiem geometrycznym o wyrazach
dodatnich. Ciąg
(2a,2b,c-8) jest trzywyrazowym ciągiem arytmetycznym.
Ponadto spełniony jest warunek
c-b=15 .
Podaj liczby a i b .
Odpowiedzi:
Podpunkt 12.2 (3 pkt)
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 13. 4 pkt ⋅ Numer: pr-30883 ⋅ Poprawnie: 6/9 [66%]
Rozwiąż
Podpunkt 13.1 (2 pkt)
Dany jest nieskończony szereg geometryczny
2(3x-12)-\frac{6(3x-12)}{3x-13}+\frac{18(3x-12)}{(3x-13)^2}-\frac{54(3x-12)}{(3x-13)^3}+... .
Wyznacz wszystkie wartości zmiennej x (różnej od 4
i od \frac{13}{3} ), dla których suma tego szeregu istnieje.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy i największy z końców
liczbowych tych przedziałów.
Odpowiedzi:
Podpunkt 13.2 (2 pkt)
Wyznacz wszystkie wartości zmiennej
x , dla których suma tego szeregu istnieje
i jest równa
\frac{15}{2} .
Podaj największe takie x .
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż