Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pr-10261 ⋅ Poprawnie: 2/2 [100%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Dany jest ciąg liczbowy
(a_n) określony wzorem
a_n=4n-n^3 . Wyraz
a_{2k-p} tego ciągu
jest równy
ak^3+bk^2+ck+d .
Podaj liczby b , c i d .
Dane
p=1
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pr-10265 ⋅ Poprawnie: 6/6 [100%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Ciąg liczbowy
(a_n) określony wzorem
\begin{cases}
a_1=a \\
a_{n+1}=\frac{b}{a_n}
\end{cases}
jest:
Dane
a=\frac{1}{3}=0.33333333333333
b=10
Odpowiedzi:
A. nierosnący
B. niemalejący
C. niemonotoniczny
D. malejący
Zadanie 3. 1 pkt ⋅ Numer: pr-10139 ⋅ Poprawnie: 5/8 [62%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
b_n=\frac{2n-2}{n+9} jest zbieżny i
\lim_{n\to\infty} b_n=2 . Nierówności
|b_n-2| \lessdot 0,02 nie spełnia
p wyrazów tego ciągu.
Wyznacz liczbę p .
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Zadanie 4. 2 pkt ⋅ Numer: pr-11627 ⋅ Poprawnie: 1/4 [25%]
Rozwiąż
Podpunkt 4.1 (2 pkt)
Granicą ciągu liczbowego
\lim_{n\to+\infty} \frac{-4}{\sqrt{64n^2+1}-8}
jest:
Odpowiedzi:
A. -\infty
B. 8
C. -4
D. +\infty
Zadanie 5. 1 pkt ⋅ Numer: pr-10143 ⋅ Poprawnie: 9/15 [60%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Oblicz sumę wszystkich wyrazów ciągu określonego wzorem
a_n=3\cdot 12^{-n} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pr-20268 ⋅ Poprawnie: 43/43 [100%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Ciąg
\left(
\sqrt[3]{12}+\sqrt[3]{6},
\frac{\sqrt{2}(m+3)}{4},
\sqrt[3]{144}-2\sqrt[3]{9}+\sqrt[3]{36}
\right)
jest ciągiem geometrycznym.
Podaj najmniejsze możliwe m .
Odpowiedź:
m_{min}=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe m .
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pr-20486 ⋅ Poprawnie: 47/37 [127%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
«« Oblicz sumę wszystkich liczb naturalnych trzycyfrowych podzielnych przez
a lub przez
b .
Dane
a=5
b=9
Odpowiedź:
s=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pr-20266 ⋅ Poprawnie: 11/12 [91%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Ciąg
(x,y,z) jest rosnącym ciągiem geometrycznym,
zaś ciąg
(b_n) ciągiem arytmetycznym. Zachodzą
równości:
x+y+z=273 ,
b_1=x ,
b_{9}=y i
b_{81}=z .
Oblicz
x,y,z .
Podaj x .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
y=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20484 ⋅ Poprawnie: 14/15 [93%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
» Oblicz
\lim_{n\to+\infty}\left(\sqrt{100n^2+2n}-\sqrt{100n^2+2}\right)
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pr-20275 ⋅ Poprawnie: 5/11 [45%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Dany jest ciąg
c_n=\left(-\frac{1}{145-2m}\right)^n ,
w którym wszystkie wyrazy są dodatnie, a
m jest
parametrem. Wyznacz te wartości parametru
m , dla
których szereg
c_1+c_2+c_3+... jest zbieżny.
Podaj najmniejsze całkowite m spełniające warunki
zadania.
Odpowiedź:
m_{min}=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30178 ⋅ Poprawnie: 49/43 [113%]
Rozwiąż
Podpunkt 11.1 (4 pkt)
Dla każdego
x\in\mathbb{R_+}-\{1\} liczby
\log_{2}{x} ,
\log_{\sqrt[k]{m}}{x}
i
\log_{4}{x} są trzema kolejnymi wyrazami ciągu
arytmetycznego.
Wyznacz m .
Dane
k=3
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pr-30185 ⋅ Poprawnie: 5/5 [100%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
Ciąg
(x+k-5,y,z) jest ciągiem arytmetycznym.
Ciąg
(x+k,y+3,z+4) jest ciągiem geometrycznym
rosnącym spełniającym warunek
z+4=4\cdot (x+k) .
Wyznacz liczby
x,y,z .
Podaj x .
Dane
k=-6
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
Odpowiedź:
y=
(wpisz liczbę całkowitą)
Zadanie 13. 4 pkt ⋅ Numer: pr-30795 ⋅ Poprawnie: 4/4 [100%]
Rozwiąż
Podpunkt 13.1 (2 pkt)
Ciąg liczbowy
\left(a_n\right) jest nieskończonym
ciągiem geometrycznym malejącym.
Suma trzech jego pierwszych wyrazów jest równa
35 , a iloczyn tych wyrazów
jest równy
1000 .
Wyznacz iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (1 pkt)
Wyznacz trzeci wyraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 13.3 (1 pkt)
Oblicz sumę wszystkich wyrazów tego ciągu o numerach
nieparzystych.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż