W chwili początkowej (t=0) masa substancji jest równa
5 gram. Wskutek rozpadu cząsteczek tej substancji jej
masa się zmniejsza. Po każdej kolejnej dobie ubywa 17\% masy,
jaka była na koniec doby poprzedniej. Dla każdej liczby całkowitej t\geqslant 0
funkcja m(t) określa masę substancji w gramach po
t pełnych dobach (czas liczymy od chwili początkowej). Wyznacz wzór
funkcji m(t).
Oblicz, po ilu pełnych dobach masa tej substancji będzie po raz pierwszy mniejsza od
1,5 grama.
Odpowiedź:
t=(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pr-20485 ⋅ Poprawnie: 46/34 [135%]
W trzywyrazowym ciągu geometrycznym (a_1, a_2, a_3), spełniona jest równość
a_1+a_2+a_3=\frac{77}{4}. Wyrazy a_1,
a_2, a_3 są – odpowiednio –czwartym
, drugim i pierwszym wyrazem rosnącego ciągu arytmetycznego.
Oblicz iloraz ciągu geometrycznego.
Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (3 pkt)
Oblicz a_1.
Odpowiedź:
a_1=
(wpisz dwie liczby całkowite)
Zadanie 13.4 pkt ⋅ Numer: pr-30795 ⋅ Poprawnie: 3/3 [100%]
Ciąg liczbowy \left(a_n\right) jest nieskończonym
ciągiem geometrycznym malejącym.
Suma trzech jego pierwszych wyrazów jest równa 35, a iloczyn tych wyrazów
jest równy 1000.
Wyznacz iloraz tego ciągu.
Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (1 pkt)
Wyznacz trzeci wyraz tego ciągu.
Odpowiedź:
a_3=
(wpisz dwie liczby całkowite)
Podpunkt 13.3 (1 pkt)
Oblicz sumę wszystkich wyrazów tego ciągu o numerach
nieparzystych.
Odpowiedź:
S_{np}=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat