«« Dany jest nieskończony ciąg określony wzorem
r_n=\left(0,5\right)^n . Wyrazy tego ciągu są
długościami promieni kół. Suma pól powierzchni wszystkich tych kół jest równa
p\cdot \pi.
Podaj liczbę p.
Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 8.2 pkt ⋅ Numer: pr-20812 ⋅ Poprawnie: 8/9 [88%]
« Ciąg (a_1,a_2,a_3,...,a_{100}) jest ciągiem
geometrycznym, którego wszystkie wyrazy są dodatnie. Ciąg ten spełnia warunki:
100\cdot (a_2+a_4+a_6+...+a_{100})=a_1+a_3+a_5+...+a_{99}
oraz
\log{a_1}+\log{a_2}+\log{a_3}+...+\log{a_{100}}=100.
Wyznacz a_1.
Z ilu cyfr składa się liczba a_1?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 12.4 pkt ⋅ Numer: pr-31036 ⋅ Poprawnie: 0/0
Czterowyrazowy ciąg (a,b,c,d) jest arytmetyczny i rosnący. Różnica pomiędzy pierwszym
a czwartym wyrazem tego ciągu jest równa 168.
Ponadto ciąg (a+32,b,c) jest geometryczny.
Oblicz różnicę ciągu arytmetycznego.
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
Oblicz iloraz ciągu geometrycznego.
Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 13.4 pkt ⋅ Numer: pr-30883 ⋅ Poprawnie: 6/9 [66%]