Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pr-10261 ⋅ Poprawnie: 3/3 [100%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dany jest ciąg liczbowy (a_n) określony wzorem a_n=4n-n^3. Wyraz a_{2k-p} tego ciągu jest równy ak^3+bk^2+ck+d.

Podaj liczby b, c i d.

Dane
p=4
Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
d= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pr-10265 ⋅ Poprawnie: 6/6 [100%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg liczbowy (a_n) określony wzorem \begin{cases} a_1=a \\ a_{n+1}=\frac{b}{a_n} \end{cases} jest:
Dane
a=\frac{1}{11}=0.09090909090909
b=5
Odpowiedzi:
A. rosnący B. niemalejący
C. malejący D. niemonotoniczny
Zadanie 3.  1 pkt ⋅ Numer: pr-10306 ⋅ Poprawnie: 4/5 [80%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg a_n=\frac{n}{n+5} jest zbieżny i \lim_{n\to\infty} a_n=1. Nierówności |a_n-1| \lessdot \frac{1}{200} nie spełnia k wyrazów tego ciągu.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-11653 ⋅ Poprawnie: 3/3 [100%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=\frac{5n^2+4n+4}{5+4n+n^2} dla każdej liczby naturalnej n\geqslant 1.

Granica g tego ciągu jest równa:

Odpowiedzi:
A. \frac{10}{3} B. -\frac{5}{3}
C. 5 D. \frac{5}{2}
E. \frac{15}{2} F. -10
Zadanie 5.  1 pkt ⋅ Numer: pr-10328 ⋅ Poprawnie: 14/15 [93%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Pierwszy wyraz ciągu geometrycznego jest równy 10, a suma wszystkich jego wyrazów jest równa 7.

Oblicz iloraz tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-21154 ⋅ Poprawnie: 134/131 [102%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 W chwili początkowej (t=0) masa substancji jest równa 4 gram. Wskutek rozpadu cząsteczek tej substancji jej masa się zmniejsza. Po każdej kolejnej dobie ubywa 17\% masy, jaka była na koniec doby poprzedniej. Dla każdej liczby całkowitej t\geqslant 0 funkcja m(t) określa masę substancji w gramach po t pełnych dobach (czas liczymy od chwili początkowej). Wyznacz wzór funkcji m(t).

Oblicz, po ilu pełnych dobach masa tej substancji będzie po raz pierwszy mniejsza od 1,5 grama.

Odpowiedź:
t= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20273 ⋅ Poprawnie: 7/9 [77%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Ciąg (a_n) określony jest wzorem a_n=\frac{n^2(2n-1)}{1+5+9+...+4n-3}.

Oblicz S_{k}.

Dane
k=138
Odpowiedź:
S_k= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20812 ⋅ Poprawnie: 9/10 [90%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Ciąg liczbowy (a,b+m,1) jest arytmetyczny, zaś ciąg (1,a,b+m) jest geometryczny.

Podaj najmniejsze możliwe b.

Dane
m=5
Odpowiedź:
b_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj największe możliwe b.
Odpowiedź:
b_{max}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20823 ⋅ Poprawnie: 8/10 [80%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Oblicz \lim_{n\to+\infty} \frac{1+5+9+...+(4n-3)}{6+(6+7)+(6+14)+...+6+(7n-7)} .
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pr-20489 ⋅ Poprawnie: 0/3 [0%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Ciąg (c_n) określony jest rekurencyjnie: \begin{cases} c_1=\frac{1}{2} \\ c_{n}=\frac{45\cdot c_{n-1}}{1+2+3+...+89}\text{, dla }n > 1 \end{cases} oraz S_n=c_1+c_2+c_3+...+c_n.

Oblicz \lim_{n\to\infty}S_n.

Odpowiedź:
\lim_{n\to\infty}S_n=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30188 ⋅ Poprawnie: 7/8 [87%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Ciąg (a,b,c) jest rosnącym ciągiem geometrycznym. Suma jego wyrazów wynosi s, a ich iloczyn t. Wyznacz ten ciąg.

Podaj a.

Dane
s=45.5
t=2197
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Podaj q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30182 ⋅ Poprawnie: 7/9 [77%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Ciąg liczbowy (a,b,c+x) jest arytmetyczny i a+b+c+x=33. Ciąg liczbowy (a-1,b+5,c+x+19) jest geometryczny. Wyznacz a,b,c.

Podaj najmniejsze możliwe c.

Dane
x=5
Odpowiedź:
c_{min}= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Podaj największe możliwe c.
Odpowiedź:
c_{max}= (wpisz liczbę całkowitą)
Zadanie 13.  4 pkt ⋅ Numer: pr-31025 ⋅ Poprawnie: 0/2 [0%] Rozwiąż 
Podpunkt 13.1 (4 pkt)
 Dany jest nieskończony ciąg geometryczny (a_n), określony dla każdej liczby naturalnej n\geqslant 1. Suma trzech początkowych wyrazów ciągu (a_n) jest równa 7, a suma S wszystkich wyrazów tego ciągu jest równa 8. Wyznacz wszystkie wartości n, dla których spełniona jest nierówność \left|\frac{S-S_n}{S_n}\right|\lessdot \frac{1}{256}, gdzie S_n oznacza sumę n początkowych wyrazów ciągu (a_n).

Podaj najmniejszą możliwą wartość n, która spełnia tę nierówność.

Odpowiedź:
n_{min}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm