Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pr-10305 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dany jest ciąg (a_n), który spełnia warunki: a_{n+1}-a_{n+2}=a\cdot n oraz a_{n+1}+a_{n+2}=b\cdot n+c.

Oblicz dziesiąty wyraz tego ciągu.

Dane
a=-6
b=8
c=-4
Odpowiedź:
a_{10}= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pr-10265 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg liczbowy (a_n) określony wzorem \begin{cases} a_1=a \\ a_{n+1}=\frac{b}{a_n} \end{cases} jest:
Dane
a=\frac{1}{4}=0.25000000000000
b=7
Odpowiedzi:
A. malejący B. nierosnący
C. rosnący D. niemonotoniczny
Zadanie 3.  1 pkt ⋅ Numer: pr-10306 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg a_n=\frac{n}{n+5} jest zbieżny i \lim_{n\to\infty} a_n=1. Nierówności |a_n-1| \lessdot \frac{1}{60} nie spełnia k wyrazów tego ciągu.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-11653 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=\frac{2n^2-4n+3}{-1-4n-4n^2} dla każdej liczby naturalnej n\geqslant 1.

Granica g tego ciągu jest równa:

Odpowiedzi:
A. \frac{1}{3} B. \frac{1}{6}
C. -\frac{3}{4} D. -\frac{1}{4}
E. 1 F. -\frac{1}{2}
Zadanie 5.  1 pkt ⋅ Numer: pr-10141 ⋅ Poprawnie: 4/14 [28%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dany jest nieskończony ciąg geometryczny (a_n) określony wzorem a_n=\frac{4}{\left(\sqrt{7}\right)^n} , dla n=1,2,3,.... Suma wszystkich wyrazów tego ciągu jest równa \frac{c}{\sqrt{d}+e}, gdzie c,d,e\in\mathbb{Z}.

Podaj liczby c,d i e.

Odpowiedzi:
c= (wpisz liczbę całkowitą)
d= (wpisz liczbę całkowitą)
e= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pr-20277 ⋅ Poprawnie: 6/8 [75%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Pierwszy wyraz ciągu (a_n) wynosi 0. Każdy z kolejnych wyrazów tego ciągu jest równy sumie numerów wszystkich wyrazów go poprzedzających. Wyznacz wzór tego ciągu.

Podaj a_{40}.

Odpowiedź:
a_{k}= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj a_{81}.
Odpowiedź:
a_{k}= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20485 ⋅ Poprawnie: 46/34 [135%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Dany jest ciąg (b_n): \begin{cases} b_1=1 \\ b_{n+1}=b_n+\frac{a}{b} \end{cases} .

Oblicz s=b_{30}+b_{31}+b_{32}+...+b_{50}.

Dane
a=2
b=7
Odpowiedź:
s=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20479 ⋅ Poprawnie: 6/7 [85%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Ciąg (a+p,b+q,10) jest arytmetyczny, zaś ciąg (10,b+q+5,2(a+p)) jest geometryczny.

Oblicz a\cdot b.

Dane
p=3
q=7
Odpowiedź:
a\cdot b= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20482 ⋅ Poprawnie: 15/16 [93%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Oblicz \lim_{n\to+\infty}\frac{-6n^3+3n}{(1+n)^3} .
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pr-20488 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Iloraz ciągu geometrycznego (b_n) wynosi \frac{\sqrt{2}}{2}, a suma jego wszystkich wyrazów jest równa 28+14\sqrt{2}.

Oblicz b_5.

Odpowiedź:
b_5=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30193 ⋅ Poprawnie: 6/8 [75%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 « W ciągu arytmetycznym mamy: a_3=4 i a_7=16. Rozwiąż nierówność S_n \lessdot k.

Podaj największe n spełniające tę nierówność.

Dane
k=579
Odpowiedź:
n_{max}= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30180 ⋅ Poprawnie: 1/3 [33%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Ciąg (a_1,a_2,a_3) jest rosnącym ciągiem geometrycznym oraz a_1+a_2+a_3=s. Ciąg (a_1,a_2+b,a_3+c) jest arytmetyczny. Wyznacz wyrazy tego ciągu.

Podaj pierwszy wyraz ciągu (a_n).

Dane
s=114
b=2
c=-68
Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Podaj iloraz ciągu (a_n).
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 13.  4 pkt ⋅ Numer: pr-30800 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 13.1 (1 pkt)
 « Funkcja f określona jest wzorem: f(x)=\frac{4(x-2)}{x-4}+\frac{4(x-2)^2}{(x-4)^2}+\frac{4(x-2)^3}{(x-4)^3}+... .

Przedział liczbowy (-\infty, p) jest dziedziną tej funkcji. Podaj p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 13.2 (1 pkt)
 Przedział liczbowy (p, +\infty) jest zbiorem wartości tej funkcji. Podaj p.
Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Podpunkt 13.3 (1 pkt)
 Przedział liczbowy \langle p, q) jest rozwiązaniem nierówności f(x)\leqslant 0.

Podaj p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 13.4 (1 pkt)
 Podaj q.
Odpowiedź:
q= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm