Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pr-10261 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dany jest ciąg liczbowy (a_n) określony wzorem a_n=4n-n^3. Wyraz a_{2k-p} tego ciągu jest równy ak^3+bk^2+ck+d.

Podaj liczby b, c i d.

Dane
p=1
Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
d= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pr-10266 ⋅ Poprawnie: 2/3 [66%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Ciąg liczbowy (b_n) określony wzorem \begin{cases} b_1=a \\ b_{n+1}=\frac{1}{b}b_n \end{cases} jest:
Dane
a=-\frac{1}{3}=-0.33333333333333
b=4
Odpowiedzi:
A. nierosnący B. rosnący
C. malejący D. niemonotoniczny
Zadanie 3.  1 pkt ⋅ Numer: pr-10306 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg a_n=\frac{n}{n+5} jest zbieżny i \lim_{n\to\infty} a_n=1. Nierówności |a_n-1| \lessdot \frac{1}{50} nie spełnia k wyrazów tego ciągu.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 4.  2 pkt ⋅ Numer: pr-11627 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (2 pkt)
 Granicą ciągu liczbowego \lim_{n\to+\infty} \frac{-3}{\sqrt{4n^2+1}-2} jest:
Odpowiedzi:
A. 2 B. -3
C. +\infty D. -\infty
Zadanie 5.  1 pkt ⋅ Numer: pr-10299 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Nieskończony ciąg geometryczny (a_n) jest określony w następujący sposób: \begin{cases} a_1=\frac{2}{5} \\ a_{n+1}=\frac{2}{3}\cdot a_n \text{, dla } n\in\mathbb{N_+} \end{cases} .

Oblicz sumę wszystkich wyrazów tego ciągu.

Odpowiedź:
S=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-21154 ⋅ Poprawnie: 107/99 [108%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 W chwili początkowej (t=0) masa substancji jest równa 3 gram. Wskutek rozpadu cząsteczek tej substancji jej masa się zmniejsza. Po każdej kolejnej dobie ubywa 22\% masy, jaka była na koniec doby poprzedniej. Dla każdej liczby całkowitej t\geqslant 0 funkcja m(t) określa masę substancji w gramach po t pełnych dobach (czas liczymy od chwili początkowej). Wyznacz wzór funkcji m(t).

Oblicz, po ilu pełnych dobach masa tej substancji będzie po raz pierwszy mniejsza od 1,5 grama.

Odpowiedź:
t= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20274 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
«« Dany jest nieskończony ciąg określony wzorem r_n=\left(0,5\right)^n . Wyrazy tego ciągu są długościami promieni kół. Suma pól powierzchni wszystkich tych kół jest równa p\cdot \pi.

Podaj liczbę p.

Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20267 ⋅ Poprawnie: 13/13 [100%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Ciąg liczbowy (a_n)=(a_1,a_2,a_3) jest rosnącym ciągiem geometrycznym oraz a_1+a_2+a_3=39. Ciąg \left(a_1,a_2+6,a_3\right) jest arytmetyczny. Wyznacz wyrazy tego ciągu.

Podaj pierwszy wyraz ciągu (a_n).

Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj drugi wyraz ciągu (a_n).
Odpowiedź:
a_2= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20483 ⋅ Poprawnie: 7/10 [70%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Oblicz \lim_{n\to+\infty}\left(\frac{3n^2+1}{3n-4}-\frac{n^2}{n-4}\right) .
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pr-20834 ⋅ Poprawnie: 19/23 [82%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Wynacz te wartości x\in\mathbb{R}, dla których ciąg liczbowy \left(1, \frac{5x+1}{2x+3},\left(\frac{5x+1}{2x+3}\right)^2,...\right) jest zbieżny.

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Odpowiedź:
x_l=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
x_p=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30194 ⋅ Poprawnie: 6/7 [85%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 » W ciągu arytmetycznym mamy: a_{13}=p i a_{30}=q. Wyznacz najmniejszą wartość n, dla której S_n ma wartość najmniejszą.

Podaj n.

Dane
p=-6
q=79
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30181 ⋅ Poprawnie: 3/4 [75%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Ciąg liczbowy (a+x, b+y,c+z) jest arytmetyczny, zaś ciąg (a,b,c+9) jest geometrycznym ciągiem rosnącym. Wiedząc, że a+c=s wyznacz ten ciąg.

Podaj a.

Dane
x=-1
y=-1
z=-4
s=21
Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 13.  4 pkt ⋅ Numer: pr-30883 ⋅ Poprawnie: 7/10 [70%] Rozwiąż 
Podpunkt 13.1 (2 pkt)
 Dany jest nieskończony szereg geometryczny 2(3x-7)-\frac{6(3x-7)}{3x-8}+\frac{18(3x-7)}{(3x-8)^2}-\frac{54(3x-7)}{(3x-8)^3}+....

Wyznacz wszystkie wartości zmiennej x (różnej od \frac{7}{3} i od \frac{8}{3}), dla których suma tego szeregu istnieje.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (dwie liczby całkowite)

max= (dwie liczby całkowite)
Podpunkt 13.2 (2 pkt)
 Wyznacz wszystkie wartości zmiennej x, dla których suma tego szeregu istnieje i jest równa \frac{15}{2}.

Podaj największe takie x.

Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm