Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pr-10261 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 1.1 (1 pkt)
Dany jest ciąg liczbowy
(a_n) określony wzorem
a_n=4n-n^3 . Wyraz
a_{2k-p} tego ciągu
jest równy
ak^3+bk^2+ck+d .
Podaj liczby b , c i d .
Dane
p=1
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pr-10266 ⋅ Poprawnie: 2/3 [66%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Ciąg liczbowy
(b_n) określony wzorem
\begin{cases}
b_1=a \\
b_{n+1}=\frac{1}{b}b_n
\end{cases}
jest:
Dane
a=-\frac{1}{3}=-0.33333333333333
b=5
Odpowiedzi:
A. rosnący
B. malejący
C. nierosnący
D. niemonotoniczny
Zadanie 3. 1 pkt ⋅ Numer: pr-10139 ⋅ Poprawnie: 1/1 [100%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
b_n=\frac{2n-2}{n+3} jest zbieżny i
\lim_{n\to\infty} b_n=2 . Nierówności
|b_n-2| \lessdot 0,02 nie spełnia
p wyrazów tego ciągu.
Wyznacz liczbę p .
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pr-11653 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (1 pkt)
Ciąg
(a_n) jest określony wzorem
a_n=\frac{-2n^2-4n-2}{3+5n-3n^2} dla
każdej liczby naturalnej
n\geqslant 1 .
Granica g tego ciągu jest równa:
Odpowiedzi:
A. -\frac{4}{9}
B. \frac{8}{9}
C. -\frac{4}{3}
D. \frac{1}{3}
E. -\frac{2}{9}
F. \frac{2}{3}
Zadanie 5. 1 pkt ⋅ Numer: pr-10142 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Oblicz sumę szeregu
54-18+6-... .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pr-20804 ⋅ Poprawnie: 9/11 [81%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
« Ciąg liczbowy
\left(a_n\right) określony jest następująco:
\begin{cases}
a_1=1 \\
a_{n+1}=a_n+0,15\text{, dla } n\in\mathbb{N_{+}}
\end{cases}
.
Oblicz sumę
s=a_{k}+a_{k+1}+a_{k+2}+...+a_{l} .
Dane
k=35
l=55
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pr-20485 ⋅ Poprawnie: 46/34 [135%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Dany jest ciąg
(b_n) :
\begin{cases}
b_1=1 \\
b_{n+1}=b_n+\frac{a}{b}
\end{cases}
.
Oblicz s=b_{30}+b_{31}+b_{32}+...+b_{50} .
Dane
a=1
b=5
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pr-20812 ⋅ Poprawnie: 8/9 [88%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Ciąg liczbowy
(a,b+m,1) jest arytmetyczny, zaś ciąg
(1,a,b+m) jest geometryczny.
Podaj najmniejsze możliwe b .
Dane
m=-3
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Podaj największe możliwe
b .
Odpowiedź:
b_{max}=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20822 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (2 pkt)
Oblicz
\lim_{n\to+\infty} \frac{2+5+8+...+(3\cdot(n+2)-1)}{(\sqrt{2}n+1)^2}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pr-20834 ⋅ Poprawnie: 9/9 [100%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Wynacz te wartości
x\in\mathbb{R} , dla których
ciąg liczbowy
\left(1, \frac{5x+1}{2x+3},\left(\frac{5x+1}{2x+3}\right)^2,...\right)
jest zbieżny.
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30191 ⋅ Poprawnie: 9/12 [75%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Dany jest ciąg określony wzorem
a_n=(-1)^n\cdot (2n-1) . Uzasadnij, że ciąg
b_n=a_{2n+1} jest arytmetyczny.
Oblicz S_{k} ciągu (b_n) .
Dane
k=59
Odpowiedź:
S_{k}=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Oblicz
S_{k} ciągu
(a_n) .
Odpowiedź:
S_{k}=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pr-30182 ⋅ Poprawnie: 7/8 [87%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
« Ciąg liczbowy
(a,b,c+x) jest arytmetyczny i
a+b+c+x=33 .
Ciąg liczbowy
(a-1,b+5,c+x+19) jest geometryczny.
Wyznacz
a,b,c .
Podaj najmniejsze możliwe c .
Dane
x=-3
Odpowiedź:
c_{min}=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
Podaj największe możliwe
c .
Odpowiedź:
c_{max}=
(wpisz liczbę całkowitą)
Zadanie 13. 4 pkt ⋅ Numer: pr-31057 ⋅ Poprawnie: 13/29 [44%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Dany jest nieskończony ciąg okręgów
(o_n) o równaniach
x^2+y^2=3^{19-n} , gdzie
n\geqslant 1 .
Niech
P_k będzie pierścieniem ograniczonym zewnętrznym okręgiem
o_{2k-1} i wewnętrznym okręgiem
o_{2k} .
Wzór na pole powierzchni pierścienia P_k można zapisać w postaci
S_k=a\cdot \pi\cdot 3^{19-2k} .
Podaj liczbę a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (1 pkt)
Pola powierzchni wszystkich pierścieni tworzą ciąg geometryczny.
Wyznacz iloraz q tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 13.3 (2 pkt)
Suma pól powierzchni wszystkich pierścieni jest równa
\frac{3^m}{n} , gdzie
m,n\in\mathbb{Z_{+}} i
n jest najmniejszą możliwą
liczbą całkowitą dodatnią.
Podaj liczby m i n .
Odpowiedzi:
Rozwiąż