Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pr-10262 ⋅ Poprawnie: 4/4 [100%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 O ciągu (a_n) wiadomo, że a_{n+p}=\frac{1-3n}{4n-2}. Wówczas ogólny wyraz tego ciągu a_n jest równy \frac{-3n+c}{4n+d}.

Wyznacz liczby c i d.

Dane
p=4
Odpowiedzi:
c= (wpisz liczbę całkowitą)
d= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pr-10265 ⋅ Poprawnie: 6/6 [100%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg liczbowy (a_n) określony wzorem \begin{cases} a_1=a \\ a_{n+1}=\frac{b}{a_n} \end{cases} jest:
Dane
a=\frac{1}{9}=0.11111111111111
b=8
Odpowiedzi:
A. niemonotoniczny B. nierosnący
C. malejący D. rosnący
Zadanie 3.  1 pkt ⋅ Numer: pr-10306 ⋅ Poprawnie: 4/5 [80%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg a_n=\frac{n}{n+5} jest zbieżny i \lim_{n\to\infty} a_n=1. Nierówności |a_n-1| \lessdot \frac{1}{160} nie spełnia k wyrazów tego ciągu.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-11653 ⋅ Poprawnie: 3/3 [100%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=\frac{2n^2+3n+2}{-4+2n-3n^2} dla każdej liczby naturalnej n\geqslant 1.

Granica g tego ciągu jest równa:

Odpowiedzi:
A. \frac{4}{9} B. -\frac{2}{3}
C. -\frac{4}{9} D. -\frac{8}{9}
E. -1 F. -\frac{1}{3}
Zadanie 5.  1 pkt ⋅ Numer: pr-10141 ⋅ Poprawnie: 5/16 [31%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dany jest nieskończony ciąg geometryczny (a_n) określony wzorem a_n=\frac{8}{\left(\sqrt{7}\right)^n} , dla n=1,2,3,.... Suma wszystkich wyrazów tego ciągu jest równa \frac{c}{\sqrt{d}+e}, gdzie c,d,e\in\mathbb{Z}.

Podaj liczby c,d i e.

Odpowiedzi:
c= (wpisz liczbę całkowitą)
d= (wpisz liczbę całkowitą)
e= (wpisz liczbę całkowitą)
Zadanie 6.  3 pkt ⋅ Numer: pr-21203 ⋅ Poprawnie: 2/5 [40%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Pierwszy wyraz ciągu (a_n), określonego dla n\geqslant 1, jest równy 1. Wszystkie wyrazy tego ciągu spełniają warunek a_n=4a_{n+1}+5n^2+2.

Oblicz a_3.

Odpowiedź:
a_3=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (2 pkt)
 Oblicz sumę a_1+a_2+a_3.
Odpowiedź:
a_1+a_2+a_3=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20274 ⋅ Poprawnie: 3/4 [75%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
«« Dany jest nieskończony ciąg określony wzorem r_n=\left(0,5\right)^n . Wyrazy tego ciągu są długościami promieni kół. Suma pól powierzchni wszystkich tych kół jest równa p\cdot \pi.

Podaj liczbę p.

Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20264 ⋅ Poprawnie: 27/26 [103%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Ciąg (a_1,a_2,a_3) jest rosnącym ciągiem geometrycznym oraz a_1+a_2+a_3=155. Ciąg (a_1+2,a_2-15,a_3-112) jest arytmetyczny. Wyznacz wyrazy tego ciągu.

Podaj pierwszy wyraz ciągu (a_n).

Odpowiedź:
a_{1}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj trzeci wyraz ciągu (a_n).
Odpowiedź:
a_3= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20823 ⋅ Poprawnie: 8/10 [80%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Oblicz \lim_{n\to+\infty} \frac{1+5+9+...+(4n-3)}{5+(5+7)+(5+14)+...+5+(7n-7)} .
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pr-20489 ⋅ Poprawnie: 0/3 [0%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Ciąg (c_n) określony jest rekurencyjnie: \begin{cases} c_1=\frac{1}{2} \\ c_{n}=\frac{37\cdot c_{n-1}}{1+2+3+...+73}\text{, dla }n > 1 \end{cases} oraz S_n=c_1+c_2+c_3+...+c_n.

Oblicz \lim_{n\to\infty}S_n.

Odpowiedź:
\lim_{n\to\infty}S_n=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30192 ⋅ Poprawnie: 8/10 [80%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 «« W ciągu arytmetycznym \left(a_n\right) zachodzi wzór S_n=-\frac{7}{4}n+\frac{1}{4}n^2, dla każdej liczby naturalnej dodatniej.

Oblicz sumę k początkowych wyrazów tego ciągu o numerach nieparzystych.

Dane
k=98
Odpowiedź:
S_{k}= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30180 ⋅ Poprawnie: 1/3 [33%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Ciąg (a_1,a_2,a_3) jest rosnącym ciągiem geometrycznym oraz a_1+a_2+a_3=s. Ciąg (a_1,a_2+b,a_3+c) jest arytmetyczny. Wyznacz wyrazy tego ciągu.

Podaj pierwszy wyraz ciągu (a_n).

Dane
s=228
b=16
c=-112
Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Podaj iloraz ciągu (a_n).
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 13.  4 pkt ⋅ Numer: pr-30801 ⋅ Poprawnie: 18/24 [75%] Rozwiąż 
Podpunkt 13.1 (2 pkt)
 « Suma wszystkich wyrazów o numerach nieparzystych zbieżnego ciągu geometrycznego jest równa \frac{8}{9}, zaś suma wszystkich wyrazów tego ciągu o numerach parzystych jest równa \frac{4}{9}.

Oblicz pierwszy wyraz tego ciągu.

Odpowiedź:
a_1=
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (2 pkt)
 Podaj iloraz tego ciągu.
Odpowiedź:
q=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm