Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pr-10262 ⋅ Poprawnie: 2/2 [100%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
O ciągu
(a_n) wiadomo, że
a_{n+p}=\frac{1-3n}{4n-2} .
Wówczas ogólny wyraz tego ciągu
a_n jest równy
\frac{-3n+c}{4n+d} .
Wyznacz liczby c i d .
Dane
p=1
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pr-10265 ⋅ Poprawnie: 1/1 [100%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Ciąg liczbowy
(a_n) określony wzorem
\begin{cases}
a_1=a \\
a_{n+1}=\frac{b}{a_n}
\end{cases}
jest:
Dane
a=\frac{1}{4}=0.25000000000000
b=7
Odpowiedzi:
A. rosnący
B. niemalejący
C. niemonotoniczny
D. nierosnący
Zadanie 3. 1 pkt ⋅ Numer: pr-10139 ⋅ Poprawnie: 2/2 [100%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
b_n=\frac{2n-2}{n+6} jest zbieżny i
\lim_{n\to\infty} b_n=2 . Nierówności
|b_n-2| \lessdot 0,02 nie spełnia
p wyrazów tego ciągu.
Wyznacz liczbę p .
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Zadanie 4. 2 pkt ⋅ Numer: pr-11627 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (2 pkt)
Granicą ciągu liczbowego
\lim_{n\to+\infty} \frac{-3}{\sqrt{36n^2+1}-6}
jest:
Odpowiedzi:
A. 6
B. -3
C. -\infty
D. +\infty
Zadanie 5. 1 pkt ⋅ Numer: pr-10328 ⋅ Poprawnie: 13/14 [92%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Pierwszy wyraz ciągu geometrycznego jest równy
3 , a suma
wszystkich jego wyrazów jest równa
11 .
Oblicz iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pr-20277 ⋅ Poprawnie: 6/8 [75%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Pierwszy wyraz ciągu
(a_n) wynosi
0 . Każdy z kolejnych
wyrazów tego ciągu jest równy sumie numerów wszystkich wyrazów go
poprzedzających. Wyznacz wzór tego ciągu.
Podaj a_{35} .
Odpowiedź:
a_{k}=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
a_{k}=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pr-20274 ⋅ Poprawnie: 2/2 [100%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
«« Dany jest nieskończony ciąg określony wzorem
r_n=\left(0,5\right)^n . Wyrazy tego ciągu są
długościami promieni kół. Suma pól powierzchni wszystkich tych kół jest równa
p\cdot \pi .
Podaj liczbę p .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 3 pkt ⋅ Numer: pr-20265 ⋅ Poprawnie: 19/27 [70%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
W trzywyrazowym ciągu arytmetycznym
(x,y,z) liczba
z jest równa
-9 . Po
przestawieniu wyrazów ciąg
(z,x,y) jest ciągiem
geometrycznym.
Podaj najmniejsze możliwe x .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Podaj najmniejsze możliwe
y .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.3 (1 pkt)
Podaj największe możliwe
y .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pr-20484 ⋅ Poprawnie: 14/15 [93%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
» Oblicz
\lim_{n\to+\infty}\left(\sqrt{49n^2+2n}-\sqrt{49n^2+2}\right)
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pr-20275 ⋅ Poprawnie: 4/9 [44%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Dany jest ciąg
c_n=\left(-\frac{1}{131-2m}\right)^n ,
w którym wszystkie wyrazy są dodatnie, a
m jest
parametrem. Wyznacz te wartości parametru
m , dla
których szereg
c_1+c_2+c_3+... jest zbieżny.
Podaj najmniejsze całkowite m spełniające warunki
zadania.
Odpowiedź:
m_{min}=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pr-30194 ⋅ Poprawnie: 6/7 [85%]
Rozwiąż
Podpunkt 11.1 (4 pkt)
» W ciągu arytmetycznym mamy:
a_{13}=p i
a_{30}=q . Wyznacz najmniejszą wartość
n , dla której
S_n ma
wartość najmniejszą.
Podaj n .
Dane
p=-6
q=147
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pr-30186 ⋅ Poprawnie: 0/2 [0%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
Ciąg
(x+k,4,y+2,2z) jest ciągiem arytmetycznym.
Ciąg
(x+k,x+k+2+y,8z) jest ciągiem geometrycznym.
Wyznacz liczby
x,y,z .
Podaj najmniejsze możliwe x spełniające warunki
zadania.
Dane
k=-5
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
Podaj największe możliwe
x spełniające warunki
zadania.
Odpowiedź:
x_{max}=
(wpisz liczbę całkowitą)
Zadanie 13. 4 pkt ⋅ Numer: pr-30883 ⋅ Poprawnie: 7/11 [63%]
Rozwiąż
Podpunkt 13.1 (2 pkt)
Dany jest nieskończony szereg geometryczny
2(2x+4)-\frac{6(2x+4)}{2x+3}+\frac{18(2x+4)}{(2x+3)^2}-\frac{54(2x+4)}{(2x+3)^3}+... .
Wyznacz wszystkie wartości zmiennej x (różnej od -2
i od -\frac{3}{2} ), dla których suma tego szeregu istnieje.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy i największy z końców
liczbowych tych przedziałów.
Odpowiedzi:
Podpunkt 13.2 (2 pkt)
Wyznacz wszystkie wartości zmiennej
x , dla których suma tego szeregu istnieje
i jest równa
\frac{15}{2} .
Podaj największe takie x .
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż