Liczba x jest sumą wszystkich wyrazów nieskończonego ciągu geometrycznego
o pierwszym wyrazie równym 1 i ilorazie \frac{1}{\sqrt{2}}.
Liczba y jest sumą wszystkich wyrazów nieskończonego ciągu geometrycznego
o pierwszym wyrazie równym 1 i ilorazie -\frac{1}{\sqrt{2}}.
Wynika stąd, że liczba x\cdot y jest równa:
Odpowiedzi:
A.1
B.1
C.2
D.\frac{4}{3}
E.6
F.4
Zadanie 6.3 pkt ⋅ Numer: pr-21203 ⋅ Poprawnie: 2/4 [50%]
W niestałym ciągu arytmetycznym a_1=a. Ponadto
wyrazy a_2, a_3 i
a_6 sa trzema kolejnymi wyrazami ciągu
geometrycznego. Ostatni k-ty wyraz tego ciągu
jest równy a_k=p.
Oblicz a_1+a_2+a_3+...+a_k.
Dane
a=10
p=-210
Odpowiedź:
a_1+a_2+a_3+...+a_k=(wpisz liczbę całkowitą)
Zadanie 13.4 pkt ⋅ Numer: pr-30795 ⋅ Poprawnie: 3/3 [100%]
Ciąg liczbowy \left(a_n\right) jest nieskończonym
ciągiem geometrycznym malejącym.
Suma trzech jego pierwszych wyrazów jest równa 111, a iloczyn tych wyrazów
jest równy 1000.
Wyznacz iloraz tego ciągu.
Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (1 pkt)
Wyznacz trzeci wyraz tego ciągu.
Odpowiedź:
a_3=
(wpisz dwie liczby całkowite)
Podpunkt 13.3 (1 pkt)
Oblicz sumę wszystkich wyrazów tego ciągu o numerach
nieparzystych.
Odpowiedź:
S_{np}=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat