Dany jest nieskończony ciąg geometryczny (a_n)
określony wzorem
a_n=\frac{9}{\left(\sqrt{7}\right)^n}
, dla n=1,2,3,....
Suma wszystkich wyrazów tego ciągu jest równa \frac{c}{\sqrt{d}+e},
gdzie c,d,e\in\mathbb{Z}.
Podaj liczby c,d i e.
Odpowiedzi:
c
=
(wpisz liczbę całkowitą)
d
=
(wpisz liczbę całkowitą)
e
=
(wpisz liczbę całkowitą)
Zadanie 6.2 pkt ⋅ Numer: pr-20809 ⋅ Poprawnie: 0/0
« Dany jest ciąg (a_n), w którym
S_n=a_1+a_2+a_3+...+a_n, dla każdego
n\in\mathbb{N_{+}}. Ponadto dla każdej liczby
naturalnej dodatniej zachodzi wzór:
S_n=\frac{n+1}{p\cdot(n+1)+q}.
Oblicz a_2.
Dane
p=8 q=-8
Odpowiedź:
a_{2}=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Ogólny wyraz tego ciągu określony jest wzorem
a_n=\frac{-1}{bn^2+cn}.
Podaj c.
Odpowiedź:
c=(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pr-20274 ⋅ Poprawnie: 2/2 [100%]
«« Dany jest nieskończony ciąg określony wzorem
r_n=\left(0,5\right)^n . Wyrazy tego ciągu są
długościami promieni kół. Suma pól powierzchni wszystkich tych kół jest równa
p\cdot \pi.
Podaj liczbę p.
Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 8.2 pkt ⋅ Numer: pr-20264 ⋅ Poprawnie: 26/23 [113%]
Ciąg (a_n) jest określony dla każdej liczby naturalnej
n\geqslant 1 wzorem a_n=\frac{(7p-1)n^3+5pn-3}{(p+1)n^3+n^2+p}
gdzie p jest liczbą rzeczywistą dodatnią.
Oblicz wartość p, dla której granica ciągu (a_n)
jest równa \frac{1}{12}.
Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 10.2 pkt ⋅ Numer: pr-21200 ⋅ Poprawnie: 0/3 [0%]
Suma wszystkich wyrazów nieskończonego ciągu geometrycznego (a_n), określonego
dla n\geqslant 1, jest równa 6, a suma kwadratów
wszystkich wyrazów tego ciągu jest równa 10.
Oblicz iloraz ciągu (a_n).
Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 11.4 pkt ⋅ Numer: pr-30895 ⋅ Poprawnie: 34/41 [82%]
Nieskończony ciąg geometryczny (a_n) jest określony dla każdej
liczby naturalnej n\geqslant 1. Suma wszystkich wyrazów ciągu
(a_n) o numerach nieparzystych jest równa
72, tj.
a_1+a_3+a_5+...=72.
Ponadto a_1+a_3=\frac{61}{30}\cdot a_2.
Wyznacz iloraz q tego ciągu.
Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Wyznacz pierwszy wyraz tego ciągu.
Odpowiedź:
a_1=(wpisz liczbę całkowitą)
Zadanie 12.4 pkt ⋅ Numer: pr-30891 ⋅ Poprawnie: 53/71 [74%]
Trzywyrazowy ciąg (x,y,z) jest geometryczny i rosnący. Suma
wyrazów tego ciągu jest równa 210. Liczby
x, y oraz z
są - odpowiednio – wyrazami a_1, a_2
oraz a_{6} ciągu arytmetycznego
(a_n), określonego dla każdej liczby naturalnej
n \geqslant 1.
Oblicz x, y oraz z.
Podaj iloraz q ciągu geometrycznego.
Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
Podaj różnicę r ciągu arytmetycznego.
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 13.4 pkt ⋅ Numer: pr-30883 ⋅ Poprawnie: 6/9 [66%]