« Dany jest ciąg (a_n) oraz ciąg
(b_n) określony następująco:
b_n=a_1+a_2+a_3+...+a_n. O ciągu
(b_n) wiadomo, że spełnia warunek
b_n=\frac{(n+1)(2n+3)}{6} dla każdego
n\in\mathbb{N_{+}}.
Oblicz wyraz a_k tego ciągu.
Dane
k=12
Odpowiedź:
a_{k}=
(wpisz dwie liczby całkowite)
Zadanie 2.1 pkt ⋅ Numer: pr-10266 ⋅ Poprawnie: 2/3 [66%]
« Dany jest ciąg (a_n), w którym
S_n=a_1+a_2+a_3+...+a_n, dla każdego
n\in\mathbb{N_{+}}. Ponadto dla każdej liczby
naturalnej dodatniej zachodzi wzór:
S_n=\frac{n+1}{p\cdot(n+1)+q}.
Oblicz a_2.
Dane
p=6 q=-6
Odpowiedź:
a_{2}=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Ogólny wyraz tego ciągu określony jest wzorem
a_n=\frac{-1}{bn^2+cn}.
Podaj c.
Odpowiedź:
c=(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pr-20486 ⋅ Poprawnie: 45/35 [128%]
« Ciąg liczbowy (a_n)=(a_1,a_2,a_3) jest rosnącym ciągiem
geometrycznym oraz a_1+a_2+a_3=91. Ciąg
\left(a_1,a_2+14,a_3\right) jest arytmetyczny. Wyznacz
wyrazy tego ciągu.
Podaj pierwszy wyraz ciągu (a_n).
Odpowiedź:
a_1=(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj drugi wyraz ciągu (a_n).
Odpowiedź:
a_2=(wpisz liczbę całkowitą)
Zadanie 9.2 pkt ⋅ Numer: pr-21175 ⋅ Poprawnie: 7/14 [50%]
Ciąg (a_n) jest określony dla każdej liczby naturalnej
n\geqslant 1 wzorem a_n=\frac{(7p-1)n^3+5pn-3}{(p+1)n^3+n^2+p}
gdzie p jest liczbą rzeczywistą dodatnią.
Oblicz wartość p, dla której granica ciągu (a_n)
jest równa \frac{3}{5}.
Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 10.2 pkt ⋅ Numer: pr-21200 ⋅ Poprawnie: 9/17 [52%]
Suma wszystkich wyrazów nieskończonego ciągu geometrycznego (a_n), określonego
dla n\geqslant 1, jest równa 4, a suma kwadratów
wszystkich wyrazów tego ciągu jest równa 6.
Oblicz iloraz ciągu (a_n).
Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 11.4 pkt ⋅ Numer: pr-30194 ⋅ Poprawnie: 6/7 [85%]
Ciąg liczbowy \left(a_n\right) jest nieskończonym
ciągiem geometrycznym malejącym.
Suma trzech jego pierwszych wyrazów jest równa 111, a iloczyn tych wyrazów
jest równy 1000.
Wyznacz iloraz tego ciągu.
Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (1 pkt)
Wyznacz trzeci wyraz tego ciągu.
Odpowiedź:
a_3=
(wpisz dwie liczby całkowite)
Podpunkt 13.3 (1 pkt)
Oblicz sumę wszystkich wyrazów tego ciągu o numerach
nieparzystych.
Odpowiedź:
S_{np}=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat