Liczba x jest sumą wszystkich wyrazów nieskończonego ciągu geometrycznego
o pierwszym wyrazie równym 1 i ilorazie \frac{1}{\sqrt{2}}.
Liczba y jest sumą wszystkich wyrazów nieskończonego ciągu geometrycznego
o pierwszym wyrazie równym 1 i ilorazie -\frac{1}{\sqrt{2}}.
Wynika stąd, że liczba x\cdot y jest równa:
Odpowiedzi:
A.4
B.2
C.1
D.2\sqrt{2}
E.6
F.\frac{4}{3}
Zadanie 6.2 pkt ⋅ Numer: pr-20277 ⋅ Poprawnie: 6/8 [75%]
» Pierwszy wyraz ciągu (a_n) wynosi 0. Każdy z kolejnych
wyrazów tego ciągu jest równy sumie numerów wszystkich wyrazów go
poprzedzających. Wyznacz wzór tego ciągu.
Podaj a_{90}.
Odpowiedź:
a_{k}=(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj a_{181}.
Odpowiedź:
a_{k}=(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pr-20486 ⋅ Poprawnie: 45/35 [128%]
» Dany jest ciąg
c_n=\left(-\frac{1}{-7-2m}\right)^n,
w którym wszystkie wyrazy są dodatnie, a m jest
parametrem. Wyznacz te wartości parametru m, dla
których szereg c_1+c_2+c_3+... jest zbieżny.
Podaj najmniejsze całkowite m spełniające warunki
zadania.
Odpowiedź:
m_{min}=(wpisz liczbę całkowitą)
Zadanie 11.4 pkt ⋅ Numer: pr-30189 ⋅ Poprawnie: 9/11 [81%]
Dany jest nieskończony ciąg okręgów (o_n) o równaniach
x^2+y^2=3^{11-n}, gdzie n\geqslant 1.
Niech P_k będzie pierścieniem ograniczonym zewnętrznym okręgiem
o_{2k-1} i wewnętrznym okręgiem o_{2k}.
Wzór na pole powierzchni pierścienia P_k można zapisać w postaci
S_k=a\cdot \pi\cdot 3^{11-2k}.
Podaj liczbę a.
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (1 pkt)
Pola powierzchni wszystkich pierścieni tworzą ciąg geometryczny.
Wyznacz iloraz q tego ciągu.
Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Podpunkt 13.3 (2 pkt)
Suma pól powierzchni wszystkich pierścieni jest równa \frac{3^m}{n}, gdzie
m,n\in\mathbb{Z_{+}} i n jest najmniejszą możliwą
liczbą całkowitą dodatnią.
Podaj liczby m i n.
Odpowiedzi:
m
=
(wpisz liczbę całkowitą)
n
=
(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat