W chwili początkowej (t=0) masa substancji jest równa
6 gram. Wskutek rozpadu cząsteczek tej substancji jej
masa się zmniejsza. Po każdej kolejnej dobie ubywa 17\% masy,
jaka była na koniec doby poprzedniej. Dla każdej liczby całkowitej t\geqslant 0
funkcja m(t) określa masę substancji w gramach po
t pełnych dobach (czas liczymy od chwili początkowej). Wyznacz wzór
funkcji m(t).
Oblicz, po ilu pełnych dobach masa tej substancji będzie po raz pierwszy mniejsza od
1,5 grama.
Odpowiedź:
t=(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pr-20755 ⋅ Poprawnie: 52/36 [144%]
« Ciąg liczbowy (a_n)=(a_1,a_2,a_3) jest rosnącym ciągiem
geometrycznym oraz a_1+a_2+a_3=819. Ciąg
\left(a_1,a_2+288,a_3\right) jest arytmetyczny. Wyznacz
wyrazy tego ciągu.
Podaj pierwszy wyraz ciągu (a_n).
Odpowiedź:
a_1=(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj drugi wyraz ciągu (a_n).
Odpowiedź:
a_2=(wpisz liczbę całkowitą)
Zadanie 9.2 pkt ⋅ Numer: pr-20484 ⋅ Poprawnie: 14/15 [93%]
Dany jest nieskończony ciąg okręgów (o_n) o równaniach
x^2+y^2=3^{39-n}, gdzie n\geqslant 1.
Niech P_k będzie pierścieniem ograniczonym zewnętrznym okręgiem
o_{2k-1} i wewnętrznym okręgiem o_{2k}.
Wzór na pole powierzchni pierścienia P_k można zapisać w postaci
S_k=a\cdot \pi\cdot 3^{39-2k}.
Podaj liczbę a.
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (1 pkt)
Pola powierzchni wszystkich pierścieni tworzą ciąg geometryczny.
Wyznacz iloraz q tego ciągu.
Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Podpunkt 13.3 (2 pkt)
Suma pól powierzchni wszystkich pierścieni jest równa \frac{3^m}{n}, gdzie
m,n\in\mathbb{Z_{+}} i n jest najmniejszą możliwą
liczbą całkowitą dodatnią.
Podaj liczby m i n.
Odpowiedzi:
m
=
(wpisz liczbę całkowitą)
n
=
(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat