Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pr-10305 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 1.1 (1 pkt)
Dany jest ciąg
(a_n) , który spełnia
warunki:
a_{n+1}-a_{n+2}=a\cdot n oraz
a_{n+1}+a_{n+2}=b\cdot n+c .
Oblicz dziesiąty wyraz tego ciągu.
Dane
a=-4
b=8
c=4
Odpowiedź:
a_{10}=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pr-10265 ⋅ Poprawnie: 1/1 [100%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Ciąg liczbowy
(a_n) określony wzorem
\begin{cases}
a_1=a \\
a_{n+1}=\frac{b}{a_n}
\end{cases}
jest:
Dane
a=\frac{1}{2}=0.50000000000000
b=5
Odpowiedzi:
A. malejący
B. rosnący
C. nierosnący
D. niemonotoniczny
Zadanie 3. 1 pkt ⋅ Numer: pr-10139 ⋅ Poprawnie: 2/2 [100%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
b_n=\frac{2n-1}{n+4} jest zbieżny i
\lim_{n\to\infty} b_n=2 . Nierówności
|b_n-2| \lessdot 0,02 nie spełnia
p wyrazów tego ciągu.
Wyznacz liczbę p .
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pr-10140 ⋅ Poprawnie: 18/16 [112%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Oblicz granicę
\lim_{n\to+\infty}\frac{\left(-10n^2+4n\right)^2}{12n^4-4}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pr-10329 ⋅ Poprawnie: 9/9 [100%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Drugi wyraz ciągu geometrycznego jest równy
\frac{5}{6} , a suma
wszystkich jego wyrazów jest równa
\frac{15}{4} .
Wyznacz najmniejszy możliwy iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pr-20804 ⋅ Poprawnie: 9/11 [81%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
« Ciąg liczbowy
\left(a_n\right) określony jest następująco:
\begin{cases}
a_1=1 \\
a_{n+1}=a_n+0,15\text{, dla } n\in\mathbb{N_{+}}
\end{cases}
.
Oblicz sumę
s=a_{k}+a_{k+1}+a_{k+2}+...+a_{l} .
Dane
k=30
l=50
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pr-20273 ⋅ Poprawnie: 7/8 [87%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Ciąg
(a_n) określony jest wzorem
a_n=\frac{n^2(2n-1)}{1+5+9+...+4n-3} .
Oblicz S_{k} .
Dane
k=100
Odpowiedź:
S_k=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pr-20267 ⋅ Poprawnie: 13/13 [100%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Ciąg liczbowy
(a_n)=(a_1,a_2,a_3) jest rosnącym ciągiem
geometrycznym oraz
a_1+a_2+a_3=62 . Ciąg
\left(a_1,a_2+16,a_3\right) jest arytmetyczny. Wyznacz
wyrazy tego ciągu.
Podaj pierwszy wyraz ciągu (a_n) .
Odpowiedź:
a_1=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj drugi wyraz ciągu
(a_n) .
Odpowiedź:
a_2=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20814 ⋅ Poprawnie: 21/24 [87%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Oblicz
\lim_{n\to+\infty}\left(\sqrt{n^2-2n}-n\right)
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pr-20837 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
Rozwiąż nierówność
\left(\sqrt{\frac{x}{a}}\right)^2+\left(\sqrt{\frac{x}{a}}\right)^3+
\left(\sqrt{\frac{x}{a}}\right)^4+... \lessdot 1+\sqrt{\frac{x}{a}}
.
Podaj najmniejszą liczbę spełniającą tę nierówność.
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj najmniejszą liczbę dodatnią, która
nie spełnia tej nierówności.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30188 ⋅ Poprawnie: 7/7 [100%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
Ciąg
(a,b,c) jest rosnącym ciągiem geometrycznym.
Suma jego wyrazów wynosi
s , a ich iloczyn
t . Wyznacz ten ciąg.
Podaj a .
Dane
s=14.0
t=64
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Odpowiedź:
q=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pr-30891 ⋅ Poprawnie: 61/84 [72%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
Trzywyrazowy ciąg
(x,y,z) jest geometryczny i rosnący. Suma
wyrazów tego ciągu jest równa
657 . Liczby
x ,
y oraz
z
są - odpowiednio – wyrazami
a_1 ,
a_2
oraz
a_{10} ciągu arytmetycznego
(a_n) , określonego dla każdej liczby naturalnej
n \geqslant 1 .
Oblicz x , y oraz z .
Podaj iloraz q ciągu geometrycznego.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
Podaj różnicę
r ciągu arytmetycznego.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 13. 4 pkt ⋅ Numer: pr-30800 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 13.1 (1 pkt)
« Funkcja
f określona jest wzorem:
f(x)=\frac{3(x-4)}{x-6}+\frac{3(x-4)^2}{(x-6)^2}+\frac{3(x-4)^3}{(x-6)^3}+...
.
Przedział liczbowy (-\infty, p) jest dziedziną tej
funkcji. Podaj p .
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Podpunkt 13.2 (1 pkt)
Przedział liczbowy
(p, +\infty) jest zbiorem wartości
tej funkcji. Podaj
p .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 13.3 (1 pkt)
Przedział liczbowy
\langle p, q) jest rozwiązaniem
nierówności
f(x)\leqslant 0 .
Podaj p .
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Podpunkt 13.4 (1 pkt)
Odpowiedź:
q=
(wpisz liczbę całkowitą)
Rozwiąż