Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pr-10263 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Ogólny wyraz ciągu (a_n) spełnia warunek a_{n+1}=2a_n-3n.

Oblicz piąty wyraz tego ciągu.

Dane
a_1=5
Odpowiedź:
a_{5}= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pr-10265 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg liczbowy (a_n) określony wzorem \begin{cases} a_1=a \\ a_{n+1}=\frac{b}{a_n} \end{cases} jest:
Dane
a=\frac{1}{8}=0.12500000000000
b=4
Odpowiedzi:
A. niemalejący B. niemonotoniczny
C. nierosnący D. rosnący
Zadanie 3.  1 pkt ⋅ Numer: pr-10139 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg b_n=\frac{2n-6}{n+3} jest zbieżny i \lim_{n\to\infty} b_n=2. Nierówności |b_n-2| \lessdot 0,02 nie spełnia p wyrazów tego ciągu.

Wyznacz liczbę p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-11653 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=\frac{-3n^2-4n+3}{4-3n-4n^2} dla każdej liczby naturalnej n\geqslant 1.

Granica g tego ciągu jest równa:

Odpowiedzi:
A. \frac{3}{4} B. 1
C. -\frac{1}{2} D. \frac{3}{8}
E. -\frac{1}{4} F. -\frac{3}{2}
Zadanie 5.  1 pkt ⋅ Numer: pr-10141 ⋅ Poprawnie: 4/14 [28%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dany jest nieskończony ciąg geometryczny (a_n) określony wzorem a_n=\frac{5}{\left(\sqrt{6}\right)^n} , dla n=1,2,3,.... Suma wszystkich wyrazów tego ciągu jest równa \frac{c}{\sqrt{d}+e}, gdzie c,d,e\in\mathbb{Z}.

Podaj liczby c,d i e.

Odpowiedzi:
c= (wpisz liczbę całkowitą)
d= (wpisz liczbę całkowitą)
e= (wpisz liczbę całkowitą)
Zadanie 6.  3 pkt ⋅ Numer: pr-21203 ⋅ Poprawnie: 2/4 [50%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Pierwszy wyraz ciągu (a_n), określonego dla n\geqslant 1, jest równy 3. Wszystkie wyrazy tego ciągu spełniają warunek a_n=2a_{n+1}+3n^2+2.

Oblicz a_3.

Odpowiedź:
a_3=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (2 pkt)
 Oblicz sumę a_1+a_2+a_3.
Odpowiedź:
a_1+a_2+a_3=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20755 ⋅ Poprawnie: 52/36 [144%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Dany jest ciąg geometryczny (a_n). Oblicz k.
Dane
a_3+a_6=-140
a_4+a_7=280
S_k=-6825
Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 8.  3 pkt ⋅ Numer: pr-20265 ⋅ Poprawnie: 19/27 [70%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 W trzywyrazowym ciągu arytmetycznym (x,y,z) liczba z jest równa 3. Po przestawieniu wyrazów ciąg (z,x,y) jest ciągiem geometrycznym.

Podaj najmniejsze możliwe x.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj najmniejsze możliwe y.
Odpowiedź:
y_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 8.3 (1 pkt)
 Podaj największe możliwe y.
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-21186 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Oblicz granicę g=\lim_{n\to\infty}{\frac{(3n+2)^2+(1-4n)^2}{(4n-1)^2}}.
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pr-20487 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Suma wszystkich wyrazów ciągu geometrycznego \left(a_n\right) wynosi 18, zaś suma wszystkich wyrazów o numerach parzystych tego ciągu wynosi 6.

Oblicz a_4.

Odpowiedź:
a_4=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30193 ⋅ Poprawnie: 6/8 [75%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 « W ciągu arytmetycznym mamy: a_3=4 i a_7=16. Rozwiąż nierówność S_n \lessdot k.

Podaj największe n spełniające tę nierówność.

Dane
k=763
Odpowiedź:
n_{max}= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30185 ⋅ Poprawnie: 4/4 [100%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Ciąg (x+k-5,y,z) jest ciągiem arytmetycznym. Ciąg (x+k,y+3,z+4) jest ciągiem geometrycznym rosnącym spełniającym warunek z+4=4\cdot (x+k). Wyznacz liczby x,y,z.

Podaj x.

Dane
k=2
Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Podaj y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 13.  4 pkt ⋅ Numer: pr-30801 ⋅ Poprawnie: 17/23 [73%] Rozwiąż 
Podpunkt 13.1 (2 pkt)
 « Suma wszystkich wyrazów o numerach nieparzystych zbieżnego ciągu geometrycznego jest równa \frac{3}{4}, zaś suma wszystkich wyrazów tego ciągu o numerach parzystych jest równa \frac{1}{4}.

Oblicz pierwszy wyraz tego ciągu.

Odpowiedź:
a_1=
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (2 pkt)
 Podaj iloraz tego ciągu.
Odpowiedź:
q=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm