Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pr-10261 ⋅ Poprawnie: 3/3 [100%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dany jest ciąg liczbowy (a_n) określony wzorem a_n=4n-n^3. Wyraz a_{2k-p} tego ciągu jest równy ak^3+bk^2+ck+d.

Podaj liczby b, c i d.

Dane
p=4
Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
d= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pr-10265 ⋅ Poprawnie: 6/6 [100%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg liczbowy (a_n) określony wzorem \begin{cases} a_1=a \\ a_{n+1}=\frac{b}{a_n} \end{cases} jest:
Dane
a=\frac{1}{10}=0.10000000000000
b=2
Odpowiedzi:
A. niemonotoniczny B. malejący
C. niemalejący D. rosnący
Zadanie 3.  1 pkt ⋅ Numer: pr-10306 ⋅ Poprawnie: 4/5 [80%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg a_n=\frac{n}{n+5} jest zbieżny i \lim_{n\to\infty} a_n=1. Nierówności |a_n-1| \lessdot \frac{1}{170} nie spełnia k wyrazów tego ciągu.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 4.  2 pkt ⋅ Numer: pr-11627 ⋅ Poprawnie: 1/4 [25%] Rozwiąż 
Podpunkt 4.1 (2 pkt)
 Granicą ciągu liczbowego \lim_{n\to+\infty} \frac{4}{\sqrt{n^2+1}-1} jest:
Odpowiedzi:
A. +\infty B. 4
C. 1 D. -\infty
Zadanie 5.  1 pkt ⋅ Numer: pr-10329 ⋅ Poprawnie: 10/11 [90%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Drugi wyraz ciągu geometrycznego jest równy \frac{13}{4}, a suma wszystkich jego wyrazów jest równa 13.

Wyznacz najmniejszy możliwy iloraz tego ciągu.

Odpowiedź:
q_{min}=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-20810 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Dany jest ciąg (a_n), w którym S_n=a_1+a_2+a_3+...+a_n, dla każdego n\in\mathbb{N_{+}}. Ponadto dla każdej liczby naturalnej dodatniej zachodzi wzór: S_n=n^2(n+k).

Oblicz a_3.

Dane
k=4
m=347
Odpowiedź:
a_{3}= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Pewien wyraz ciagu (a_n) jest równy m.

Wyznacz numer tego wyrazu.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20272 ⋅ Poprawnie: 7/8 [87%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Rozwiąż równanie 2^1\cdot 2^3\cdot 2^5\cdot ...\cdot 2^{2x+25}=64\cdot 4^{x+14} .

Podaj największe x spełniające to równanie.

Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20264 ⋅ Poprawnie: 27/26 [103%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Ciąg (a_1,a_2,a_3) jest rosnącym ciągiem geometrycznym oraz a_1+a_2+a_3=105. Ciąg (a_1+2,a_2-16,a_3-79) jest arytmetyczny. Wyznacz wyrazy tego ciągu.

Podaj pierwszy wyraz ciągu (a_n).

Odpowiedź:
a_{1}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj trzeci wyraz ciągu (a_n).
Odpowiedź:
a_3= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20483 ⋅ Poprawnie: 12/15 [80%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Oblicz \lim_{n\to+\infty}\left(\frac{3n^2+1}{3n+5}-\frac{n^2}{n-7}\right) .
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pr-20489 ⋅ Poprawnie: 0/3 [0%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Ciąg (c_n) określony jest rekurencyjnie: \begin{cases} c_1=\frac{1}{2} \\ c_{n}=\frac{39\cdot c_{n-1}}{1+2+3+...+77}\text{, dla }n > 1 \end{cases} oraz S_n=c_1+c_2+c_3+...+c_n.

Oblicz \lim_{n\to\infty}S_n.

Odpowiedź:
\lim_{n\to\infty}S_n=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30190 ⋅ Poprawnie: 51/39 [130%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
« Ciąg (a_1,a_2,a_3,...,a_{100}) jest ciągiem geometrycznym, którego wszystkie wyrazy są dodatnie. Ciąg ten spełnia warunki: 100\cdot (a_2+a_4+a_6+...+a_{100})=a_1+a_3+a_5+...+a_{99} oraz \log{a_1}+\log{a_2}+\log{a_3}+...+\log{a_{100}}=100. Wyznacz a_1.

Z ilu cyfr składa się liczba a_1?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30184 ⋅ Poprawnie: 1/4 [25%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Ciąg (a,b,c+64+k) jest ciągiem geometrycznym, natomiast ciąg (a,b,c+k) jest ciągiem arytmetycznym. Ponadto ciąg (a,b-8,c+k) jest geometryczny.

Podaj najmniejsze możliwe c.

Dane
k=48
Odpowiedź:
c_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Podaj największe możliwe c.
Odpowiedź:
c_{max}= (wpisz liczbę całkowitą)
Zadanie 13.  4 pkt ⋅ Numer: pr-31004 ⋅ Poprawnie: 6/15 [40%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Ciąg (a_n), określony dla każdej liczby naturalnej n\geqslant 1, jest geometryczny i ma wszystkie wyrazy dodatnie. Ponadto a_1=1800 i a_{22}=\frac{5}{4}a_{23}+\frac{1}{5}a_{21}. Ciąg (b_n), określony dla każdej liczby naturalnej n\geqslant 1, jest arytmetyczny. Suma wszystkich wyrazów ciągu (a_n) jest równa sumie k=15 początkowych kolejnych wyrazów ciągu (b_n). Ponadto a_3=b_4.

Oblicz iloraz q ciągu (a_n).

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (1 pkt)
 Oblicz sumę wszystkich wyrazów ciągu (a_n).
Odpowiedź:
S=
(wpisz dwie liczby całkowite)
Podpunkt 13.3 (2 pkt)
 Wyznacz b_1.
Odpowiedź:
b_1= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm