Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-3

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10262  
Podpunkt 1.1 (1 pkt)
 O ciągu (a_n) wiadomo, że a_{n+p}=\frac{1-3n}{4n-2}. Wówczas ogólny wyraz tego ciągu a_n jest równy \frac{-3n+c}{4n+d}.

Wyznacz liczby c i d.

Dane
p=3
Odpowiedzi:
c= (wpisz liczbę całkowitą)
d= (wpisz liczbę całkowitą)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10266  
Podpunkt 2.1 (1 pkt)
 « Ciąg liczbowy (b_n) określony wzorem \begin{cases} b_1=a \\ b_{n+1}=\frac{1}{b}b_n \end{cases} jest:
Dane
a=-\frac{1}{6}=-0.16666666666667
b=2
Odpowiedzi:
A. niemonotoniczny B. malejący
C. nierosnący D. rosnący
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10139  
Podpunkt 3.1 (1 pkt)
 Ciąg b_n=\frac{2n-5}{n+1} jest zbieżny i \lim_{n\to\infty} b_n=2. Nierówności |b_n-2| \lessdot 0,02 nie spełnia p wyrazów tego ciągu.

Wyznacz liczbę p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-11653  
Podpunkt 4.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=\frac{-5n^2+3n-5}{2-3n-3n^2} dla każdej liczby naturalnej n\geqslant 1.

Granica g tego ciągu jest równa:

Odpowiedzi:
A. \frac{10}{9} B. \frac{5}{6}
C. -\frac{10}{3} D. \frac{5}{3}
E. \frac{20}{9} F. -\frac{10}{9}
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10329  
Podpunkt 5.1 (1 pkt)
 « Drugi wyraz ciągu geometrycznego jest równy \frac{9}{4}, a suma wszystkich jego wyrazów jest równa 9.

Wyznacz najmniejszy możliwy iloraz tego ciągu.

Odpowiedź:
q_{min}=
(wpisz dwie liczby całkowite)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-21154  
Podpunkt 6.1 (2 pkt)
 W chwili początkowej (t=0) masa substancji jest równa 3 gram. Wskutek rozpadu cząsteczek tej substancji jej masa się zmniejsza. Po każdej kolejnej dobie ubywa 21\% masy, jaka była na koniec doby poprzedniej. Dla każdej liczby całkowitej t\geqslant 0 funkcja m(t) określa masę substancji w gramach po t pełnych dobach (czas liczymy od chwili początkowej). Wyznacz wzór funkcji m(t).

Oblicz, po ilu pełnych dobach masa tej substancji będzie po raz pierwszy mniejsza od 1,5 grama.

Odpowiedź:
t= (wpisz liczbę całkowitą)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20811  
Podpunkt 7.1 (1 pkt)
 « Dany jest ciąg geometryczny (a_n) o ilorazie q.

Oblicz najmniejszą możliwą wartość liczby q^2.

Dane
a_1+a_2+a_3+a_4+a_5=186
\frac{a_1+a_5}{a_3}=\frac{17}{4}=4.25000000000000
Odpowiedź:
q^2_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Dla wyznaczonej najmniejszej wartości liczby q^2, oblicz pierwszy wyraz tego ciągu o ilorazie |q|.
Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20812  
Podpunkt 8.1 (1 pkt)
 « Ciąg liczbowy (a,b+m,1) jest arytmetyczny, zaś ciąg (1,a,b+m) jest geometryczny.

Podaj najmniejsze możliwe b.

Dane
m=-5
Odpowiedź:
b_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj największe możliwe b.
Odpowiedź:
b_{max}= (wpisz liczbę całkowitą)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20480  
Podpunkt 9.1 (2 pkt)
 « Oblicz granicę \lim_{n\to+\infty} \left(\frac{12n^3+6n+5}{6n^3+1}-\frac{2n^2+2n+1}{5n^2-4}\right) .
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 10.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20276  
Podpunkt 10.1 (1 pkt)
Wyznacz rozwiązania równania \tan 2x+\tan^2 2x+\tan^3 2x+...=\frac{1}{2}\cdot (\sqrt{3}+1), gdzie x\in\left(-\frac{\pi}{2},\frac{\pi}{4}\right)- \left\{-\frac{\pi}{4}\right\}.

Najmniejsze rozwiązanie tego równania jest równe a\cdot \pi. Podaj liczbę a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Największe rozwiązanie tego równania jest równe b\cdot \pi. Podaj liczbę b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Zadanie 11.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30190  
Podpunkt 11.1 (4 pkt)
« Ciąg (a_1,a_2,a_3,...,a_{100}) jest ciągiem geometrycznym, którego wszystkie wyrazy są dodatnie. Ciąg ten spełnia warunki: 100\cdot (a_2+a_4+a_6+...+a_{100})=a_1+a_3+a_5+...+a_{99} oraz \log{a_1}+\log{a_2}+\log{a_3}+...+\log{a_{100}}=100. Wyznacz a_1.

Z ilu cyfr składa się liczba a_1?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 12.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30183  
Podpunkt 12.1 (2 pkt)
 W ciągu geometrycznym (a+k,b+4,c) zachodzi warunek a+b+c=22-k. Ciąg liczbowy (a+k-5,b,c-11) jest ciągiem arytmetycznym. Oblicz a,b,c.

Podaj najmniejsze możliwe a.

Dane
k=-8
Odpowiedź:
a_{min}= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Podaj największe możliwe a.
Odpowiedź:
a_{max}= (wpisz liczbę całkowitą)
Zadanie 13.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30883  
Podpunkt 13.1 (2 pkt)
 Dany jest nieskończony szereg geometryczny 2(3x-12)-\frac{6(3x-12)}{3x-13}+\frac{18(3x-12)}{(3x-13)^2}-\frac{54(3x-12)}{(3x-13)^3}+....

Wyznacz wszystkie wartości zmiennej x (różnej od 4 i od \frac{13}{3}), dla których suma tego szeregu istnieje.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (dwie liczby całkowite)

max= (dwie liczby całkowite)
Podpunkt 13.2 (2 pkt)
 Wyznacz wszystkie wartości zmiennej x, dla których suma tego szeregu istnieje i jest równa \frac{15}{2}.

Podaj największe takie x.

Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm