Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pr-10305 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dany jest ciąg (a_n), który spełnia warunki: a_{n+1}-a_{n+2}=a\cdot n oraz a_{n+1}+a_{n+2}=b\cdot n+c.

Oblicz dziesiąty wyraz tego ciągu.

Dane
a=4
b=4
c=-6
Odpowiedź:
a_{10}= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pr-10265 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg liczbowy (a_n) określony wzorem \begin{cases} a_1=a \\ a_{n+1}=\frac{b}{a_n} \end{cases} jest:
Dane
a=\frac{1}{5}=0.20000000000000
b=10
Odpowiedzi:
A. malejący B. niemonotoniczny
C. nierosnący D. rosnący
Zadanie 3.  1 pkt ⋅ Numer: pr-10306 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg a_n=\frac{n}{n+5} jest zbieżny i \lim_{n\to\infty} a_n=1. Nierówności |a_n-1| \lessdot \frac{1}{70} nie spełnia k wyrazów tego ciągu.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 4.  2 pkt ⋅ Numer: pr-11627 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (2 pkt)
 Granicą ciągu liczbowego \lim_{n\to+\infty} \frac{-2}{\sqrt{64n^2+1}-8} jest:
Odpowiedzi:
A. -\infty B. +\infty
C. 8 D. -2
Zadanie 5.  1 pkt ⋅ Numer: pr-10328 ⋅ Poprawnie: 13/14 [92%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Pierwszy wyraz ciągu geometrycznego jest równy 5, a suma wszystkich jego wyrazów jest równa 16.

Oblicz iloraz tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-21154 ⋅ Poprawnie: 127/124 [102%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 W chwili początkowej (t=0) masa substancji jest równa 6 gram. Wskutek rozpadu cząsteczek tej substancji jej masa się zmniejsza. Po każdej kolejnej dobie ubywa 21\% masy, jaka była na koniec doby poprzedniej. Dla każdej liczby całkowitej t\geqslant 0 funkcja m(t) określa masę substancji w gramach po t pełnych dobach (czas liczymy od chwili początkowej). Wyznacz wzór funkcji m(t).

Oblicz, po ilu pełnych dobach masa tej substancji będzie po raz pierwszy mniejsza od 1,5 grama.

Odpowiedź:
t= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20273 ⋅ Poprawnie: 7/8 [87%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Ciąg (a_n) określony jest wzorem a_n=\frac{n^2(2n-1)}{1+5+9+...+4n-3}.

Oblicz S_{k}.

Dane
k=113
Odpowiedź:
S_k= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20812 ⋅ Poprawnie: 8/9 [88%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Ciąg liczbowy (a,b+m,1) jest arytmetyczny, zaś ciąg (1,a,b+m) jest geometryczny.

Podaj najmniejsze możliwe b.

Dane
m=-2
Odpowiedź:
b_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj największe możliwe b.
Odpowiedź:
b_{max}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20822 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Oblicz \lim_{n\to+\infty} \frac{2+5+8+...+(3\cdot(n+4)-1)}{(\sqrt{4}n+1)^2} .
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pr-20488 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Iloraz ciągu geometrycznego (b_n) wynosi \frac{\sqrt{7}}{7}, a suma jego wszystkich wyrazów jest równa 14+2\sqrt{7}.

Oblicz b_5.

Odpowiedź:
b_5=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30191 ⋅ Poprawnie: 9/13 [69%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Dany jest ciąg określony wzorem a_n=(-1)^n\cdot (2n-1). Uzasadnij, że ciąg b_n=a_{2n+1} jest arytmetyczny.

Oblicz S_{k} ciągu (b_n).

Dane
k=67
Odpowiedź:
S_{k}= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Oblicz S_{k} ciągu (a_n).
Odpowiedź:
S_{k}= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30891 ⋅ Poprawnie: 61/84 [72%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Trzywyrazowy ciąg (x,y,z) jest geometryczny i rosnący. Suma wyrazów tego ciągu jest równa 155. Liczby x, y oraz z są - odpowiednio – wyrazami a_1, a_2 oraz a_{7} ciągu arytmetycznego (a_n), określonego dla każdej liczby naturalnej n \geqslant 1.

Oblicz x, y oraz z.
Podaj iloraz q ciągu geometrycznego.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Podaj różnicę r ciągu arytmetycznego.
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 13.  4 pkt ⋅ Numer: pr-31057 ⋅ Poprawnie: 13/29 [44%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Dany jest nieskończony ciąg okręgów (o_n) o równaniach x^2+y^2=3^{39-n}, gdzie n\geqslant 1. Niech P_k będzie pierścieniem ograniczonym zewnętrznym okręgiem o_{2k-1} i wewnętrznym okręgiem o_{2k}.

Wzór na pole powierzchni pierścienia P_k można zapisać w postaci S_k=a\cdot \pi\cdot 3^{39-2k}.
Podaj liczbę a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (1 pkt)
 Pola powierzchni wszystkich pierścieni tworzą ciąg geometryczny.

Wyznacz iloraz q tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Podpunkt 13.3 (2 pkt)
 Suma pól powierzchni wszystkich pierścieni jest równa \frac{3^m}{n}, gdzie m,n\in\mathbb{Z_{+}} i n jest najmniejszą możliwą liczbą całkowitą dodatnią.

Podaj liczby m i n.

Odpowiedzi:
m= (wpisz liczbę całkowitą)
n= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm