Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pr-10305 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dany jest ciąg (a_n), który spełnia warunki: a_{n+1}-a_{n+2}=a\cdot n oraz a_{n+1}+a_{n+2}=b\cdot n+c.

Oblicz dziesiąty wyraz tego ciągu.

Dane
a=-1
b=-1
c=8
Odpowiedź:
a_{10}= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pr-10265 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg liczbowy (a_n) określony wzorem \begin{cases} a_1=a \\ a_{n+1}=\frac{b}{a_n} \end{cases} jest:
Dane
a=\frac{1}{10}=0.10000000000000
b=3
Odpowiedzi:
A. niemalejący B. rosnący
C. niemonotoniczny D. nierosnący
Zadanie 3.  1 pkt ⋅ Numer: pr-10306 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg a_n=\frac{n}{n+5} jest zbieżny i \lim_{n\to\infty} a_n=1. Nierówności |a_n-1| \lessdot \frac{1}{170} nie spełnia k wyrazów tego ciągu.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 4.  2 pkt ⋅ Numer: pr-11627 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (2 pkt)
 Granicą ciągu liczbowego \lim_{n\to+\infty} \frac{4}{\sqrt{4n^2+1}-2} jest:
Odpowiedzi:
A. +\infty B. 2
C. 4 D. -\infty
Zadanie 5.  1 pkt ⋅ Numer: pr-10142 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz sumę szeregu 243-81+27-....
Odpowiedź:
a-b+c-...=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-20809 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Dany jest ciąg (a_n), w którym S_n=a_1+a_2+a_3+...+a_n, dla każdego n\in\mathbb{N_{+}}. Ponadto dla każdej liczby naturalnej dodatniej zachodzi wzór: S_n=\frac{n+1}{p\cdot(n+1)+q}.

Oblicz a_2.

Dane
p=7
q=-7
Odpowiedź:
a_{2}=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Ogólny wyraz tego ciągu określony jest wzorem a_n=\frac{-1}{bn^2+cn}.

Podaj c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20811 ⋅ Poprawnie: 1/3 [33%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Dany jest ciąg geometryczny (a_n) o ilorazie q.

Oblicz najmniejszą możliwą wartość liczby q^2.

Dane
a_1+a_2+a_3+a_4+a_5=93
\frac{a_1+a_5}{a_3}=\frac{17}{4}=4.25000000000000
Odpowiedź:
q^2_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Dla wyznaczonej najmniejszej wartości liczby q^2, oblicz pierwszy wyraz tego ciągu o ilorazie |q|.
Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20267 ⋅ Poprawnie: 13/13 [100%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Ciąg liczbowy (a_n)=(a_1,a_2,a_3) jest rosnącym ciągiem geometrycznym oraz a_1+a_2+a_3=104. Ciąg \left(a_1,a_2+16,a_3\right) jest arytmetyczny. Wyznacz wyrazy tego ciągu.

Podaj pierwszy wyraz ciągu (a_n).

Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj drugi wyraz ciągu (a_n).
Odpowiedź:
a_2= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20481 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Oblicz granicę \lim_{n\to+\infty}\frac{10n^2-5n+2}{(3n+7)(-2n+4)} .
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pr-20837 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Rozwiąż nierówność \left(\sqrt{\frac{x}{a}}\right)^2+\left(\sqrt{\frac{x}{a}}\right)^3+ \left(\sqrt{\frac{x}{a}}\right)^4+... \lessdot 1+\sqrt{\frac{x}{a}} .

Podaj najmniejszą liczbę spełniającą tę nierówność.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj najmniejszą liczbę dodatnią, która nie spełnia tej nierówności.
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30193 ⋅ Poprawnie: 6/8 [75%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 « W ciągu arytmetycznym mamy: a_3=4 i a_7=16. Rozwiąż nierówność S_n \lessdot k.

Podaj największe n spełniające tę nierówność.

Dane
k=893
Odpowiedź:
n_{max}= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30891 ⋅ Poprawnie: 41/50 [82%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Trzywyrazowy ciąg (x,y,z) jest geometryczny i rosnący. Suma wyrazów tego ciągu jest równa 438. Liczby x, y oraz z są - odpowiednio – wyrazami a_1, a_2 oraz a_{10} ciągu arytmetycznego (a_n), określonego dla każdej liczby naturalnej n \geqslant 1.

Oblicz x, y oraz z.
Podaj iloraz q ciągu geometrycznego.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Podaj różnicę r ciągu arytmetycznego.
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 13.  4 pkt ⋅ Numer: pr-30800 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 13.1 (1 pkt)
 « Funkcja f określona jest wzorem: f(x)=\frac{2(x+3)}{x+1}+\frac{2(x+3)^2}{(x+1)^2}+\frac{2(x+3)^3}{(x+1)^3}+... .

Przedział liczbowy (-\infty, p) jest dziedziną tej funkcji. Podaj p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 13.2 (1 pkt)
 Przedział liczbowy (p, +\infty) jest zbiorem wartości tej funkcji. Podaj p.
Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Podpunkt 13.3 (1 pkt)
 Przedział liczbowy \langle p, q) jest rozwiązaniem nierówności f(x)\leqslant 0.

Podaj p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 13.4 (1 pkt)
 Podaj q.
Odpowiedź:
q= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm