Dany jest nieskończony ciąg geometryczny (a_n)
określony wzorem
a_n=\frac{6}{\left(\sqrt{5}\right)^n}
, dla n=1,2,3,....
Suma wszystkich wyrazów tego ciągu jest równa \frac{c}{\sqrt{d}+e},
gdzie c,d,e\in\mathbb{Z}.
Podaj liczby c,d i e.
Odpowiedzi:
c
=
(wpisz liczbę całkowitą)
d
=
(wpisz liczbę całkowitą)
e
=
(wpisz liczbę całkowitą)
Zadanie 6.2 pkt ⋅ Numer: pr-21154 ⋅ Poprawnie: 127/124 [102%]
W chwili początkowej (t=0) masa substancji jest równa
4 gram. Wskutek rozpadu cząsteczek tej substancji jej
masa się zmniejsza. Po każdej kolejnej dobie ubywa 20\% masy,
jaka była na koniec doby poprzedniej. Dla każdej liczby całkowitej t\geqslant 0
funkcja m(t) określa masę substancji w gramach po
t pełnych dobach (czas liczymy od chwili początkowej). Wyznacz wzór
funkcji m(t).
Oblicz, po ilu pełnych dobach masa tej substancji będzie po raz pierwszy mniejsza od
1,5 grama.
Odpowiedź:
t=(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pr-20485 ⋅ Poprawnie: 46/34 [135%]
Boki AB, BC,
CD i DA czworokąta
wpisanego w okrąg mają długości odpowiednio 2a,
2a, a\sqrt{5} i
a\sqrt{3}, zaś kąty przy wierzchołkach
A, B i
C tworzą ciąg arytmetyczny.
Oblicz pole powierzchni tego czworokąta.
Dane
a=10
Odpowiedź:
P=
+\cdot√
(wpisz cztery liczby całkowite)
Zadanie 12.4 pkt ⋅ Numer: pr-30179 ⋅ Poprawnie: 4/5 [80%]
W niestałym ciągu arytmetycznym a_1=a. Ponadto
wyrazy a_2, a_3 i
a_6 sa trzema kolejnymi wyrazami ciągu
geometrycznego. Ostatni k-ty wyraz tego ciągu
jest równy a_k=p.
Oblicz a_1+a_2+a_3+...+a_k.
Dane
a=9
p=-243
Odpowiedź:
a_1+a_2+a_3+...+a_k=(wpisz liczbę całkowitą)
Zadanie 13.4 pkt ⋅ Numer: pr-31004 ⋅ Poprawnie: 0/6 [0%]
Ciąg (a_n), określony dla każdej liczby naturalnej
n\geqslant 1, jest geometryczny i ma wszystkie wyrazy dodatnie.
Ponadto a_1=1800 i
a_{22}=\frac{5}{4}a_{23}+\frac{1}{5}a_{21}. Ciąg (b_n),
określony dla każdej liczby naturalnej n\geqslant 1, jest arytmetyczny.
Suma wszystkich wyrazów ciągu (a_n) jest równa sumie
k=15 początkowych kolejnych wyrazów ciągu (b_n).
Ponadto a_3=b_4.
Oblicz iloraz q ciągu (a_n).
Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (1 pkt)
Oblicz sumę wszystkich wyrazów ciągu (a_n).
Odpowiedź:
S=
(wpisz dwie liczby całkowite)
Podpunkt 13.3 (2 pkt)
Wyznacz b_1.
Odpowiedź:
b_1=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat