Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pr-10261 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 1.1 (1 pkt)
Dany jest ciąg liczbowy
(a_n) określony wzorem
a_n=4n-n^3 . Wyraz
a_{2k-p} tego ciągu
jest równy
ak^3+bk^2+ck+d .
Podaj liczby b , c i d .
Dane
p=4
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pr-10265 ⋅ Poprawnie: 1/1 [100%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Ciąg liczbowy
(a_n) określony wzorem
\begin{cases}
a_1=a \\
a_{n+1}=\frac{b}{a_n}
\end{cases}
jest:
Dane
a=\frac{1}{11}=0.09090909090909
b=2
Odpowiedzi:
A. malejący
B. rosnący
C. niemonotoniczny
D. niemalejący
Zadanie 3. 1 pkt ⋅ Numer: pr-10139 ⋅ Poprawnie: 1/1 [100%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
b_n=\frac{2n-9}{n+1} jest zbieżny i
\lim_{n\to\infty} b_n=2 . Nierówności
|b_n-2| \lessdot 0,02 nie spełnia
p wyrazów tego ciągu.
Wyznacz liczbę p .
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Zadanie 4. 2 pkt ⋅ Numer: pr-11627 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (2 pkt)
Granicą ciągu liczbowego
\lim_{n\to+\infty} \frac{5}{\sqrt{n^2+1}-1}
jest:
Odpowiedzi:
A. -\infty
B. 1
C. +\infty
D. 5
Zadanie 5. 1 pkt ⋅ Numer: pr-10329 ⋅ Poprawnie: 9/9 [100%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Drugi wyraz ciągu geometrycznego jest równy
\frac{13}{4} , a suma
wszystkich jego wyrazów jest równa
13 .
Wyznacz najmniejszy możliwy iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pr-20271 ⋅ Poprawnie: 1/1 [100%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
«« W ciągu
(c_n) czwarty wyraz jest równy
4 oraz zachodzi równość
c_{n+2}-c_{n+1}=n-4 dla każdej liczby naturalnej
n .
Oblicz c_1 .
Odpowiedź:
c_{1}=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pr-20273 ⋅ Poprawnie: 7/8 [87%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Ciąg
(a_n) określony jest wzorem
a_n=\frac{n^2(2n-1)}{1+5+9+...+4n-3} .
Oblicz S_{k} .
Dane
k=138
Odpowiedź:
S_k=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pr-20266 ⋅ Poprawnie: 10/10 [100%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Ciąg
(x,y,z) jest rosnącym ciągiem geometrycznym,
zaś ciąg
(b_n) ciągiem arytmetycznym. Zachodzą
równości:
x+y+z=819 ,
b_1=x ,
b_{10}=y i
b_{91}=z .
Oblicz
x,y,z .
Podaj x .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
y=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20483 ⋅ Poprawnie: 6/9 [66%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Oblicz
\lim_{n\to+\infty}\left(\frac{3n^2+1}{3n+7}-\frac{n^2}{n-7}\right)
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pr-20489 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Ciąg
(c_n) określony jest rekurencyjnie:
\begin{cases}
c_1=\frac{1}{2} \\
c_{n}=\frac{45\cdot c_{n-1}}{1+2+3+...+89}\text{, dla }n > 1
\end{cases}
oraz
S_n=c_1+c_2+c_3+...+c_n .
Oblicz \lim_{n\to\infty}S_n .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30192 ⋅ Poprawnie: 7/9 [77%]
Rozwiąż
Podpunkt 11.1 (4 pkt)
«« W ciągu arytmetycznym
\left(a_n\right)
zachodzi wzór
S_n=-\frac{7}{4}n+\frac{1}{4}n^2 , dla
każdej liczby naturalnej dodatniej.
Oblicz sumę k początkowych wyrazów tego ciągu o
numerach nieparzystych.
Dane
k=114
Odpowiedź:
S_{k}=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pr-30186 ⋅ Poprawnie: 0/2 [0%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
Ciąg
(x+k,4,y+2,2z) jest ciągiem arytmetycznym.
Ciąg
(x+k,x+k+2+y,8z) jest ciągiem geometrycznym.
Wyznacz liczby
x,y,z .
Podaj najmniejsze możliwe x spełniające warunki
zadania.
Dane
k=8
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
Podaj największe możliwe
x spełniające warunki
zadania.
Odpowiedź:
x_{max}=
(wpisz liczbę całkowitą)
Zadanie 13. 4 pkt ⋅ Numer: pr-31010 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 13.1 (2 pkt)
Dany jest nieskończony ciąg geometryczny
(a_n) , określony dla każdej
liczby naturalnej
n\geqslant 1 , którego iloraz
q
jest
6 razy mniejszy od pierwszego wyrazu ciągu i spełnia warunek
|q|\lessdot 1 . Stosunek sumy
S_{N} wszystkich
wyrazów tego ciągu o numerach nieparzystych do sumy
S_{P} wszystkich
wyrazów tego ciągu o numerach parzystych jest równy różnicy tych sum, tj.
\frac{S_{N}}{S_{P}}=S_{N}-S_{P} . Wyznacz iloraz
q tego ciągu.
Podaj najmniejszą możliwą wartość q .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (2 pkt)
Podaj największą możliwą wartość
q .
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż