Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pr-10263 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 1.1 (1 pkt)
» Ogólny wyraz ciągu
(a_n) spełnia warunek
a_{n+1}=2a_n-3n .
Oblicz piąty wyraz tego ciągu.
Dane
a_1=5
Odpowiedź:
a_{5}=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pr-10265 ⋅ Poprawnie: 1/1 [100%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Ciąg liczbowy
(a_n) określony wzorem
\begin{cases}
a_1=a \\
a_{n+1}=\frac{b}{a_n}
\end{cases}
jest:
Dane
a=\frac{1}{8}=0.12500000000000
b=4
Odpowiedzi:
A. niemalejący
B. niemonotoniczny
C. nierosnący
D. rosnący
Zadanie 3. 1 pkt ⋅ Numer: pr-10139 ⋅ Poprawnie: 2/2 [100%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
b_n=\frac{2n-6}{n+3} jest zbieżny i
\lim_{n\to\infty} b_n=2 . Nierówności
|b_n-2| \lessdot 0,02 nie spełnia
p wyrazów tego ciągu.
Wyznacz liczbę p .
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pr-11653 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (1 pkt)
Ciąg
(a_n) jest określony wzorem
a_n=\frac{-3n^2-4n+3}{4-3n-4n^2} dla
każdej liczby naturalnej
n\geqslant 1 .
Granica g tego ciągu jest równa:
Odpowiedzi:
A. \frac{3}{4}
B. 1
C. -\frac{1}{2}
D. \frac{3}{8}
E. -\frac{1}{4}
F. -\frac{3}{2}
Zadanie 5. 1 pkt ⋅ Numer: pr-10141 ⋅ Poprawnie: 4/14 [28%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Dany jest nieskończony ciąg geometryczny
(a_n)
określony wzorem
a_n=\frac{5}{\left(\sqrt{6}\right)^n}
, dla
n=1,2,3,... .
Suma wszystkich wyrazów tego ciągu jest równa
\frac{c}{\sqrt{d}+e} ,
gdzie
c,d,e\in\mathbb{Z} .
Podaj liczby c ,d i e .
Odpowiedzi:
Zadanie 6. 3 pkt ⋅ Numer: pr-21203 ⋅ Poprawnie: 2/4 [50%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Pierwszy wyraz ciągu
(a_n) , określonego dla
n\geqslant 1 ,
jest równy
3 . Wszystkie wyrazy tego ciągu spełniają warunek
a_n=2a_{n+1}+3n^2+2 .
Oblicz a_3 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pr-20755 ⋅ Poprawnie: 52/36 [144%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Dany jest ciąg geometryczny
(a_n) .
Oblicz
k .
Dane
a_3+a_6=-140
a_4+a_7=280
S_k=-6825
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 8. 3 pkt ⋅ Numer: pr-20265 ⋅ Poprawnie: 19/27 [70%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
W trzywyrazowym ciągu arytmetycznym
(x,y,z) liczba
z jest równa
3 . Po
przestawieniu wyrazów ciąg
(z,x,y) jest ciągiem
geometrycznym.
Podaj najmniejsze możliwe x .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Podaj najmniejsze możliwe
y .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.3 (1 pkt)
Podaj największe możliwe
y .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pr-21186 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (2 pkt)
Oblicz granicę
g=\lim_{n\to\infty}{\frac{(3n+2)^2+(1-4n)^2}{(4n-1)^2}} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pr-20487 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Suma wszystkich wyrazów ciągu geometrycznego
\left(a_n\right) wynosi
18 , zaś suma wszystkich wyrazów o numerach
parzystych tego ciągu wynosi
6 .
Oblicz a_4 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30193 ⋅ Poprawnie: 6/8 [75%]
Rozwiąż
Podpunkt 11.1 (4 pkt)
« W ciągu arytmetycznym mamy:
a_3=4 i
a_7=16 . Rozwiąż nierówność
S_n \lessdot k .
Podaj największe n spełniające tę nierówność.
Dane
k=763
Odpowiedź:
n_{max}=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pr-30185 ⋅ Poprawnie: 4/4 [100%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
Ciąg
(x+k-5,y,z) jest ciągiem arytmetycznym.
Ciąg
(x+k,y+3,z+4) jest ciągiem geometrycznym
rosnącym spełniającym warunek
z+4=4\cdot (x+k) .
Wyznacz liczby
x,y,z .
Podaj x .
Dane
k=2
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
Odpowiedź:
y=
(wpisz liczbę całkowitą)
Zadanie 13. 4 pkt ⋅ Numer: pr-30801 ⋅ Poprawnie: 17/23 [73%]
Rozwiąż
Podpunkt 13.1 (2 pkt)
« Suma wszystkich wyrazów o numerach nieparzystych zbieżnego ciągu geometrycznego
jest równa
\frac{3}{4} , zaś suma wszystkich wyrazów tego ciągu
o numerach parzystych jest równa
\frac{1}{4} .
Oblicz pierwszy wyraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż