Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pr-10263 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Ogólny wyraz ciągu (a_n) spełnia warunek a_{n+1}=2a_n-3n.

Oblicz piąty wyraz tego ciągu.

Dane
a_1=4
Odpowiedź:
a_{5}= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pr-10265 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg liczbowy (a_n) określony wzorem \begin{cases} a_1=a \\ a_{n+1}=\frac{b}{a_n} \end{cases} jest:
Dane
a=\frac{1}{7}=0.14285714285714
b=4
Odpowiedzi:
A. niemonotoniczny B. malejący
C. rosnący D. nierosnący
Zadanie 3.  1 pkt ⋅ Numer: pr-10139 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg b_n=\frac{2n-6}{n+3} jest zbieżny i \lim_{n\to\infty} b_n=2. Nierówności |b_n-2| \lessdot 0,02 nie spełnia p wyrazów tego ciągu.

Wyznacz liczbę p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10140 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oblicz granicę \lim_{n\to+\infty}\frac{\left(2n^2+4n\right)^2}{12n^4-4} .
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-11639 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Liczba x jest sumą wszystkich wyrazów nieskończonego ciągu geometrycznego o pierwszym wyrazie równym 1 i ilorazie \frac{1}{\sqrt{6}}. Liczba y jest sumą wszystkich wyrazów nieskończonego ciągu geometrycznego o pierwszym wyrazie równym 1 i ilorazie -\frac{1}{\sqrt{6}}.
Wynika stąd, że liczba x+y jest równa:
Odpowiedzi:
A. \frac{3\sqrt{6}}{5} B. \frac{12}{5}
C. \frac{8}{5} D. \frac{72}{5}
E. \frac{54}{5} F. \frac{2}{5}
Zadanie 6.  2 pkt ⋅ Numer: pr-20809 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Dany jest ciąg (a_n), w którym S_n=a_1+a_2+a_3+...+a_n, dla każdego n\in\mathbb{N_{+}}. Ponadto dla każdej liczby naturalnej dodatniej zachodzi wzór: S_n=\frac{n+1}{p\cdot(n+1)+q}.

Oblicz a_2.

Dane
p=5
q=-5
Odpowiedź:
a_{2}=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Ogólny wyraz tego ciągu określony jest wzorem a_n=\frac{-1}{bn^2+cn}.

Podaj c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20272 ⋅ Poprawnie: 6/7 [85%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Rozwiąż równanie 2^1\cdot 2^3\cdot 2^5\cdot ...\cdot 2^{2x+17}=64\cdot 4^{x+10} .

Podaj największe x spełniające to równanie.

Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20479 ⋅ Poprawnie: 5/6 [83%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Ciąg (a+p,b+q,10) jest arytmetyczny, zaś ciąg (10,b+q+5,2(a+p)) jest geometryczny.

Oblicz a\cdot b.

Dane
p=6
q=3
Odpowiedź:
a\cdot b= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20483 ⋅ Poprawnie: 6/9 [66%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Oblicz \lim_{n\to+\infty}\left(\frac{3n^2+1}{3n+1}-\frac{n^2}{n-3}\right) .
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pr-20837 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Rozwiąż nierówność \left(\sqrt{\frac{x}{a}}\right)^2+\left(\sqrt{\frac{x}{a}}\right)^3+ \left(\sqrt{\frac{x}{a}}\right)^4+... \lessdot 1+\sqrt{\frac{x}{a}} .

Podaj najmniejszą liczbę spełniającą tę nierówność.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj najmniejszą liczbę dodatnią, która nie spełnia tej nierówności.
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30194 ⋅ Poprawnie: 6/7 [85%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 » W ciągu arytmetycznym mamy: a_{13}=p i a_{30}=q. Wyznacz najmniejszą wartość n, dla której S_n ma wartość najmniejszą.

Podaj n.

Dane
p=2
q=104
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30182 ⋅ Poprawnie: 7/8 [87%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Ciąg liczbowy (a,b,c+x) jest arytmetyczny i a+b+c+x=33. Ciąg liczbowy (a-1,b+5,c+x+19) jest geometryczny. Wyznacz a,b,c.

Podaj najmniejsze możliwe c.

Dane
x=1
Odpowiedź:
c_{min}= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Podaj największe możliwe c.
Odpowiedź:
c_{max}= (wpisz liczbę całkowitą)
Zadanie 13.  4 pkt ⋅ Numer: pr-31010 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 13.1 (2 pkt)
 Dany jest nieskończony ciąg geometryczny (a_n), określony dla każdej liczby naturalnej n\geqslant 1, którego iloraz q jest 56 razy mniejszy od pierwszego wyrazu ciągu i spełnia warunek |q|\lessdot 1. Stosunek sumy S_{N} wszystkich wyrazów tego ciągu o numerach nieparzystych do sumy S_{P} wszystkich wyrazów tego ciągu o numerach parzystych jest równy różnicy tych sum, tj. \frac{S_{N}}{S_{P}}=S_{N}-S_{P}. Wyznacz iloraz q tego ciągu.

Podaj najmniejszą możliwą wartość q.

Odpowiedź:
q_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (2 pkt)
 Podaj największą możliwą wartość q.
Odpowiedź:
q_{max}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm