» Suma wszystkich wyrazów ciągu geometrycznego \left(a_n\right) wynosi
4, zaś suma wszystkich wyrazów o numerach
parzystych tego ciągu wynosi \frac{4}{5}.
Oblicz a_4.
Odpowiedź:
a_4=
(wpisz dwie liczby całkowite)
Zadanie 11.4 pkt ⋅ Numer: pr-30190 ⋅ Poprawnie: 51/39 [130%]
« Ciąg (a_1,a_2,a_3,...,a_{100}) jest ciągiem
geometrycznym, którego wszystkie wyrazy są dodatnie. Ciąg ten spełnia warunki:
100\cdot (a_2+a_4+a_6+...+a_{100})=a_1+a_3+a_5+...+a_{99}
oraz
\log{a_1}+\log{a_2}+\log{a_3}+...+\log{a_{100}}=100.
Wyznacz a_1.
Z ilu cyfr składa się liczba a_1?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 12.4 pkt ⋅ Numer: pr-30180 ⋅ Poprawnie: 1/3 [33%]
K_2jest kwadratem, którego każdy wierzchołek leży na innym boku
kwadratu K_1 i dzieli ten bok w stosunku 1:4
K_3 jest kwadratem, którego każdy wierzchołek leży na innym boku
kwadratu K_2 i dzieli ten bok w stosunku 1:4
i ogólnie, dla każdej liczby naturalnej n\geqslant 2:
K_n jest kwadratem, którego każdy wierzchołek leży na innym boku
kwadratu K_{n-1} i dzieli ten bok w stosunku 1:4
Obwody wszystkich kwadratów określonych powyżej tworzą nieskończony ciąg geometryczny. Na rysunku
przedstawiono kwadraty utworzone w sposób opisany powyżej:
Wyznacz iloraz tego ciągu.
Odpowiedź:
q=
\cdot√
(wpisz trzy liczby całkowite)
Podpunkt 13.2 (2 pkt)
Przyjmując, że a=5, oblicz sumę obwodów wszystkich kwadratów.
Odpowiedź:
S=
+\cdot√
(wpisz cztery liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat