Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pr-10264 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Dany jest ciąg
(a_n) oraz ciąg
(b_n) określony następująco:
b_n=a_1+a_2+a_3+...+a_n . O ciągu
(b_n) wiadomo, że spełnia warunek
b_n=\frac{(n+1)(2n+3)}{6} dla każdego
n\in\mathbb{N_{+}} .
Oblicz wyraz a_k tego ciągu.
Dane
k=14
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pr-10265 ⋅ Poprawnie: 1/1 [100%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Ciąg liczbowy
(a_n) określony wzorem
\begin{cases}
a_1=a \\
a_{n+1}=\frac{b}{a_n}
\end{cases}
jest:
Dane
a=\frac{1}{10}=0.10000000000000
b=4
Odpowiedzi:
A. rosnący
B. niemonotoniczny
C. nierosnący
D. malejący
Zadanie 3. 1 pkt ⋅ Numer: pr-10306 ⋅ Poprawnie: 2/2 [100%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
a_n=\frac{n}{n+5} jest zbieżny i
\lim_{n\to\infty} a_n=1 . Nierówności
|a_n-1| \lessdot \frac{1}{180} nie spełnia
k wyrazów tego ciągu.
Wyznacz liczbę k .
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pr-11653 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 4.1 (1 pkt)
Ciąg
(a_n) jest określony wzorem
a_n=\frac{-5n^2+n+2}{1-3n-n^2} dla
każdej liczby naturalnej
n\geqslant 1 .
Granica g tego ciągu jest równa:
Odpowiedzi:
A. \frac{15}{2}
B. \frac{5}{2}
C. 5
D. -\frac{5}{3}
E. \frac{20}{3}
F. -\frac{10}{3}
Zadanie 5. 1 pkt ⋅ Numer: pr-10329 ⋅ Poprawnie: 9/9 [100%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Drugi wyraz ciągu geometrycznego jest równy
\frac{13}{6} , a suma
wszystkich jego wyrazów jest równa
\frac{39}{4} .
Wyznacz najmniejszy możliwy iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pr-20277 ⋅ Poprawnie: 6/8 [75%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Pierwszy wyraz ciągu
(a_n) wynosi
0 . Każdy z kolejnych
wyrazów tego ciągu jest równy sumie numerów wszystkich wyrazów go
poprzedzających. Wyznacz wzór tego ciągu.
Podaj a_{90} .
Odpowiedź:
a_{k}=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
a_{k}=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pr-20755 ⋅ Poprawnie: 52/36 [144%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Dany jest ciąg geometryczny
(a_n) .
Oblicz
k .
Dane
a_3+a_6=-168
a_4+a_7=336
S_k=-8190
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 8. 3 pkt ⋅ Numer: pr-20265 ⋅ Poprawnie: 19/27 [70%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
W trzywyrazowym ciągu arytmetycznym
(x,y,z) liczba
z jest równa
-7 . Po
przestawieniu wyrazów ciąg
(z,x,y) jest ciągiem
geometrycznym.
Podaj najmniejsze możliwe x .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Podaj najmniejsze możliwe
y .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.3 (1 pkt)
Podaj największe możliwe
y .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pr-20480 ⋅ Poprawnie: 12/15 [80%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Oblicz granicę
\lim_{n\to+\infty}
\left(\frac{15n^3+6n+5}{6n^3+1}-\frac{5n^2+2n+1}{5n^2-4}\right)
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pr-20834 ⋅ Poprawnie: 19/23 [82%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Wynacz te wartości
x\in\mathbb{R} , dla których
ciąg liczbowy
\left(1, \frac{13x+1}{2x+3},\left(\frac{13x+1}{2x+3}\right)^2,...\right)
jest zbieżny.
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30191 ⋅ Poprawnie: 9/12 [75%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Dany jest ciąg określony wzorem
a_n=(-1)^n\cdot (2n-1) . Uzasadnij, że ciąg
b_n=a_{2n+1} jest arytmetyczny.
Oblicz S_{k} ciągu (b_n) .
Dane
k=95
Odpowiedź:
S_{k}=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Oblicz
S_{k} ciągu
(a_n) .
Odpowiedź:
S_{k}=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pr-30180 ⋅ Poprawnie: 1/3 [33%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
« Ciąg
(a_1,a_2,a_3) jest rosnącym ciągiem
geometrycznym oraz
a_1+a_2+a_3=s . Ciąg
(a_1,a_2+b,a_3+c) jest arytmetyczny. Wyznacz
wyrazy tego ciągu.
Podaj pierwszy wyraz ciągu (a_n) .
Dane
s=105
b=5
c=-35
Odpowiedź:
a_1=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
Podaj iloraz ciągu
(a_n) .
Odpowiedź:
q=
(wpisz liczbę całkowitą)
Zadanie 13. 4 pkt ⋅ Numer: pr-30801 ⋅ Poprawnie: 17/23 [73%]
Rozwiąż
Podpunkt 13.1 (2 pkt)
« Suma wszystkich wyrazów o numerach nieparzystych zbieżnego ciągu geometrycznego
jest równa
\frac{15}{16} , zaś suma wszystkich wyrazów tego ciągu
o numerach parzystych jest równa
\frac{5}{16} .
Oblicz pierwszy wyraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż