Liczba x jest sumą wszystkich wyrazów nieskończonego ciągu geometrycznego
o pierwszym wyrazie równym 1 i ilorazie \frac{1}{\sqrt{12}}.
Liczba y jest sumą wszystkich wyrazów nieskończonego ciągu geometrycznego
o pierwszym wyrazie równym 1 i ilorazie -\frac{1}{\sqrt{12}}.
Wynika stąd, że liczba x\cdot y jest równa:
Odpowiedzi:
A.\frac{12}{11}
B.\frac{6}{11}
C.\frac{8}{11}
D.\frac{24\sqrt{3}}{11}
E.\frac{1}{11}
F.\frac{156}{11}
Zadanie 6.2 pkt ⋅ Numer: pr-20809 ⋅ Poprawnie: 0/0
« Dany jest ciąg (a_n), w którym
S_n=a_1+a_2+a_3+...+a_n, dla każdego
n\in\mathbb{N_{+}}. Ponadto dla każdej liczby
naturalnej dodatniej zachodzi wzór:
S_n=\frac{n+1}{p\cdot(n+1)+q}.
Oblicz a_2.
Dane
p=6 q=-6
Odpowiedź:
a_{2}=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Ogólny wyraz tego ciągu określony jest wzorem
a_n=\frac{-1}{bn^2+cn}.
Podaj c.
Odpowiedź:
c=(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pr-20755 ⋅ Poprawnie: 52/36 [144%]
» Dany jest ciąg
c_n=\left(-\frac{1}{41-2m}\right)^n,
w którym wszystkie wyrazy są dodatnie, a m jest
parametrem. Wyznacz te wartości parametru m, dla
których szereg c_1+c_2+c_3+... jest zbieżny.
Podaj najmniejsze całkowite m spełniające warunki
zadania.
Odpowiedź:
m_{min}=(wpisz liczbę całkowitą)
Zadanie 11.4 pkt ⋅ Numer: pr-30187 ⋅ Poprawnie: 40/36 [111%]
W trzywyrazowym ciągu geometrycznym (a_1, a_2, a_3), spełniona jest równość
a_1+a_2+a_3=\frac{341}{25}. Wyrazy a_1,
a_2, a_3 są – odpowiednio –siódmym
, drugim i pierwszym wyrazem rosnącego ciągu arytmetycznego.
Oblicz iloraz ciągu geometrycznego.
Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (3 pkt)
Oblicz a_1.
Odpowiedź:
a_1=
(wpisz dwie liczby całkowite)
Zadanie 13.4 pkt ⋅ Numer: pr-30880 ⋅ Poprawnie: 7/23 [30%]
K_2jest kwadratem, którego każdy wierzchołek leży na innym boku
kwadratu K_1 i dzieli ten bok w stosunku 1:8
K_3 jest kwadratem, którego każdy wierzchołek leży na innym boku
kwadratu K_2 i dzieli ten bok w stosunku 1:8
i ogólnie, dla każdej liczby naturalnej n\geqslant 2:
K_n jest kwadratem, którego każdy wierzchołek leży na innym boku
kwadratu K_{n-1} i dzieli ten bok w stosunku 1:8
Obwody wszystkich kwadratów określonych powyżej tworzą nieskończony ciąg geometryczny. Na rysunku
przedstawiono kwadraty utworzone w sposób opisany powyżej:
Wyznacz iloraz tego ciągu.
Odpowiedź:
q=
\cdot√
(wpisz trzy liczby całkowite)
Podpunkt 13.2 (2 pkt)
Przyjmując, że a=7, oblicz sumę obwodów wszystkich kwadratów.
Odpowiedź:
S=
+\cdot√
(wpisz cztery liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat