Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pr-10305 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dany jest ciąg (a_n), który spełnia warunki: a_{n+1}-a_{n+2}=a\cdot n oraz a_{n+1}+a_{n+2}=b\cdot n+c.

Oblicz dziesiąty wyraz tego ciągu.

Dane
a=-4
b=8
c=4
Odpowiedź:
a_{10}= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pr-10265 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg liczbowy (a_n) określony wzorem \begin{cases} a_1=a \\ a_{n+1}=\frac{b}{a_n} \end{cases} jest:
Dane
a=\frac{1}{2}=0.50000000000000
b=5
Odpowiedzi:
A. malejący B. rosnący
C. nierosnący D. niemonotoniczny
Zadanie 3.  1 pkt ⋅ Numer: pr-10139 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg b_n=\frac{2n-1}{n+4} jest zbieżny i \lim_{n\to\infty} b_n=2. Nierówności |b_n-2| \lessdot 0,02 nie spełnia p wyrazów tego ciągu.

Wyznacz liczbę p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10140 ⋅ Poprawnie: 18/16 [112%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oblicz granicę \lim_{n\to+\infty}\frac{\left(-10n^2+4n\right)^2}{12n^4-4} .
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10329 ⋅ Poprawnie: 9/9 [100%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Drugi wyraz ciągu geometrycznego jest równy \frac{5}{6}, a suma wszystkich jego wyrazów jest równa \frac{15}{4}.

Wyznacz najmniejszy możliwy iloraz tego ciągu.

Odpowiedź:
q_{min}=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-20804 ⋅ Poprawnie: 9/11 [81%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Ciąg liczbowy \left(a_n\right) określony jest następująco: \begin{cases} a_1=1 \\ a_{n+1}=a_n+0,15\text{, dla } n\in\mathbb{N_{+}} \end{cases} . Oblicz sumę s=a_{k}+a_{k+1}+a_{k+2}+...+a_{l}.
Dane
k=30
l=50
Odpowiedź:
s=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20273 ⋅ Poprawnie: 7/8 [87%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Ciąg (a_n) określony jest wzorem a_n=\frac{n^2(2n-1)}{1+5+9+...+4n-3}.

Oblicz S_{k}.

Dane
k=100
Odpowiedź:
S_k= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20267 ⋅ Poprawnie: 13/13 [100%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Ciąg liczbowy (a_n)=(a_1,a_2,a_3) jest rosnącym ciągiem geometrycznym oraz a_1+a_2+a_3=62. Ciąg \left(a_1,a_2+16,a_3\right) jest arytmetyczny. Wyznacz wyrazy tego ciągu.

Podaj pierwszy wyraz ciągu (a_n).

Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj drugi wyraz ciągu (a_n).
Odpowiedź:
a_2= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20814 ⋅ Poprawnie: 21/24 [87%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Oblicz \lim_{n\to+\infty}\left(\sqrt{n^2-2n}-n\right) .
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pr-20837 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Rozwiąż nierówność \left(\sqrt{\frac{x}{a}}\right)^2+\left(\sqrt{\frac{x}{a}}\right)^3+ \left(\sqrt{\frac{x}{a}}\right)^4+... \lessdot 1+\sqrt{\frac{x}{a}} .

Podaj najmniejszą liczbę spełniającą tę nierówność.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj najmniejszą liczbę dodatnią, która nie spełnia tej nierówności.
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30188 ⋅ Poprawnie: 7/7 [100%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Ciąg (a,b,c) jest rosnącym ciągiem geometrycznym. Suma jego wyrazów wynosi s, a ich iloczyn t. Wyznacz ten ciąg.

Podaj a.

Dane
s=14.0
t=64
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Podaj q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30891 ⋅ Poprawnie: 61/84 [72%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Trzywyrazowy ciąg (x,y,z) jest geometryczny i rosnący. Suma wyrazów tego ciągu jest równa 657. Liczby x, y oraz z są - odpowiednio – wyrazami a_1, a_2 oraz a_{10} ciągu arytmetycznego (a_n), określonego dla każdej liczby naturalnej n \geqslant 1.

Oblicz x, y oraz z.
Podaj iloraz q ciągu geometrycznego.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Podaj różnicę r ciągu arytmetycznego.
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 13.  4 pkt ⋅ Numer: pr-30800 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 13.1 (1 pkt)
 « Funkcja f określona jest wzorem: f(x)=\frac{3(x-4)}{x-6}+\frac{3(x-4)^2}{(x-6)^2}+\frac{3(x-4)^3}{(x-6)^3}+... .

Przedział liczbowy (-\infty, p) jest dziedziną tej funkcji. Podaj p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 13.2 (1 pkt)
 Przedział liczbowy (p, +\infty) jest zbiorem wartości tej funkcji. Podaj p.
Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Podpunkt 13.3 (1 pkt)
 Przedział liczbowy \langle p, q) jest rozwiązaniem nierówności f(x)\leqslant 0.

Podaj p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 13.4 (1 pkt)
 Podaj q.
Odpowiedź:
q= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm