Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pr-10305 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 1.1 (1 pkt)
Dany jest ciąg
(a_n) , który spełnia
warunki:
a_{n+1}-a_{n+2}=a\cdot n oraz
a_{n+1}+a_{n+2}=b\cdot n+c .
Oblicz dziesiąty wyraz tego ciągu.
Dane
a=-1
b=-3
c=-8
Odpowiedź:
a_{10}=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pr-10265 ⋅ Poprawnie: 1/1 [100%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Ciąg liczbowy
(a_n) określony wzorem
\begin{cases}
a_1=a \\
a_{n+1}=\frac{b}{a_n}
\end{cases}
jest:
Dane
a=\frac{1}{7}=0.14285714285714
b=2
Odpowiedzi:
A. nierosnący
B. niemonotoniczny
C. malejący
D. niemalejący
Zadanie 3. 1 pkt ⋅ Numer: pr-10306 ⋅ Poprawnie: 2/2 [100%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
a_n=\frac{n}{n+5} jest zbieżny i
\lim_{n\to\infty} a_n=1 . Nierówności
|a_n-1| \lessdot \frac{1}{120} nie spełnia
k wyrazów tego ciągu.
Wyznacz liczbę k .
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pr-10140 ⋅ Poprawnie: 18/16 [112%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Oblicz granicę
\lim_{n\to+\infty}\frac{\left(-10n^2+4n\right)^2}{12n^4-4}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pr-10299 ⋅ Poprawnie: 1/1 [100%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Nieskończony ciąg geometryczny
(a_n) jest określony
w następujący sposób:
\begin{cases}
a_1=\frac{3}{7} \\
a_{n+1}=\frac{2}{3}\cdot a_n \text{, dla } n\in\mathbb{N_+}
\end{cases}
.
Oblicz sumę wszystkich wyrazów tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pr-20268 ⋅ Poprawnie: 43/41 [104%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Ciąg
\left(
\sqrt[3]{12}+\sqrt[3]{6},
\frac{\sqrt{2}(m+3)}{4},
\sqrt[3]{144}-2\sqrt[3]{9}+\sqrt[3]{36}
\right)
jest ciągiem geometrycznym.
Podaj najmniejsze możliwe m .
Odpowiedź:
m_{min}=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe m .
Odpowiedź:
m_{max}=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pr-20485 ⋅ Poprawnie: 46/34 [135%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Dany jest ciąg
(b_n) :
\begin{cases}
b_1=1 \\
b_{n+1}=b_n+\frac{a}{b}
\end{cases}
.
Oblicz s=b_{30}+b_{31}+b_{32}+...+b_{50} .
Dane
a=3
b=4
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 3 pkt ⋅ Numer: pr-20265 ⋅ Poprawnie: 19/28 [67%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
W trzywyrazowym ciągu arytmetycznym
(x,y,z) liczba
z jest równa
-5 . Po
przestawieniu wyrazów ciąg
(z,x,y) jest ciągiem
geometrycznym.
Podaj najmniejsze możliwe x .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Podaj najmniejsze możliwe
y .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.3 (1 pkt)
Podaj największe możliwe
y .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pr-20483 ⋅ Poprawnie: 7/10 [70%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Oblicz
\lim_{n\to+\infty}\left(\frac{3n^2+1}{3n+1}-\frac{n^2}{n-7}\right)
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pr-20837 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
Rozwiąż nierówność
\left(\sqrt{\frac{x}{a}}\right)^2+\left(\sqrt{\frac{x}{a}}\right)^3+
\left(\sqrt{\frac{x}{a}}\right)^4+... \lessdot 1+\sqrt{\frac{x}{a}}
.
Podaj najmniejszą liczbę spełniającą tę nierówność.
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj najmniejszą liczbę dodatnią, która
nie spełnia tej nierówności.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30187 ⋅ Poprawnie: 40/36 [111%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
«« Pierwiastki wielomianu
W(x)=x^3+bx^2+cx+d+k
tworzą ciąg geometryczny o ilorazie
2 . Ponadto
W(1)=-110 . Wyznacz wzór tego wielomianu.
Podaj d .
Dane
k=11
Odpowiedź:
d=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pr-30182 ⋅ Poprawnie: 7/8 [87%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
« Ciąg liczbowy
(a,b,c+x) jest arytmetyczny i
a+b+c+x=33 .
Ciąg liczbowy
(a-1,b+5,c+x+19) jest geometryczny.
Wyznacz
a,b,c .
Podaj najmniejsze możliwe c .
Dane
x=1
Odpowiedź:
c_{min}=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
Podaj największe możliwe
c .
Odpowiedź:
c_{max}=
(wpisz liczbę całkowitą)
Zadanie 13. 4 pkt ⋅ Numer: pr-31025 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 13.1 (4 pkt)
Dany jest nieskończony ciąg geometryczny
(a_n) , określony dla każdej
liczby naturalnej
n\geqslant 1 . Suma trzech początkowych wyrazów ciągu
(a_n) jest równa
7 , a suma
S
wszystkich wyrazów tego ciągu jest równa
8 . Wyznacz wszystkie wartości
n , dla których spełniona jest nierówność
\left|\frac{S-S_n}{S_n}\right|\lessdot \frac{1}{32} , gdzie
S_n oznacza sumę
n początkowych wyrazów ciągu
(a_n) .
Podaj najmniejszą możliwą wartość n , która spełnia tę nierówność.
Odpowiedź:
n_{min}=
(wpisz liczbę całkowitą)
Rozwiąż