Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pr-10305 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dany jest ciąg (a_n), który spełnia warunki: a_{n+1}-a_{n+2}=a\cdot n oraz a_{n+1}+a_{n+2}=b\cdot n+c.

Oblicz dziesiąty wyraz tego ciągu.

Dane
a=3
b=-3
c=4
Odpowiedź:
a_{10}= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pr-10265 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg liczbowy (a_n) określony wzorem \begin{cases} a_1=a \\ a_{n+1}=\frac{b}{a_n} \end{cases} jest:
Dane
a=\frac{1}{11}=0.09090909090909
b=4
Odpowiedzi:
A. malejący B. niemonotoniczny
C. niemalejący D. rosnący
Zadanie 3.  1 pkt ⋅ Numer: pr-10139 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg b_n=\frac{2n-9}{n+3} jest zbieżny i \lim_{n\to\infty} b_n=2. Nierówności |b_n-2| \lessdot 0,02 nie spełnia p wyrazów tego ciągu.

Wyznacz liczbę p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-11653 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=\frac{n^2-3n+1}{1-4n-5n^2} dla każdej liczby naturalnej n\geqslant 1.

Granica g tego ciągu jest równa:

Odpowiedzi:
A. -\frac{1}{5} B. -\frac{3}{10}
C. -\frac{4}{15} D. \frac{2}{5}
E. -\frac{2}{15} F. \frac{1}{15}
Zadanie 5.  1 pkt ⋅ Numer: pr-10143 ⋅ Poprawnie: 9/15 [60%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Oblicz sumę wszystkich wyrazów ciągu określonego wzorem a_n=9\cdot 5^{-n}.
Odpowiedź:
S=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-20271 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 «« W ciągu (c_n) czwarty wyraz jest równy 4 oraz zachodzi równość c_{n+2}-c_{n+1}=n-2 dla każdej liczby naturalnej n.

Oblicz c_1.

Odpowiedź:
c_{1}= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20274 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
«« Dany jest nieskończony ciąg określony wzorem r_n=\left(0,5\right)^n . Wyrazy tego ciągu są długościami promieni kół. Suma pól powierzchni wszystkich tych kół jest równa p\cdot \pi.

Podaj liczbę p.

Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20812 ⋅ Poprawnie: 8/9 [88%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Ciąg liczbowy (a,b+m,1) jest arytmetyczny, zaś ciąg (1,a,b+m) jest geometryczny.

Podaj najmniejsze możliwe b.

Dane
m=5
Odpowiedź:
b_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj największe możliwe b.
Odpowiedź:
b_{max}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20482 ⋅ Poprawnie: 14/15 [93%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Oblicz \lim_{n\to+\infty}\frac{15n^3+3n}{(1-2n)^3} .
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pr-20834 ⋅ Poprawnie: 19/23 [82%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Wynacz te wartości x\in\mathbb{R}, dla których ciąg liczbowy \left(1, \frac{14x+1}{2x+3},\left(\frac{14x+1}{2x+3}\right)^2,...\right) jest zbieżny.

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Odpowiedź:
x_l=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
x_p=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30895 ⋅ Poprawnie: 45/61 [73%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Nieskończony ciąg geometryczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Suma wszystkich wyrazów ciągu (a_n) o numerach nieparzystych jest równa 50, tj. a_1+a_3+a_5+...=50. Ponadto a_1+a_3=\frac{29}{10}\cdot a_2.

Wyznacz iloraz q tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Wyznacz pierwszy wyraz tego ciągu.
Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Zadanie 12.  5 pkt ⋅ Numer: pr-30886 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Ciąg (a,b,c-4) jest trzywyrazowym ciągiem geometrycznym o wyrazach dodatnich. Ciąg (2a,2b,c-3) jest trzywyrazowym ciągiem arytmetycznym. Ponadto spełniony jest warunek c-b=10.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Podpunkt 12.2 (3 pkt)
 Podaj liczbę c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 13.  4 pkt ⋅ Numer: pr-30880 ⋅ Poprawnie: 6/19 [31%] Rozwiąż 
Podpunkt 13.1 (2 pkt)
 Określamy kwadraty K_1, K_2, K_3,... następująco:
  • K_1 jest kwadratem o boku długości a,
  • K_2jest kwadratem, którego każdy wierzchołek leży na innym boku kwadratu K_1 i dzieli ten bok w stosunku 1:5
  • K_3 jest kwadratem, którego każdy wierzchołek leży na innym boku kwadratu K_2 i dzieli ten bok w stosunku 1:5 i ogólnie, dla każdej liczby naturalnej n\geqslant 2:
  • K_n jest kwadratem, którego każdy wierzchołek leży na innym boku kwadratu K_{n-1} i dzieli ten bok w stosunku 1:5

    Obwody wszystkich kwadratów określonych powyżej tworzą nieskończony ciąg geometryczny. Na rysunku przedstawiono kwadraty utworzone w sposób opisany powyżej:

    Wyznacz iloraz tego ciągu.

  • Odpowiedź:
    q= \cdot
    (wpisz trzy liczby całkowite)
    Podpunkt 13.2 (2 pkt)
     Przyjmując, że a=6, oblicz sumę obwodów wszystkich kwadratów.
    Odpowiedź:
    S= + \cdot
    (wpisz cztery liczby całkowite)


    ☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

    Masz pytania? Napisz: k42195@poczta.fm