« Ciąg liczbowy (a_n)=(a_1,a_2,a_3) jest rosnącym ciągiem
geometrycznym oraz a_1+a_2+a_3=21. Ciąg
\left(a_1,a_2+\frac{3}{2},a_3\right) jest arytmetyczny. Wyznacz
wyrazy tego ciągu.
Podaj pierwszy wyraz ciągu (a_n).
Odpowiedź:
a_1=(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj drugi wyraz ciągu (a_n).
Odpowiedź:
a_2=(wpisz liczbę całkowitą)
Zadanie 9.2 pkt ⋅ Numer: pr-20480 ⋅ Poprawnie: 12/16 [75%]
W trzywyrazowym ciągu geometrycznym (a_1, a_2, a_3), spełniona jest równość
a_1+a_2+a_3=\frac{63}{16}. Wyrazy a_1,
a_2, a_3 są – odpowiednio –szóstym
, drugim i pierwszym wyrazem rosnącego ciągu arytmetycznego.
Oblicz iloraz ciągu geometrycznego.
Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (3 pkt)
Oblicz a_1.
Odpowiedź:
a_1=
(wpisz dwie liczby całkowite)
Zadanie 13.4 pkt ⋅ Numer: pr-31025 ⋅ Poprawnie: 0/0
Dany jest nieskończony ciąg geometryczny (a_n), określony dla każdej
liczby naturalnej n\geqslant 1. Suma trzech początkowych wyrazów ciągu
(a_n) jest równa 7, a suma S
wszystkich wyrazów tego ciągu jest równa 8. Wyznacz wszystkie wartości
n, dla których spełniona jest nierówność
\left|\frac{S-S_n}{S_n}\right|\lessdot \frac{1}{32}, gdzie
S_n oznacza sumę n początkowych wyrazów ciągu
(a_n).
Podaj najmniejszą możliwą wartość n, która spełnia tę nierówność.
Odpowiedź:
n_{min}=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat