Liczba x jest sumą wszystkich wyrazów nieskończonego ciągu geometrycznego
o pierwszym wyrazie równym 1 i ilorazie \frac{1}{\sqrt{14}}.
Liczba y jest sumą wszystkich wyrazów nieskończonego ciągu geometrycznego
o pierwszym wyrazie równym 1 i ilorazie -\frac{1}{\sqrt{14}}.
Wynika stąd, że liczba x\cdot y jest równa:
Odpowiedzi:
A.\frac{14}{13}
B.\frac{7}{13}
C.\frac{196}{13}
D.\frac{28}{39}
E.\frac{14\sqrt{14}}{13}
F.\frac{210}{13}
Zadanie 6.3 pkt ⋅ Numer: pr-21203 ⋅ Poprawnie: 0/1 [0%]
« Ciąg liczbowy (a_n)=(a_1,a_2,a_3) jest rosnącym ciągiem
geometrycznym oraz a_1+a_2+a_3=728. Ciąg
\left(a_1,a_2+256,a_3\right) jest arytmetyczny. Wyznacz
wyrazy tego ciągu.
Podaj pierwszy wyraz ciągu (a_n).
Odpowiedź:
a_1=(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj drugi wyraz ciągu (a_n).
Odpowiedź:
a_2=(wpisz liczbę całkowitą)
Zadanie 9.2 pkt ⋅ Numer: pr-20814 ⋅ Poprawnie: 8/9 [88%]
Suma wszystkich wyrazów nieskończonego ciągu geometrycznego (a_n), określonego
dla n\geqslant 1, jest równa 8, a suma kwadratów
wszystkich wyrazów tego ciągu jest równa 9.
Oblicz iloraz ciągu (a_n).
Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 11.4 pkt ⋅ Numer: pr-30193 ⋅ Poprawnie: 6/8 [75%]
Czterowyrazowy ciąg (a,b,c,d) jest arytmetyczny i rosnący. Różnica pomiędzy pierwszym
a czwartym wyrazem tego ciągu jest równa 30.
Ponadto ciąg (a-4,b,c) jest geometryczny.
Oblicz różnicę ciągu arytmetycznego.
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
Oblicz iloraz ciągu geometrycznego.
Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 13.4 pkt ⋅ Numer: pr-30880 ⋅ Poprawnie: 2/3 [66%]
K_2jest kwadratem, którego każdy wierzchołek leży na innym boku
kwadratu K_1 i dzieli ten bok w stosunku 1:9
K_3 jest kwadratem, którego każdy wierzchołek leży na innym boku
kwadratu K_2 i dzieli ten bok w stosunku 1:9
i ogólnie, dla każdej liczby naturalnej n\geqslant 2:
K_n jest kwadratem, którego każdy wierzchołek leży na innym boku
kwadratu K_{n-1} i dzieli ten bok w stosunku 1:9
Obwody wszystkich kwadratów określonych powyżej tworzą nieskończony ciąg geometryczny. Na rysunku
przedstawiono kwadraty utworzone w sposób opisany powyżej:
Wyznacz iloraz tego ciągu.
Odpowiedź:
q=
\cdot√
(wpisz trzy liczby całkowite)
Podpunkt 13.2 (2 pkt)
Przyjmując, że a=2, oblicz sumę obwodów wszystkich kwadratów.
Odpowiedź:
S=
+\cdot√
(wpisz cztery liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat