Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pr-10305 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dany jest ciąg (a_n), który spełnia warunki: a_{n+1}-a_{n+2}=a\cdot n oraz a_{n+1}+a_{n+2}=b\cdot n+c.

Oblicz dziesiąty wyraz tego ciągu.

Dane
a=-5
b=3
c=8
Odpowiedź:
a_{10}= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pr-10266 ⋅ Poprawnie: 2/4 [50%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Ciąg liczbowy (b_n) określony wzorem \begin{cases} b_1=a \\ b_{n+1}=\frac{1}{b}b_n \end{cases} jest:
Dane
a=-\frac{1}{10}=-0.10000000000000
b=2
Odpowiedzi:
A. nierosnący B. rosnący
C. malejący D. niemonotoniczny
Zadanie 3.  1 pkt ⋅ Numer: pr-10306 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg a_n=\frac{n}{n+5} jest zbieżny i \lim_{n\to\infty} a_n=1. Nierówności |a_n-1| \lessdot \frac{1}{190} nie spełnia k wyrazów tego ciągu.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10140 ⋅ Poprawnie: 18/16 [112%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oblicz granicę \lim_{n\to+\infty}\frac{\left(-10n^2+4n\right)^2}{12n^4-4} .
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10329 ⋅ Poprawnie: 9/9 [100%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Drugi wyraz ciągu geometrycznego jest równy \frac{13}{4}, a suma wszystkich jego wyrazów jest równa 13.

Wyznacz najmniejszy możliwy iloraz tego ciągu.

Odpowiedź:
q_{min}=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-20810 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Dany jest ciąg (a_n), w którym S_n=a_1+a_2+a_3+...+a_n, dla każdego n\in\mathbb{N_{+}}. Ponadto dla każdej liczby naturalnej dodatniej zachodzi wzór: S_n=n^2(n+k).

Oblicz a_3.

Dane
k=4
m=347
Odpowiedź:
a_{3}= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Pewien wyraz ciagu (a_n) jest równy m.

Wyznacz numer tego wyrazu.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20811 ⋅ Poprawnie: 1/3 [33%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Dany jest ciąg geometryczny (a_n) o ilorazie q.

Oblicz najmniejszą możliwą wartość liczby q^2.

Dane
a_1+a_2+a_3+a_4+a_5=248
\frac{a_1+a_5}{a_3}=\frac{17}{4}=4.25000000000000
Odpowiedź:
q^2_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Dla wyznaczonej najmniejszej wartości liczby q^2, oblicz pierwszy wyraz tego ciągu o ilorazie |q|.
Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Zadanie 8.  3 pkt ⋅ Numer: pr-20265 ⋅ Poprawnie: 19/27 [70%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 W trzywyrazowym ciągu arytmetycznym (x,y,z) liczba z jest równa 13. Po przestawieniu wyrazów ciąg (z,x,y) jest ciągiem geometrycznym.

Podaj najmniejsze możliwe x.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj najmniejsze możliwe y.
Odpowiedź:
y_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 8.3 (1 pkt)
 Podaj największe możliwe y.
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20823 ⋅ Poprawnie: 7/9 [77%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Oblicz \lim_{n\to+\infty} \frac{1+5+9+...+(4n-3)}{6+(6+7)+(6+14)+...+6+(7n-7)} .
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pr-20488 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Iloraz ciągu geometrycznego (b_n) wynosi \frac{\sqrt{5}}{5}, a suma jego wszystkich wyrazów jest równa 25+5\sqrt{5}.

Oblicz b_5.

Odpowiedź:
b_5=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30190 ⋅ Poprawnie: 51/39 [130%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
« Ciąg (a_1,a_2,a_3,...,a_{100}) jest ciągiem geometrycznym, którego wszystkie wyrazy są dodatnie. Ciąg ten spełnia warunki: 100\cdot (a_2+a_4+a_6+...+a_{100})=a_1+a_3+a_5+...+a_{99} oraz \log{a_1}+\log{a_2}+\log{a_3}+...+\log{a_{100}}=100. Wyznacz a_1.

Z ilu cyfr składa się liczba a_1?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30826 ⋅ Poprawnie: 4/5 [80%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 (2 pkt) Liczby rzeczywiste spełniają warunki: a+b=72 i x+y=36. Wiadomo, że ciąg liczbowy (a, x, y) jest ciągiem arytmetycznym, zaś ciąg liczbowy (x, y, b) jest ciągiem geometrycznym.

Podaj najmniejszy możliwy iloraz ciągu geometrycznego.

Odpowiedź:
q_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
 (2 pkt) Podaj największy możliwy iloraz ciągu geometrycznego.
Odpowiedź:
q_{max}= (wpisz liczbę całkowitą)
Zadanie 13.  4 pkt ⋅ Numer: pr-31010 ⋅ Poprawnie: 1/2 [50%] Rozwiąż 
Podpunkt 13.1 (2 pkt)
 Dany jest nieskończony ciąg geometryczny (a_n), określony dla każdej liczby naturalnej n\geqslant 1, którego iloraz q jest 6 razy mniejszy od pierwszego wyrazu ciągu i spełnia warunek |q|\lessdot 1. Stosunek sumy S_{N} wszystkich wyrazów tego ciągu o numerach nieparzystych do sumy S_{P} wszystkich wyrazów tego ciągu o numerach parzystych jest równy różnicy tych sum, tj. \frac{S_{N}}{S_{P}}=S_{N}-S_{P}. Wyznacz iloraz q tego ciągu.

Podaj najmniejszą możliwą wartość q.

Odpowiedź:
q_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (2 pkt)
 Podaj największą możliwą wartość q.
Odpowiedź:
q_{max}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm