«« Dany jest nieskończony ciąg określony wzorem
r_n=\left(0,5\right)^n . Wyrazy tego ciągu są
długościami promieni kół. Suma pól powierzchni wszystkich tych kół jest równa
p\cdot \pi.
Podaj liczbę p.
Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 8.2 pkt ⋅ Numer: pr-20267 ⋅ Poprawnie: 13/13 [100%]
« Ciąg liczbowy (a_n)=(a_1,a_2,a_3) jest rosnącym ciągiem
geometrycznym oraz a_1+a_2+a_3=147. Ciąg
\left(a_1,a_2+\frac{63}{2},a_3\right) jest arytmetyczny. Wyznacz
wyrazy tego ciągu.
Podaj pierwszy wyraz ciągu (a_n).
Odpowiedź:
a_1=(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj drugi wyraz ciągu (a_n).
Odpowiedź:
a_2=(wpisz liczbę całkowitą)
Zadanie 9.2 pkt ⋅ Numer: pr-20816 ⋅ Poprawnie: 0/0
(2 pkt)
Liczby rzeczywiste spełniają warunki: a+b=154 i
x+y=42. Wiadomo, że ciąg liczbowy
(a, x, y) jest ciągiem arytmetycznym, zaś ciąg liczbowy
(x, y, b) jest ciągiem geometrycznym.
Podaj najmniejszy możliwy iloraz ciągu geometrycznego.
Odpowiedź:
q_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
(2 pkt)
Podaj największy możliwy iloraz ciągu geometrycznego.
Odpowiedź:
q_{max}=(wpisz liczbę całkowitą)
Zadanie 13.4 pkt ⋅ Numer: pr-30883 ⋅ Poprawnie: 6/9 [66%]