Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pr-10305 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dany jest ciąg (a_n), który spełnia warunki: a_{n+1}-a_{n+2}=a\cdot n oraz a_{n+1}+a_{n+2}=b\cdot n+c.

Oblicz dziesiąty wyraz tego ciągu.

Dane
a=2
b=-8
c=-8
Odpowiedź:
a_{10}= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pr-10265 ⋅ Poprawnie: 6/6 [100%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg liczbowy (a_n) określony wzorem \begin{cases} a_1=a \\ a_{n+1}=\frac{b}{a_n} \end{cases} jest:
Dane
a=\frac{1}{8}=0.12500000000000
b=4
Odpowiedzi:
A. niemalejący B. nierosnący
C. niemonotoniczny D. malejący
Zadanie 3.  1 pkt ⋅ Numer: pr-10306 ⋅ Poprawnie: 3/4 [75%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg a_n=\frac{n}{n+5} jest zbieżny i \lim_{n\to\infty} a_n=1. Nierówności |a_n-1| \lessdot \frac{1}{140} nie spełnia k wyrazów tego ciągu.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-11653 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=\frac{-3n^2+3n+1}{-5-5n+n^2} dla każdej liczby naturalnej n\geqslant 1.

Granica g tego ciągu jest równa:

Odpowiedzi:
A. 1 B. -\frac{9}{2}
C. -\frac{3}{2} D. -4
E. -2 F. -3
Zadanie 5.  1 pkt ⋅ Numer: pr-10142 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz sumę szeregu 189-63+21-....
Odpowiedź:
a-b+c-...=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-20804 ⋅ Poprawnie: 9/12 [75%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Ciąg liczbowy \left(a_n\right) określony jest następująco: \begin{cases} a_1=1 \\ a_{n+1}=a_n+0,15\text{, dla } n\in\mathbb{N_{+}} \end{cases} . Oblicz sumę s=a_{k}+a_{k+1}+a_{k+2}+...+a_{l}.
Dane
k=50
l=70
Odpowiedź:
s=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20755 ⋅ Poprawnie: 53/37 [143%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Dany jest ciąg geometryczny (a_n). Oblicz k.
Dane
a_3+a_6=-140
a_4+a_7=280
S_k=-6825
Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 8.  3 pkt ⋅ Numer: pr-20265 ⋅ Poprawnie: 20/31 [64%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 W trzywyrazowym ciągu arytmetycznym (x,y,z) liczba z jest równa 9. Po przestawieniu wyrazów ciąg (z,x,y) jest ciągiem geometrycznym.

Podaj najmniejsze możliwe x.

Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj najmniejsze możliwe y.
Odpowiedź:
y_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 8.3 (1 pkt)
 Podaj największe możliwe y.
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20484 ⋅ Poprawnie: 14/15 [93%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » Oblicz \lim_{n\to+\infty}\left(\sqrt{16n^2+9n}-\sqrt{16n^2+2}\right) .
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pr-20835 ⋅ Poprawnie: 10/15 [66%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Rozwiąż równanie 1+\frac{1}{1-\frac{1}{2}x}+\frac{1}{\left(1-\frac{1}{2}x\right)^2}+...=1-x .

Podaj rozwiązanie tego równania.

Odpowiedź:
x= \cdot
(wpisz trzy liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30193 ⋅ Poprawnie: 7/9 [77%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 « W ciągu arytmetycznym mamy: a_3=4 i a_7=16. Rozwiąż nierówność S_n \lessdot k.

Podaj największe n spełniające tę nierówność.

Dane
k=819
Odpowiedź:
n_{max}= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30184 ⋅ Poprawnie: 1/4 [25%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Ciąg (a,b,c+64+k) jest ciągiem geometrycznym, natomiast ciąg (a,b,c+k) jest ciągiem arytmetycznym. Ponadto ciąg (a,b-8,c+k) jest geometryczny.

Podaj najmniejsze możliwe c.

Dane
k=32
Odpowiedź:
c_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Podaj największe możliwe c.
Odpowiedź:
c_{max}= (wpisz liczbę całkowitą)
Zadanie 13.  4 pkt ⋅ Numer: pr-31025 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 13.1 (4 pkt)
 Dany jest nieskończony ciąg geometryczny (a_n), określony dla każdej liczby naturalnej n\geqslant 1. Suma trzech początkowych wyrazów ciągu (a_n) jest równa 7, a suma S wszystkich wyrazów tego ciągu jest równa 8. Wyznacz wszystkie wartości n, dla których spełniona jest nierówność \left|\frac{S-S_n}{S_n}\right|\lessdot \frac{1}{128}, gdzie S_n oznacza sumę n początkowych wyrazów ciągu (a_n).

Podaj najmniejszą możliwą wartość n, która spełnia tę nierówność.

Odpowiedź:
n_{min}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm