Liczba x jest sumą wszystkich wyrazów nieskończonego ciągu geometrycznego
o pierwszym wyrazie równym 1 i ilorazie \frac{1}{\sqrt{13}}.
Liczba y jest sumą wszystkich wyrazów nieskończonego ciągu geometrycznego
o pierwszym wyrazie równym 1 i ilorazie -\frac{1}{\sqrt{13}}.
Wynika stąd, że liczba x-y jest równa:
Odpowiedzi:
A.\frac{39+\sqrt{13}}{3}
B.\frac{13}{4}
C.\frac{13\sqrt{13}}{6}
D.\frac{\sqrt{13}}{9}
E.\frac{\sqrt{13}}{12}
F.\frac{\sqrt{13}}{6}
Zadanie 6.2 pkt ⋅ Numer: pr-20809 ⋅ Poprawnie: 0/0
« Dany jest ciąg (a_n), w którym
S_n=a_1+a_2+a_3+...+a_n, dla każdego
n\in\mathbb{N_{+}}. Ponadto dla każdej liczby
naturalnej dodatniej zachodzi wzór:
S_n=\frac{n+1}{p\cdot(n+1)+q}.
Oblicz a_2.
Dane
p=2 q=-2
Odpowiedź:
a_{2}=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Ogólny wyraz tego ciągu określony jest wzorem
a_n=\frac{-1}{bn^2+cn}.
Podaj c.
Odpowiedź:
c=(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pr-20486 ⋅ Poprawnie: 45/35 [128%]
« Ciąg liczbowy (a_n)=(a_1,a_2,a_3) jest rosnącym ciągiem
geometrycznym oraz a_1+a_2+a_3=219. Ciąg
\left(a_1,a_2+\frac{147}{2},a_3\right) jest arytmetyczny. Wyznacz
wyrazy tego ciągu.
Podaj pierwszy wyraz ciągu (a_n).
Odpowiedź:
a_1=(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj drugi wyraz ciągu (a_n).
Odpowiedź:
a_2=(wpisz liczbę całkowitą)
Zadanie 9.2 pkt ⋅ Numer: pr-20481 ⋅ Poprawnie: 0/0
W trzywyrazowym ciągu geometrycznym (a_1, a_2, a_3), spełniona jest równość
a_1+a_2+a_3=\frac{372}{25}. Wyrazy a_1,
a_2, a_3 są – odpowiednio –siódmym
, drugim i pierwszym wyrazem rosnącego ciągu arytmetycznego.
Oblicz iloraz ciągu geometrycznego.
Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (3 pkt)
Oblicz a_1.
Odpowiedź:
a_1=
(wpisz dwie liczby całkowite)
Zadanie 13.4 pkt ⋅ Numer: pr-31025 ⋅ Poprawnie: 0/0
Dany jest nieskończony ciąg geometryczny (a_n), określony dla każdej
liczby naturalnej n\geqslant 1. Suma trzech początkowych wyrazów ciągu
(a_n) jest równa 7, a suma S
wszystkich wyrazów tego ciągu jest równa 8. Wyznacz wszystkie wartości
n, dla których spełniona jest nierówność
\left|\frac{S-S_n}{S_n}\right|\lessdot \frac{1}{4096}, gdzie
S_n oznacza sumę n początkowych wyrazów ciągu
(a_n).
Podaj najmniejszą możliwą wartość n, która spełnia tę nierówność.
Odpowiedź:
n_{min}=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat