Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pr-10261 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dany jest ciąg liczbowy (a_n) określony wzorem a_n=4n-n^3. Wyraz a_{2k-p} tego ciągu jest równy ak^3+bk^2+ck+d.

Podaj liczby b, c i d.

Dane
p=4
Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
d= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pr-10265 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg liczbowy (a_n) określony wzorem \begin{cases} a_1=a \\ a_{n+1}=\frac{b}{a_n} \end{cases} jest:
Dane
a=\frac{1}{9}=0.11111111111111
b=10
Odpowiedzi:
A. nierosnący B. niemonotoniczny
C. malejący D. niemalejący
Zadanie 3.  1 pkt ⋅ Numer: pr-10139 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg b_n=\frac{2n-7}{n+9} jest zbieżny i \lim_{n\to\infty} b_n=2. Nierówności |b_n-2| \lessdot 0,02 nie spełnia p wyrazów tego ciągu.

Wyznacz liczbę p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 4.  2 pkt ⋅ Numer: pr-11627 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (2 pkt)
 Granicą ciągu liczbowego \lim_{n\to+\infty} \frac{3}{\sqrt{64n^2+1}-8} jest:
Odpowiedzi:
A. 8 B. +\infty
C. -\infty D. 3
Zadanie 5.  1 pkt ⋅ Numer: pr-11639 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Liczba x jest sumą wszystkich wyrazów nieskończonego ciągu geometrycznego o pierwszym wyrazie równym 1 i ilorazie \frac{1}{\sqrt{14}}. Liczba y jest sumą wszystkich wyrazów nieskończonego ciągu geometrycznego o pierwszym wyrazie równym 1 i ilorazie -\frac{1}{\sqrt{14}}.
Wynika stąd, że liczba x\cdot y jest równa:
Odpowiedzi:
A. \frac{14}{13} B. \frac{7}{13}
C. \frac{196}{13} D. \frac{28}{39}
E. \frac{14\sqrt{14}}{13} F. \frac{210}{13}
Zadanie 6.  3 pkt ⋅ Numer: pr-21203 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Pierwszy wyraz ciągu (a_n), określonego dla n\geqslant 1, jest równy 2. Wszystkie wyrazy tego ciągu spełniają warunek a_n=4a_{n+1}+2n^2+2.

Oblicz a_3.

Odpowiedź:
a_3=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (2 pkt)
 Oblicz sumę a_1+a_2+a_3.
Odpowiedź:
a_1+a_2+a_3=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20272 ⋅ Poprawnie: 6/7 [85%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Rozwiąż równanie 2^1\cdot 2^3\cdot 2^5\cdot ...\cdot 2^{2x+23}=64\cdot 4^{x+13} .

Podaj największe x spełniające to równanie.

Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20267 ⋅ Poprawnie: 13/13 [100%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Ciąg liczbowy (a_n)=(a_1,a_2,a_3) jest rosnącym ciągiem geometrycznym oraz a_1+a_2+a_3=728. Ciąg \left(a_1,a_2+256,a_3\right) jest arytmetyczny. Wyznacz wyrazy tego ciągu.

Podaj pierwszy wyraz ciągu (a_n).

Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj drugi wyraz ciągu (a_n).
Odpowiedź:
a_2= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20814 ⋅ Poprawnie: 8/9 [88%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Oblicz \lim_{n\to+\infty}\left(\sqrt{16n^2+7n}-4n\right) .
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pr-21200 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Suma wszystkich wyrazów nieskończonego ciągu geometrycznego (a_n), określonego dla n\geqslant 1, jest równa 8, a suma kwadratów wszystkich wyrazów tego ciągu jest równa 9.

Oblicz iloraz ciągu (a_n).

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30193 ⋅ Poprawnie: 6/8 [75%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 « W ciągu arytmetycznym mamy: a_3=4 i a_7=16. Rozwiąż nierówność S_n \lessdot k.

Podaj największe n spełniające tę nierówność.

Dane
k=857
Odpowiedź:
n_{max}= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-31036 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Czterowyrazowy ciąg (a,b,c,d) jest arytmetyczny i rosnący. Różnica pomiędzy pierwszym a czwartym wyrazem tego ciągu jest równa 30. Ponadto ciąg (a-4,b,c) jest geometryczny.

Oblicz różnicę ciągu arytmetycznego.

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Oblicz iloraz ciągu geometrycznego.
Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 13.  4 pkt ⋅ Numer: pr-30880 ⋅ Poprawnie: 2/3 [66%] Rozwiąż 
Podpunkt 13.1 (2 pkt)
 Określamy kwadraty K_1, K_2, K_3,... następująco:
  • K_1 jest kwadratem o boku długości a,
  • K_2jest kwadratem, którego każdy wierzchołek leży na innym boku kwadratu K_1 i dzieli ten bok w stosunku 1:9
  • K_3 jest kwadratem, którego każdy wierzchołek leży na innym boku kwadratu K_2 i dzieli ten bok w stosunku 1:9 i ogólnie, dla każdej liczby naturalnej n\geqslant 2:
  • K_n jest kwadratem, którego każdy wierzchołek leży na innym boku kwadratu K_{n-1} i dzieli ten bok w stosunku 1:9

    Obwody wszystkich kwadratów określonych powyżej tworzą nieskończony ciąg geometryczny. Na rysunku przedstawiono kwadraty utworzone w sposób opisany powyżej:

    Wyznacz iloraz tego ciągu.

  • Odpowiedź:
    q= \cdot
    (wpisz trzy liczby całkowite)
    Podpunkt 13.2 (2 pkt)
     Przyjmując, że a=2, oblicz sumę obwodów wszystkich kwadratów.
    Odpowiedź:
    S= + \cdot
    (wpisz cztery liczby całkowite)


    ☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

    Masz pytania? Napisz: k42195@poczta.fm