Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pr-10305 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dany jest ciąg (a_n), który spełnia warunki: a_{n+1}-a_{n+2}=a\cdot n oraz a_{n+1}+a_{n+2}=b\cdot n+c.

Oblicz dziesiąty wyraz tego ciągu.

Dane
a=8
b=2
c=-2
Odpowiedź:
a_{10}= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pr-10266 ⋅ Poprawnie: 4/7 [57%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Ciąg liczbowy (b_n) określony wzorem \begin{cases} b_1=a \\ b_{n+1}=\frac{1}{b}b_n \end{cases} jest:
Dane
a=-\frac{1}{6}=-0.16666666666667
b=13
Odpowiedzi:
A. rosnący B. niemonotoniczny
C. malejący D. nierosnący
Zadanie 3.  1 pkt ⋅ Numer: pr-10139 ⋅ Poprawnie: 5/8 [62%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg b_n=\frac{2n-5}{n+9} jest zbieżny i \lim_{n\to\infty} b_n=2. Nierówności |b_n-2| \lessdot 0,02 nie spełnia p wyrazów tego ciągu.

Wyznacz liczbę p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10140 ⋅ Poprawnie: 20/18 [111%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oblicz granicę \lim_{n\to+\infty}\frac{\left(10n^2+4n\right)^2}{12n^4-4} .
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10141 ⋅ Poprawnie: 5/16 [31%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dany jest nieskończony ciąg geometryczny (a_n) określony wzorem a_n=\frac{2}{\left(\sqrt{5}\right)^n} , dla n=1,2,3,.... Suma wszystkich wyrazów tego ciągu jest równa \frac{c}{\sqrt{d}+e}, gdzie c,d,e\in\mathbb{Z}.

Podaj liczby c,d i e.

Odpowiedzi:
c= (wpisz liczbę całkowitą)
d= (wpisz liczbę całkowitą)
e= (wpisz liczbę całkowitą)
Zadanie 6.  3 pkt ⋅ Numer: pr-21203 ⋅ Poprawnie: 2/4 [50%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Pierwszy wyraz ciągu (a_n), określonego dla n\geqslant 1, jest równy 2. Wszystkie wyrazy tego ciągu spełniają warunek a_n=4a_{n+1}+2n^2+2.

Oblicz a_3.

Odpowiedź:
a_3=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (2 pkt)
 Oblicz sumę a_1+a_2+a_3.
Odpowiedź:
a_1+a_2+a_3=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20273 ⋅ Poprawnie: 7/9 [77%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Ciąg (a_n) określony jest wzorem a_n=\frac{n^2(2n-1)}{1+5+9+...+4n-3}.

Oblicz S_{k}.

Dane
k=120
Odpowiedź:
S_k= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20267 ⋅ Poprawnie: 14/15 [93%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Ciąg liczbowy (a_n)=(a_1,a_2,a_3) jest rosnącym ciągiem geometrycznym oraz a_1+a_2+a_3=546. Ciąg \left(a_1,a_2+192,a_3\right) jest arytmetyczny. Wyznacz wyrazy tego ciągu.

Podaj pierwszy wyraz ciągu (a_n).

Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj drugi wyraz ciągu (a_n).
Odpowiedź:
a_2= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20814 ⋅ Poprawnie: 21/24 [87%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Oblicz \lim_{n\to+\infty}\left(\sqrt{9n^2+8n}-3n\right) .
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pr-20488 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Iloraz ciągu geometrycznego (b_n) wynosi \frac{\sqrt{2}}{2}, a suma jego wszystkich wyrazów jest równa 40+20\sqrt{2}.

Oblicz b_5.

Odpowiedź:
b_5=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30177 ⋅ Poprawnie: 51/44 [115%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 Boki AB, BC, CD i DA czworokąta wpisanego w okrąg mają długości odpowiednio 2a, 2a, a\sqrt{5} i a\sqrt{3}, zaś kąty przy wierzchołkach A, B i C tworzą ciąg arytmetyczny.

Oblicz pole powierzchni tego czworokąta.

Dane
a=6
Odpowiedź:
P= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pr-30183 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 W ciągu geometrycznym (a+k,b+4,c) zachodzi warunek a+b+c=22-k. Ciąg liczbowy (a+k-5,b,c-11) jest ciągiem arytmetycznym. Oblicz a,b,c.

Podaj najmniejsze możliwe a.

Dane
k=8
Odpowiedź:
a_{min}= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Podaj największe możliwe a.
Odpowiedź:
a_{max}= (wpisz liczbę całkowitą)
Zadanie 13.  4 pkt ⋅ Numer: pr-30795 ⋅ Poprawnie: 4/4 [100%] Rozwiąż 
Podpunkt 13.1 (2 pkt)
 Ciąg liczbowy \left(a_n\right) jest nieskończonym ciągiem geometrycznym malejącym. Suma trzech jego pierwszych wyrazów jest równa 62, a iloczyn tych wyrazów jest równy 1000.

Wyznacz iloraz tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (1 pkt)
 Wyznacz trzeci wyraz tego ciągu.
Odpowiedź:
a_3=
(wpisz dwie liczby całkowite)
Podpunkt 13.3 (1 pkt)
 Oblicz sumę wszystkich wyrazów tego ciągu o numerach nieparzystych.
Odpowiedź:
S_{np}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm