Dany jest nieskończony ciąg geometryczny (a_n)
określony wzorem
a_n=\frac{5}{\left(\sqrt{6}\right)^n}
, dla n=1,2,3,....
Suma wszystkich wyrazów tego ciągu jest równa \frac{c}{\sqrt{d}+e},
gdzie c,d,e\in\mathbb{Z}.
Podaj liczby c,d i e.
Odpowiedzi:
c
=
(wpisz liczbę całkowitą)
d
=
(wpisz liczbę całkowitą)
e
=
(wpisz liczbę całkowitą)
Zadanie 6.2 pkt ⋅ Numer: pr-20804 ⋅ Poprawnie: 9/11 [81%]
« Ciąg (a_1,a_2,a_3) jest rosnącym ciągiem
geometrycznym oraz a_1+a_2+a_3=124. Ciąg
(a_1+2,a_2-10,a_3-86) jest arytmetyczny. Wyznacz
wyrazy tego ciągu.
Podaj pierwszy wyraz ciągu (a_n).
Odpowiedź:
a_{1}=(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj trzeci wyraz ciągu (a_n).
Odpowiedź:
a_3=(wpisz liczbę całkowitą)
Zadanie 9.2 pkt ⋅ Numer: pr-20816 ⋅ Poprawnie: 14/14 [100%]
K_2jest kwadratem, którego każdy wierzchołek leży na innym boku
kwadratu K_1 i dzieli ten bok w stosunku 1:7
K_3 jest kwadratem, którego każdy wierzchołek leży na innym boku
kwadratu K_2 i dzieli ten bok w stosunku 1:7
i ogólnie, dla każdej liczby naturalnej n\geqslant 2:
K_n jest kwadratem, którego każdy wierzchołek leży na innym boku
kwadratu K_{n-1} i dzieli ten bok w stosunku 1:7
Obwody wszystkich kwadratów określonych powyżej tworzą nieskończony ciąg geometryczny. Na rysunku
przedstawiono kwadraty utworzone w sposób opisany powyżej:
Wyznacz iloraz tego ciągu.
Odpowiedź:
q=
\cdot√
(wpisz trzy liczby całkowite)
Podpunkt 13.2 (2 pkt)
Przyjmując, że a=6, oblicz sumę obwodów wszystkich kwadratów.
Odpowiedź:
S=
+\cdot√
(wpisz cztery liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat