Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pr-10305 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 1.1 (1 pkt)
Dany jest ciąg
(a_n) , który spełnia
warunki:
a_{n+1}-a_{n+2}=a\cdot n oraz
a_{n+1}+a_{n+2}=b\cdot n+c .
Oblicz dziesiąty wyraz tego ciągu.
Dane
a=5
b=7
c=-2
Odpowiedź:
a_{10}=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pr-10266 ⋅ Poprawnie: 4/7 [57%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Ciąg liczbowy
(b_n) określony wzorem
\begin{cases}
b_1=a \\
b_{n+1}=\frac{1}{b}b_n
\end{cases}
jest:
Dane
a=-\frac{1}{6}=-0.16666666666667
b=3
Odpowiedzi:
A. nierosnący
B. niemonotoniczny
C. malejący
D. rosnący
Zadanie 3. 1 pkt ⋅ Numer: pr-10306 ⋅ Poprawnie: 3/4 [75%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
a_n=\frac{n}{n+5} jest zbieżny i
\lim_{n\to\infty} a_n=1 . Nierówności
|a_n-1| \lessdot \frac{1}{100} nie spełnia
k wyrazów tego ciągu.
Wyznacz liczbę k .
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pr-10140 ⋅ Poprawnie: 20/18 [111%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Oblicz granicę
\lim_{n\to+\infty}\frac{\left(10n^2+4n\right)^2}{12n^4-4}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pr-10328 ⋅ Poprawnie: 14/15 [93%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Pierwszy wyraz ciągu geometrycznego jest równy
2 , a suma
wszystkich jego wyrazów jest równa
9 .
Oblicz iloraz tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pr-20271 ⋅ Poprawnie: 3/3 [100%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
«« W ciągu
(c_n) czwarty wyraz jest równy
4 oraz zachodzi równość
c_{n+2}-c_{n+1}=n+4 dla każdej liczby naturalnej
n .
Oblicz c_1 .
Odpowiedź:
c_{1}=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pr-20811 ⋅ Poprawnie: 1/4 [25%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Dany jest ciąg geometryczny
(a_n) o ilorazie
q .
Oblicz najmniejszą możliwą wartość liczby q^2 .
Dane
a_1+a_2+a_3+a_4+a_5=155
\frac{a_1+a_5}{a_3}=\frac{17}{4}=4.25000000000000
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Dla wyznaczonej najmniejszej wartości liczby
q^2 ,
oblicz pierwszy wyraz tego ciągu o ilorazie
|q| .
Odpowiedź:
a_1=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pr-20266 ⋅ Poprawnie: 11/12 [91%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Ciąg
(x,y,z) jest rosnącym ciągiem geometrycznym,
zaś ciąg
(b_n) ciągiem arytmetycznym. Zachodzą
równości:
x+y+z=65 ,
b_1=x ,
b_{2}=y i
b_{5}=z .
Oblicz
x,y,z .
Podaj x .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
y=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20482 ⋅ Poprawnie: 15/17 [88%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Oblicz
\lim_{n\to+\infty}\frac{14n^3+3n}{(1+4n)^3}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pr-21200 ⋅ Poprawnie: 9/18 [50%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Suma wszystkich wyrazów nieskończonego ciągu geometrycznego
(a_n) , określonego
dla
n\geqslant 1 , jest równa
8 , a suma kwadratów
wszystkich wyrazów tego ciągu jest równa
9 .
Oblicz iloraz ciągu (a_n) .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30193 ⋅ Poprawnie: 7/9 [77%]
Rozwiąż
Podpunkt 11.1 (4 pkt)
« W ciągu arytmetycznym mamy:
a_3=4 i
a_7=16 . Rozwiąż nierówność
S_n \lessdot k .
Podaj największe n spełniające tę nierówność.
Dane
k=699
Odpowiedź:
n_{max}=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pr-30185 ⋅ Poprawnie: 5/5 [100%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
Ciąg
(x+k-5,y,z) jest ciągiem arytmetycznym.
Ciąg
(x+k,y+3,z+4) jest ciągiem geometrycznym
rosnącym spełniającym warunek
z+4=4\cdot (x+k) .
Wyznacz liczby
x,y,z .
Podaj x .
Dane
k=-6
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
Odpowiedź:
y=
(wpisz liczbę całkowitą)
Zadanie 13. 4 pkt ⋅ Numer: pr-31025 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 13.1 (4 pkt)
Dany jest nieskończony ciąg geometryczny
(a_n) , określony dla każdej
liczby naturalnej
n\geqslant 1 . Suma trzech początkowych wyrazów ciągu
(a_n) jest równa
7 , a suma
S
wszystkich wyrazów tego ciągu jest równa
8 . Wyznacz wszystkie wartości
n , dla których spełniona jest nierówność
\left|\frac{S-S_n}{S_n}\right|\lessdot \frac{1}{64} , gdzie
S_n oznacza sumę
n początkowych wyrazów ciągu
(a_n) .
Podaj najmniejszą możliwą wartość n , która spełnia tę nierówność.
Odpowiedź:
n_{min}=
(wpisz liczbę całkowitą)
Rozwiąż