W chwili początkowej (t=0) masa substancji jest równa
4 gram. Wskutek rozpadu cząsteczek tej substancji jej
masa się zmniejsza. Po każdej kolejnej dobie ubywa 22\% masy,
jaka była na koniec doby poprzedniej. Dla każdej liczby całkowitej t\geqslant 0
funkcja m(t) określa masę substancji w gramach po
t pełnych dobach (czas liczymy od chwili początkowej). Wyznacz wzór
funkcji m(t).
Oblicz, po ilu pełnych dobach masa tej substancji będzie po raz pierwszy mniejsza od
1,5 grama.
Odpowiedź:
t=(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pr-20274 ⋅ Poprawnie: 3/3 [100%]
«« Dany jest nieskończony ciąg określony wzorem
r_n=\left(0,5\right)^n . Wyrazy tego ciągu są
długościami promieni kół. Suma pól powierzchni wszystkich tych kół jest równa
p\cdot \pi.
Podaj liczbę p.
Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 8.2 pkt ⋅ Numer: pr-20267 ⋅ Poprawnie: 14/14 [100%]
« Ciąg liczbowy (a_n)=(a_1,a_2,a_3) jest rosnącym ciągiem
geometrycznym oraz a_1+a_2+a_3=147. Ciąg
\left(a_1,a_2+\frac{63}{2},a_3\right) jest arytmetyczny. Wyznacz
wyrazy tego ciągu.
Podaj pierwszy wyraz ciągu (a_n).
Odpowiedź:
a_1=(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj drugi wyraz ciągu (a_n).
Odpowiedź:
a_2=(wpisz liczbę całkowitą)
Zadanie 9.2 pkt ⋅ Numer: pr-20481 ⋅ Poprawnie: 0/0
» Suma wszystkich wyrazów ciągu geometrycznego \left(a_n\right) wynosi
10, zaś suma wszystkich wyrazów o numerach
parzystych tego ciągu wynosi \frac{10}{3}.
Oblicz a_4.
Odpowiedź:
a_4=
(wpisz dwie liczby całkowite)
Zadanie 11.4 pkt ⋅ Numer: pr-30192 ⋅ Poprawnie: 8/10 [80%]
« Suma wszystkich wyrazów o numerach nieparzystych zbieżnego ciągu geometrycznego
jest równa \frac{3}{4}, zaś suma wszystkich wyrazów tego ciągu
o numerach parzystych jest równa \frac{1}{4}.
Oblicz pierwszy wyraz tego ciągu.
Odpowiedź:
a_1=
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (2 pkt)
Podaj iloraz tego ciągu.
Odpowiedź:
q=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat