Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-19-ciagi-liczbowe-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pr-10261 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dany jest ciąg liczbowy (a_n) określony wzorem a_n=4n-n^3. Wyraz a_{2k-p} tego ciągu jest równy ak^3+bk^2+ck+d.

Podaj liczby b, c i d.

Dane
p=1
Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
d= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pr-10265 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ciąg liczbowy (a_n) określony wzorem \begin{cases} a_1=a \\ a_{n+1}=\frac{b}{a_n} \end{cases} jest:
Dane
a=\frac{1}{2}=0.50000000000000
b=7
Odpowiedzi:
A. niemalejący B. niemonotoniczny
C. malejący D. rosnący
Zadanie 3.  1 pkt ⋅ Numer: pr-10306 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg a_n=\frac{n}{n+5} jest zbieżny i \lim_{n\to\infty} a_n=1. Nierówności |a_n-1| \lessdot \frac{1}{20} nie spełnia k wyrazów tego ciągu.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10140 ⋅ Poprawnie: 17/15 [113%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oblicz granicę \lim_{n\to+\infty}\frac{\left(-6n^2+4n\right)^2}{12n^4-4} .
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10328 ⋅ Poprawnie: 13/14 [92%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Pierwszy wyraz ciągu geometrycznego jest równy 2, a suma wszystkich jego wyrazów jest równa 11.

Oblicz iloraz tego ciągu.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-21154 ⋅ Poprawnie: 107/99 [108%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 W chwili początkowej (t=0) masa substancji jest równa 5 gram. Wskutek rozpadu cząsteczek tej substancji jej masa się zmniejsza. Po każdej kolejnej dobie ubywa 18\% masy, jaka była na koniec doby poprzedniej. Dla każdej liczby całkowitej t\geqslant 0 funkcja m(t) określa masę substancji w gramach po t pełnych dobach (czas liczymy od chwili początkowej). Wyznacz wzór funkcji m(t).

Oblicz, po ilu pełnych dobach masa tej substancji będzie po raz pierwszy mniejsza od 1,5 grama.

Odpowiedź:
t= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20485 ⋅ Poprawnie: 46/34 [135%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Dany jest ciąg (b_n): \begin{cases} b_1=1 \\ b_{n+1}=b_n+\frac{a}{b} \end{cases} .

Oblicz s=b_{30}+b_{31}+b_{32}+...+b_{50}.

Dane
a=1
b=6
Odpowiedź:
s=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20266 ⋅ Poprawnie: 10/10 [100%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Ciąg (x,y,z) jest rosnącym ciągiem geometrycznym, zaś ciąg (b_n) ciągiem arytmetycznym. Zachodzą równości: x+y+z=78, b_1=x, b_{5}=y i b_{17}=z. Oblicz x,y,z.

Podaj x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20480 ⋅ Poprawnie: 12/15 [80%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Oblicz granicę \lim_{n\to+\infty} \left(\frac{7n^3+6n+5}{6n^3+1}-\frac{10n^2+2n+1}{5n^2-4}\right) .
Odpowiedź:
g=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pr-20275 ⋅ Poprawnie: 4/9 [44%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Dany jest ciąg c_n=\left(-\frac{1}{159-2m}\right)^n, w którym wszystkie wyrazy są dodatnie, a m jest parametrem. Wyznacz te wartości parametru m, dla których szereg c_1+c_2+c_3+... jest zbieżny.

Podaj najmniejsze całkowite m spełniające warunki zadania.

Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pr-30194 ⋅ Poprawnie: 6/7 [85%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 » W ciągu arytmetycznym mamy: a_{13}=p i a_{30}=q. Wyznacz najmniejszą wartość n, dla której S_n ma wartość najmniejszą.

Podaj n.

Dane
p=-9
q=144
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30186 ⋅ Poprawnie: 0/2 [0%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Ciąg (x+k,4,y+2,2z) jest ciągiem arytmetycznym. Ciąg (x+k,x+k+2+y,8z) jest ciągiem geometrycznym. Wyznacz liczby x,y,z.

Podaj najmniejsze możliwe x spełniające warunki zadania.

Dane
k=-7
Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Podaj największe możliwe x spełniające warunki zadania.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 13.  4 pkt ⋅ Numer: pr-30883 ⋅ Poprawnie: 7/10 [70%] Rozwiąż 
Podpunkt 13.1 (2 pkt)
 Dany jest nieskończony szereg geometryczny 2(2x+3)-\frac{6(2x+3)}{2x+2}+\frac{18(2x+3)}{(2x+2)^2}-\frac{54(2x+3)}{(2x+2)^3}+....

Wyznacz wszystkie wartości zmiennej x (różnej od -\frac{3}{2} i od -1), dla których suma tego szeregu istnieje.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (dwie liczby całkowite)

max= (dwie liczby całkowite)
Podpunkt 13.2 (2 pkt)
 Wyznacz wszystkie wartości zmiennej x, dla których suma tego szeregu istnieje i jest równa \frac{15}{2}.

Podaj największe takie x.

Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm