Podgląd testu : lo2@sp-20-kombinatoryka-pp-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11297 ⋅ Poprawnie: 103/242 [42%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Na prostej
k zaznaczono
m=4 różnych punktów,
zaś na innej prostej równoległej do prostej
k zaznaczono
n=8 różnych punktów.
Ile różnych trójkątów można utworzyć w taki sposób, aby punkty te były ich
wierzchołkami?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11960 ⋅ Poprawnie: 130/166 [78%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wszystkich różnych liczb naturalnych czterocyfrowych, w których zapisie dziesiętnym
wszystkie cyfry są różne, jest:
Odpowiedzi:
A. 5832
B. 10000
C. 5040
D. 4536
E. 9000
F. 3024
Zadanie 3. 1 pkt ⋅ Numer: pp-11286 ⋅ Poprawnie: 32/55 [58%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Cyfry liczby naturalnej czterocyfrowej
abcd
spełniają warunki:
d-a=3 oraz
a \lessdot b \lessdot c \lessdot d .
Ile jest takich liczb?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-12078 ⋅ Poprawnie: 130/140 [92%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wszystkich liczb naturalnych trzycyfrowych, większych od
700 , w których każda cyfra należy do zbioru
\{2,3,5,6,7,9\} i żadna cyfra się nie powtarza, jest:
Odpowiedzi:
A. 78
B. 47
C. 5
D. 3
E. 40
F. 91
Zadanie 5. 1 pkt ⋅ Numer: pp-11282 ⋅ Poprawnie: 55/260 [21%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Trzy kolejne schodki trzeba pomalować jednym z
7 dostępnych kolorów
farby - każdy schodek tylko jednym kolorem.
Na ile sposobów można to zrobić?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-11261 ⋅ Poprawnie: 60/79 [75%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Istnieje
\frac{16!}{16} wszystkich różnych ustawień na półce
k tomowej encyklopedii.
Podaj liczbę k .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-11270 ⋅ Poprawnie: 36/66 [54%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
» W liczbie składającej się z
k=5 cyfr, iloczyn wszystkich cyfr jest równy
42 .
Ile jest takich liczb?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-11298 ⋅ Poprawnie: 13/33 [39%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
» Spośród
6 wierzchołków sześciokąta foremnego,
którego najkrótsza przekątna ma długość
\sqrt{3} ,
wybrano w sposób losowy dwa różne.
Ile różnych odcinków o całkowitej długości możemy w ten sposób otrzymać?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Rozwiąż