Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-20-kombinatoryka-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11256 ⋅ Poprawnie: 36/49 [73%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Na okręgu dane są trzy różne punkty. Każdemu punktowi należy przypisać jeden z 14 kolorów w taki sposób, aby każde dwa sąsiednie punkty miały inny kolor.

Na ile sposobób można to zrobić?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11301 ⋅ Poprawnie: 263/432 [60%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 W liczbie czterocyfrowej cyfra setek jest o 8 większa od cyfry jedności.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11960 ⋅ Poprawnie: 102/134 [76%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wszystkich różnych liczb naturalnych czterocyfrowych nieparzystych, w których zapisie dziesiętnym wszystkie cyfry są różne, jest:
Odpowiedzi:
A. 3600 B. 3645
C. 2240 D. 2520
E. 3024 F. 9000
Zadanie 4.  1 pkt ⋅ Numer: pp-11278 ⋅ Poprawnie: 133/341 [39%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Z cyfr należących do zbioru \{0,1,2,3,4,5,6,7,8,9\} utworzono liczbę trzycyfrową podzielną przez 5, której wszystkie cyfry są różne.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11289 ⋅ Poprawnie: 142/212 [66%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Liczba trzycyfrowa utworzona jest wyłącznie z cyfr należących do zbioru \{3,4,8\} i jest nie większa niż 680.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-12078 ⋅ Poprawnie: 107/120 [89%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wszystkich liczb naturalnych trzycyfrowych, większych od 400, w których każda cyfra należy do zbioru \{1,3,4,5,7,8\} i żadna cyfra się nie powtarza, jest:
Odpowiedzi:
A. 135 B. 114
C. 126 D. 97
E. 35 F. 80
Zadanie 7.  1 pkt ⋅ Numer: pp-11255 ⋅ Poprawnie: 38/65 [58%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Liczba 6 cyfrowa n spełnia nierówność n > 5\cdot 10^5 i zawiera tylko cyfry ze zbioru \{1,2,5\}.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11283 ⋅ Poprawnie: 37/47 [78%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Z miejscowości A do miejscowości B można dojechać 16 różnymi dwukierunkowymi drogami.

Na ile sposobów można odbyć podróż z miejscowości A do miejscowości B i z powrotem?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11265 ⋅ Poprawnie: 319/405 [78%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Na 9 kartkach zapisano wszystkie cyfry ze zbioru \{1,2,3,...,9\}, na każdej kartce jedną cyfrę. Losujemy bez zwracania trzy razy po jednej kartce i z wylosowanych cyfr tworzymy liczbę trzycyfrową.

Ile możemy utworzyć wszystkich takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11271 ⋅ Poprawnie: 18/46 [39%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » W liczbie składającej się z k=6 cyfr, iloczyn wszystkich cyfr jest równy 105.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11253 ⋅ Poprawnie: 9/31 [29%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
Trzy pary, każda składająca się z chłopca i dziewczynki, po zakończonym tańcu usiadły przy okrągłym stole na sześciu krzesłach ponumerowanych od 1 do 6, w taki sposób, że każdy chłopak ma po swojej prawej i lewej stronie dziewczynę.

Ile istnieje sposobów takiego usadzenia dzieci przy stole?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-11275 ⋅ Poprawnie: 129/190 [67%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
« Po dodaniu do siebie wszystkich cyfr występujących w liczbie składającej się z czterech cyfr otrzymano sumę równą 3.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm