Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-20-kombinatoryka-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11297 ⋅ Poprawnie: 100/239 [41%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Na prostej k zaznaczono m=5 różnych punktów, zaś na innej prostej równoległej do prostej k zaznaczono n=2 różnych punktów.

Ile różnych trójkątów można utworzyć w taki sposób, aby punkty te były ich wierzchołkami?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11287 ⋅ Poprawnie: 150/230 [65%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 W liczbie naturalnej czterocyfrowej cyfra jedności jest o 5 mniejsza niż cyfra dziesiątek.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11873 ⋅ Poprawnie: 394/515 [76%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wszystkich różnych liczb naturalnych czterocyfrowych nieparzystych podzielnych przez 5 jest:
Odpowiedzi:
A. 9\cdot 8\cdot 7\cdot 1 B. 9\cdot 9\cdot 8\cdot 1
C. 9\cdot 10\cdot 10\cdot 1 D. 9\cdot 9\cdot 9\cdot 1
Zadanie 4.  1 pkt ⋅ Numer: pp-11286 ⋅ Poprawnie: 32/54 [59%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
Cyfry liczby naturalnej czterocyfrowej abcd spełniają warunki: d-a=3 oraz a \lessdot b \lessdot c \lessdot d.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11293 ⋅ Poprawnie: 144/233 [61%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Z cyfr należących do zbioru \{2,5,6\} utworzono liczbę czterocyfrową parzystą.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11902 ⋅ Poprawnie: 288/375 [76%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Rozważamy wszystkie liczby naturalne k=4-cyfrowe, których suma cyfr jest równa 3 i ich zapis zawiera dokładnie trzy różne cyfry.

Wszystkich takich liczb jest:

Odpowiedzi:
A. 9 B. 7
C. 12 D. 8
E. 6 F. 10
Zadanie 7.  1 pkt ⋅ Numer: pp-11269 ⋅ Poprawnie: 200/303 [66%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Na ile sposobów k=4 osób może usiąść na n=6 krzesłach?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11284 ⋅ Poprawnie: 175/243 [72%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Dwie osoby muszą zająć 2 spośród 10 wolnych miejsc w kinie.

Na ile sposobów mogą to zrobić?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11265 ⋅ Poprawnie: 323/410 [78%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Na 6 kartkach zapisano wszystkie cyfry ze zbioru \{1,2,3,...,6\}, na każdej kartce jedną cyfrę. Losujemy bez zwracania trzy razy po jednej kartce i z wylosowanych cyfr tworzymy liczbę trzycyfrową.

Ile możemy utworzyć wszystkich takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11442 ⋅ Poprawnie: 53/114 [46%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Ile jest wszystkich liczb naturalnych czterocyfrowych podzielnych przez pi nie większych niż d?
Dane
p=4
d=2026
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11262 ⋅ Poprawnie: 90/136 [66%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Pewne słowo k=11 literowe zawiera n=2 liter "A", a pozostałe litery są inne niż "A" i są różne.

Ile słów 11 literowych można utworzyć przestawiając litery w tym słowie?

Odpowiedzi:
A. \frac{11!}{2!} B. \frac{11!}{6}
C. 9! D. \frac{2\cdot 11!}{2}
Zadanie 12.  1 pkt ⋅ Numer: pp-11294 ⋅ Poprawnie: 15/33 [45%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Pewne słowo k=6 literowe zawiera dwie różne samogłoski i p=4 różnych spółgłosek.

Na ile sposobów można przestawiać litery tego słowa, tak aby samogłoski nie stały obok siebie?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm