Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-20-kombinatoryka-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11257 ⋅ Poprawnie: 176/263 [66%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Na płaszczyźnie zaznaczono 10 różnych punktów zielonych i 13 różnych punktów czerwonych.

Ile istnieje odcinków o końcach w tych punktach takich, że punkty końcowe odcinka mają różne kolory?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11287 ⋅ Poprawnie: 133/213 [62%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 W liczbie naturalnej czterocyfrowej cyfra jedności jest o 3 mniejsza niż cyfra dziesiątek.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11873 ⋅ Poprawnie: 271/399 [67%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wszystkich różnych liczb naturalnych czterocyfrowych nieparzystych podzielnych przez 5 jest:
Odpowiedzi:
A. 9\cdot 9\cdot 9\cdot 1 B. 9\cdot 9\cdot 8\cdot 1
C. 9\cdot 10\cdot 10\cdot 1 D. 9\cdot 8\cdot 7\cdot 1
Zadanie 4.  1 pkt ⋅ Numer: pp-11279 ⋅ Poprawnie: 93/149 [62%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 «« Liczba x\in\{2,3,4,5,6,7,8\} i liczba y\in\{ 1,2,3,4,5,6\}. Liczba x\cdot y jest parzysta.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11281 ⋅ Poprawnie: 32/64 [50%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 O liczbie trzycyfrowej n wiadomo, że 6\mid n i 9\nmid n.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11902 ⋅ Poprawnie: 228/321 [71%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Rozważamy wszystkie liczby naturalne k=6-cyfrowe, których suma cyfr jest równa 3 i ich zapis zawiera dokładnie trzy różne cyfry.

Wszystkich takich liczb jest:

Odpowiedzi:
A. 11 B. 14
C. 12 D. 16
E. 10 F. 13
Zadanie 7.  1 pkt ⋅ Numer: pp-11264 ⋅ Poprawnie: 303/407 [74%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Z drużyny sportowej liczącej n zawodników wybrano kapitana i kapitana rezerwowego.

Na ile sposobów można to zrobić?

Dane
n=37
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11296 ⋅ Poprawnie: 27/44 [61%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Każdy z k=5 kwadratów należy pomalować jednym z 5 dostępnych kolorów, tak aby każdy kwadrat był jednokolorowy i pomalowany innym kolorem.

Na ile sposobów można to zrobić?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11261 ⋅ Poprawnie: 53/71 [74%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Istnieje \frac{15!}{15} wszystkich różnych ustawień na półce k tomowej encyklopedii.

Podaj liczbę k.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11267 ⋅ Poprawnie: 21/119 [17%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Święty Mikołaj spośród 12 różnych prezentów wybrał 11 prezentów i zapakował je do 11 mikołajowych worków, w taki sposób, aby żaden z worków nie był pusty.

Na ile sposóbów mógł wykonać to zadanie?

Odpowiedzi:
A. 12^2\cdot 12! B. 11\cdot 11!
C. 12! D. 11^{12}
Zadanie 11.  1 pkt ⋅ Numer: pp-11274 ⋅ Poprawnie: 17/38 [44%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Iloczyn wszystkich cyfr liczby naturalnej składającej się z 16 cyfr jest liczbą pierwszą.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-11298 ⋅ Poprawnie: 10/24 [41%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 » Spośród 6 wierzchołków sześciokąta foremnego, którego najkrótsza przekątna ma długość \sqrt{3}, wybrano w sposób losowy dwa różne.

Ile różnych odcinków o całkowitej długości możemy w ten sposób otrzymać?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm