Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-20-kombinatoryka-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11256 ⋅ Poprawnie: 36/49 [73%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Na okręgu dane są trzy różne punkty. Każdemu punktowi należy przypisać jeden z 12 kolorów w taki sposób, aby każde dwa sąsiednie punkty miały inny kolor.

Na ile sposobób można to zrobić?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11258 ⋅ Poprawnie: 725/773 [93%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Pan Modny ma 10 czapek, 8 szalików i 7 kurtek.

Na ile sposobów może się ubrać, jeśli zawsze zakłada szalik, czapkę i kurtkę?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11932 ⋅ Poprawnie: 196/299 [65%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wszystkich trzycyfrowych liczb naturalnych większych od 500 o wszystkich cyfrach parzystych jest:
Odpowiedzi:
A. 2\cdot 5\cdot 5 B. 5\cdot 5\cdot 5
C. 5\cdot 5\cdot 5 D. 2\cdot 10\cdot 10
Zadanie 4.  1 pkt ⋅ Numer: pp-11280 ⋅ Poprawnie: 69/205 [33%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Iloczyn cyfr liczby trzycyfrowej jest równy 0, a cyfra jedności tej liczby jest nie większa niż 8.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11281 ⋅ Poprawnie: 32/64 [50%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 O liczbie trzycyfrowej n wiadomo, że 22\mid n i 121\nmid n.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11902 ⋅ Poprawnie: 226/319 [70%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Rozważamy wszystkie liczby naturalne k=4-cyfrowe, których suma cyfr jest równa 3 i ich zapis zawiera dokładnie trzy różne cyfry.

Wszystkich takich liczb jest:

Odpowiedzi:
A. 8 B. 6
C. 9 D. 12
E. 10 F. 7
Zadanie 7.  1 pkt ⋅ Numer: pp-11255 ⋅ Poprawnie: 38/65 [58%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Liczba 6 cyfrowa n spełnia nierówność n > 4\cdot 10^5 i zawiera tylko cyfry ze zbioru \{1,2,4\}.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11291 ⋅ Poprawnie: 107/146 [73%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Ze wszystkich cyfr zbioru \{ 1,2,3,4,5,6,7,8\} utworzono liczbę całkowitą nieparzystą o niepowtarzających się cyfrach.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11265 ⋅ Poprawnie: 319/404 [78%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Na 8 kartkach zapisano wszystkie cyfry ze zbioru \{1,2,3,...,8\}, na każdej kartce jedną cyfrę. Losujemy bez zwracania trzy razy po jednej kartce i z wylosowanych cyfr tworzymy liczbę trzycyfrową.

Ile możemy utworzyć wszystkich takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11267 ⋅ Poprawnie: 21/119 [17%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Święty Mikołaj spośród 19 różnych prezentów wybrał 18 prezentów i zapakował je do 18 mikołajowych worków, w taki sposób, aby żaden z worków nie był pusty.

Na ile sposóbów mógł wykonać to zadanie?

Odpowiedzi:
A. 19! B. 18\cdot 18!
C. 18^{19} D. 19^2\cdot 19!
Zadanie 11.  1 pkt ⋅ Numer: pp-11260 ⋅ Poprawnie: 171/308 [55%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Wśród 18 książek są książki A i B.

Na ile sposobów można ustawić te książki na półce w taki sposób, aby książki A i B stały obok siebie?

Odpowiedzi:
A. 289\cdot 16! B. 34\cdot 256
C. 34\cdot 16! D. 306\cdot 16!
Zadanie 12.  1 pkt ⋅ Numer: pp-12132 ⋅ Poprawnie: 84/99 [84%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Wszystkich liczb naturalnych pięciocyfrowych parzystych jest:
Odpowiedzi:
A. 9\cdot 5\cdot 10^3 B. 4\cdot 10^5
C. 9\cdot 2\cdot 10^3 D. 5\cdot 10^4


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm