Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-20-kombinatoryka-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11302 ⋅ Poprawnie: 150/261 [57%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Pierwszy znak 3 znakowego kodu należy do zbioru A=\{1,2,3,...,8\}, a znak ostatni do zbioru B=\{1,2,3,...,4\}.

Ile różnych takich kodów można utworzyć, jeśli każdy znak kodu należy do zbioru A\cup B i znaki skrajne są różne?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11258 ⋅ Poprawnie: 770/817 [94%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Pan Modny ma 5 czapek, 8 szalików i 10 kurtek.

Na ile sposobów może się ubrać, jeśli zawsze zakłada szalik, czapkę i kurtkę?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11826 ⋅ Poprawnie: 786/896 [87%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wszystkich liczb naturalnych 7-ciocyfrowych, w których zapisie dziesiętnym cyfry się nie powtarzają jest:
Odpowiedzi:
A. 9\cdot 9\cdot 8\cdot 7\cdot 6\cdot 5\cdot 4 B. 10\cdot 10\cdot 10\cdot 10\cdot 10\cdot 10\cdot 10
C. 9\cdot 10\cdot 10\cdot 10\cdot 10\cdot 10\cdot 10 D. 10\cdot 9\cdot 8\cdot 7\cdot 6\cdot 5\cdot 4
Zadanie 4.  1 pkt ⋅ Numer: pp-11280 ⋅ Poprawnie: 105/252 [41%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Iloczyn cyfr liczby trzycyfrowej jest równy 0, a cyfra jedności tej liczby jest nie większa niż 5.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11285 ⋅ Poprawnie: 137/224 [61%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
Liczba naturalna składa się czterech cyfr, spośród których tylko jedna jest cyfrą nieparzystą.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11902 ⋅ Poprawnie: 294/385 [76%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Rozważamy wszystkie liczby naturalne k=6-cyfrowe, których suma cyfr jest równa 3 i ich zapis zawiera dokładnie trzy różne cyfry.

Wszystkich takich liczb jest:

Odpowiedzi:
A. 16 B. 10
C. 14 D. 12
E. 11 F. 13
Zadanie 7.  1 pkt ⋅ Numer: pp-11269 ⋅ Poprawnie: 201/304 [66%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Na ile sposobów k=3 osób może usiąść na n=6 krzesłach?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11296 ⋅ Poprawnie: 43/61 [70%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Każdy z k=4 kwadratów należy pomalować jednym z 4 dostępnych kolorów, tak aby każdy kwadrat był jednokolorowy i pomalowany innym kolorem.

Na ile sposobów można to zrobić?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11266 ⋅ Poprawnie: 80/162 [49%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Święty Mikołaj zapakował 5 różnych prezentów do 5 różnych mikołajowych worków, tak aby żaden worek nie był pusty.

Na ile sposóbów mógł to zrobić?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11442 ⋅ Poprawnie: 55/117 [47%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Ile jest wszystkich liczb naturalnych czterocyfrowych podzielnych przez pi nie większych niż d?
Dane
p=4
d=2026
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11274 ⋅ Poprawnie: 19/40 [47%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Iloczyn wszystkich cyfr liczby naturalnej składającej się z 11 cyfr jest liczbą pierwszą.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-11298 ⋅ Poprawnie: 13/33 [39%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 » Spośród 6 wierzchołków sześciokąta foremnego, którego najkrótsza przekątna ma długość \sqrt{3}, wybrano w sposób losowy dwa różne.

Ile różnych odcinków o całkowitej długości możemy w ten sposób otrzymać?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm