Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-20-kombinatoryka-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11256 ⋅ Poprawnie: 36/49 [73%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Na okręgu dane są trzy różne punkty. Każdemu punktowi należy przypisać jeden z 8 kolorów w taki sposób, aby każde dwa sąsiednie punkty miały inny kolor.

Na ile sposobób można to zrobić?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11258 ⋅ Poprawnie: 725/773 [93%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Pan Modny ma 7 czapek, 5 szalików i 6 kurtek.

Na ile sposobów może się ubrać, jeśli zawsze zakłada szalik, czapkę i kurtkę?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11826 ⋅ Poprawnie: 646/768 [84%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wszystkich liczb naturalnych 4-ciocyfrowych, w których zapisie dziesiętnym cyfry się nie powtarzają jest:
Odpowiedzi:
A. 10\cdot 9\cdot 8\cdot 7 B. 9\cdot 10\cdot 10\cdot 10
C. 9\cdot 9\cdot 8\cdot 7 D. 10\cdot 10\cdot 10\cdot 10
Zadanie 4.  1 pkt ⋅ Numer: pp-11278 ⋅ Poprawnie: 133/341 [39%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Z cyfr należących do zbioru \{0,1,2,3,4,5,6\} utworzono liczbę trzycyfrową podzielną przez 5, której wszystkie cyfry są różne.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11290 ⋅ Poprawnie: 21/35 [60%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Liczba naturalna dwucyfrowa dzieli się przez jakąkolwiek liczbę ze zbioru \{5,7\}.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11902 ⋅ Poprawnie: 228/322 [70%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Rozważamy wszystkie liczby naturalne k=4-cyfrowe, których suma cyfr jest równa 3 i ich zapis zawiera dokładnie trzy różne cyfry.

Wszystkich takich liczb jest:

Odpowiedzi:
A. 12 B. 8
C. 9 D. 10
E. 6 F. 7
Zadanie 7.  1 pkt ⋅ Numer: pp-11264 ⋅ Poprawnie: 303/408 [74%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Z drużyny sportowej liczącej n zawodników wybrano kapitana i kapitana rezerwowego.

Na ile sposobów można to zrobić?

Dane
n=38
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11284 ⋅ Poprawnie: 164/232 [70%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Dwie osoby muszą zająć 2 spośród 9 wolnych miejsc w kinie.

Na ile sposobów mogą to zrobić?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11299 ⋅ Poprawnie: 107/140 [76%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Na zebranie zarządu spółki przyszło 12 akcjonariuszy i każdy z nich przywitał się ze wszystkimi pozostałymi uczestnikami spotkania.

Ile było wszystkich powitań.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11254 ⋅ Poprawnie: 160/231 [69%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Na parkingu ustawiono 7 opli i 3 fordów. Wszystkie ople stoją przed fordami.

Takich ustawień samochodów jest:

Odpowiedzi:
A. 2^{7}\cdot 2^{3} B. 7\cdot 3
C. (7+3)! D. 7!\cdot 3!
Zadanie 11.  1 pkt ⋅ Numer: pp-11273 ⋅ Poprawnie: 68/129 [52%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Wszystkie litery należące do zbioru \{ a,b,c,d,e,f,g\} ustawiono w ciąg w taki sposób, że litery e i f stoją obok siebie.

Ile jest takich ustawień?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-11275 ⋅ Poprawnie: 129/190 [67%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
« Po dodaniu do siebie wszystkich cyfr występujących w liczbie składającej się z czterech cyfr otrzymano sumę równą 3.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm