Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-20-kombinatoryka-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11257 ⋅ Poprawnie: 196/284 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Na płaszczyźnie zaznaczono 8 różnych punktów zielonych i 9 różnych punktów czerwonych.

Ile istnieje odcinków o końcach w tych punktach takich, że punkty końcowe odcinka mają różne kolory?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11453 ⋅ Poprawnie: 146/353 [41%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Utworzono liczbę czterocyfrową, w zapisie której cyfra jedności jest o 1 większa od cyfry tysięcy.

Ile jest takich liczb?

Odpowiedź:
ilosc\ liczb= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11873 ⋅ Poprawnie: 380/496 [76%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wszystkich różnych liczb naturalnych czterocyfrowych nieparzystych podzielnych przez 5 jest:
Odpowiedzi:
A. 9\cdot 9\cdot 9\cdot 1 B. 9\cdot 8\cdot 7\cdot 1
C. 9\cdot 10\cdot 10\cdot 1 D. 9\cdot 9\cdot 8\cdot 1
Zadanie 4.  1 pkt ⋅ Numer: pp-11276 ⋅ Poprawnie: 91/115 [79%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Z wszystkich cyfr należących do zbioru \{ 1,2,3,4,5,6,7,8,9\} wybrano jedną, którą uznano za cyfrę dziesiątek, a następnie drugą większą od poprzedniej, którą uznano za cyfrę jedności.

Ile różnych liczb może w ten sposób powstać?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11293 ⋅ Poprawnie: 144/233 [61%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Z cyfr należących do zbioru \{2,3,4\} utworzono liczbę czterocyfrową parzystą.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-12048 ⋅ Poprawnie: 181/212 [85%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wszystkich liczb naturalnych trzycyfrowych parzystych, w których cyfra 1 występuje dokładnie jeden raz, jest:
Odpowiedzi:
A. 70 B. 100
C. 75 D. 80
E. 90 F. 85
Zadanie 7.  1 pkt ⋅ Numer: pp-11264 ⋅ Poprawnie: 317/423 [74%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Z drużyny sportowej liczącej n zawodników wybrano kapitana i kapitana rezerwowego.

Na ile sposobów można to zrobić?

Dane
n=35
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11296 ⋅ Poprawnie: 41/58 [70%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Każdy z k=4 kwadratów należy pomalować jednym z 4 dostępnych kolorów, tak aby każdy kwadrat był jednokolorowy i pomalowany innym kolorem.

Na ile sposobów można to zrobić?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11266 ⋅ Poprawnie: 79/160 [49%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Święty Mikołaj zapakował 5 różnych prezentów do 5 różnych mikołajowych worków, tak aby żaden worek nie był pusty.

Na ile sposóbów mógł to zrobić?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11267 ⋅ Poprawnie: 27/126 [21%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Święty Mikołaj spośród 8 różnych prezentów wybrał 7 prezentów i zapakował je do 7 mikołajowych worków, w taki sposób, aby żaden z worków nie był pusty.

Na ile sposóbów mógł wykonać to zadanie?

Odpowiedzi:
A. 8^2\cdot 8! B. 8!
C. 7\cdot 7! D. 7^{8}
Zadanie 11.  1 pkt ⋅ Numer: pp-11274 ⋅ Poprawnie: 19/40 [47%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Iloczyn wszystkich cyfr liczby naturalnej składającej się z 8 cyfr jest liczbą pierwszą.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-11294 ⋅ Poprawnie: 15/33 [45%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Pewne słowo k=4 literowe zawiera dwie różne samogłoski i p=2 różnych spółgłosek.

Na ile sposobów można przestawiać litery tego słowa, tak aby samogłoski nie stały obok siebie?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm