Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-20-kombinatoryka-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11257 ⋅ Poprawnie: 199/287 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Na płaszczyźnie zaznaczono 14 różnych punktów zielonych i 11 różnych punktów czerwonych.

Ile istnieje odcinków o końcach w tych punktach takich, że punkty końcowe odcinka mają różne kolory?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11258 ⋅ Poprawnie: 770/817 [94%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Pan Modny ma 9 czapek, 6 szalików i 7 kurtek.

Na ile sposobów może się ubrać, jeśli zawsze zakłada szalik, czapkę i kurtkę?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11932 ⋅ Poprawnie: 259/374 [69%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wszystkich trzycyfrowych liczb naturalnych większych od 600 o wszystkich cyfrach parzystych jest:
Odpowiedzi:
A. 2\cdot 5\cdot 5 B. 4\cdot 5\cdot 5
C. 2\cdot 5\cdot 5-1 D. 2\cdot 10\cdot 10-1
Zadanie 4.  1 pkt ⋅ Numer: pp-11272 ⋅ Poprawnie: 185/285 [64%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Liczba dwucyfrowa jest większa od 44 i składa się z różnych cyfr.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11288 ⋅ Poprawnie: 81/104 [77%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Liczba naturalna czterocyfrowa k spełnia nierówność k \lessdot 7707 i została zapisana za pomocą cyfr ze zbioru \{3,5,7,9\} w taki sposób, że wszystkie jej cyfry są różne.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11295 ⋅ Poprawnie: 132/209 [63%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 W zapisie liczby trzycyfrowej występuje dokładnie jedna cyfra 8 i dokładnie jedna cyfra 0.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-11292 ⋅ Poprawnie: 182/273 [66%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Na przyjęcie urodzinowe przyszło n osób i każda z tych osób przywitała się z każdym z pozostałych gości.

Ile było wszystkich powitań?

Dane
n=39
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-12022 ⋅ Poprawnie: 507/573 [88%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wszystkich liczb naturalnych pięciocyfrfowych parzystych, w których zapisie dziesiętnym występują tylko cyfry 3, 4, 7 jest:
Odpowiedzi:
A. 76 B. 99
C. 100 D. 81
E. 71 F. 79
Zadanie 9.  1 pkt ⋅ Numer: pp-11266 ⋅ Poprawnie: 80/162 [49%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Święty Mikołaj zapakował 9 różnych prezentów do 9 różnych mikołajowych worków, tak aby żaden worek nie był pusty.

Na ile sposóbów mógł to zrobić?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11267 ⋅ Poprawnie: 28/130 [21%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Święty Mikołaj spośród 20 różnych prezentów wybrał 19 prezentów i zapakował je do 19 mikołajowych worków, w taki sposób, aby żaden z worków nie był pusty.

Na ile sposóbów mógł wykonać to zadanie?

Odpowiedzi:
A. 20^2\cdot 20! B. 20!
C. 19^{20} D. 19\cdot 19!
Zadanie 11.  1 pkt ⋅ Numer: pp-11253 ⋅ Poprawnie: 15/39 [38%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
Trzy pary, każda składająca się z chłopca i dziewczynki, po zakończonym tańcu usiadły przy okrągłym stole na sześciu krzesłach ponumerowanych od 1 do 6, w taki sposób, że każdy chłopak ma po swojej prawej i lewej stronie dziewczynę.

Ile istnieje sposobów takiego usadzenia dzieci przy stole?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-11298 ⋅ Poprawnie: 13/33 [39%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 » Spośród 6 wierzchołków sześciokąta foremnego, którego najkrótsza przekątna ma długość \frac{\sqrt{3}}{2}, wybrano w sposób losowy dwa różne.

Ile różnych odcinków o całkowitej długości możemy w ten sposób otrzymać?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm