Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-20-kombinatoryka-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11297 ⋅ Poprawnie: 87/220 [39%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Na prostej k zaznaczono m=2 różnych punktów, zaś na innej prostej równoległej do prostej k zaznaczono n=3 różnych punktów.

Ile różnych trójkątów można utworzyć w taki sposób, aby punkty te były ich wierzchołkami?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11301 ⋅ Poprawnie: 263/432 [60%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 W liczbie czterocyfrowej cyfra setek jest o 1 większa od cyfry jedności.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11960 ⋅ Poprawnie: 102/133 [76%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wszystkich różnych liczb naturalnych czterocyfrowych, w których zapisie dziesiętnym wszystkie cyfry są różne, jest:
Odpowiedzi:
A. 3024 B. 10000
C. 4536 D. 9000
E. 5832 F. 5040
Zadanie 4.  1 pkt ⋅ Numer: pp-11272 ⋅ Poprawnie: 167/267 [62%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Liczba dwucyfrowa jest większa od 28 i składa się z różnych cyfr.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11281 ⋅ Poprawnie: 32/64 [50%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 O liczbie trzycyfrowej n wiadomo, że 6\mid n i 9\nmid n.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11902 ⋅ Poprawnie: 209/302 [69%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Rozważamy wszystkie liczby naturalne k=5-cyfrowe, których suma cyfr jest równa 3 i ich zapis zawiera dokładnie trzy różne cyfry.

Wszystkich takich liczb jest:

Odpowiedzi:
A. 9 B. 8
C. 14 D. 11
E. 10 F. 12
Zadanie 7.  1 pkt ⋅ Numer: pp-11264 ⋅ Poprawnie: 303/407 [74%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Z drużyny sportowej liczącej n zawodników wybrano kapitana i kapitana rezerwowego.

Na ile sposobów można to zrobić?

Dane
n=35
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11284 ⋅ Poprawnie: 164/232 [70%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Dwie osoby muszą zająć 2 spośród 6 wolnych miejsc w kinie.

Na ile sposobów mogą to zrobić?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11263 ⋅ Poprawnie: 86/190 [45%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Zamawiając obiad mamy do wyboru 8 różnych surówek, 3 rodzaje kompotu i 2 różne sosy.

Na ile sposobów możemy wybrać składniki jeśli wybierami dwie surówki, jeden kompot i jeden sos?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11254 ⋅ Poprawnie: 160/231 [69%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Na parkingu ustawiono 3 opli i 5 fordów. Wszystkie ople stoją przed fordami.

Takich ustawień samochodów jest:

Odpowiedzi:
A. 2^{3}\cdot 2^{5} B. 3!\cdot 5!
C. 3\cdot 5 D. 2\cdot 3!\cdot 5!
Zadanie 11.  1 pkt ⋅ Numer: pp-11253 ⋅ Poprawnie: 9/31 [29%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
Trzy pary, każda składająca się z chłopca i dziewczynki, po zakończonym tańcu usiadły przy okrągłym stole na sześciu krzesłach ponumerowanych od 1 do 6, w taki sposób, że każdy chłopak ma po swojej prawej i lewej stronie dziewczynę.

Ile istnieje sposobów takiego usadzenia dzieci przy stole?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-12132 ⋅ Poprawnie: 84/99 [84%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Wszystkich liczb naturalnych pięciocyfrowych parzystych jest:
Odpowiedzi:
A. 9\cdot 5\cdot 10^3 B. 9\cdot 2\cdot 10^3
C. 4\cdot 10^5 D. 5\cdot 10^4


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm