Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-20-kombinatoryka-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11302 ⋅ Poprawnie: 150/261 [57%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Pierwszy znak 4 znakowego kodu należy do zbioru A=\{1,2,3,...,6\}, a znak ostatni do zbioru B=\{1,2,3,...,4\}.

Ile różnych takich kodów można utworzyć, jeśli każdy znak kodu należy do zbioru A\cup B i znaki skrajne są różne?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11287 ⋅ Poprawnie: 150/230 [65%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 W liczbie naturalnej czterocyfrowej cyfra jedności jest o 7 mniejsza niż cyfra dziesiątek.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11932 ⋅ Poprawnie: 258/372 [69%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wszystkich trzycyfrowych liczb naturalnych większych od 600 o wszystkich cyfrach parzystych jest:
Odpowiedzi:
A. 4\cdot 5\cdot 5 B. 2\cdot 10\cdot 10-1
C. 2\cdot 5\cdot 5-1 D. 2\cdot 5\cdot 5
Zadanie 4.  1 pkt ⋅ Numer: pp-11279 ⋅ Poprawnie: 102/160 [63%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 «« Liczba x\in\{2,3,4,5,6,7,8\} i liczba y\in\{ 1,2,3,4,5,6,7,8,9\}. Liczba x\cdot y jest parzysta.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11285 ⋅ Poprawnie: 137/224 [61%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
Liczba naturalna składa się czterech cyfr, spośród których tylko jedna jest cyfrą nieparzystą.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11902 ⋅ Poprawnie: 291/382 [76%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Rozważamy wszystkie liczby naturalne k=4-cyfrowe, których suma cyfr jest równa 3 i ich zapis zawiera dokładnie trzy różne cyfry.

Wszystkich takich liczb jest:

Odpowiedzi:
A. 7 B. 10
C. 12 D. 8
E. 9 F. 6
Zadanie 7.  1 pkt ⋅ Numer: pp-11264 ⋅ Poprawnie: 318/425 [74%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Z drużyny sportowej liczącej n zawodników wybrano kapitana i kapitana rezerwowego.

Na ile sposobów można to zrobić?

Dane
n=43
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11282 ⋅ Poprawnie: 54/259 [20%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Trzy kolejne schodki trzeba pomalować jednym z 12 dostępnych kolorów farby - każdy schodek tylko jednym kolorem.

Na ile sposobów można to zrobić?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11299 ⋅ Poprawnie: 111/145 [76%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Na zebranie zarządu spółki przyszło 17 akcjonariuszy i każdy z nich przywitał się ze wszystkimi pozostałymi uczestnikami spotkania.

Ile było wszystkich powitań.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11254 ⋅ Poprawnie: 166/237 [70%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Na parkingu ustawiono 12 opli i 4 fordów. Wszystkie ople stoją przed fordami.

Takich ustawień samochodów jest:

Odpowiedzi:
A. 2\cdot 12!\cdot 4! B. 2^{12}\cdot 2^{4}
C. 12!\cdot 4! D. 12\cdot 4
Zadanie 11.  1 pkt ⋅ Numer: pp-11274 ⋅ Poprawnie: 19/40 [47%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Iloczyn wszystkich cyfr liczby naturalnej składającej się z 32 cyfr jest liczbą pierwszą.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-11298 ⋅ Poprawnie: 13/33 [39%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 » Spośród 6 wierzchołków sześciokąta foremnego, którego najkrótsza przekątna ma długość \frac{\sqrt{3}}{2}, wybrano w sposób losowy dwa różne.

Ile różnych odcinków o całkowitej długości możemy w ten sposób otrzymać?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm