Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-20-kombinatoryka-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11257 ⋅ Poprawnie: 199/287 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Na płaszczyźnie zaznaczono 10 różnych punktów zielonych i 13 różnych punktów czerwonych.

Ile istnieje odcinków o końcach w tych punktach takich, że punkty końcowe odcinka mają różne kolory?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11287 ⋅ Poprawnie: 150/230 [65%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 W liczbie naturalnej czterocyfrowej cyfra jedności jest o 4 mniejsza niż cyfra dziesiątek.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11826 ⋅ Poprawnie: 779/889 [87%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wszystkich liczb naturalnych 8-ciocyfrowych, w których zapisie dziesiętnym cyfry się nie powtarzają jest:
Odpowiedzi:
A. 9\cdot 9\cdot 8\cdot 7\cdot 6\cdot 5\cdot 4\cdot 3 B. 9\cdot 10\cdot 10\cdot 10\cdot 10\cdot 10\cdot 10\cdot 10
C. 10\cdot 10\cdot 10\cdot 10\cdot 10\cdot 10\cdot 10\cdot 10 D. 10\cdot 9\cdot 8\cdot 7\cdot 6\cdot 5\cdot 4\cdot 3
Zadanie 4.  1 pkt ⋅ Numer: pp-11286 ⋅ Poprawnie: 32/55 [58%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
Cyfry liczby naturalnej czterocyfrowej abcd spełniają warunki: d-a=3 oraz a \lessdot b \lessdot c \lessdot d.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11281 ⋅ Poprawnie: 35/71 [49%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 O liczbie trzycyfrowej n wiadomo, że 22\mid n i 121\nmid n.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11902 ⋅ Poprawnie: 291/382 [76%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Rozważamy wszystkie liczby naturalne k=6-cyfrowe, których suma cyfr jest równa 3 i ich zapis zawiera dokładnie trzy różne cyfry.

Wszystkich takich liczb jest:

Odpowiedzi:
A. 16 B. 14
C. 10 D. 13
E. 11 F. 12
Zadanie 7.  1 pkt ⋅ Numer: pp-11259 ⋅ Poprawnie: 84/141 [59%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Przy sklepie, po dwóch stronach ulicy jest po k=10 miejsc parkingowych.

Na ile sposobów można zaparkować na nich sześć samochodów?

Odpowiedzi:
A. 20^2 B. 10!
C. 15\cdot 16\cdot 17\cdot ...\cdot 20 D. 20!
Zadanie 8.  1 pkt ⋅ Numer: pp-11284 ⋅ Poprawnie: 179/248 [72%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Dwie osoby muszą zająć 2 spośród 9 wolnych miejsc w kinie.

Na ile sposobów mogą to zrobić?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11266 ⋅ Poprawnie: 80/162 [49%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Święty Mikołaj zapakował 6 różnych prezentów do 6 różnych mikołajowych worków, tak aby żaden worek nie był pusty.

Na ile sposóbów mógł to zrobić?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11267 ⋅ Poprawnie: 28/130 [21%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Święty Mikołaj spośród 12 różnych prezentów wybrał 11 prezentów i zapakował je do 11 mikołajowych worków, w taki sposób, aby żaden z worków nie był pusty.

Na ile sposóbów mógł wykonać to zadanie?

Odpowiedzi:
A. 11\cdot 11! B. 12^2\cdot 12!
C. 11^{12} D. 12!
Zadanie 11.  1 pkt ⋅ Numer: pp-11260 ⋅ Poprawnie: 174/313 [55%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Wśród 11 książek są książki A i B.

Na ile sposobów można ustawić te książki na półce w taki sposób, aby książki A i B stały obok siebie?

Odpowiedzi:
A. 110\cdot 9! B. 100\cdot 9!
C. 20\cdot 81 D. 20\cdot 9!
Zadanie 12.  1 pkt ⋅ Numer: pp-11294 ⋅ Poprawnie: 15/33 [45%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Pewne słowo k=5 literowe zawiera dwie różne samogłoski i p=3 różnych spółgłosek.

Na ile sposobów można przestawiać litery tego słowa, tak aby samogłoski nie stały obok siebie?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm