Podgląd testu : lo2@sp-20-kombinatoryka-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11302 ⋅ Poprawnie: 147/257 [57%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Pierwszy znak
3 znakowego kodu należy do zbioru
A=\{1,2,3,...,5\} , a znak ostatni do zbioru
B=\{1,2,3,...,4\} .
Ile różnych takich kodów można utworzyć, jeśli każdy znak kodu należy do zbioru
A\cup B i znaki skrajne są różne?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11453 ⋅ Poprawnie: 146/353 [41%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Utworzono liczbę czterocyfrową, w zapisie której cyfra jedności jest
o
5 większa od cyfry tysięcy.
Ile jest takich liczb?
Odpowiedź:
ilosc\ liczb=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11932 ⋅ Poprawnie: 254/364 [69%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wszystkich trzycyfrowych liczb naturalnych większych od
500
o wszystkich cyfrach parzystych jest:
Odpowiedzi:
A. 2\cdot 10\cdot 10
B. 5\cdot 5\cdot 5
C. 5\cdot 5\cdot 5
D. 2\cdot 5\cdot 5
Zadanie 4. 1 pkt ⋅ Numer: pp-11278 ⋅ Poprawnie: 168/373 [45%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Z cyfr należących do zbioru
\{0,1,2,3,4,5,6,7,8\} utworzono liczbę trzycyfrową podzielną przez
5 , której wszystkie cyfry są różne.
Ile jest takich liczb?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11289 ⋅ Poprawnie: 152/223 [68%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Liczba trzycyfrowa utworzona jest wyłącznie z cyfr należących do zbioru
\{3,4,8\} i jest nie większa niż
640 .
Ile jest takich liczb?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-12048 ⋅ Poprawnie: 163/195 [83%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Wszystkich liczb naturalnych trzycyfrowych nieparzystych, w których cyfra
1 występuje dokładnie jeden raz, jest:
Odpowiedzi:
A. 80
B. 135
C. 90
D. 140
E. 75
F. 125
Zadanie 7. 1 pkt ⋅ Numer: pp-11255 ⋅ Poprawnie: 52/80 [65%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Liczba
6 cyfrowa
n spełnia nierówność
n > 3\cdot 10^5 i zawiera tylko cyfry ze
zbioru
\{1,2,3\} .
Ile jest takich liczb?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-11291 ⋅ Poprawnie: 152/178 [85%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Ze wszystkich cyfr zbioru
\{
1,2,3,4,5,6,7,8\} utworzono
liczbę całkowitą nieparzystą o niepowtarzających się cyfrach.
Ile jest takich liczb?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-11263 ⋅ Poprawnie: 91/198 [45%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Zamawiając obiad mamy do wyboru
11 różnych surówek,
3 rodzaje kompotu i
3 różne sosy.
Na ile sposobów możemy wybrać składniki jeśli wybierami dwie surówki, jeden kompot i jeden sos?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-11300 ⋅ Poprawnie: 75/116 [64%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Numer katalogowy książki składa się z
7 wielkich liter i
4 cyfr.
Pierwsza z tych cyfr jest cyfrą kontrolną i jest wyznaczana jednoznacznie
na podstawie pozostałych siedmiu znaków.
Ile numerów katalogowych można
utworzyć jeśli alfabet ma 26 liter?
Odpowiedzi:
A. 26\cdot 25\cdot 24\cdot 10^{4}
B. 26^{7}\cdot 10^{5}
C. 26\cdot 25\cdot 24\cdot 10^{5}
D. 26^{7}\cdot 10^{4}
Zadanie 11. 1 pkt ⋅ Numer: pp-11253 ⋅ Poprawnie: 12/34 [35%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Trzy pary, każda składająca się z chłopca i dziewczynki, po zakończonym
tańcu usiadły przy okrągłym stole na sześciu krzesłach ponumerowanych od
1 do
6 , w taki sposób,
że każdy chłopak ma po swojej prawej i lewej stronie dziewczynę.
Ile istnieje sposobów takiego usadzenia dzieci przy stole?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 12. 1 pkt ⋅ Numer: pp-11294 ⋅ Poprawnie: 15/33 [45%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Pewne słowo
k=8 literowe zawiera dwie różne samogłoski
i
p=6 różnych spółgłosek.
Na ile sposobów można przestawiać litery tego słowa, tak aby samogłoski nie stały obok siebie?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Rozwiąż