Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-20-kombinatoryka-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11297 ⋅ Poprawnie: 103/242 [42%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Na prostej k zaznaczono m=6 różnych punktów, zaś na innej prostej równoległej do prostej k zaznaczono n=3 różnych punktów.

Ile różnych trójkątów można utworzyć w taki sposób, aby punkty te były ich wierzchołkami?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11453 ⋅ Poprawnie: 147/354 [41%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Utworzono liczbę czterocyfrową, w zapisie której cyfra jedności jest o 5 większa od cyfry tysięcy.

Ile jest takich liczb?

Odpowiedź:
ilosc\ liczb= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11932 ⋅ Poprawnie: 259/374 [69%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wszystkich trzycyfrowych liczb naturalnych większych od 500 o wszystkich cyfrach parzystych jest:
Odpowiedzi:
A. 2\cdot 5\cdot 5 B. 5\cdot 5\cdot 5
C. 2\cdot 10\cdot 10 D. 5\cdot 5\cdot 5
Zadanie 4.  1 pkt ⋅ Numer: pp-11276 ⋅ Poprawnie: 94/118 [79%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Z wszystkich cyfr należących do zbioru \{ 3,4,5,6,7,8,9\} wybrano jedną, którą uznano za cyfrę dziesiątek, a następnie drugą większą od poprzedniej, którą uznano za cyfrę jedności.

Ile różnych liczb może w ten sposób powstać?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11281 ⋅ Poprawnie: 35/71 [49%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 O liczbie trzycyfrowej n wiadomo, że 10\mid n i 25\nmid n.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-12078 ⋅ Poprawnie: 129/140 [92%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wszystkich liczb naturalnych trzycyfrowych, większych od 400, w których każda cyfra należy do zbioru \{1,3,4,5,7,8\} i żadna cyfra się nie powtarza, jest:
Odpowiedzi:
A. 108 B. 58
C. 23 D. 80
E. 54 F. 119
Zadanie 7.  1 pkt ⋅ Numer: pp-11259 ⋅ Poprawnie: 84/141 [59%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Przy sklepie, po dwóch stronach ulicy jest po k=16 miejsc parkingowych.

Na ile sposobów można zaparkować na nich sześć samochodów?

Odpowiedzi:
A. 16! B. 16^2
C. 27\cdot 28\cdot 29\cdot ...\cdot 32 D. 32^2
Zadanie 8.  1 pkt ⋅ Numer: pp-11282 ⋅ Poprawnie: 55/260 [21%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Trzy kolejne schodki trzeba pomalować jednym z 10 dostępnych kolorów farby - każdy schodek tylko jednym kolorem.

Na ile sposobów można to zrobić?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11261 ⋅ Poprawnie: 60/79 [75%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Istnieje \frac{24!}{24} wszystkich różnych ustawień na półce k tomowej encyklopedii.

Podaj liczbę k.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11270 ⋅ Poprawnie: 36/66 [54%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » W liczbie składającej się z k=8 cyfr, iloczyn wszystkich cyfr jest równy 42.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11277 ⋅ Poprawnie: 51/64 [79%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Ile jest liczb czterocyfrowych podzielnych przez 11?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-11294 ⋅ Poprawnie: 15/33 [45%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Pewne słowo k=8 literowe zawiera dwie różne samogłoski i p=6 różnych spółgłosek.

Na ile sposobów można przestawiać litery tego słowa, tak aby samogłoski nie stały obok siebie?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm