Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-20-kombinatoryka-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11256 ⋅ Poprawnie: 36/49 [73%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Na okręgu dane są trzy różne punkty. Każdemu punktowi należy przypisać jeden z 14 kolorów w taki sposób, aby każde dwa sąsiednie punkty miały inny kolor.

Na ile sposobób można to zrobić?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11287 ⋅ Poprawnie: 133/213 [62%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 W liczbie naturalnej czterocyfrowej cyfra jedności jest o 8 mniejsza niż cyfra dziesiątek.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11932 ⋅ Poprawnie: 203/306 [66%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wszystkich trzycyfrowych liczb naturalnych większych od 600 o wszystkich cyfrach parzystych jest:
Odpowiedzi:
A. 4\cdot 5\cdot 5 B. 2\cdot 5\cdot 5
C. 2\cdot 10\cdot 10-1 D. 2\cdot 5\cdot 5-1
Zadanie 4.  1 pkt ⋅ Numer: pp-11279 ⋅ Poprawnie: 93/149 [62%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 «« Liczba x\in\{2,3,4,5,6,7,8\} i liczba y\in\{ 1,2,3,4,5,6,7,8,9\}. Liczba x\cdot y jest parzysta.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11290 ⋅ Poprawnie: 21/35 [60%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Liczba naturalna dwucyfrowa dzieli się przez jakąkolwiek liczbę ze zbioru \{7,10\}.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11938 ⋅ Poprawnie: 125/200 [62%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wszystkich różnych liczb naturalnych sześciocyfrowych, które są nieparzyste i podzielne przez 25, jest:
Odpowiedzi:
A. 9\cdot 10\cdot 10\cdot 10\cdot 10\cdot 2 B. 9\cdot 10\cdot 10\cdot 2
C. 9\cdot 10\cdot 10\cdot 10\cdot 4 D. 10\cdot 10\cdot 10\cdot 10\cdot 2
E. 9\cdot 10\cdot 10\cdot 10\cdot 5 F. 9\cdot 10\cdot 10\cdot 10\cdot 2
Zadanie 7.  1 pkt ⋅ Numer: pp-11269 ⋅ Poprawnie: 189/290 [65%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Na ile sposobów k=6 osób może usiąść na n=8 krzesłach?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11284 ⋅ Poprawnie: 164/232 [70%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Dwie osoby muszą zająć 2 spośród 15 wolnych miejsc w kinie.

Na ile sposobów mogą to zrobić?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11265 ⋅ Poprawnie: 319/405 [78%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Na 9 kartkach zapisano wszystkie cyfry ze zbioru \{1,2,3,...,9\}, na każdej kartce jedną cyfrę. Losujemy bez zwracania trzy razy po jednej kartce i z wylosowanych cyfr tworzymy liczbę trzycyfrową.

Ile możemy utworzyć wszystkich takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11270 ⋅ Poprawnie: 34/61 [55%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » W liczbie składającej się z k=9 cyfr, iloczyn wszystkich cyfr jest równy 42.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11262 ⋅ Poprawnie: 87/133 [65%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Pewne słowo k=15 literowe zawiera n=3 liter "A", a pozostałe litery są inne niż "A" i są różne.

Ile słów 15 literowych można utworzyć przestawiając litery w tym słowie?

Odpowiedzi:
A. 12! B. \frac{15!}{12}
C. \frac{2\cdot 15!}{3} D. \frac{15!}{3!}
Zadanie 12.  1 pkt ⋅ Numer: pp-11275 ⋅ Poprawnie: 129/190 [67%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
« Po dodaniu do siebie wszystkich cyfr występujących w liczbie składającej się z czterech cyfr otrzymano sumę równą 3.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm