Podgląd testu : lo2@sp-20-kombinatoryka-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11297 ⋅ Poprawnie: 103/242 [42%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Na prostej
k zaznaczono
m=6 różnych punktów,
zaś na innej prostej równoległej do prostej
k zaznaczono
n=3 różnych punktów.
Ile różnych trójkątów można utworzyć w taki sposób, aby punkty te były ich
wierzchołkami?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11453 ⋅ Poprawnie: 147/354 [41%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Utworzono liczbę czterocyfrową, w zapisie której cyfra jedności jest
o
5 większa od cyfry tysięcy.
Ile jest takich liczb?
Odpowiedź:
ilosc\ liczb=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11932 ⋅ Poprawnie: 259/374 [69%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wszystkich trzycyfrowych liczb naturalnych większych od
500
o wszystkich cyfrach parzystych jest:
Odpowiedzi:
A. 2\cdot 5\cdot 5
B. 5\cdot 5\cdot 5
C. 2\cdot 10\cdot 10
D. 5\cdot 5\cdot 5
Zadanie 4. 1 pkt ⋅ Numer: pp-11276 ⋅ Poprawnie: 94/118 [79%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Z wszystkich cyfr należących do zbioru
\{
3,4,5,6,7,8,9\} wybrano jedną, którą uznano za cyfrę dziesiątek,
a następnie drugą większą od poprzedniej, którą uznano za cyfrę jedności.
Ile różnych liczb może w ten sposób powstać?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11281 ⋅ Poprawnie: 35/71 [49%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
O liczbie trzycyfrowej
n wiadomo, że
10\mid n i
25\nmid n .
Ile jest takich liczb?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-12078 ⋅ Poprawnie: 129/140 [92%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Wszystkich liczb naturalnych trzycyfrowych, większych od
400 , w których każda cyfra należy do zbioru
\{1,3,4,5,7,8\} i żadna cyfra się nie powtarza, jest:
Odpowiedzi:
A. 108
B. 58
C. 23
D. 80
E. 54
F. 119
Zadanie 7. 1 pkt ⋅ Numer: pp-11259 ⋅ Poprawnie: 84/141 [59%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Przy sklepie, po dwóch stronach ulicy jest po
k=16 miejsc parkingowych.
Na ile sposobów można zaparkować na nich sześć samochodów?
Odpowiedzi:
A. 16!
B. 16^2
C. 27\cdot 28\cdot 29\cdot ...\cdot 32
D. 32^2
Zadanie 8. 1 pkt ⋅ Numer: pp-11282 ⋅ Poprawnie: 55/260 [21%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Trzy kolejne schodki trzeba pomalować jednym z
10 dostępnych kolorów
farby - każdy schodek tylko jednym kolorem.
Na ile sposobów można to zrobić?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-11261 ⋅ Poprawnie: 60/79 [75%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Istnieje
\frac{24!}{24} wszystkich różnych ustawień na półce
k tomowej encyklopedii.
Podaj liczbę k .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-11270 ⋅ Poprawnie: 36/66 [54%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
» W liczbie składającej się z
k=8 cyfr, iloczyn wszystkich cyfr jest równy
42 .
Ile jest takich liczb?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 11. 1 pkt ⋅ Numer: pp-11277 ⋅ Poprawnie: 51/64 [79%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Ile jest liczb czterocyfrowych podzielnych przez
11 ?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 12. 1 pkt ⋅ Numer: pp-11294 ⋅ Poprawnie: 15/33 [45%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Pewne słowo
k=8 literowe zawiera dwie różne samogłoski
i
p=6 różnych spółgłosek.
Na ile sposobów można przestawiać litery tego słowa, tak aby samogłoski nie stały obok siebie?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Rozwiąż