Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-20-kombinatoryka-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11256 ⋅ Poprawnie: 59/73 [80%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Na okręgu dane są trzy różne punkty. Każdemu punktowi należy przypisać jeden z 8 kolorów w taki sposób, aby każde dwa sąsiednie punkty miały inny kolor.

Na ile sposobób można to zrobić?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11287 ⋅ Poprawnie: 150/230 [65%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 W liczbie naturalnej czterocyfrowej cyfra jedności jest o 4 mniejsza niż cyfra dziesiątek.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11960 ⋅ Poprawnie: 130/166 [78%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wszystkich różnych liczb naturalnych czterocyfrowych, w których zapisie dziesiętnym wszystkie cyfry są różne, jest:
Odpowiedzi:
A. 5040 B. 9000
C. 4536 D. 5832
E. 3024 F. 10000
Zadanie 4.  1 pkt ⋅ Numer: pp-11272 ⋅ Poprawnie: 185/285 [64%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Liczba dwucyfrowa jest większa od 35 i składa się z różnych cyfr.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11293 ⋅ Poprawnie: 145/235 [61%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Z cyfr należących do zbioru \{1,8,9\} utworzono liczbę czterocyfrową parzystą.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11938 ⋅ Poprawnie: 139/220 [63%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wszystkich różnych liczb naturalnych pięciocyfrowych, które są nieparzyste i podzielne przez 25, jest:
Odpowiedzi:
A. 10\cdot 10\cdot 10\cdot 2 B. 9\cdot 10\cdot 10\cdot 10\cdot 2
C. 9\cdot 10\cdot 10\cdot 4 D. 9\cdot 10\cdot 2
E. 9\cdot 10\cdot 10\cdot 2 F. 9\cdot 10\cdot 10\cdot 5
Zadanie 7.  1 pkt ⋅ Numer: pp-11292 ⋅ Poprawnie: 181/272 [66%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Na przyjęcie urodzinowe przyszło n osób i każda z tych osób przywitała się z każdym z pozostałych gości.

Ile było wszystkich powitań?

Dane
n=25
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-12022 ⋅ Poprawnie: 506/572 [88%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wszystkich liczb naturalnych czterocyfrowych nieparzystych, w których zapisie dziesiętnym występują tylko cyfry 1, 5, 6 jest:
Odpowiedzi:
A. 54 B. 39
C. 59 D. 60
E. 47 F. 50
Zadanie 9.  1 pkt ⋅ Numer: pp-11265 ⋅ Poprawnie: 325/412 [78%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Na 6 kartkach zapisano wszystkie cyfry ze zbioru \{1,2,3,...,6\}, na każdej kartce jedną cyfrę. Losujemy bez zwracania trzy razy po jednej kartce i z wylosowanych cyfr tworzymy liczbę trzycyfrową.

Ile możemy utworzyć wszystkich takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11300 ⋅ Poprawnie: 77/119 [64%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Numer katalogowy książki składa się z 4 wielkich liter i 7 cyfr. Pierwsza z tych cyfr jest cyfrą kontrolną i jest wyznaczana jednoznacznie na podstawie pozostałych siedmiu znaków.

Ile numerów katalogowych można utworzyć jeśli alfabet ma 26 liter?

Odpowiedzi:
A. 26^{4}\cdot 10^{7} B. 26\cdot 25\cdot 24\cdot 10^{7}
C. 26^{4}\cdot 10^{8} D. 26\cdot 25\cdot 24\cdot 10^{8}
Zadanie 11.  1 pkt ⋅ Numer: pp-11274 ⋅ Poprawnie: 19/40 [47%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Iloczyn wszystkich cyfr liczby naturalnej składającej się z 18 cyfr jest liczbą pierwszą.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-11802 ⋅ Poprawnie: 837/1023 [81%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Wszystkich liczb naturalnych trzycyfrowych o sumie cyfr równej 3 jest
Odpowiedzi:
A. 5 B. 10
C. 4 D. 8
E. 6 F. 16


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm