Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-20-kombinatoryka-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11257 ⋅ Poprawnie: 192/280 [68%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Na płaszczyźnie zaznaczono 10 różnych punktów zielonych i 14 różnych punktów czerwonych.

Ile istnieje odcinków o końcach w tych punktach takich, że punkty końcowe odcinka mają różne kolory?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11301 ⋅ Poprawnie: 279/448 [62%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 W liczbie czterocyfrowej cyfra setek jest o 3 większa od cyfry jedności.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11826 ⋅ Poprawnie: 692/797 [86%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wszystkich liczb naturalnych 9-ciocyfrowych, w których zapisie dziesiętnym cyfry się nie powtarzają jest:
Odpowiedzi:
A. 10\cdot 10\cdot 10\cdot 10\cdot 10\cdot 10\cdot 10\cdot 10\cdot 10 B. 9\cdot 9\cdot 8\cdot 7\cdot 6\cdot 5\cdot 4\cdot 3\cdot 2
C. 9\cdot 10\cdot 10\cdot 10\cdot 10\cdot 10\cdot 10\cdot 10\cdot 10 D. 10\cdot 9\cdot 8\cdot 7\cdot 6\cdot 5\cdot 4\cdot 3\cdot 2
Zadanie 4.  1 pkt ⋅ Numer: pp-11279 ⋅ Poprawnie: 98/155 [63%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 «« Liczba x\in\{2,3,4,5,6,7,8\} i liczba y\in\{ 1,2,3,4,5,6\}. Liczba x\cdot y jest parzysta.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11288 ⋅ Poprawnie: 79/102 [77%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Liczba naturalna czterocyfrowa k spełnia nierówność k \lessdot 5966 i została zapisana za pomocą cyfr ze zbioru \{3,5,7,9\} w taki sposób, że wszystkie jej cyfry są różne.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11902 ⋅ Poprawnie: 262/348 [75%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Rozważamy wszystkie liczby naturalne k=7-cyfrowe, których suma cyfr jest równa 3 i ich zapis zawiera dokładnie trzy różne cyfry.

Wszystkich takich liczb jest:

Odpowiedzi:
A. 14 B. 13
C. 16 D. 12
E. 18 F. 15
Zadanie 7.  1 pkt ⋅ Numer: pp-11259 ⋅ Poprawnie: 79/136 [58%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Przy sklepie, po dwóch stronach ulicy jest po k=10 miejsc parkingowych.

Na ile sposobów można zaparkować na nich sześć samochodów?

Odpowiedzi:
A. 20^2 B. 15\cdot 16\cdot 17\cdot ...\cdot 20
C. 10! D. 10^2
Zadanie 8.  1 pkt ⋅ Numer: pp-12022 ⋅ Poprawnie: 403/495 [81%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wszystkich liczb naturalnych czterocyfrowych nieparzystych, w których zapisie dziesiętnym występują tylko cyfry 1, 3, 8 jest:
Odpowiedzi:
A. 45 B. 36
C. 54 D. 59
E. 63 F. 57
Zadanie 9.  1 pkt ⋅ Numer: pp-11268 ⋅ Poprawnie: 46/72 [63%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 W przedszkolu 4 chłopców i d dziewczynek ustawiało się w szeregu jedno dziecko za drugim w taki sposób, że ani dwaj chłopcy, ani dwie dziewczynki nie stały obok siebie. Wszystkich możliwych ustawień było 2880.

Wyznacz liczbę d.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11442 ⋅ Poprawnie: 52/113 [46%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Ile jest wszystkich liczb naturalnych czterocyfrowych podzielnych przez pi nie większych niż d?
Dane
p=4
d=2025
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11260 ⋅ Poprawnie: 172/311 [55%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Wśród 11 książek są książki A i B.

Na ile sposobów można ustawić te książki na półce w taki sposób, aby książki A i B stały obok siebie?

Odpowiedzi:
A. 20\cdot 9! B. 20\cdot 81
C. 100\cdot 9! D. 110\cdot 9!
Zadanie 12.  1 pkt ⋅ Numer: pp-11298 ⋅ Poprawnie: 11/27 [40%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 » Spośród 6 wierzchołków sześciokąta foremnego, którego najkrótsza przekątna ma długość \sqrt{3}, wybrano w sposób losowy dwa różne.

Ile różnych odcinków o całkowitej długości możemy w ten sposób otrzymać?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm