Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-20-kombinatoryka-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11302 ⋅ Poprawnie: 146/256 [57%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Pierwszy znak 4 znakowego kodu należy do zbioru A=\{1,2,3,...,9\}, a znak ostatni do zbioru B=\{1,2,3,...,4\}.

Ile różnych takich kodów można utworzyć, jeśli każdy znak kodu należy do zbioru A\cup B i znaki skrajne są różne?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11287 ⋅ Poprawnie: 149/229 [65%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 W liczbie naturalnej czterocyfrowej cyfra jedności jest o 4 mniejsza niż cyfra dziesiątek.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11873 ⋅ Poprawnie: 358/471 [76%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wszystkich różnych liczb naturalnych czterocyfrowych nieparzystych podzielnych przez 5 jest:
Odpowiedzi:
A. 9\cdot 8\cdot 7\cdot 1 B. 9\cdot 9\cdot 9\cdot 1
C. 9\cdot 9\cdot 8\cdot 1 D. 9\cdot 10\cdot 10\cdot 1
Zadanie 4.  1 pkt ⋅ Numer: pp-11279 ⋅ Poprawnie: 99/157 [63%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 «« Liczba x\in\{2,3,4,5,6,7,8\} i liczba y\in\{ 1,2,3,4,5,6\}. Liczba x\cdot y jest parzysta.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11285 ⋅ Poprawnie: 120/206 [58%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
Liczba naturalna składa się czterech cyfr, spośród których tylko jedna jest cyfrą nieparzystą.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11902 ⋅ Poprawnie: 280/365 [76%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Rozważamy wszystkie liczby naturalne k=4-cyfrowe, których suma cyfr jest równa 3 i ich zapis zawiera dokładnie trzy różne cyfry.

Wszystkich takich liczb jest:

Odpowiedzi:
A. 8 B. 12
C. 7 D. 10
E. 9 F. 6
Zadanie 7.  1 pkt ⋅ Numer: pp-11292 ⋅ Poprawnie: 178/269 [66%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Na przyjęcie urodzinowe przyszło n osób i każda z tych osób przywitała się z każdym z pozostałych gości.

Ile było wszystkich powitań?

Dane
n=26
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11291 ⋅ Poprawnie: 152/178 [85%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Ze wszystkich cyfr zbioru \{ 1,2,3,4,5,6\} utworzono liczbę całkowitą nieparzystą o niepowtarzających się cyfrach.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11261 ⋅ Poprawnie: 57/75 [76%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Istnieje \frac{17!}{17} wszystkich różnych ustawień na półce k tomowej encyklopedii.

Podaj liczbę k.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11271 ⋅ Poprawnie: 20/50 [40%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » W liczbie składającej się z k=4 cyfr, iloczyn wszystkich cyfr jest równy 105.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11273 ⋅ Poprawnie: 70/131 [53%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Wszystkie litery należące do zbioru \{ a,b,c,d,e,f,g\} ustawiono w ciąg w taki sposób, że litery a i e stoją obok siebie.

Ile jest takich ustawień?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-12132 ⋅ Poprawnie: 89/104 [85%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Wszystkich liczb naturalnych pięciocyfrowych parzystych jest:
Odpowiedzi:
A. 5\cdot 10^4 B. 4\cdot 10^5
C. 9\cdot 5\cdot 10^3 D. 9\cdot 2\cdot 10^3


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm