Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-20-kombinatoryka-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11257 ⋅ Poprawnie: 199/287 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Na płaszczyźnie zaznaczono 12 różnych punktów zielonych i 9 różnych punktów czerwonych.

Ile istnieje odcinków o końcach w tych punktach takich, że punkty końcowe odcinka mają różne kolory?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11258 ⋅ Poprawnie: 765/812 [94%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Pan Modny ma 8 czapek, 6 szalików i 9 kurtek.

Na ile sposobów może się ubrać, jeśli zawsze zakłada szalik, czapkę i kurtkę?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11873 ⋅ Poprawnie: 443/577 [76%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wszystkich różnych liczb naturalnych czterocyfrowych nieparzystych o różnych cyfrach i podzielnych przez 5 jest:
Odpowiedzi:
A. 9\cdot 9\cdot 8\cdot 1 B. 8\cdot 9\cdot 9\cdot 1
C. 9\cdot 10\cdot 9\cdot 1 D. 8\cdot 8\cdot 7\cdot 1
Zadanie 4.  1 pkt ⋅ Numer: pp-11276 ⋅ Poprawnie: 94/118 [79%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Z wszystkich cyfr należących do zbioru \{ 2,3,4,5,6,7,8,9\} wybrano jedną, którą uznano za cyfrę dziesiątek, a następnie drugą większą od poprzedniej, którą uznano za cyfrę jedności.

Ile różnych liczb może w ten sposób powstać?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11288 ⋅ Poprawnie: 81/104 [77%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Liczba naturalna czterocyfrowa k spełnia nierówność k \lessdot 6974 i została zapisana za pomocą cyfr ze zbioru \{3,5,7,9\} w taki sposób, że wszystkie jej cyfry są różne.

Ile jest takich liczb?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11938 ⋅ Poprawnie: 139/220 [63%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wszystkich różnych liczb naturalnych sześciocyfrowych, które są nieparzyste i podzielne przez 25, jest:
Odpowiedzi:
A. 9\cdot 10\cdot 10\cdot 10\cdot 10\cdot 2 B. 10\cdot 10\cdot 10\cdot 10\cdot 2
C. 9\cdot 10\cdot 10\cdot 2 D. 9\cdot 10\cdot 10\cdot 10\cdot 2
E. 9\cdot 10\cdot 10\cdot 10\cdot 5 F. 9\cdot 10\cdot 10\cdot 10\cdot 4
Zadanie 7.  1 pkt ⋅ Numer: pp-11269 ⋅ Poprawnie: 201/304 [66%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Na ile sposobów k=5 osób może usiąść na n=7 krzesłach?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-12022 ⋅ Poprawnie: 506/572 [88%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wszystkich liczb naturalnych pięciocyfrowych nieparzystych, w których zapisie dziesiętnym występują tylko cyfry 2, 3, 7 jest:
Odpowiedzi:
A. 162 B. 147
C. 170 D. 177
E. 163 F. 145
Zadanie 9.  1 pkt ⋅ Numer: pp-11261 ⋅ Poprawnie: 60/79 [75%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Istnieje \frac{22!}{22} wszystkich różnych ustawień na półce k tomowej encyklopedii.

Podaj liczbę k.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11442 ⋅ Poprawnie: 55/117 [47%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Ile jest wszystkich liczb naturalnych czterocyfrowych podzielnych przez pi nie większych niż d?
Dane
p=5
d=2026
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11273 ⋅ Poprawnie: 71/133 [53%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Wszystkie litery należące do zbioru \{ a,b,c,d,e,f,g\} ustawiono w ciąg w taki sposób, że litery c i f stoją obok siebie.

Ile jest takich ustawień?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-12132 ⋅ Poprawnie: 97/113 [85%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Wszystkich liczb naturalnych pięciocyfrowych parzystych jest:
Odpowiedzi:
A. 4\cdot 10^5 B. 5\cdot 10^4
C. 9\cdot 5\cdot 10^3 D. 9\cdot 2\cdot 10^3


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm