Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-log-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11211 ⋅ Poprawnie: 162/263 [61%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wskaż argument, dla którego funkcja określona wzorem f(x)=(\sqrt{2})^x przyjmuje wartość 3:
Odpowiedzi:
A. \log_{3}{4} B. \log_{2}{9}
C. \frac{\log_{2}{3}}{2} D. 3\cdot \log_{2}{9}
E. \log_{3}{3} F. \log_{2}{3}
Zadanie 2.  1 pkt ⋅ Numer: pp-11215 ⋅ Poprawnie: 205/370 [55%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dana jest funkcja f(x)=3^{x-4}.

Wskaż rozwiązanie nierówności f(x) > 0:

Odpowiedzi:
A. \mathbb{R} B. (-\infty,0\rangle
C. (-\infty,0) D. \emptyset
E. (0,+\infty) F. (-4,+\infty)
Zadanie 3.  1 pkt ⋅ Numer: pp-11214 ⋅ Poprawnie: 235/398 [59%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 Zbiór wartości funkcji f(x)=9^{-x}-6 ma postać:
Odpowiedzi:
A. \langle p, +\infty) B. (-\infty, p)
C. (p, q) D. (p,+\infty)
E. \langle p, q\rangle F. (-\infty, p\rangle
Podpunkt 3.2 (0.8 pkt)
 Zapisz ten zbiór w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11210 ⋅ Poprawnie: 68/167 [40%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Równość f(x)=10, jeśli f(x)=17^{2x}, zachodzi dla x=-\log_{17}{p}.

Podaj liczbę p.

Odpowiedź:
p= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10152 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
Wyznacz dziedzinę funkcji określonej wzorem g(x)=\log_{31}{(\left\log_{31^{-1}}{\left(\log_{31}{x}\right)}\right)} i zapisz ją w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
x_{min}= (wpisz liczbę zapisaną dziesiętnie)
x_{max}= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pr-20320 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Rozwiąż równanie 7\cdot 4^{x+1-a}-2^{2x+3-2a}=26+7\cdot 4^{x-a} .

Podaj największe rozwiązanie tego równania.

Dane
a=-3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20551 ⋅ Poprawnie: 16/33 [48%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Rozwiąż nierówność: 3^{3x+3a+1}-4\cdot 27^{x+a-1}+9^{\frac{3}{2}(x+a)-1} \lessdot 80

Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.

Dane
a=-8
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20314 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
Miejscem zerowym funkcji f(x)=\log_{p}{(x-q)}+r jest liczba 1, a do jej wykresu należy punkt P=(-1,-1). Wiedząc, że prosta x=-2 jest asymptotą pionową wykresu tej funkcji, wyznacz p,q,r.

Podaj p.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Podaj q+r.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pp-30174 ⋅ Poprawnie: 26/93 [27%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Pierwiastkiem wielomianu W(x)=3x^3-x^2-4amx+4 jest liczba \frac{3^{2\sqrt{27}+2}}{27^{2\sqrt{3}+1}}.

Wyznacz m.

Dane
a=3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Wyznacz wszystkie pierwiastki tego wielomianu.

Podaj ich sumę.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pr-30229 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Dane są funkcje f(x)=-m^x+a oraz g(x)=m^{|x-1|}+a. Punkt B=(2, 0) należy do wykresu funkcji f.

Podaj m.

Dane
a=4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Dla jakich wartości parametru p równanie g(x)=p ma rozwiązania.

Podaj najmniejsze możliwe p.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
 Podaj najmniejszą całkowitą wartość parametru p, dla której równanie g(x)=p ma dwa rozwiązania.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pr-30226 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 » Wykres funkcji f(x)=\frac{2^{x-1}-a}{4} jest symetryczny względem osi Ox do wykresu funkcji g.
Napisz wzór funkcji g. Rozwiąż nierówność g(x) \lessdot 0.

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=16
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
 Ile liczb całkowitych z przedziału (-10,10) spełnia tę nierówność?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm