Podgląd testu : lo2@sp-fun-wyk-log-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pr-10165 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 1.1 (0.2 pkt)
Dziedziną funkcji określonej wzorem
g(x)=\frac{3\sqrt{3}}{\sqrt{\left(\frac{1}{a}\right)^x-b}}
jest zbiór postaci:
Dane
a=3
b=243
Odpowiedzi:
A. (-\infty, p\rangle
B. \langle p,+\infty)
C. (p, q)
D. (-\infty, p)
E. (p,+\infty)
F. \langle p, q\rangle
Podpunkt 1.2 (0.8 pkt)
Zapisz tę dziedzinę w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych
tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 2. 1 pkt ⋅ Numer: pp-11197 ⋅ Poprawnie: 232/408 [56%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Dana jest funkcja
f(x)=3^{4x} .
Do jej wykresu nie należy punkt:
Odpowiedzi:
A. A=\left(\frac{1}{4},3\right)
B. A=\left(-\frac{1}{2},-\frac{1}{9}\right)
C. A=\left(-\frac{1}{4},\frac{1}{3}\right)
D. A=(0,1)
Zadanie 3. 1 pkt ⋅ Numer: pp-11212 ⋅ Poprawnie: 119/182 [65%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Dana jest funkcja
f(x)=4^x+1 .
Oblicz wartość funkcji określonej wzorem g(x)=f(x-6)
dla argumentu x=7 .
Odpowiedź:
g(7)=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11209 ⋅ Poprawnie: 113/145 [77%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Podaj wspólne rozwiązanie równań
5^{x^2}\cdot \sqrt{5}=5^{\frac{51}{2}}
oraz
\log_{\frac{1}{5}}{x}=-1 .
Odpowiedź:
x_0=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pr-10150 ⋅ Poprawnie: 24/25 [96%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Odpowiedzi:
A. 64^{\log_{16}{3}}=27
B. 16^{\log_{4}{3}}=9
C. 16^{\log_{4}{3}}=27
D. 64^{\log_{4}{3}}=9
Zadanie 6. 2 pkt ⋅ Numer: pp-20566 ⋅ Poprawnie: 44/66 [66%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
« Rozwiąż równanie:
\left(\frac{5}{6}\right)^{\frac{4}{ax}}\cdot \left(\frac{6}{5}\right)^{2-ax}=\frac{25}{36}
.
Podaj rozwiązanie tego równania.
Dane
a=4
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pp-20546 ⋅ Poprawnie: 16/54 [29%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Rozwiąż nierówność
\left(\frac{1}{2}\right)^{x+a}+\left(\frac{1}{2}\right)^{x+b} > 3
.
Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.
Dane
a=-4
b=-3
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Ile liczb całkowitych z przedziału z przedziału
\langle -10,10\rangle spełnia tę nierówność.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 2 pkt ⋅ Numer: pr-20313 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Dana jest funkcja
g(x)=x^2+\log_{1024}{x}\cdot |2\log_{x}{32}|-4
.
Wyznacz
ZW_g .
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę tych wszystkich
końców przedziałów, które są liczbami.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Podaj długość najkrótszego z tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 4 pkt ⋅ Numer: pr-30234 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Wykres funkcji
f(x)=c^x zawiera punkt
A=(2\log_{2}{a},b) .
Podaj c .
Dane
a=13
b=169
q=3
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Funkcja
g określona jest wzorem
g(x)=|f(x+1)-q| .
Naszkicuj wykres funkcji
g i na jego podstawie ustal,
dla których
m równanie
g(x)=m ma dokładnie jedno rozwiązanie.
Ile liczb całkowitych m\in\langle -10,10\rangle
spełnia warunki zadania?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
Podaj najmniejszą dodatnią wartość
m , która spełnia
warunki zadania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 4 pkt ⋅ Numer: pr-30229 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
Dane są funkcje
f(x)=-m^x+a oraz
g(x)=m^{|x-1|}+a .
Punkt
B=(2, 0) należy do wykresu funkcji
f .
Podaj m .
Dane
a=5
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
Dla jakich wartości parametru
p równanie
g(x)=p ma rozwiązania.
Podaj najmniejsze możliwe p .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
Podaj najmniejszą całkowitą wartość parametru
p ,
dla której równanie
g(x)=p ma dwa rozwiązania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 11. 4 pkt ⋅ Numer: pp-30177 ⋅ Poprawnie: 5/47 [10%]
Rozwiąż
Podpunkt 11.1 (4 pkt)
«« Rozwiąż nierówność
\left(\frac{1}{3}\right)^{2+5+8+...+(3x-1)}\ge \left(\frac{1}{9}\right)^{ax}
.
Podaj największą liczbę całkowitą spełniającą tę nierówność.
Dane
a=22
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż