Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-log-pr-2

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10161  
Podpunkt 1.1 (0.2 pkt)
 » Zbiorem wartości funkcji f(x)=\left|a+5^{3-x}\right| jest zbiór postaci:
Dane
a=-4
Odpowiedzi:
A. (-\infty, p\rangle B. \langle p, q\rangle
C. (p, q) D. \langle p,+\infty)
E. (p,+\infty) F. (-\infty, p)
Podpunkt 1.2 (0.8 pkt)
 Zapisz ten zbiór w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11200  
Podpunkt 2.1 (1 pkt)
 Dana jest funkcja f(x)=a^x. Punkt A=(p, q) należy do wykresu tej funkcji.

Podaj liczbę a.

Dane
p=3
q=125
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11198  
Podpunkt 3.1 (1 pkt)
 Funkcją malejącą jest funkcja określona wzorem:
Odpowiedzi:
A. h(x)=\left(\frac{1}{4}\right)^{4-x} B. h(x)=\left(\frac{1}{4}\right)^{-x}
C. h(x)=4^{2-x} D. h(x)=-4^{-x}
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11195  
Podpunkt 4.1 (1 pkt)
 » Dana jest funkcja g(x)=a^x.

Funkcja określona wzorem h(x)=c+g(x-b) z prostą o równaniu y-d=0:

Dane
a=4
b=1
c=1
d=4
Odpowiedzi:
A. ma nieskończenie wiele punktów wspólnych B. ma dokładnie dwa punkty wspólne
C. ma dokładnie jeden punkt wspólny D. nie ma punktów wspólnych
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10150  
Podpunkt 5.1 (1 pkt)
 Wskaż równość prawdziwą:
Odpowiedzi:
A. 9^{\log_{3}{3}}=27 B. 27^{\log_{3}{3}}=9
C. 27^{\log_{9}{3}}=27 D. 9^{\log_{3}{3}}=9
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20326  
Podpunkt 6.1 (1 pkt)
 « Dana jest funkcja f(x)= \begin{cases} 3^{-x} \text{, dla } x \lessdot 0 \\ -(x+a)^2+b \text{, dla } x\geqslant 0 \end{cases} . Ustal liczbę rozwiąząń równania f(x)=m w zależności od wartości parametru m.

Podaj długość przedziału tych wartości m, dla których równanie to ma dokładnie trzy rozwiązania.

Dane
a=-2
b=5
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj największą wartość m, dla której równanie ma dokładnie dwa rozwiązania.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20560  
Podpunkt 7.1 (2 pkt)
 Rozwiąż nierówność: \left(\frac{4}{25}\right)^{x+a}\cdot \left(\frac{125}{8}\right)^{x+a} \lessdot \left(\frac{5}{2}\right)^{2x+2a+9} .

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=-4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20313  
Podpunkt 8.1 (1 pkt)
« Dana jest funkcja g(x)=x^2+\log_{1024}{x}\cdot |2\log_{x}{32}|-4 . Wyznacz ZW_g.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę tych wszystkich końców przedziałów, które są liczbami.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Podaj długość najkrótszego z tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30232  
Podpunkt 9.1 (1 pkt)
 « Dane jest równanie \left|\frac{a^{x+1}-1}{a^x}\right|=m z parametrem m\in\mathbb{R}.

Wyznacz najmniejszą wartość m, dla której równanie to ma dokładnie jedno rozwiązanie.

Dane
a=4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj najmniejszą dodatnią wartość m, dla której równanie ma dokładnie jedno rozwiązanie.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (2 pkt)
 Wyznacz zbiór tych wartości parametru m, dla których równanie to ma dokładnie dwa rozwiązania.

Zbiór ten zapisz w postaci przedziału. Podaj długość tego przedziału.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  (6 pkt) [ Dodaj do testu ]  Numer zadania: pr-30230  
Podpunkt 10.1 (1 pkt)
 « Dane jest równanie (k-1)^2x^2+(k-2)x+1=0, gdzie k\neq -1. Funkcja g przyporządkowuje liczbie k liczbę g(k)=2^{\frac{1}{x_1}+\frac{1}{x_2}}, gdzie x_1,x_2 są różnymi pierwiastkami tego równania. Wyznacz D_g=(a, b).

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (2 pkt)
 Zbiorem wartości funkcji g jest przedział ZW_g=(\sqrt[3]{c},d).

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.4 (2 pkt)
 Podaj d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30177  
Podpunkt 11.1 (4 pkt)
 «« Rozwiąż nierówność \left(\frac{1}{3}\right)^{2+5+8+...+(3x-1)}\ge \left(\frac{1}{9}\right)^{ax} .

Podaj największą liczbę całkowitą spełniającą tę nierówność.

Dane
a=10
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm