Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-log-pr-2

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11211  
Podpunkt 1.1 (1 pkt)
 Wskaż argument, dla którego funkcja określona wzorem f(x)=(\sqrt{a})^x przyjmuje wartość b:
Dane
a=5
b=6
Odpowiedzi:
A. \frac{\log_{5}{6}}{2} B. 6\cdot \log_{5}{36}
C. \log_{6}{6} D. \log_{5}{36}
E. \log_{5}{6} F. \log_{6}{25}
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11201  
Podpunkt 2.1 (1 pkt)
 Funkcja g(x)=4^{ax+1} przyjmuje wartość:
Dane
a=6
Odpowiedzi:
A. -\frac{\pi}{2} B. -\sqrt{5}
C. 0 D. \frac{\sqrt{5}}{5}
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11192  
Podpunkt 3.1 (0.2 pkt)
 » Dana jest funkcja g(x)=-3^{a-x}+b.

Zbiór ZW_g ma postać:

Dane
a=3
b=-1
Odpowiedzi:
A. (-\infty,p) B. (-\infty, p\rangle
C. \langle p, q\rangle D. (p, q)
E. (-\infty, p)\cup(q, +\infty) F. \langle p, +\infty)
Podpunkt 3.2 (0.8 pkt)
 Zapisz ten zbiór w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11219  
Podpunkt 4.1 (1 pkt)
 » Dana jest funkcja f(x)=3^{x-a}+b.

Wyznacz miejsce zerowe funkcji określonej wzorem g(x)=f(x+1)-4.

Dane
a=8
b=-239
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10164  
Podpunkt 5.1 (1 pkt)
 » Rozwiązaniem nierówności 7^{x+a}\leqslant 3 jest pewien przedział liczbowy, którego jednym z końców jest liczba postaci \log_{p}{b}+c, gdzie p,b,c\in\mathbb{Z}.

Podaj wartości parametrów p, b i c.

Dane
a=5
Odpowiedzi:
p= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
c= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20573  
Podpunkt 6.1 (2 pkt)
 Rozwiąż równanie: \left(\frac{a}{b}\right)^{cx+d}=\left(\frac{b}{a}\right)^{ex+f}

Podaj rozwiązanie tego równania.

Dane
a=11
b=6
c=1
d=4
e=2
f=-4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20557  
Podpunkt 7.1 (2 pkt)
 Rozwiąż nierówność: \left(\frac{1}{81}\right)^{|x+a|} > \left(3\sqrt[3]{3}\right)^3 .

Ile liczb całkowitych z przedziału \langle 0,100\rangle spełnia tę nierówność?

Dane
a=5
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20314  
Podpunkt 8.1 (1 pkt)
Miejscem zerowym funkcji f(x)=\log_{p}{(x-q)}+r jest liczba 1, a do jej wykresu należy punkt P=(-1,-1). Wiedząc, że prosta x=-2 jest asymptotą pionową wykresu tej funkcji, wyznacz p,q,r.

Podaj p.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Podaj q+r.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30232  
Podpunkt 9.1 (1 pkt)
 « Dane jest równanie \left|\frac{a^{x+1}-1}{a^x}\right|=m z parametrem m\in\mathbb{R}.

Wyznacz najmniejszą wartość m, dla której równanie to ma dokładnie jedno rozwiązanie.

Dane
a=7
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj najmniejszą dodatnią wartość m, dla której równanie ma dokładnie jedno rozwiązanie.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (2 pkt)
 Wyznacz zbiór tych wartości parametru m, dla których równanie to ma dokładnie dwa rozwiązania.

Zbiór ten zapisz w postaci przedziału. Podaj długość tego przedziału.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30238  
Podpunkt 10.1 (1 pkt)
 « Naszkicuj wykres funkcji f(x)=\left|a^{x+1}-b\right|.

Podaj największą wartość tej funkcji w przedziale \langle -1,2\rangle.

Dane
a=9
b=10
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Podaj najmniejszą wartość tej funkcji w przedziale \langle -1,2\rangle.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (2 pkt)
 Dla jakich wartości parametru m równanie f(x)=m ma dwa rozwiązania?

Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30175  
Podpunkt 11.1 (2 pkt)
 Rozwiąż nierówność 14\cdot 15^{\frac{3a}{x}}+3^{\frac{3a}{x}}\cdot 5^{\frac{3a}{x}}\leqslant 1 .

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=7
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm