Podgląd testu : lo2@sp-fun-wyk-log-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pr-10162 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 1.1 (1 pkt)
Punkt
P=\left(x_0,\frac{1}{y_0}\right) należy do
wykresu funkcji wykładniczej określonej wzorem
y=a^x .
Do wykresu tej funkcji należy też punkt:
Dane
x_0=2
y_0=2
Odpowiedzi:
A. \left(1,\frac{1}{4}\right)
B. \left(3,\frac{1}{2\sqrt{2}}\right)
C. \left(1,\frac{\sqrt{2}}{2\sqrt{2}}\right)
D. \left(3,\frac{1}{1}\right)
Zadanie 2. 1 pkt ⋅ Numer: pp-11208 ⋅ Poprawnie: 84/217 [38%]
Rozwiąż
Podpunkt 2.1 (0.2 pkt)
Funkcja
h(x)=(-m+5)^x jest malejąca, wtedy i tylko wtedy, gdy
parametr
m należy do pewnego zbioru.
Zbiór ten ma postać:
Odpowiedzi:
A. (-\infty, p)
B. \langle p, +\infty)
C. (p, +\infty)
D. (-\infty, p\rangle
E. (-\infty, p)\cup(q, +\infty)
F. (p, q)
Podpunkt 2.2 (0.8 pkt)
Zapisz ten zbiór w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11206 ⋅ Poprawnie: 131/229 [57%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
» Wykres funkcji
f(x)=\frac{1}{16}\cdot 2^x otrzymamy
przesuwając wykres funkcji
g(x)=2^x o:
Odpowiedzi:
A. cztery jednostki w lewo
B. dwie jednostki w górę
C. cztery jednostki w dół
D. cztery jednostki w prawo
Zadanie 4. 1 pkt ⋅ Numer: pp-11202 ⋅ Poprawnie: 303/402 [75%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Do wykresu funkcji określonej wzorem
f(x)=3^x+m należy punkt
o współrzędnych
P=(2,-9) .
Wyznacz wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pr-10164 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
» Rozwiązaniem nierówności
7^{x+a}\leqslant 3
jest pewien przedział liczbowy, którego jednym z końców jest liczba postaci
\log_{p}{b}+c ,
gdzie
p,b,c\in\mathbb{Z} .
Podaj wartości parametrów p , b i
c .
Dane
a=-8
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pp-20563 ⋅ Poprawnie: 11/32 [34%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
« Rozwiąż równanie:
7\cdot 4^{ax}-2^{2ax+1}=26+7\cdot 4^{ax-1}
Podaj rozwiązanie tego równania.
Dane
a=-5
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pp-20548 ⋅ Poprawnie: 21/32 [65%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
» Rozwiąż nierówność:
\frac{7^{ax^2}}{(\sqrt{7})^{bx+0,5}}\leqslant \sqrt[4]{7}
.
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=4
b=2
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 2 pkt ⋅ Numer: pr-20294 ⋅ Poprawnie: 11/15 [73%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Wyznacz wartości parametrów
p i
q wiedząc, że dziedziną funkcji
f(x)=\log_{\frac{1}{2}}{(x-p)}+q jest przedział
(-5,+\infty) i do wykresu należy punkt
P=\left(59,-3\right) .
Podaj p .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 4 pkt ⋅ Numer: pr-30228 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Naszkicuj wykresy funkcji
f(x)=2^x i
g(x)=|f(x-a)-b| .
Podaj najmniejszą wartość funkcji g w przedziale
\langle p,q\rangle .
Dane
a=-4
b=64
p=-4
q=2
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Podaj największą wartość funkcji
g w tym przedziale.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
Podaj miejsce zerowe funkcji
g .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 4 pkt ⋅ Numer: pr-30229 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
Dane są funkcje
f(x)=-m^x+a oraz
g(x)=m^{|x-1|}+a .
Punkt
B=(2, 0) należy do wykresu funkcji
f .
Podaj m .
Dane
a=3
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
Dla jakich wartości parametru
p równanie
g(x)=p ma rozwiązania.
Podaj najmniejsze możliwe p .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
Podaj najmniejszą całkowitą wartość parametru
p ,
dla której równanie
g(x)=p ma dwa rozwiązania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 11. 4 pkt ⋅ Numer: pp-30176 ⋅ Poprawnie: 8/37 [21%]
Rozwiąż
Podpunkt 11.1 (4 pkt)
« Rozwiąż nierówność
a^{1+6+11+...+(5x-4)} \leqslant b^c
.
Podaj największą liczbę całkowitą spełniającą tę nierówność.
Dane
a=2
b=8
c=13
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż