Podgląd testu : lo2@sp-fun-wyk-log-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pr-10162 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 1.1 (1 pkt)
Punkt
P=\left(x_0,\frac{1}{y_0}\right) należy do
wykresu funkcji wykładniczej określonej wzorem
y=a^x .
Do wykresu tej funkcji należy też punkt:
Dane
x_0=10
y_0=32
Odpowiedzi:
A. \left(9,\frac{\sqrt{2}}{32\sqrt{2}}\right)
B. \left(11,\frac{1}{32\sqrt{2}}\right)
C. \left(11,\frac{1}{16}\right)
D. \left(9,\frac{1}{64}\right)
Zadanie 2. 1 pkt ⋅ Numer: pp-11199 ⋅ Poprawnie: 97/210 [46%]
Rozwiąż
Podpunkt 2.1 (0.2 pkt)
» Funkcja
f(x)=(9\cdot m+4)^x jest rosnąca wtedy i tylko wtedy gdy
liczba
m należy do pewnego przedziału.
Przedział ten ma postać:
Odpowiedzi:
A. (-\infty,p\rangle
B. \langle p, q\rangle
C. (p, q)
D. (-\infty,p)
E. \langle p, +\infty)
F. (p, +\infty)
Podpunkt 2.2 (0.8 pkt)
Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11198 ⋅ Poprawnie: 241/398 [60%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Funkcją malejącą jest funkcja określona wzorem:
Odpowiedzi:
A. h(x)=6^{4-x}
B. h(x)=\left(\frac{1}{6}\right)^{-x}
C. h(x)=-6^{-x}
D. h(x)=\left(\frac{1}{6}\right)^{6-x}
Zadanie 4. 1 pkt ⋅ Numer: pp-11210 ⋅ Poprawnie: 68/167 [40%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Równość
f(x)=14 , jeśli
f(x)=10^{2x} , zachodzi dla
x=-\log_{10}{p} .
Podaj liczbę p .
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pr-10158 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Wyznacz liczbę p , dla której prawdziwa jest równość
\log_{\sqrt{2}}{(2+\log_{2}{p})}=0 .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 6. 2 pkt ⋅ Numer: pp-20578 ⋅ Poprawnie: 23/39 [58%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Rozwiąż równanie:
2^{2x+2a-1}+4^{x+a}=24
Podaj najmniejsze rozwiązanie tego równania.
Dane
a=5
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pp-20547 ⋅ Poprawnie: 25/71 [35%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Rozwiąż nierówność:
\left(\frac{5}{7}\right)^{x^2+bx} \geqslant \left(\frac{7}{5}\right)^{c}
.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich tych
końców przedziałów, które są liczbami.
Dane
b=1
c=-6
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 2 pkt ⋅ Numer: pr-20314 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (1 pkt)
Miejscem zerowym funkcji
f(x)=\log_{p}{(x-q)}+r jest
liczba
1 , a do jej wykresu należy punkt
P=(-1,-1) . Wiedząc, że prosta
x=-2 jest asymptotą pionową wykresu tej funkcji,
wyznacz
p,q,r .
Podaj p .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Podaj q+r .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 4 pkt ⋅ Numer: pp-30182 ⋅ Poprawnie: 14/109 [12%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
» Dla jakich wartości parametru
m funkcja
g(x)=\left(2-\frac{a}{2}m^2\right)^x jest
malejąca.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj największy z końców
tych przedziałów.
Dane
a=16
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Podaj największy z ujemnych końców tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 4 pkt ⋅ Numer: pr-30236 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
Dane są funkcje
f(x)=2^{ax-4} i
g(x)=5-\left(\frac{1}{2}\right)^{ax-6} .
Rozwiąż nierówność
f(x)\leqslant g(x) .
Jaka największa liczba spełnia tę nierówność?
Dane
a=6
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
Podaj najmniejszą liczbę spełniającą tę nierówność.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 11. 4 pkt ⋅ Numer: pp-30175 ⋅ Poprawnie: 28/50 [56%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
Rozwiąż nierówność
14\cdot 15^{\frac{3a}{x}}+3^{\frac{3a}{x}}\cdot 5^{\frac{3a}{x}}\leqslant 1
.
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=5
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż