Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-log-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pr-10166 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
« Do wykresu funkcji określonej wzorem g(x)=-\frac{a^x}{b} należą punkty P=(-2,4) i Q=(-1,3).

Wówczas:

Odpowiedzi:
A. a\cdot b=-3 B. a\cdot b=-1\frac{11}{16}
C. a-b=1\frac{7}{36} D. a-b=3
Zadanie 2.  1 pkt ⋅ Numer: pp-11190 ⋅ Poprawnie: 154/306 [50%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wykres funkcji g(x)=-a^{x-b} zawiera punkt:
Dane
a=2
b=3
Odpowiedzi:
A. A=(3,-4) B. A=(5,-4)
C. A=(5,-2) D. A=(3,4)
Zadanie 3.  1 pkt ⋅ Numer: pp-11213 ⋅ Poprawnie: 491/627 [78%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
« Wykres funkcji f(x)=2^{x-3} przedstawia rysunek:
Odpowiedzi:
A. A B. C
C. B D. D
Zadanie 4.  1 pkt ⋅ Numer: pp-11210 ⋅ Poprawnie: 68/167 [40%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Równość f(x)=16, jeśli f(x)=3^{2x}, zachodzi dla x=-\log_{3}{p}.

Podaj liczbę p.

Odpowiedź:
p= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10160 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
Oblicz sumę kwadratów miejsc zerowych funkcji określonej wzorem g(x)=\log_{2\sqrt{2}}{(|x|-2)}.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20561 ⋅ Poprawnie: 54/103 [52%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Rozwiąż równanie \left(\frac{1}{a}\right)^{x+1}\cdot a^{\frac{1}{x}}=\sqrt{a^x}\cdot a^{-1} .

Podaj największe z rozwiązań.

Dane
a=3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20559 ⋅ Poprawnie: 35/94 [37%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Rozwiąż nierówność: \left(\frac{2}{3}\right)^{ax+2}\cdot \left(\frac{3}{2}\right)^{2ax+1} > \left(\frac{27}{8}\right)^{ax-3} .

Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.

Dane
a=2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20296 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
Dla jakich wartości parametru m\in\mathbb{R} dziedziną funkcji g(x)=\log{ \left( \frac{m}{2x^2+2mx+\frac{m}{2}+3} \right) } . jest zbiór \mathbb{R}.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę tych wszystkich końców przedziałów, które są liczbami.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Podaj długość rozwiązania.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pr-30228 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Naszkicuj wykresy funkcji f(x)=2^x i g(x)=|f(x-a)-b|.

Podaj najmniejszą wartość funkcji g w przedziale \langle p,q\rangle.

Dane
a=-4
b=64
p=-4
q=4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
 Podaj największą wartość funkcji g w tym przedziale.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
 Podaj miejsce zerowe funkcji g.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  6 pkt ⋅ Numer: pr-30230 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Dane jest równanie (k-2)^2x^2+(k-3)x+1=0, gdzie k\neq -1. Funkcja g przyporządkowuje liczbie k liczbę g(k)=2^{\frac{1}{x_1}+\frac{1}{x_2}}, gdzie x_1,x_2 są różnymi pierwiastkami tego równania. Wyznacz D_g=(a, b).

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (2 pkt)
 Zbiorem wartości funkcji g jest przedział ZW_g=(\sqrt[3]{c},d).

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.4 (2 pkt)
 Podaj d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pr-30225 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Wykres funkcji f(x)=2^x-a jest symetryczny względem osi Ox do wykresu funkcji g.
Napisz wzór funkcji g i rozwiąż nierówność f(x)\geqslant g(x).

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
 Ile liczb naturalnych z przedziału \langle 1,20\rangle spełnia tę nierówność?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm