Podgląd testu : lo2@sp-fun-wyk-log-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11211 ⋅ Poprawnie: 162/263 [61%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wskaż argument, dla którego funkcja określona wzorem
f(x)=(\sqrt{5})^x
przyjmuje wartość
11 :
Odpowiedzi:
A. \log_{5}{121}
B. \log_{11}{11}
C. \log_{5}{11}
D. \log_{11}{25}
E. 11\cdot \log_{5}{121}
F. \frac{\log_{5}{11}}{2}
Zadanie 2. 1 pkt ⋅ Numer: pp-11216 ⋅ Poprawnie: 78/190 [41%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Wyznacz ilość rozwiązań układu równań
\begin{cases}y=-9x+3 \\y=5^{x-4}\end{cases} .
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11213 ⋅ Poprawnie: 491/627 [78%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Wykres funkcji
f(x)=2^{x-3} przedstawia rysunek:
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-11209 ⋅ Poprawnie: 113/145 [77%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Podaj wspólne rozwiązanie równań
9^{x^2}\cdot 3=9^{\frac{163}{2}}
oraz
\log_{\frac{1}{9}}{x}=-1 .
Odpowiedź:
x_0=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pr-10152 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Wyznacz dziedzinę funkcji określonej wzorem
g(x)=\log_{31}{(\left\log_{31^{-1}}{\left(\log_{31}{x}\right)}\right)}
i zapisz ją w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pr-20322 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (2 pkt)
Rozwiąż równanie
4\cdot 2^{x+a}=4^{x-6+a}
.
Podaj największe z rozwiązań.
Dane
a=5
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pp-20552 ⋅ Poprawnie: 15/36 [41%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Rozwiąż nierówność:
4\cdot \left(\sqrt{8}\right)^{ax}\leqslant
\left(\frac{2\sqrt{2}}{16}\right)^{-2-ax}
.
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=8
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 2 pkt ⋅ Numer: pr-20296 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (1 pkt)
Dla jakich wartości parametru
m\in\mathbb{R}
dziedziną funkcji
g(x)=\log{
\left(
\frac{m}{2x^2+2mx+\frac{m}{2}+3}
\right)
}
.
jest zbiór
\mathbb{R} .
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę tych wszystkich
końców przedziałów, które są liczbami.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Podaj długość rozwiązania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 4 pkt ⋅ Numer: pr-30232 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Dane jest równanie
\left|\frac{a^{x+1}-1}{a^x}\right|=m z parametrem
m\in\mathbb{R} .
Wyznacz najmniejszą wartość m , dla której równanie to
ma dokładnie jedno rozwiązanie.
Dane
a=8
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Podaj najmniejszą dodatnią wartość
m , dla której
równanie ma dokładnie jedno rozwiązanie.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.3 (2 pkt)
Wyznacz zbiór tych wartości parametru
m , dla których
równanie to ma dokładnie dwa rozwiązania.
Zbiór ten zapisz w postaci przedziału. Podaj długość tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 4 pkt ⋅ Numer: pr-30236 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
Dane są funkcje
f(x)=2^{ax-4} i
g(x)=5-\left(\frac{1}{2}\right)^{ax-6} .
Rozwiąż nierówność
f(x)\leqslant g(x) .
Jaka największa liczba spełnia tę nierówność?
Dane
a=12
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
Podaj najmniejszą liczbę spełniającą tę nierówność.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 11. 4 pkt ⋅ Numer: pr-30224 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Dla jakich wartości
x funkcja
f(x)=\log_{3}{(ax+b)} przyjmuje wartości mniejsze
od
2 ?
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=8
b=-2
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż