Podgląd testu : lo2@sp-fun-wyk-log-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pr-10166 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Do wykresu funkcji określonej wzorem
g(x)=-\frac{a^x}{b} należą
punkty
P=(-2,4) i
Q=(-1,3) .
Wówczas:
Odpowiedzi:
A. a-b=3
B. a\cdot b=-1\frac{11}{16}
C. a-b=1\frac{7}{36}
D. a\cdot b=-3
Zadanie 2. 1 pkt ⋅ Numer: pp-11216 ⋅ Poprawnie: 78/190 [41%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Wyznacz ilość rozwiązań układu równań
\begin{cases}y=-7x-3 \\y=2^{x-4}\end{cases} .
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11204 ⋅ Poprawnie: 208/479 [43%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Przesuwając wykres funkcji wykładniczej
f(x)=\left(\frac{1}{a}\right)^x o dwie jednostki
w prawo otrzymamy wykres funkcji
g określonej wzorem:
Odpowiedzi:
A. g(x)=9\cdot\left(\frac{1}{9}\right)^{x+1}
B. g(x)=81\cdot\left(\frac{1}{9}\right)^x
C. g(x)=\left(\frac{1}{9}\right)^{x}-2
D. g(x)=\left(\frac{1}{9}\right)^{x}+2
Zadanie 4. 1 pkt ⋅ Numer: pp-11205 ⋅ Poprawnie: 72/114 [63%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Do wykresu funkcji określonej wzorem
f(x)=a^x należy punkt
o współrzędnych
A=\left(\frac{3}{2},\frac{\sqrt{11}}{121}\right) .
Wyznacz wartość parametru a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pr-10155 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Wykres funkcji określonej wzorem
y=\log_{a}{\frac{x}{b}} powstaje z
przesunięcia wykresu funkcji opisanej wzorem
y=\log_{a}{x} o pewien
wektor
\vec{u}=[p,q] .
Wyznacz liczby p i q .
Dane
a=5
b=125
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pr-20325 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (2 pkt)
Rozwiąż równanie
9^{\frac{x-a}{2}-1}+3^{x-a}=7290
.
Podaj największe z rozwiązań.
Dane
a=1
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pp-20552 ⋅ Poprawnie: 15/36 [41%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Rozwiąż nierówność:
4\cdot \left(\sqrt{8}\right)^{ax}\leqslant
\left(\frac{2\sqrt{2}}{16}\right)^{-2-ax}
.
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=6
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 2 pkt ⋅ Numer: pr-20308 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (2 pkt)
Dla jakich wartości parametru
m równanie
1-3x=\log_{3}{m} ma rozwiązanie dodatnie?
Podaj najmniejsze dodatnie m , które nie spełnia
tego warunku.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 4 pkt ⋅ Numer: pp-30174 ⋅ Poprawnie: 26/93 [27%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Pierwiastkiem wielomianu
W(x)=3x^3-x^2-4amx+4 jest
liczba
\frac{3^{2\sqrt{27}+2}}{27^{2\sqrt{3}+1}} .
Wyznacz m .
Dane
a=5
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Wyznacz wszystkie pierwiastki tego wielomianu.
Podaj ich sumę.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 4 pkt ⋅ Numer: pr-30238 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Naszkicuj wykres funkcji
f(x)=\left|a^{x+1}-b\right| .
Podaj największą wartość tej funkcji w przedziale
\langle -1,2\rangle .
Dane
a=8
b=9
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
Podaj najmniejszą wartość tej funkcji w przedziale
\langle -1,2\rangle .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.3 (2 pkt)
Dla jakich wartości parametru
m równanie
f(x)=m ma dwa rozwiązania?
Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 11. 4 pkt ⋅ Numer: pp-30175 ⋅ Poprawnie: 28/50 [56%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
Rozwiąż nierówność
14\cdot 15^{\frac{3a}{x}}+3^{\frac{3a}{x}}\cdot 5^{\frac{3a}{x}}\leqslant 1
.
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=6
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż