Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-log-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pr-10165 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (0.2 pkt)
 Dziedziną funkcji określonej wzorem g(x)=\frac{3\sqrt{3}}{\sqrt{\left(\frac{1}{a}\right)^x-b}} jest zbiór postaci:
Dane
a=5
b=125
Odpowiedzi:
A. (p, q) B. (-\infty, p)
C. (-\infty, p\rangle D. \langle p, q\rangle
E. (p,+\infty) F. \langle p,+\infty)
Podpunkt 1.2 (0.8 pkt)
 Zapisz tę dziedzinę w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pp-11215 ⋅ Poprawnie: 205/370 [55%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dana jest funkcja f(x)=9^{x-4}.

Wskaż rozwiązanie nierówności f(x) > 0:

Odpowiedzi:
A. \emptyset B. (-4,+\infty)
C. (-\infty,0\rangle D. (0,+\infty)
E. \mathbb{R} F. (-\infty,-4)
Zadanie 3.  1 pkt ⋅ Numer: pp-11193 ⋅ Poprawnie: 71/124 [57%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Wykres funkcji g jest symetryczny do wykresu funkcji f(x)=10^{-x} względem pewnej prostej.

Zatem g(x) jest równe:

Odpowiedzi:
A. 10^{-x}-9 B. -10^{-x}
C. -10^{x} D. \left(\frac{1}{7}\right)^{x}
Zadanie 4.  1 pkt ⋅ Numer: pp-11210 ⋅ Poprawnie: 68/167 [40%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Równość f(x)=5, jeśli f(x)=16^{2x}, zachodzi dla x=-\log_{16}{p}.

Podaj liczbę p.

Odpowiedź:
p= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10157 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dane są funkcje określone wzorami f(x)=\log_{0,5}{(x-a)^2} oraz g(x)=\log_{0,5}{|x-a|}.

Wyznacz największą odciętą punktów przecięcia się wykresów funkcji f i g.

Dane
a=15
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pr-20323 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Rozwiąż równanie 9^{x^2-2ax+5+a^2}=27^{4x-2-4a}.

Podaj najmniejsze z rozwiązań tego równania.

Dane
a=3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj największe z rozwiązań tego równania.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20558 ⋅ Poprawnie: 22/44 [50%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Rozwiąż nierówność: \left(\frac{1}{5}\right)^{x+a-1}\cdot 625^{x+a} \geqslant \frac{1}{\sqrt{5}^{3-x-a}} .

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=6
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20304 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
Dana jest funkcja f(x)=\log_{\frac{\sqrt{2}}{2}}{\left(-x^2+12x-20\right)} . Wyznacz D_f.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę tych wszystkich końców przedziałów, które są liczbami.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Wyznacz f_{min}.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  3 pkt ⋅ Numer: pr-30233 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dana jest funkcja g(x)=|2^{x-1}-3| oraz x_0=\log_{2}{a}+\log_{2}{a}\cdot \log_{a}{2}.

Oblicz g(x_0).

Dane
a=256
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Wyznacz te wartości x, dla których funkcja g przyjmuje wartości większe od g(x_0).

Podaj najmniejszą dodatnią liczbę całkowitą, która do tego zbioru nie należy.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
 Podaj największą dodatnią liczbę, która do tego zbioru nie należy.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pr-30231 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Na rysunku pokazano wykres funkcji f(x)=-a^x+3.

Wyznacz a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
 Naszkicuj wykres funkcji g(x)=a^{|x-8|}+4.

Podaj najmniejszą wartość funkcji g.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pp-30176 ⋅ Poprawnie: 8/37 [21%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 « Rozwiąż nierówność a^{1+6+11+...+(5x-4)} \leqslant b^c .

Podaj największą liczbę całkowitą spełniającą tę nierówność.

Dane
a=9
b=729
c=7
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm