Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-log-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pr-10163 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (0.2 pkt)
 Dana jest funkcja określona wzorem f(x)=\frac{1}{0,6^{|x|}}+b.

Zbiór ZW_f ma postać:

Dane
b=-8
Odpowiedzi:
A. (-\infty, p) B. (p,+\infty)
C. (-\infty, p)\cup(q,+\infty) D. \langle p, q\rangle
E. \langle p,+\infty) F. (-\infty, p\rangle
Podpunkt 1.2 (0.8 pkt)
 Zapisz ten zbiór w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pp-11190 ⋅ Poprawnie: 154/306 [50%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wykres funkcji g(x)=-a^{x-b} zawiera punkt:
Dane
a=2
b=-4
Odpowiedzi:
A. A=(-2,-4) B. A=(-2,-2)
C. A=(-4,-4) D. A=(-4,4)
Zadanie 3.  1 pkt ⋅ Numer: pp-11189 ⋅ Poprawnie: 97/141 [68%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zbiór wartości funkcji f(x)=3^x+\sqrt{5} zawiera liczbę:
Odpowiedzi:
A. \sqrt{5}-2 B. \frac{\sqrt{5}}{6}
C. -9 D. \sqrt{5}+4
Zadanie 4.  1 pkt ⋅ Numer: pp-11209 ⋅ Poprawnie: 113/145 [77%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Podaj wspólne rozwiązanie równań 3^{x^2}\cdot \sqrt{3}=3^{\frac{19}{2}} oraz \log_{\frac{1}{3}}{x}=-1.
Odpowiedź:
x_0= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10151 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
Ile liczb naturalnych dodatnich należy do zbioru wartości funkcji h(x)=\log_{\frac{1}{2}}{\left(|x|+\frac{1}{16}\right)}?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20580 ⋅ Poprawnie: 14/41 [34%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcje f(x)=\left(\frac{1}{3}\right)^{x+a}-1 oraz g(x)=\log_{\frac{1}{2}}{(16+x+a)}+b\cdot p mają to samo miejsce zerowe.

Oblicz to miejsce zerowe.

Dane
a=-8
b=3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj wartość parametru p.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20552 ⋅ Poprawnie: 15/36 [41%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Rozwiąż nierówność: 4\cdot \left(\sqrt{8}\right)^{ax}\leqslant \left(\frac{2\sqrt{2}}{16}\right)^{-2-ax} .

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20315 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
Rozwiąż graficznie nierówność \log_{7}{\frac{7\sqrt{7}}{x}} \geqslant \log_{5}{(\sqrt{5}x)}+1 w liczbach dodatnich.

Podaj największą z liczb spełniających tę nierówność.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Podaj długość rozwiązania.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pr-30235 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 «« Wykres funkcji f(x)=a^x zawiera punkt A=\left(-\frac{3}{2},\frac{1}{8}\right).

Podaj a.

Dane
b=3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
 Funkcja g określona jest wzorem g(x)=|b-f(x-1)|.
Naszkicuj wykres funkcji g i na jego podstawie ustal, dla których m równanie g(x)=m ma dokładnie jedno rozwiązanie.

Ile liczb całkowitych m\in\langle -10,10\rangle spełnia warunki zadania?

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
 Podaj najmniejszą dodatnią wartość m, która spełnia warunki zadania.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pr-30229 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Dane są funkcje f(x)=-m^x+a oraz g(x)=m^{|x-1|}+a. Punkt B=(2, 0) należy do wykresu funkcji f.

Podaj m.

Dane
a=3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Dla jakich wartości parametru p równanie g(x)=p ma rozwiązania.

Podaj najmniejsze możliwe p.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
 Podaj najmniejszą całkowitą wartość parametru p, dla której równanie g(x)=p ma dwa rozwiązania.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pr-30225 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Wykres funkcji f(x)=2^x-a jest symetryczny względem osi Ox do wykresu funkcji g.
Napisz wzór funkcji g i rozwiąż nierówność f(x)\geqslant g(x).

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
 Ile liczb naturalnych z przedziału \langle 1,20\rangle spełnia tę nierówność?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm