Podgląd testu : lo2@sp-fun-wyk-log-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11218 ⋅ Poprawnie: 189/265 [71%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
» Funkcja
h określona jest wzorem
h(x)=3^{2x} .
Wówczas liczba
h\left(-4\right)
jest równa
\frac{1}{3^m} .
Podaj liczbę m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11196 ⋅ Poprawnie: 360/519 [69%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
» Dana jest funkcja
f(x)=a^x . Do jej wykresu
należy punkt o współrzędnych
P=\left(-\frac{1}{5},8\right) .
Wówczas liczba
a jest równa
\frac{1}{8^m} .
Podaj liczbę m .
Odpowiedź:
m=
(liczba zapisana dziesiętnie)
Zadanie 3. 1 pkt ⋅ Numer: pp-11204 ⋅ Poprawnie: 208/479 [43%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Przesuwając wykres funkcji wykładniczej
f(x)=\left(\frac{1}{a}\right)^x o dwie jednostki
w prawo otrzymamy wykres funkcji
g określonej wzorem:
Odpowiedzi:
A. g(x)=100\cdot\left(\frac{1}{10}\right)^x
B. g(x)=10\cdot\left(\frac{1}{10}\right)^{x+1}
C. g(x)=\left(\frac{1}{10}\right)^{x+2}
D. g(x)=\left(\frac{1}{10}\right)^{x}-2
Zadanie 4. 1 pkt ⋅ Numer: pp-11210 ⋅ Poprawnie: 68/167 [40%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Równość
f(x)=15 , jeśli
f(x)=13^{2x} , zachodzi dla
x=-\log_{13}{p} .
Podaj liczbę p .
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pr-10160 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Oblicz sumę kwadratów miejsc zerowych funkcji określonej wzorem
g(x)=\log_{2\sqrt{2}}{(|x|-2)} .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 6. 2 pkt ⋅ Numer: pp-20582 ⋅ Poprawnie: 17/34 [50%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Do wykresu funkcji
f(x)=\left(\frac{\sqrt{a}}{a}\right)^x należą punkty
P=(-2,p) i
Q=\left(q,\frac{1}{a}\right) .
Podaj p .
Dane
a=8
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pr-20318 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (2 pkt)
Dla jakich wartości
x funkcja
f(x)=2^{3x+a}-b przyjmuje wartości większe od
c ?
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=2
b=127
c=1
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 2 pkt ⋅ Numer: pr-20305 ⋅ Poprawnie: 12/15 [80%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Liczby
\log{2} ,
\log{(x+2)} ,
\log{(x+6)} są kolejnymi wyrazami ciągu arytmetycznego.
Wyznacz x .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 4 pkt ⋅ Numer: pr-30234 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Wykres funkcji
f(x)=c^x zawiera punkt
A=(2\log_{2}{a},b) .
Podaj c .
Dane
a=11
b=121
q=6
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Funkcja
g określona jest wzorem
g(x)=|f(x+1)-q| .
Naszkicuj wykres funkcji
g i na jego podstawie ustal,
dla których
m równanie
g(x)=m ma dokładnie jedno rozwiązanie.
Ile liczb całkowitych m\in\langle -10,10\rangle
spełnia warunki zadania?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
Podaj najmniejszą dodatnią wartość
m , która spełnia
warunki zadania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 4 pkt ⋅ Numer: pr-30231 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
Na rysunku pokazano wykres funkcji
f(x)=-a^x+3 .
Wyznacz a .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
Naszkicuj wykres funkcji
g(x)=a^{|x-3|}+5 .
Podaj najmniejszą wartość funkcji g .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 11. 4 pkt ⋅ Numer: pr-30225 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
Wykres funkcji
f(x)=2^x-a jest symetryczny względem
osi
Ox do wykresu funkcji
g .
Napisz wzór funkcji
g i rozwiąż nierówność
f(x)\geqslant g(x) .
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=256
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
Ile liczb naturalnych z przedziału
\langle 1,20\rangle spełnia tę nierówność?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż