Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-log-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pr-10161 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (0.2 pkt)
 » Zbiorem wartości funkcji f(x)=\left|a+5^{3-x}\right| jest zbiór postaci:
Dane
a=-1
Odpowiedzi:
A. (-\infty, p) B. \langle p, q\rangle
C. (p, q) D. \langle p,+\infty)
E. (-\infty, p\rangle F. (p,+\infty)
Podpunkt 1.2 (0.8 pkt)
 Zapisz ten zbiór w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pp-11200 ⋅ Poprawnie: 466/597 [78%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dana jest funkcja f(x)=a^x. Punkt A=(1, 6) należy do wykresu tej funkcji.

Podaj liczbę a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11206 ⋅ Poprawnie: 131/229 [57%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Wykres funkcji f(x)=\frac{1}{81}\cdot 3^x otrzymamy przesuwając wykres funkcji g(x)=3^x o:
Odpowiedzi:
A. dwie jednostki w górę B. cztery jednostki w prawo
C. cztery jednostki w lewo D. cztery jednostki w dół
Zadanie 4.  1 pkt ⋅ Numer: pp-11203 ⋅ Poprawnie: 224/400 [56%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=p\cdot a^x, gdzie a>0, należą punkty o współrzędnych A=\left(3,2\right) i B=\left(1,\frac{1}{2}\right).

Oblicz f(6).

Odpowiedź:
f(x_0)= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10151 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
Ile liczb naturalnych dodatnich należy do zbioru wartości funkcji h(x)=\log_{\frac{1}{2}}{\left(|x|+\frac{1}{16}\right)}?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pr-20500 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Punkt P=\left(p,\frac{1}{q}\right) należy do wykresu funkcji wykładniczej f(x)=a^x. Oblicz wartość tej funkcji dla argumentu \frac{m}{2}.

Zakoduj kolejno trzy pierwsze cyfry po przecinku rozwinięcia dziesiętnego otrzymanego wyniku.

Dane
p=8
q=625
m=-1
Odpowiedź:
Wpisz odpowiedź:  (wpisz odpowiedź tekstową)
Zadanie 7.  2 pkt ⋅ Numer: pp-20553 ⋅ Poprawnie: 14/36 [38%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Rozwiąż nierówność 3^{3ax+1}-4\cdot 27^{ax-1}+9^{1,5ax-1} \lessdot 80 .

Odpowiedź zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.

Dane
a=6
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20295 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
«« Dana jest funkcja h(x)=\log_{\frac{-x}{x+5}}{\frac{x^2+5x+4}{x+1}} . Wyznacz D_h.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę tych wszystkich końców przedziałów, które są liczbami całkowitymi.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Podaj sumę tych wszystkich końców przedziałów, które nie są liczbami całkowitymi.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  3 pkt ⋅ Numer: pr-30233 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dana jest funkcja g(x)=|2^{x-1}-3| oraz x_0=\log_{2}{a}+\log_{2}{a}\cdot \log_{a}{2}.

Oblicz g(x_0).

Dane
a=32
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Wyznacz te wartości x, dla których funkcja g przyjmuje wartości większe od g(x_0).

Podaj najmniejszą dodatnią liczbę całkowitą, która do tego zbioru nie należy.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
 Podaj największą dodatnią liczbę, która do tego zbioru nie należy.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pr-30229 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Dane są funkcje f(x)=-m^x+a oraz g(x)=m^{|x-1|}+a. Punkt B=(2, 0) należy do wykresu funkcji f.

Podaj m.

Dane
a=6
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Dla jakich wartości parametru p równanie g(x)=p ma rozwiązania.

Podaj najmniejsze możliwe p.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
 Podaj najmniejszą całkowitą wartość parametru p, dla której równanie g(x)=p ma dwa rozwiązania.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pp-30177 ⋅ Poprawnie: 5/47 [10%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 «« Rozwiąż nierówność \left(\frac{1}{3}\right)^{2+5+8+...+(3x-1)}\ge \left(\frac{1}{9}\right)^{ax} .

Podaj największą liczbę całkowitą spełniającą tę nierówność.

Dane
a=7
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm