Podgląd testu : lo2@sp-fun-wyk-log-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11218 ⋅ Poprawnie: 189/265 [71%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
» Funkcja
h określona jest wzorem
h(x)=3^{2x} .
Wówczas liczba
h\left(-5\right)
jest równa
\frac{1}{3^m} .
Podaj liczbę m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11216 ⋅ Poprawnie: 78/190 [41%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Wyznacz ilość rozwiązań układu równań
\begin{cases}y=-9x+1 \\y=7^{x+1}\end{cases} .
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11206 ⋅ Poprawnie: 131/229 [57%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
» Wykres funkcji
f(x)=\frac{1}{625}\cdot 5^x otrzymamy
przesuwając wykres funkcji
g(x)=5^x o:
Odpowiedzi:
A. cztery jednostki w dół
B. dwie jednostki w górę
C. cztery jednostki w lewo
D. cztery jednostki w prawo
Zadanie 4. 1 pkt ⋅ Numer: pp-11210 ⋅ Poprawnie: 68/167 [40%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Równość
f(x)=13 , jeśli
f(x)=17^{2x} , zachodzi dla
x=-\log_{17}{p} .
Podaj liczbę p .
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pr-10155 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Wykres funkcji określonej wzorem
y=\log_{a}{\frac{x}{b}} powstaje z
przesunięcia wykresu funkcji opisanej wzorem
y=\log_{a}{x} o pewien
wektor
\vec{u}=[p,q] .
Wyznacz liczby p i q .
Dane
a=6
b=7776
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pr-20328 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (2 pkt)
« Dla jakich wartości parametru
m równanie
2x+a=2^{m-1}
ma rozwiązanie dodatnie?
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=2048
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pp-20557 ⋅ Poprawnie: 20/40 [50%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Rozwiąż nierówność:
\left(\frac{1}{81}\right)^{|x+a|} > \left(3\sqrt[3]{3}\right)^3
.
Ile liczb całkowitych z przedziału
\langle 0,100\rangle spełnia tę nierówność?
Dane
a=8
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 2 pkt ⋅ Numer: pr-20305 ⋅ Poprawnie: 12/15 [80%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Liczby
\log{2} ,
\log{(x+2)} ,
\log{(x+6)} są kolejnymi wyrazami ciągu arytmetycznego.
Wyznacz x .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 3 pkt ⋅ Numer: pr-30233 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
Dana jest funkcja
g(x)=|2^{x-1}-3| oraz
x_0=\log_{2}{a}+\log_{2}{a}\cdot \log_{a}{2} .
Oblicz g(x_0) .
Dane
a=256
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Wyznacz te wartości
x , dla których funkcja
g przyjmuje wartości większe od
g(x_0) .
Podaj najmniejszą dodatnią liczbę całkowitą, która do tego zbioru nie należy.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
Podaj największą dodatnią liczbę, która do tego zbioru nie należy.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 4 pkt ⋅ Numer: pr-30229 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
Dane są funkcje
f(x)=-m^x+a oraz
g(x)=m^{|x-1|}+a .
Punkt
B=(2, 0) należy do wykresu funkcji
f .
Podaj m .
Dane
a=10
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
Dla jakich wartości parametru
p równanie
g(x)=p ma rozwiązania.
Podaj najmniejsze możliwe p .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
Podaj najmniejszą całkowitą wartość parametru
p ,
dla której równanie
g(x)=p ma dwa rozwiązania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 11. 4 pkt ⋅ Numer: pp-30176 ⋅ Poprawnie: 8/37 [21%]
Rozwiąż
Podpunkt 11.1 (4 pkt)
« Rozwiąż nierówność
a^{1+6+11+...+(5x-4)} \leqslant b^c
.
Podaj największą liczbę całkowitą spełniającą tę nierówność.
Dane
a=10
b=1000
c=12
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż