Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-log-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11218 ⋅ Poprawnie: 189/265 [71%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Funkcja h określona jest wzorem h(x)=3^{2x}. Wówczas liczba h\left(-5\right) jest równa \frac{1}{3^m}.

Podaj liczbę m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11216 ⋅ Poprawnie: 78/190 [41%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wyznacz ilość rozwiązań układu równań \begin{cases}y=-9x+1 \\y=7^{x+1}\end{cases}.
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11206 ⋅ Poprawnie: 131/229 [57%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Wykres funkcji f(x)=\frac{1}{625}\cdot 5^x otrzymamy przesuwając wykres funkcji g(x)=5^x o:
Odpowiedzi:
A. cztery jednostki w dół B. dwie jednostki w górę
C. cztery jednostki w lewo D. cztery jednostki w prawo
Zadanie 4.  1 pkt ⋅ Numer: pp-11210 ⋅ Poprawnie: 68/167 [40%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Równość f(x)=13, jeśli f(x)=17^{2x}, zachodzi dla x=-\log_{17}{p}.

Podaj liczbę p.

Odpowiedź:
p= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10155 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wykres funkcji określonej wzorem y=\log_{a}{\frac{x}{b}} powstaje z przesunięcia wykresu funkcji opisanej wzorem y=\log_{a}{x} o pewien wektor \vec{u}=[p,q].

Wyznacz liczby p i q.

Dane
a=6
b=7776
Odpowiedzi:
p= (wpisz liczbę zapisaną dziesiętnie)
q= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pr-20328 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Dla jakich wartości parametru m równanie 2x+a=2^{m-1} ma rozwiązanie dodatnie?

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=2048
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20557 ⋅ Poprawnie: 20/40 [50%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Rozwiąż nierówność: \left(\frac{1}{81}\right)^{|x+a|} > \left(3\sqrt[3]{3}\right)^3 .

Ile liczb całkowitych z przedziału \langle 0,100\rangle spełnia tę nierówność?

Dane
a=8
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20305 ⋅ Poprawnie: 12/15 [80%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
Liczby \log{2}, \log{(x+2)}, \log{(x+6)} są kolejnymi wyrazami ciągu arytmetycznego.

Wyznacz x.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  3 pkt ⋅ Numer: pr-30233 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dana jest funkcja g(x)=|2^{x-1}-3| oraz x_0=\log_{2}{a}+\log_{2}{a}\cdot \log_{a}{2}.

Oblicz g(x_0).

Dane
a=256
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Wyznacz te wartości x, dla których funkcja g przyjmuje wartości większe od g(x_0).

Podaj najmniejszą dodatnią liczbę całkowitą, która do tego zbioru nie należy.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
 Podaj największą dodatnią liczbę, która do tego zbioru nie należy.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pr-30229 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Dane są funkcje f(x)=-m^x+a oraz g(x)=m^{|x-1|}+a. Punkt B=(2, 0) należy do wykresu funkcji f.

Podaj m.

Dane
a=10
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Dla jakich wartości parametru p równanie g(x)=p ma rozwiązania.

Podaj najmniejsze możliwe p.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
 Podaj najmniejszą całkowitą wartość parametru p, dla której równanie g(x)=p ma dwa rozwiązania.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pp-30176 ⋅ Poprawnie: 8/37 [21%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 « Rozwiąż nierówność a^{1+6+11+...+(5x-4)} \leqslant b^c .

Podaj największą liczbę całkowitą spełniającą tę nierówność.

Dane
a=10
b=1000
c=12
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm