Podgląd testu : lo2@sp-fun-wyk-log-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11211 ⋅ Poprawnie: 162/263 [61%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wskaż argument, dla którego funkcja określona wzorem
f(x)=(\sqrt{3})^x
przyjmuje wartość
8 :
Odpowiedzi:
A. \log_{8}{8}
B. \log_{3}{64}
C. \log_{3}{8}
D. 8\cdot \log_{3}{64}
E. \frac{\log_{3}{8}}{2}
F. \log_{8}{9}
Zadanie 2. 1 pkt ⋅ Numer: pp-11200 ⋅ Poprawnie: 466/597 [78%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Dana jest funkcja
f(x)=a^x . Punkt
A=(1, 6) należy do wykresu tej funkcji.
Podaj liczbę a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11198 ⋅ Poprawnie: 241/398 [60%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Funkcją malejącą jest funkcja określona wzorem:
Odpowiedzi:
A. h(x)=-6^{-x}
B. h(x)=\left(\frac{1}{6}\right)^{6-x}
C. h(x)=6^{1-x}
D. h(x)=\left(\frac{1}{6}\right)^{-x}
Zadanie 4. 1 pkt ⋅ Numer: pp-11210 ⋅ Poprawnie: 68/167 [40%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Równość
f(x)=3 , jeśli
f(x)=11^{2x} , zachodzi dla
x=-\log_{11}{p} .
Podaj liczbę p .
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pr-10155 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Wykres funkcji określonej wzorem
y=\log_{a}{\frac{x}{b}} powstaje z
przesunięcia wykresu funkcji opisanej wzorem
y=\log_{a}{x} o pewien
wektor
\vec{u}=[p,q] .
Wyznacz liczby p i q .
Dane
a=4
b=16
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pp-20582 ⋅ Poprawnie: 17/34 [50%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Do wykresu funkcji
f(x)=\left(\frac{\sqrt{a}}{a}\right)^x należą punkty
P=(-2,p) i
Q=\left(q,\frac{1}{a}\right) .
Podaj p .
Dane
a=6
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pp-20555 ⋅ Poprawnie: 7/40 [17%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Dla jakich argumentów funkcja
f(x)=[0,(6)]^{\frac{3x}{a}-5} przyjmuje wartości
większe niż funkcja
g(x)=\left(\frac{9}{4}\right)^{\frac{5x}{a}+1} ?
Wynik zapisz w postaci przedziału liczbowego. Podaj prawy koniec tego
przedziału.
Dane
a=4
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 2 pkt ⋅ Numer: pr-20301 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (1 pkt)
» Wyznacz dziedzinę funkcji
f(x)=\log_{\frac{x}{x+2}}{(x^3-3x^2+4)}
.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj długość najkrótszego
z tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Podaj sumę wszystkich końców tych przedziałów, które są liczbami.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 4 pkt ⋅ Numer: pp-30174 ⋅ Poprawnie: 26/93 [27%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Pierwiastkiem wielomianu
W(x)=3x^3-x^2-4amx+4 jest
liczba
\frac{3^{2\sqrt{27}+2}}{27^{2\sqrt{3}+1}} .
Wyznacz m .
Dane
a=5
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Wyznacz wszystkie pierwiastki tego wielomianu.
Podaj ich sumę.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 4 pkt ⋅ Numer: pr-30236 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
Dane są funkcje
f(x)=2^{ax-4} i
g(x)=5-\left(\frac{1}{2}\right)^{ax-6} .
Rozwiąż nierówność
f(x)\leqslant g(x) .
Jaka największa liczba spełnia tę nierówność?
Dane
a=8
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
Podaj najmniejszą liczbę spełniającą tę nierówność.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 11. 4 pkt ⋅ Numer: pr-30224 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Dla jakich wartości
x funkcja
f(x)=\log_{3}{(ax+b)} przyjmuje wartości mniejsze
od
2 ?
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=4
b=-4
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż