Podgląd testu : lo2@sp-fun-wyk-log-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pr-10162 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 1.1 (1 pkt)
Punkt
P=\left(x_0,\frac{1}{y_0}\right) należy do
wykresu funkcji wykładniczej określonej wzorem
y=a^x .
Do wykresu tej funkcji należy też punkt:
Dane
x_0=18
y_0=512
Odpowiedzi:
A. \left(19,\frac{1}{256}\right)
B. \left(17,\frac{1}{1024}\right)
C. \left(19,\frac{1}{512\sqrt{2}}\right)
D. \left(17,\frac{\sqrt{2}}{512\sqrt{2}}\right)
Zadanie 2. 1 pkt ⋅ Numer: pp-11215 ⋅ Poprawnie: 205/370 [55%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Dana jest funkcja
f(x)=9^{x-3} .
Wskaż rozwiązanie nierówności f(x) > 0 :
Odpowiedzi:
A. (-\infty,0)
B. \mathbb{R}
C. (-\infty,-3)
D. \langle 0,+\infty)
E. \emptyset
F. (-3,+\infty)
Zadanie 3. 1 pkt ⋅ Numer: pp-11206 ⋅ Poprawnie: 131/229 [57%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
» Wykres funkcji
f(x)=\frac{1}{625}\cdot 5^x otrzymamy
przesuwając wykres funkcji
g(x)=5^x o:
Odpowiedzi:
A. cztery jednostki w dół
B. cztery jednostki w lewo
C. dwie jednostki w górę
D. cztery jednostki w prawo
Zadanie 4. 1 pkt ⋅ Numer: pp-11219 ⋅ Poprawnie: 105/197 [53%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Dana jest funkcja
f(x)=3^{x-9}-23 .
Wyznacz miejsce zerowe funkcji określonej wzorem g(x)=f(x+1)-4 .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pr-10156 ⋅ Poprawnie: 16/16 [100%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Oceń, które z podanych punktów należą do wykresu funkcji określonej wzorem
f(x)=\log_{a}{x} :
Dane
a=6
Odpowiedzi:
T/N : \left(\frac{1}{36}, -2\right)
T/N : (216, 3)
Zadanie 6. 2 pkt ⋅ Numer: pp-20581 ⋅ Poprawnie: 25/79 [31%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
«« Wykresy dwóch funcji
f(x)=2^{x+a}-3 oraz
g(x)=\log_{3}{(x+a+4)}+b\cdot m przecinają oś
Oy mają w tym samym punkcie.
Podaj rzędną tego punktu.
Dane
a=11
b=2
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
Podaj wartość parametru
m .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pp-20546 ⋅ Poprawnie: 16/54 [29%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Rozwiąż nierówność
\left(\frac{1}{2}\right)^{x+a}+\left(\frac{1}{2}\right)^{x+b} > 3
.
Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.
Dane
a=8
b=9
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Ile liczb całkowitych z przedziału z przedziału
\langle -10,10\rangle spełnia tę nierówność.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 2 pkt ⋅ Numer: pr-20309 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (2 pkt)
Rozwiąż równanie
\log_{3}{x}=2-\log_{\frac{1}{3}}{2} .
Podaj największe rozwiązanie tego równania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 4 pkt ⋅ Numer: pr-30234 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Wykres funkcji
f(x)=c^x zawiera punkt
A=(2\log_{2}{a},b) .
Podaj c .
Dane
a=5
b=25
q=6
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Funkcja
g określona jest wzorem
g(x)=|f(x+1)-q| .
Naszkicuj wykres funkcji
g i na jego podstawie ustal,
dla których
m równanie
g(x)=m ma dokładnie jedno rozwiązanie.
Ile liczb całkowitych m\in\langle -10,10\rangle
spełnia warunki zadania?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
Podaj najmniejszą dodatnią wartość
m , która spełnia
warunki zadania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 10. 4 pkt ⋅ Numer: pr-30231 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (2 pkt)
Na rysunku pokazano wykres funkcji
f(x)=-a^x+3 .
Wyznacz a .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
Naszkicuj wykres funkcji
g(x)=a^{|x-8|}-5 .
Podaj najmniejszą wartość funkcji g .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 11. 4 pkt ⋅ Numer: pp-30177 ⋅ Poprawnie: 5/47 [10%]
Rozwiąż
Podpunkt 11.1 (4 pkt)
«« Rozwiąż nierówność
\left(\frac{1}{3}\right)^{2+5+8+...+(3x-1)}\ge \left(\frac{1}{9}\right)^{ax}
.
Podaj największą liczbę całkowitą spełniającą tę nierówność.
Dane
a=25
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż