Podgląd testu : lo2@sp-fun-wyk-log-pr-2
|
Zadanie 1. 1 pkt ⋅ Numer: pr-10161 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 1.1 (0.2 pkt)
» Zbiorem wartości funkcji
f(x)=\left|a+5^{3-x}\right|
jest zbiór postaci:
Dane
a=-4
Odpowiedzi:
|
A. (-\infty, p)
|
B. \langle p, q\rangle
|
|
C. (p, q)
|
D. \langle p,+\infty)
|
|
E. (p,+\infty)
|
F. (-\infty, p\rangle
|
Podpunkt 1.2 (0.8 pkt)
Zapisz ten zbiór w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11194 ⋅ Poprawnie: 53/114 [46%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Wykres funkcji
y=6-\frac{1}{7^x} nie przecina
prostej:
Odpowiedzi:
|
A. y=7x
|
B. x=\sqrt{10}
|
|
C. y=6-\sqrt{2}
|
D. y=6+\sqrt{2}
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11198 ⋅ Poprawnie: 241/398 [60%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Funkcją malejącą jest funkcja określona wzorem:
Odpowiedzi:
|
A. h(x)=4^{3-x}
|
B. h(x)=\left(\frac{1}{4}\right)^{-x}
|
|
C. h(x)=-4^{-x}
|
D. h(x)=\left(\frac{1}{4}\right)^{4-x}
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11195 ⋅ Poprawnie: 63/138 [45%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
» Dana jest funkcja
g(x)=4^x.
Funkcja określona wzorem h(x)=-7+g(x+3) z prostą o równaniu
y+10=0:
Odpowiedzi:
|
A. nie ma punktów wspólnych
|
B. ma dokładnie jeden punkt wspólny
|
|
C. ma nieskończenie wiele punktów wspólnych
|
D. ma dokładnie dwa punkty wspólne
|
|
Zadanie 5. 1 pkt ⋅ Numer: pr-10153 ⋅ Poprawnie: 0/1 [0%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Wyznacz dziedzinę funkcji określonej wzorem
f(x)=\log_{x}{(ax-1)}.
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Dane
a=3
Odpowiedzi:
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20568 ⋅ Poprawnie: 24/62 [38%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Rozwiąż równanie:
\frac{a^{x^3}}{(a^4)^{4x+4}}=\left(\frac{1}{a}\right)^{x^2}
.
Podaj najmniejsze z rozwiązań tego równania.
Dane
a=3
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
Podaj sumę wszystkich rozwiązań tego równania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20560 ⋅ Poprawnie: 26/46 [56%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
Rozwiąż nierówność:
\left(\frac{4}{25}\right)^{x+a}\cdot \left(\frac{125}{8}\right)^{x+a} \lessdot
\left(\frac{5}{2}\right)^{2x+2a+9}
.
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=-4
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 8. 2 pkt ⋅ Numer: pr-20296 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
Dla jakich wartości parametru
m\in\mathbb{R}
dziedziną funkcji
g(x)=\log{
\left(
\frac{m}{2x^2+2mx+\frac{m}{2}+3}
\right)
}
.
jest zbiór
\mathbb{R}.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę tych wszystkich
końców przedziałów, które są liczbami.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Podaj długość rozwiązania.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 9. 4 pkt ⋅ Numer: pr-30232 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
« Dane jest równanie
\left|\frac{a^{x+1}-1}{a^x}\right|=m z parametrem
m\in\mathbb{R}.
Wyznacz najmniejszą wartość m, dla której równanie to
ma dokładnie jedno rozwiązanie.
Dane
a=4
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Podaj najmniejszą dodatnią wartość
m, dla której
równanie ma dokładnie jedno rozwiązanie.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.3 (2 pkt)
Wyznacz zbiór tych wartości parametru
m, dla których
równanie to ma dokładnie dwa rozwiązania.
Zbiór ten zapisz w postaci przedziału. Podaj długość tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 10. 4 pkt ⋅ Numer: pr-30231 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
Na rysunku pokazano wykres funkcji
f(x)=-a^x+3.
Wyznacz a.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
Naszkicuj wykres funkcji
g(x)=a^{|x-2|}+6.
Podaj najmniejszą wartość funkcji g.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 11. 4 pkt ⋅ Numer: pr-30225 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 11.1 (2 pkt)
Wykres funkcji
f(x)=2^x-a jest symetryczny względem
osi
Ox do wykresu funkcji
g.
Napisz wzór funkcji
g i rozwiąż nierówność
f(x)\geqslant g(x).
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=16
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
Ile liczb naturalnych z przedziału
\langle 1,20\rangle spełnia tę nierówność?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)