Podgląd testu : lo2@sp-fun-wyk-pp-3
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11211 ⋅ Poprawnie: 162/263 [61%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Wskaż argument, dla którego funkcja określona wzorem
f(x)=(\sqrt{5})^x
przyjmuje wartość
7:
Odpowiedzi:
|
A. \log_{5}{7}
|
B. \log_{7}{7}
|
|
C. \frac{\log_{5}{7}}{2}
|
D. \log_{5}{49}
|
|
E. \log_{7}{25}
|
F. 7\cdot \log_{5}{49}
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11200 ⋅ Poprawnie: 466/597 [78%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Dana jest funkcja
f(x)=a^x. Punkt
A=(3, 343) należy do wykresu tej funkcji.
Podaj liczbę a.
Odpowiedź:
a=
(wpisz liczbę całkowitą)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11216 ⋅ Poprawnie: 78/190 [41%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
« Wyznacz ilość rozwiązań układu równań
\begin{cases}y=-8x-1 \\y=9^{x}\end{cases}.
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11190 ⋅ Poprawnie: 154/306 [50%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
« Wykres funkcji
g(x)=-a^{x-b} zawiera punkt:
Dane
a=5
b=-1
Odpowiedzi:
|
A. A=(1,25)
|
B. A=(1,-25)
|
|
C. A=(-1,-25)
|
D. A=(1,-5)
|
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11194 ⋅ Poprawnie: 53/114 [46%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Wykres funkcji
y=1-\frac{1}{8^x} nie przecina
prostej:
Odpowiedzi:
|
A. y=1-\sqrt{2}
|
B. y=8x
|
|
C. x=\sqrt{37}
|
D. y=1+\sqrt{2}
|
|
Zadanie 6. 1 pkt ⋅ Numer: pp-11197 ⋅ Poprawnie: 232/408 [56%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Dana jest funkcja
f(x)=3^{8x}.
Do jej wykresu nie należy punkt:
Odpowiedzi:
|
A. A=\left(-\frac{1}{2},-\frac{1}{81}\right)
|
B. A=\left(-\frac{1}{8},\frac{1}{3}\right)
|
|
C. A=\left(\frac{1}{8},3\right)
|
D. A=(0,1)
|
|
Zadanie 7. 1 pkt ⋅ Numer: pp-11208 ⋅ Poprawnie: 84/217 [38%] |
Rozwiąż |
Podpunkt 7.1 (0.2 pkt)
Funkcja
h(x)=(-7m+1)^x jest malejąca, wtedy i tylko wtedy, gdy
parametr
m należy do pewnego zbioru.
Zbiór ten ma postać:
Odpowiedzi:
|
A. (p, +\infty)
|
B. (p, q)
|
|
C. \langle p, +\infty)
|
D. (-\infty, p\rangle
|
|
E. (-\infty, p)\cup(q, +\infty)
|
F. (-\infty, p)
|
Podpunkt 7.2 (0.8 pkt)
Zapisz ten zbiór w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 1 pkt ⋅ Numer: pp-11189 ⋅ Poprawnie: 97/141 [68%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
Zbiór wartości funkcji
f(x)=5^x+2\sqrt{5}
zawiera liczbę:
Odpowiedzi:
|
A. \sqrt{20}+5
|
B. \frac{\sqrt{20}}{2}
|
|
C. \sqrt{20}-4
|
D. -22
|
|
Zadanie 9. 1 pkt ⋅ Numer: pp-11193 ⋅ Poprawnie: 71/124 [57%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
« Wykres funkcji
g jest symetryczny do wykresu
funkcji
f(x)=9^{-x} względem pewnej prostej.
Zatem g(x) jest równe:
Odpowiedzi:
|
A. \left(\frac{1}{7}\right)^{x}
|
B. -9^{x}
|
|
C. -9^{-x}
|
D. 9^{-x}-8
|
|
Zadanie 10. 1 pkt ⋅ Numer: pp-11198 ⋅ Poprawnie: 241/398 [60%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Funkcją malejącą jest funkcja określona wzorem:
Odpowiedzi:
|
A. h(x)=\left(\frac{1}{8}\right)^{8-x}
|
B. h(x)=8^{3-x}
|
|
C. h(x)=\left(\frac{1}{8}\right)^{-x}
|
D. h(x)=-8^{-x}
|
|
Zadanie 11. 1 pkt ⋅ Numer: pp-11207 ⋅ Poprawnie: 133/240 [55%] |
Rozwiąż |
Podpunkt 11.1 (1 pkt)
Dana jest funkcja
f(x)=\left(\frac{1}{13}\right)^x.
Funkcja g(x)=f(x-1)+4:
Odpowiedzi:
|
A. ma więcej niż dwa miejsca zerowe
|
B. ma dwa miejsca zerowe
|
|
C. nie ma miejsc zerowych
|
D. ma jedno miejsce zerowe
|
|
Zadanie 12. 1 pkt ⋅ Numer: pp-11212 ⋅ Poprawnie: 119/182 [65%] |
Rozwiąż |
Podpunkt 12.1 (1 pkt)
Dana jest funkcja
f(x)=7^x+1.
Oblicz wartość funkcji określonej wzorem g(x)=f(x-4)
dla argumentu x=7.
Odpowiedź:
g(7)=
(wpisz liczbę całkowitą)
|
Zadanie 13. 1 pkt ⋅ Numer: pp-11219 ⋅ Poprawnie: 105/197 [53%] |
Rozwiąż |
Podpunkt 13.1 (1 pkt)
» Dana jest funkcja
f(x)=3^{x-8}-239.
Wyznacz miejsce zerowe funkcji określonej wzorem g(x)=f(x+1)-4.
Odpowiedź:
x=
(wpisz liczbę całkowitą)
|
Zadanie 14. 1 pkt ⋅ Numer: pp-11205 ⋅ Poprawnie: 72/114 [63%] |
Rozwiąż |
Podpunkt 14.1 (1 pkt)
Do wykresu funkcji określonej wzorem
f(x)=a^x należy punkt
o współrzędnych
A=\left(\frac{3}{2},\frac{\sqrt{13}}{169}\right).
Wyznacz wartość parametru a.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 15. 1 pkt ⋅ Numer: pp-11209 ⋅ Poprawnie: 113/145 [77%] |
Rozwiąż |
Podpunkt 15.1 (1 pkt)
Podaj wspólne rozwiązanie równań
8^{x^2}\cdot 2\sqrt{2}=8^{\frac{129}{2}}
oraz
\log_{\frac{1}{8}}{x}=-1.
Odpowiedź:
x_0=
(wpisz liczbę całkowitą)