Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11218 ⋅ Poprawnie: 187/262 [71%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Funkcja h określona jest wzorem h(x)=3^{2x}. Wówczas liczba h\left(-\frac{9}{2}\right) jest równa \frac{1}{3^m}.

Podaj liczbę m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11200 ⋅ Poprawnie: 465/594 [78%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dana jest funkcja f(x)=a^x. Punkt A=(2, 64) należy do wykresu tej funkcji.

Podaj liczbę a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11216 ⋅ Poprawnie: 78/190 [41%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Wyznacz ilość rozwiązań układu równań \begin{cases}y=-8x-2 \\y=4^{x+5}\end{cases}.
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11191 ⋅ Poprawnie: 56/131 [42%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Dana jest funkcja g(x)=\left(\sqrt{6}\right)^x.

Zbiór ZW_g nie zawiera liczby:

Odpowiedzi:
A. 9\cdot \pi -29 B. \frac{\sqrt{\pi}}{6}
C. 5^{-1} D. 24\cdot \pi -75
Zadanie 5.  1 pkt ⋅ Numer: pp-11194 ⋅ Poprawnie: 53/114 [46%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wykres funkcji y=-2-\frac{1}{9^x} nie przecina prostej:
Odpowiedzi:
A. y=9x B. y=-2+\sqrt{2}
C. y=-2-\sqrt{2} D. x=\sqrt{10}
Zadanie 6.  1 pkt ⋅ Numer: pp-11197 ⋅ Poprawnie: 232/408 [56%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Dana jest funkcja f(x)=3^{8x}.

Do jej wykresu nie należy punkt:

Odpowiedzi:
A. A=(0,1) B. A=\left(-\frac{1}{2},-\frac{1}{81}\right)
C. A=\left(\frac{3}{8},27\right) D. A=\left(-\frac{1}{8},\frac{1}{3}\right)
Zadanie 7.  1 pkt ⋅ Numer: pp-11208 ⋅ Poprawnie: 84/217 [38%] Rozwiąż 
Podpunkt 7.1 (0.2 pkt)
 Funkcja h(x)=(-8m-2)^x jest malejąca, wtedy i tylko wtedy, gdy parametr m należy do pewnego zbioru.

Zbiór ten ma postać:

Odpowiedzi:
A. (-\infty, p)\cup(q, +\infty) B. (p, +\infty)
C. \langle p, +\infty) D. (-\infty, p)
E. (-\infty, p\rangle F. (p, q)
Podpunkt 7.2 (0.8 pkt)
 Zapisz ten zbiór w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11214 ⋅ Poprawnie: 235/398 [59%] Rozwiąż 
Podpunkt 8.1 (0.2 pkt)
 Zbiór wartości funkcji f(x)=8^{-x}-5 ma postać:
Odpowiedzi:
A. (-\infty, p) B. \langle p, q\rangle
C. (-\infty, p\rangle D. (-\infty, p)\cup(q, +\infty)
E. \langle p, +\infty) F. (p,+\infty)
Podpunkt 8.2 (0.8 pkt)
 Zapisz ten zbiór w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11193 ⋅ Poprawnie: 71/124 [57%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Wykres funkcji g jest symetryczny do wykresu funkcji f(x)=9^{-x} względem pewnej prostej.

Zatem g(x) jest równe:

Odpowiedzi:
A. -9^{x} B. 9^{-x}-8
C. \left(\frac{1}{7}\right)^{x} D. -9^{-x}
Zadanie 10.  1 pkt ⋅ Numer: pp-11198 ⋅ Poprawnie: 241/397 [60%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Funkcją malejącą jest funkcja określona wzorem:
Odpowiedzi:
A. h(x)=\left(\frac{1}{9}\right)^{9-x} B. h(x)=9^{2-x}
C. h(x)=-9^{-x} D. h(x)=\left(\frac{1}{9}\right)^{-x}
Zadanie 11.  1 pkt ⋅ Numer: pp-11207 ⋅ Poprawnie: 133/240 [55%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Dana jest funkcja f(x)=\left(\frac{1}{14}\right)^x.

Funkcja g(x)=f(x+2)-2:

Odpowiedzi:
A. ma jedno miejsce zerowe B. ma więcej niż dwa miejsca zerowe
C. nie ma miejsc zerowych D. ma dwa miejsca zerowe
Zadanie 12.  1 pkt ⋅ Numer: pp-11212 ⋅ Poprawnie: 117/179 [65%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Dana jest funkcja f(x)=8^x+1.

Oblicz wartość funkcji określonej wzorem g(x)=f(x-3) dla argumentu x=7.

Odpowiedź:
g(7)= (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-11219 ⋅ Poprawnie: 104/196 [53%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 » Dana jest funkcja f(x)=3^{x-8}-77.

Wyznacz miejsce zerowe funkcji określonej wzorem g(x)=f(x+1)-4.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Zadanie 14.  1 pkt ⋅ Numer: pp-11203 ⋅ Poprawnie: 224/400 [56%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=p\cdot a^x, gdzie a>0, należą punkty o współrzędnych A=\left(5,8\right) i B=\left(2,1\right).

Oblicz f(7).

Odpowiedź:
f(x_0)= (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-11210 ⋅ Poprawnie: 68/167 [40%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 « Równość f(x)=8, jeśli f(x)=15^{2x}, zachodzi dla x=-\log_{15}{p}.

Podaj liczbę p.

Odpowiedź:
p= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm