Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11211 ⋅ Poprawnie: 162/263 [61%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wskaż argument, dla którego funkcja określona wzorem f(x)=(\sqrt{3})^x przyjmuje wartość 8:
Odpowiedzi:
A. \frac{\log_{3}{8}}{2} B. \log_{8}{8}
C. \log_{8}{9} D. \log_{3}{8}
E. 8\cdot \log_{3}{64} F. \log_{3}{64}
Zadanie 2.  1 pkt ⋅ Numer: pp-11200 ⋅ Poprawnie: 466/597 [78%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dana jest funkcja f(x)=a^x. Punkt A=(3, 343) należy do wykresu tej funkcji.

Podaj liczbę a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11217 ⋅ Poprawnie: 328/493 [66%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Funkcja wykładnicza g(x)=a^x jest malejąca oraz g(-3)=64.

Wyznacz liczbę a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11191 ⋅ Poprawnie: 56/131 [42%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Dana jest funkcja g(x)=\left(2\sqrt{2}\right)^x.

Zbiór ZW_g nie zawiera liczby:

Odpowiedzi:
A. 12\cdot \pi -38 B. 17\cdot \pi -53
C. \frac{\sqrt{\pi}}{8} D. 5^{-7}
Zadanie 5.  1 pkt ⋅ Numer: pp-11194 ⋅ Poprawnie: 53/114 [46%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wykres funkcji y=1-\frac{1}{8^x} nie przecina prostej:
Odpowiedzi:
A. x=\sqrt{17} B. y=1-\sqrt{2}
C. y=8x D. y=1+\sqrt{2}
Zadanie 6.  1 pkt ⋅ Numer: pp-11199 ⋅ Poprawnie: 97/210 [46%] Rozwiąż 
Podpunkt 6.1 (0.2 pkt)
 » Funkcja f(x)=(10\cdot m+3)^x jest rosnąca wtedy i tylko wtedy gdy liczba m należy do pewnego przedziału.

Przedział ten ma postać:

Odpowiedzi:
A. (p, +\infty) B. \langle p, q\rangle
C. (p, q) D. (-\infty,p)
E. \langle p, +\infty) F. (-\infty,p\rangle
Podpunkt 6.2 (0.8 pkt)
 Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11201 ⋅ Poprawnie: 73/158 [46%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Funkcja g(x)=4^{5x+1} przyjmuje wartość:
Odpowiedzi:
A. 0 B. -\frac{1}{7}
C. -\sqrt{7} D. \frac{\sqrt{6}}{6}
Zadanie 8.  1 pkt ⋅ Numer: pp-11214 ⋅ Poprawnie: 235/398 [59%] Rozwiąż 
Podpunkt 8.1 (0.2 pkt)
 Zbiór wartości funkcji f(x)=7^{-x}-6 ma postać:
Odpowiedzi:
A. (-\infty, p)\cup(q, +\infty) B. (p, q)
C. (-\infty, p) D. (-\infty, p\rangle
E. \langle p, +\infty) F. (p,+\infty)
Podpunkt 8.2 (0.8 pkt)
 Zapisz ten zbiór w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11192 ⋅ Poprawnie: 47/88 [53%] Rozwiąż 
Podpunkt 9.1 (0.2 pkt)
 » Dana jest funkcja g(x)=-3^{2-x}+1.

Zbiór ZW_g ma postać:

Odpowiedzi:
A. \langle p, +\infty) B. (-\infty,p)
C. (-\infty, p)\cup(q, +\infty) D. (-\infty, p\rangle
E. \langle p, q\rangle F. (p, q)
Podpunkt 9.2 (0.8 pkt)
 Zapisz ten zbiór w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-11204 ⋅ Poprawnie: 208/479 [43%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Przesuwając wykres funkcji wykładniczej f(x)=\left(\frac{1}{a}\right)^x o dwie jednostki w prawo otrzymamy wykres funkcji g określonej wzorem:
Odpowiedzi:
A. g(x)=100\cdot\left(\frac{1}{10}\right)^x B. g(x)=10\cdot\left(\frac{1}{10}\right)^{x+1}
C. g(x)=\left(\frac{1}{10}\right)^{x}-2 D. g(x)=\left(\frac{1}{10}\right)^{x}+2
Zadanie 11.  1 pkt ⋅ Numer: pp-11206 ⋅ Poprawnie: 131/229 [57%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 » Wykres funkcji f(x)=\frac{1}{256}\cdot 4^x otrzymamy przesuwając wykres funkcji g(x)=4^x o:
Odpowiedzi:
A. dwie jednostki w górę B. cztery jednostki w dół
C. cztery jednostki w lewo D. cztery jednostki w prawo
Zadanie 12.  1 pkt ⋅ Numer: pp-11213 ⋅ Poprawnie: 491/627 [78%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
« Wykres funkcji f(x)=2^{x-3} przedstawia rysunek:
Odpowiedzi:
A. C B. D
C. A D. B
Zadanie 13.  1 pkt ⋅ Numer: pp-11202 ⋅ Poprawnie: 303/402 [75%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=3^x+m należy punkt o współrzędnych P=(5,-23).

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 14.  1 pkt ⋅ Numer: pp-11203 ⋅ Poprawnie: 224/400 [56%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=p\cdot a^x, gdzie a>0, należą punkty o współrzędnych A=\left(4,4\right) i B=\left(3,2\right).

Oblicz f(9).

Odpowiedź:
f(x_0)= (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-11210 ⋅ Poprawnie: 68/167 [40%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 « Równość f(x)=11, jeśli f(x)=13^{2x}, zachodzi dla x=-\log_{13}{p}.

Podaj liczbę p.

Odpowiedź:
p= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm