Podgląd testu : lo2@sp-fun-wyk-pp-3
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11218 ⋅ Poprawnie: 189/265 [71%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
» Funkcja
h określona jest wzorem
h(x)=3^{2x}.
Wówczas liczba
h\left(-3\right)
jest równa
\frac{1}{3^m}.
Podaj liczbę m.
Odpowiedź:
m=
(wpisz liczbę całkowitą)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11215 ⋅ Poprawnie: 205/370 [55%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Dana jest funkcja
f(x)=5^{x+2}.
Wskaż rozwiązanie nierówności f(x) > 0:
Odpowiedzi:
|
A. (2,+\infty)
|
B. \emptyset
|
|
C. (-\infty,0\rangle
|
D. \langle 0,+\infty)
|
|
E. \mathbb{R}
|
F. (-\infty,2)
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11216 ⋅ Poprawnie: 78/190 [41%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
« Wyznacz ilość rozwiązań układu równań
\begin{cases}y=-5x+2 \\y=4^{x+1}\end{cases}.
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11191 ⋅ Poprawnie: 56/131 [42%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
» Dana jest funkcja
g(x)=\left(\sqrt{6}\right)^x.
Zbiór ZW_g nie zawiera liczby:
Odpowiedzi:
|
A. 12\cdot \pi -37
|
B. 5^{-6}
|
|
C. \frac{\sqrt{\pi}}{6}
|
D. 16\cdot \pi -51
|
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11196 ⋅ Poprawnie: 360/519 [69%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
» Dana jest funkcja
f(x)=a^x. Do jej wykresu
należy punkt o współrzędnych
P=\left(-\frac{1}{4},9\right).
Wówczas liczba
a jest równa
\frac{1}{9^m}.
Podaj liczbę m.
Odpowiedź:
m=
(liczba zapisana dziesiętnie)
|
Zadanie 6. 1 pkt ⋅ Numer: pp-11197 ⋅ Poprawnie: 232/408 [56%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Dana jest funkcja
f(x)=3^{4x}.
Do jej wykresu nie należy punkt:
Odpowiedzi:
|
A. A=(0,1)
|
B. A=\left(-\frac{1}{2},-\frac{1}{9}\right)
|
|
C. A=\left(\frac{1}{4},3\right)
|
D. A=\left(-\frac{1}{4},\frac{1}{3}\right)
|
|
Zadanie 7. 1 pkt ⋅ Numer: pp-11208 ⋅ Poprawnie: 84/217 [38%] |
Rozwiąż |
Podpunkt 7.1 (0.2 pkt)
Funkcja
h(x)=(-5m+6)^x jest malejąca, wtedy i tylko wtedy, gdy
parametr
m należy do pewnego zbioru.
Zbiór ten ma postać:
Odpowiedzi:
|
A. \langle p, +\infty)
|
B. (p, q)
|
|
C. (p, +\infty)
|
D. (-\infty, p\rangle
|
|
E. (-\infty, p)
|
F. (-\infty, p)\cup(q, +\infty)
|
Podpunkt 7.2 (0.8 pkt)
Zapisz ten zbiór w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 1 pkt ⋅ Numer: pp-11214 ⋅ Poprawnie: 235/398 [59%] |
Rozwiąż |
Podpunkt 8.1 (0.2 pkt)
Zbiór wartości funkcji
f(x)=5^{-x}-9 ma postać:
Odpowiedzi:
|
A. (-\infty, p\rangle
|
B. \langle p, q\rangle
|
|
C. \langle p, +\infty)
|
D. (p,+\infty)
|
|
E. (p, q)
|
F. (-\infty, p)\cup(q, +\infty)
|
Podpunkt 8.2 (0.8 pkt)
Zapisz ten zbiór w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
|
Zadanie 9. 1 pkt ⋅ Numer: pp-11192 ⋅ Poprawnie: 47/88 [53%] |
Rozwiąż |
Podpunkt 9.1 (0.2 pkt)
» Dana jest funkcja
g(x)=-3^{-2-x}+1.
Zbiór ZW_g ma postać:
Odpowiedzi:
|
A. \langle p, +\infty)
|
B. (-\infty,p)
|
|
C. (-\infty, p)\cup(q, +\infty)
|
D. \langle p, q\rangle
|
|
E. (p, q)
|
F. (-\infty, p\rangle
|
Podpunkt 9.2 (0.8 pkt)
Zapisz ten zbiór w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 10. 1 pkt ⋅ Numer: pp-11198 ⋅ Poprawnie: 241/398 [60%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Funkcją malejącą jest funkcja określona wzorem:
Odpowiedzi:
|
A. h(x)=\left(\frac{1}{6}\right)^{-x}
|
B. h(x)=-6^{-x}
|
|
C. h(x)=6^{5-x}
|
D. h(x)=\left(\frac{1}{6}\right)^{6-x}
|
|
Zadanie 11. 1 pkt ⋅ Numer: pp-11207 ⋅ Poprawnie: 133/240 [55%] |
Rozwiąż |
Podpunkt 11.1 (1 pkt)
Dana jest funkcja
f(x)=\left(\frac{1}{9}\right)^x.
Funkcja g(x)=f(x-6)-2:
Odpowiedzi:
|
A. nie ma miejsc zerowych
|
B. ma dwa miejsca zerowe
|
|
C. ma jedno miejsce zerowe
|
D. ma więcej niż dwa miejsca zerowe
|
|
Zadanie 12. 1 pkt ⋅ Numer: pp-11212 ⋅ Poprawnie: 119/182 [65%] |
Rozwiąż |
Podpunkt 12.1 (1 pkt)
Dana jest funkcja
f(x)=5^x+1.
Oblicz wartość funkcji określonej wzorem g(x)=f(x-6)
dla argumentu x=7.
Odpowiedź:
g(7)=
(wpisz liczbę całkowitą)
|
Zadanie 13. 1 pkt ⋅ Numer: pp-11195 ⋅ Poprawnie: 63/138 [45%] |
Rozwiąż |
Podpunkt 13.1 (1 pkt)
» Dana jest funkcja
g(x)=6^x.
Funkcja określona wzorem h(x)=-3+g(x-6) z prostą o równaniu
y+3=0:
Odpowiedzi:
|
A. nie ma punktów wspólnych
|
B. ma dokładnie jeden punkt wspólny
|
|
C. ma nieskończenie wiele punktów wspólnych
|
D. ma dokładnie dwa punkty wspólne
|
|
Zadanie 14. 1 pkt ⋅ Numer: pp-11205 ⋅ Poprawnie: 72/114 [63%] |
Rozwiąż |
Podpunkt 14.1 (1 pkt)
Do wykresu funkcji określonej wzorem
f(x)=a^x należy punkt
o współrzędnych
A=\left(\frac{3}{2},\frac{\sqrt{6}}{36}\right).
Wyznacz wartość parametru a.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 15. 1 pkt ⋅ Numer: pp-11209 ⋅ Poprawnie: 113/145 [77%] |
Rozwiąż |
Podpunkt 15.1 (1 pkt)
Podaj wspólne rozwiązanie równań
6^{x^2}\cdot \sqrt{6}=6^{\frac{73}{2}}
oraz
\log_{\frac{1}{6}}{x}=-1.
Odpowiedź:
x_0=
(wpisz liczbę całkowitą)