Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11211 ⋅ Poprawnie: 162/263 [61%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wskaż argument, dla którego funkcja określona wzorem f(x)=(\sqrt{2})^x przyjmuje wartość 8:
Odpowiedzi:
A. \log_{8}{4} B. \log_{2}{8}
C. 8\cdot \log_{2}{64} D. \log_{2}{64}
E. \frac{\log_{2}{8}}{2} F. \log_{8}{8}
Zadanie 2.  1 pkt ⋅ Numer: pp-11200 ⋅ Poprawnie: 466/597 [78%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dana jest funkcja f(x)=a^x. Punkt A=(4, 256) należy do wykresu tej funkcji.

Podaj liczbę a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11217 ⋅ Poprawnie: 328/493 [66%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Funkcja wykładnicza g(x)=a^x jest malejąca oraz g(-3)=8.

Wyznacz liczbę a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11190 ⋅ Poprawnie: 154/306 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Wykres funkcji g(x)=-a^{x-b} zawiera punkt:
Dane
a=2
b=1
Odpowiedzi:
A. A=(3,-2) B. A=(3,-4)
C. A=(1,-4) D. A=(1,4)
Zadanie 5.  1 pkt ⋅ Numer: pp-11196 ⋅ Poprawnie: 360/519 [69%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Dana jest funkcja f(x)=a^x. Do jej wykresu należy punkt o współrzędnych P=\left(-\frac{1}{2},7\right). Wówczas liczba a jest równa \frac{1}{7^m}.

Podaj liczbę m.

Odpowiedź:
m= (liczba zapisana dziesiętnie)
Zadanie 6.  1 pkt ⋅ Numer: pp-11197 ⋅ Poprawnie: 232/408 [56%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Dana jest funkcja f(x)=3^{2x}.

Do jej wykresu nie należy punkt:

Odpowiedzi:
A. A=\left(\frac{1}{2},3\right) B. A=(0,1)
C. A=\left(-\frac{1}{2},-\frac{1}{3}\right) D. A=\left(\frac{4}{2},81\right)
Zadanie 7.  1 pkt ⋅ Numer: pp-11201 ⋅ Poprawnie: 73/158 [46%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Funkcja g(x)=4^{2x+1} przyjmuje wartość:
Odpowiedzi:
A. -\frac{1}{3} B. -\frac{\pi}{2}
C. 0 D. \frac{\sqrt{8}}{8}
Zadanie 8.  1 pkt ⋅ Numer: pp-11214 ⋅ Poprawnie: 235/398 [59%] Rozwiąż 
Podpunkt 8.1 (0.2 pkt)
 Zbiór wartości funkcji f(x)=2^{-x}-7 ma postać:
Odpowiedzi:
A. \langle p, +\infty) B. \langle p, q\rangle
C. (p,+\infty) D. (-\infty, p)\cup(q, +\infty)
E. (-\infty, p) F. (-\infty, p\rangle
Podpunkt 8.2 (0.8 pkt)
 Zapisz ten zbiór w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11192 ⋅ Poprawnie: 47/88 [53%] Rozwiąż 
Podpunkt 9.1 (0.2 pkt)
 » Dana jest funkcja g(x)=-3^{-5-x}+3.

Zbiór ZW_g ma postać:

Odpowiedzi:
A. \langle p, q\rangle B. (-\infty, p)\cup(q, +\infty)
C. (-\infty,p) D. (p, q)
E. \langle p, +\infty) F. (-\infty, p\rangle
Podpunkt 9.2 (0.8 pkt)
 Zapisz ten zbiór w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-11198 ⋅ Poprawnie: 241/398 [60%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Funkcją malejącą jest funkcja określona wzorem:
Odpowiedzi:
A. h(x)=\left(\frac{1}{2}\right)^{-x} B. h(x)=\left(\frac{1}{2}\right)^{2-x}
C. h(x)=-2^{-x} D. h(x)=2^{4-x}
Zadanie 11.  1 pkt ⋅ Numer: pp-11206 ⋅ Poprawnie: 131/229 [57%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 » Wykres funkcji f(x)=\frac{1}{16}\cdot 2^x otrzymamy przesuwając wykres funkcji g(x)=2^x o:
Odpowiedzi:
A. cztery jednostki w lewo B. cztery jednostki w dół
C. dwie jednostki w górę D. cztery jednostki w prawo
Zadanie 12.  1 pkt ⋅ Numer: pp-11212 ⋅ Poprawnie: 119/182 [65%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Dana jest funkcja f(x)=2^x+1.

Oblicz wartość funkcji określonej wzorem g(x)=f(x-5) dla argumentu x=7.

Odpowiedź:
g(7)= (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-11195 ⋅ Poprawnie: 63/138 [45%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 » Dana jest funkcja g(x)=2^x.

Funkcja określona wzorem h(x)=-6+g(x-3) z prostą o równaniu y+3=0:

Odpowiedzi:
A. nie ma punktów wspólnych B. ma dokładnie dwa punkty wspólne
C. ma dokładnie jeden punkt wspólny D. ma nieskończenie wiele punktów wspólnych
Zadanie 14.  1 pkt ⋅ Numer: pp-11205 ⋅ Poprawnie: 72/114 [63%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=a^x należy punkt o współrzędnych A=\left(\frac{3}{2},\frac{\sqrt{3}}{9}\right).

Wyznacz wartość parametru a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 15.  1 pkt ⋅ Numer: pp-11210 ⋅ Poprawnie: 68/167 [40%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 « Równość f(x)=13, jeśli f(x)=3^{2x}, zachodzi dla x=-\log_{3}{p}.

Podaj liczbę p.

Odpowiedź:
p= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm