Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11211 ⋅ Poprawnie: 162/263 [61%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wskaż argument, dla którego funkcja określona wzorem f(x)=(\sqrt{2})^x przyjmuje wartość 3:
Odpowiedzi:
A. \frac{\log_{2}{3}}{2} B. \log_{2}{3}
C. 3\cdot \log_{2}{9} D. \log_{3}{3}
E. \log_{3}{4} F. \log_{2}{9}
Zadanie 2.  1 pkt ⋅ Numer: pp-11200 ⋅ Poprawnie: 466/597 [78%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dana jest funkcja f(x)=a^x. Punkt A=(1, 5) należy do wykresu tej funkcji.

Podaj liczbę a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11216 ⋅ Poprawnie: 78/190 [41%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Wyznacz ilość rozwiązań układu równań \begin{cases}y=-3x-4 \\y=9^{x-4}\end{cases}.
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11190 ⋅ Poprawnie: 154/306 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Wykres funkcji g(x)=-a^{x-b} zawiera punkt:
Dane
a=3
b=-4
Odpowiedzi:
A. A=(-2,9) B. A=(-4,9)
C. A=(-2,-9) D. A=(-4,-9)
Zadanie 5.  1 pkt ⋅ Numer: pp-11194 ⋅ Poprawnie: 53/114 [46%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wykres funkcji y=-6-\frac{1}{4^x} nie przecina prostej:
Odpowiedzi:
A. x=\sqrt{37} B. y=-6-\sqrt{2}
C. y=4x D. y=-6+\sqrt{2}
Zadanie 6.  1 pkt ⋅ Numer: pp-11199 ⋅ Poprawnie: 97/210 [46%] Rozwiąż 
Podpunkt 6.1 (0.2 pkt)
 » Funkcja f(x)=(5\cdot m-6)^x jest rosnąca wtedy i tylko wtedy gdy liczba m należy do pewnego przedziału.

Przedział ten ma postać:

Odpowiedzi:
A. (-\infty,p) B. \langle p, q\rangle
C. (p, +\infty) D. \langle p, +\infty)
E. (-\infty,p\rangle F. (p, q)
Podpunkt 6.2 (0.8 pkt)
 Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11201 ⋅ Poprawnie: 73/158 [46%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Funkcja g(x)=4^{3x+1} przyjmuje wartość:
Odpowiedzi:
A. -\frac{1}{3} B. 0
C. -\sqrt{3} D. \frac{\sqrt{3}}{3}
Zadanie 8.  1 pkt ⋅ Numer: pp-11214 ⋅ Poprawnie: 235/398 [59%] Rozwiąż 
Podpunkt 8.1 (0.2 pkt)
 Zbiór wartości funkcji f(x)=3^{-x}-2 ma postać:
Odpowiedzi:
A. (-\infty, p) B. \langle p, q\rangle
C. (p,+\infty) D. (-\infty, p)\cup(q, +\infty)
E. (p, q) F. \langle p, +\infty)
Podpunkt 8.2 (0.8 pkt)
 Zapisz ten zbiór w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11192 ⋅ Poprawnie: 47/88 [53%] Rozwiąż 
Podpunkt 9.1 (0.2 pkt)
 » Dana jest funkcja g(x)=-3^{-3-x}-6.

Zbiór ZW_g ma postać:

Odpowiedzi:
A. (p, q) B. (-\infty, p)\cup(q, +\infty)
C. (-\infty, p\rangle D. (-\infty,p)
E. \langle p, q\rangle F. \langle p, +\infty)
Podpunkt 9.2 (0.8 pkt)
 Zapisz ten zbiór w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-11198 ⋅ Poprawnie: 241/398 [60%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Funkcją malejącą jest funkcja określona wzorem:
Odpowiedzi:
A. h(x)=\left(\frac{1}{4}\right)^{-x} B. h(x)=4^{1-x}
C. h(x)=-4^{-x} D. h(x)=\left(\frac{1}{4}\right)^{4-x}
Zadanie 11.  1 pkt ⋅ Numer: pp-11206 ⋅ Poprawnie: 131/229 [57%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 » Wykres funkcji f(x)=\frac{1}{16}\cdot 2^x otrzymamy przesuwając wykres funkcji g(x)=2^x o:
Odpowiedzi:
A. cztery jednostki w prawo B. dwie jednostki w górę
C. cztery jednostki w dół D. cztery jednostki w lewo
Zadanie 12.  1 pkt ⋅ Numer: pp-11213 ⋅ Poprawnie: 491/627 [78%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
« Wykres funkcji f(x)=2^{x-3} przedstawia rysunek:
Odpowiedzi:
A. C B. B
C. D D. A
Zadanie 13.  1 pkt ⋅ Numer: pp-11195 ⋅ Poprawnie: 63/138 [45%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 » Dana jest funkcja g(x)=4^x.

Funkcja określona wzorem h(x)=6+g(x+6) z prostą o równaniu y-4=0:

Odpowiedzi:
A. ma nieskończenie wiele punktów wspólnych B. nie ma punktów wspólnych
C. ma dokładnie jeden punkt wspólny D. ma dokładnie dwa punkty wspólne
Zadanie 14.  1 pkt ⋅ Numer: pp-11203 ⋅ Poprawnie: 224/400 [56%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=p\cdot a^x, gdzie a>0, należą punkty o współrzędnych A=\left(2,1\right) i B=\left(1,\frac{1}{2}\right).

Oblicz f(11).

Odpowiedź:
f(x_0)= (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-11209 ⋅ Poprawnie: 113/145 [77%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Podaj wspólne rozwiązanie równań 4^{x^2}\cdot 2=4^{\frac{33}{2}} oraz \log_{\frac{1}{4}}{x}=-1.
Odpowiedź:
x_0= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm