Podgląd testu : lo2@sp-fun-wyk-pp-3
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11211 ⋅ Poprawnie: 162/263 [61%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Wskaż argument, dla którego funkcja określona wzorem
f(x)=(\sqrt{3})^x
przyjmuje wartość
6:
Odpowiedzi:
|
A. \frac{\log_{3}{6}}{2}
|
B. \log_{3}{36}
|
|
C. \log_{3}{6}
|
D. 6\cdot \log_{3}{36}
|
|
E. \log_{6}{6}
|
F. \log_{6}{9}
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11200 ⋅ Poprawnie: 466/597 [78%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Dana jest funkcja
f(x)=a^x. Punkt
A=(3, 125) należy do wykresu tej funkcji.
Podaj liczbę a.
Odpowiedź:
a=
(wpisz liczbę całkowitą)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11216 ⋅ Poprawnie: 78/190 [41%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
« Wyznacz ilość rozwiązań układu równań
\begin{cases}y=-4x-2 \\y=5^{x+4}\end{cases}.
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11190 ⋅ Poprawnie: 154/306 [50%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
« Wykres funkcji
g(x)=-a^{x-b} zawiera punkt:
Dane
a=3
b=-2
Odpowiedzi:
|
A. A=(0,-9)
|
B. A=(0,-3)
|
|
C. A=(-2,-9)
|
D. A=(0,9)
|
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11194 ⋅ Poprawnie: 53/114 [46%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Wykres funkcji
y=-1-\frac{1}{4^x} nie przecina
prostej:
Odpowiedzi:
|
A. y=-1+\sqrt{2}
|
B. x=\sqrt{17}
|
|
C. y=-1-\sqrt{2}
|
D. y=4x
|
|
Zadanie 6. 1 pkt ⋅ Numer: pp-11197 ⋅ Poprawnie: 232/408 [56%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Dana jest funkcja
f(x)=3^{4x}.
Do jej wykresu nie należy punkt:
Odpowiedzi:
|
A. A=\left(-\frac{1}{4},\frac{1}{3}\right)
|
B. A=\left(\frac{3}{4},27\right)
|
|
C. A=\left(\frac{1}{4},3\right)
|
D. A=\left(-\frac{1}{2},-\frac{1}{9}\right)
|
|
Zadanie 7. 1 pkt ⋅ Numer: pp-11208 ⋅ Poprawnie: 84/217 [38%] |
Rozwiąż |
Podpunkt 7.1 (0.2 pkt)
Funkcja
h(x)=(-3m-1)^x jest malejąca, wtedy i tylko wtedy, gdy
parametr
m należy do pewnego zbioru.
Zbiór ten ma postać:
Odpowiedzi:
|
A. (p, q)
|
B. \langle p, +\infty)
|
|
C. (-\infty, p)\cup(q, +\infty)
|
D. (p, +\infty)
|
|
E. (-\infty, p)
|
F. (-\infty, p\rangle
|
Podpunkt 7.2 (0.8 pkt)
Zapisz ten zbiór w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 1 pkt ⋅ Numer: pp-11214 ⋅ Poprawnie: 235/398 [59%] |
Rozwiąż |
Podpunkt 8.1 (0.2 pkt)
Zbiór wartości funkcji
f(x)=4^{-x}-5 ma postać:
Odpowiedzi:
|
A. (-\infty, p\rangle
|
B. (-\infty, p)
|
|
C. (p, q)
|
D. (-\infty, p)\cup(q, +\infty)
|
|
E. (p,+\infty)
|
F. \langle p, +\infty)
|
Podpunkt 8.2 (0.8 pkt)
Zapisz ten zbiór w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
|
Zadanie 9. 1 pkt ⋅ Numer: pp-11193 ⋅ Poprawnie: 71/124 [57%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
« Wykres funkcji
g jest symetryczny do wykresu
funkcji
f(x)=5^{-x} względem pewnej prostej.
Zatem g(x) jest równe:
Odpowiedzi:
|
A. \left(\frac{1}{7}\right)^{x}
|
B. -5^{x}
|
|
C. 5^{-x}-4
|
D. -5^{-x}
|
|
Zadanie 10. 1 pkt ⋅ Numer: pp-11198 ⋅ Poprawnie: 241/398 [60%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Funkcją malejącą jest funkcja określona wzorem:
Odpowiedzi:
|
A. h(x)=-4^{-x}
|
B. h(x)=4^{3-x}
|
|
C. h(x)=\left(\frac{1}{4}\right)^{-x}
|
D. h(x)=\left(\frac{1}{4}\right)^{4-x}
|
|
Zadanie 11. 1 pkt ⋅ Numer: pp-11206 ⋅ Poprawnie: 131/229 [57%] |
Rozwiąż |
Podpunkt 11.1 (1 pkt)
» Wykres funkcji
f(x)=\frac{1}{81}\cdot 3^x otrzymamy
przesuwając wykres funkcji
g(x)=3^x o:
Odpowiedzi:
|
A. cztery jednostki w lewo
|
B. dwie jednostki w górę
|
|
C. cztery jednostki w dół
|
D. cztery jednostki w prawo
|
|
Zadanie 12. 1 pkt ⋅ Numer: pp-11213 ⋅ Poprawnie: 491/627 [78%] |
Rozwiąż |
Podpunkt 12.1 (1 pkt)
« Wykres funkcji
f(x)=2^{x-3} przedstawia rysunek:
Odpowiedzi:
|
Zadanie 13. 1 pkt ⋅ Numer: pp-11219 ⋅ Poprawnie: 105/197 [53%] |
Rozwiąż |
Podpunkt 13.1 (1 pkt)
» Dana jest funkcja
f(x)=3^{x-4}-77.
Wyznacz miejsce zerowe funkcji określonej wzorem g(x)=f(x+1)-4.
Odpowiedź:
x=
(wpisz liczbę całkowitą)
|
Zadanie 14. 1 pkt ⋅ Numer: pp-11203 ⋅ Poprawnie: 224/400 [56%] |
Rozwiąż |
Podpunkt 14.1 (1 pkt)
Do wykresu funkcji określonej wzorem
f(x)=p\cdot a^x, gdzie
a>0,
należą punkty o współrzędnych
A=\left(2,1\right) i
B=\left(3,2\right).
Oblicz f(8).
Odpowiedź:
f(x_0)=
(wpisz liczbę całkowitą)
|
Zadanie 15. 1 pkt ⋅ Numer: pp-11209 ⋅ Poprawnie: 113/145 [77%] |
Rozwiąż |
Podpunkt 15.1 (1 pkt)
Podaj wspólne rozwiązanie równań
5^{x^2}\cdot \sqrt{5}=5^{\frac{51}{2}}
oraz
\log_{\frac{1}{5}}{x}=-1.
Odpowiedź:
x_0=
(wpisz liczbę całkowitą)