Podgląd testu : lo2@sp-fun-wyk-pp-3
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11211 ⋅ Poprawnie: 162/263 [61%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Wskaż argument, dla którego funkcja określona wzorem
f(x)=(\sqrt{5})^x
przyjmuje wartość
6:
Odpowiedzi:
|
A. \log_{5}{6}
|
B. 6\cdot \log_{5}{36}
|
|
C. \log_{6}{6}
|
D. \frac{\log_{5}{6}}{2}
|
|
E. \log_{5}{36}
|
F. \log_{6}{25}
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11200 ⋅ Poprawnie: 466/597 [78%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Dana jest funkcja
f(x)=a^x. Punkt
A=(1, 5) należy do wykresu tej funkcji.
Podaj liczbę a.
Odpowiedź:
a=
(wpisz liczbę całkowitą)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11217 ⋅ Poprawnie: 328/493 [66%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Funkcja wykładnicza
g(x)=a^x jest malejąca oraz
g(-3)=8.
Wyznacz liczbę a.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11191 ⋅ Poprawnie: 56/131 [42%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
» Dana jest funkcja
g(x)=\left(\sqrt{5}\right)^x.
Zbiór ZW_g nie zawiera liczby:
Odpowiedzi:
|
A. \frac{\sqrt{\pi}}{3}
|
B. 22\cdot \pi -69
|
|
C. 5^{-5}
|
D. 8\cdot \pi -26
|
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11196 ⋅ Poprawnie: 360/519 [69%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
» Dana jest funkcja
f(x)=a^x. Do jej wykresu
należy punkt o współrzędnych
P=\left(-\frac{1}{6},5\right).
Wówczas liczba
a jest równa
\frac{1}{5^m}.
Podaj liczbę m.
Odpowiedź:
m=
(liczba zapisana dziesiętnie)
|
Zadanie 6. 1 pkt ⋅ Numer: pp-11199 ⋅ Poprawnie: 97/210 [46%] |
Rozwiąż |
Podpunkt 6.1 (0.2 pkt)
» Funkcja
f(x)=(6\cdot m-5)^x jest rosnąca wtedy i tylko wtedy gdy
liczba
m należy do pewnego przedziału.
Przedział ten ma postać:
Odpowiedzi:
|
A. (-\infty,p)
|
B. \langle p, +\infty)
|
|
C. \langle p, q\rangle
|
D. (-\infty,p\rangle
|
|
E. (p, q)
|
F. (p, +\infty)
|
Podpunkt 6.2 (0.8 pkt)
Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 7. 1 pkt ⋅ Numer: pp-11208 ⋅ Poprawnie: 84/217 [38%] |
Rozwiąż |
Podpunkt 7.1 (0.2 pkt)
Funkcja
h(x)=(-3m-5)^x jest malejąca, wtedy i tylko wtedy, gdy
parametr
m należy do pewnego zbioru.
Zbiór ten ma postać:
Odpowiedzi:
|
A. (-\infty, p\rangle
|
B. (p, +\infty)
|
|
C. (p, q)
|
D. \langle p, +\infty)
|
|
E. (-\infty, p)
|
F. (-\infty, p)\cup(q, +\infty)
|
Podpunkt 7.2 (0.8 pkt)
Zapisz ten zbiór w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 1 pkt ⋅ Numer: pp-11189 ⋅ Poprawnie: 97/141 [68%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
Zbiór wartości funkcji
f(x)=3^x+\sqrt{11}
zawiera liczbę:
Odpowiedzi:
|
A. -14
|
B. \frac{\sqrt{11}}{2}
|
|
C. \sqrt{11}-4
|
D. \sqrt{11}+5
|
|
Zadanie 9. 1 pkt ⋅ Numer: pp-11193 ⋅ Poprawnie: 71/124 [57%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
« Wykres funkcji
g jest symetryczny do wykresu
funkcji
f(x)=5^{-x} względem pewnej prostej.
Zatem g(x) jest równe:
Odpowiedzi:
|
A. \left(\frac{1}{7}\right)^{x}
|
B. -5^{-x}
|
|
C. 5^{-x}-4
|
D. -5^{x}
|
|
Zadanie 10. 1 pkt ⋅ Numer: pp-11204 ⋅ Poprawnie: 208/479 [43%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Przesuwając wykres funkcji wykładniczej
f(x)=\left(\frac{1}{a}\right)^x o dwie jednostki
w prawo otrzymamy wykres funkcji
g określonej wzorem:
Odpowiedzi:
|
A. g(x)=\left(\frac{1}{5}\right)^{x}+2
|
B. g(x)=5\cdot\left(\frac{1}{5}\right)^{x+1}
|
|
C. g(x)=\left(\frac{1}{5}\right)^{x+2}
|
D. g(x)=25\cdot\left(\frac{1}{5}\right)^x
|
|
Zadanie 11. 1 pkt ⋅ Numer: pp-11207 ⋅ Poprawnie: 133/240 [55%] |
Rozwiąż |
Podpunkt 11.1 (1 pkt)
Dana jest funkcja
f(x)=\left(\frac{1}{6}\right)^x.
Funkcja g(x)=f(x+5)+4:
Odpowiedzi:
|
A. ma dwa miejsca zerowe
|
B. nie ma miejsc zerowych
|
|
C. ma więcej niż dwa miejsca zerowe
|
D. ma jedno miejsce zerowe
|
|
Zadanie 12. 1 pkt ⋅ Numer: pp-11213 ⋅ Poprawnie: 491/627 [78%] |
Rozwiąż |
Podpunkt 12.1 (1 pkt)
« Wykres funkcji
f(x)=2^{x-3} przedstawia rysunek:
Odpowiedzi:
|
Zadanie 13. 1 pkt ⋅ Numer: pp-11195 ⋅ Poprawnie: 63/138 [45%] |
Rozwiąż |
Podpunkt 13.1 (1 pkt)
» Dana jest funkcja
g(x)=4^x.
Funkcja określona wzorem h(x)=5+g(x+5) z prostą o równaniu
y-5=0:
Odpowiedzi:
|
A. nie ma punktów wspólnych
|
B. ma dokładnie jeden punkt wspólny
|
|
C. ma dokładnie dwa punkty wspólne
|
D. ma nieskończenie wiele punktów wspólnych
|
|
Zadanie 14. 1 pkt ⋅ Numer: pp-11205 ⋅ Poprawnie: 72/114 [63%] |
Rozwiąż |
Podpunkt 14.1 (1 pkt)
Do wykresu funkcji określonej wzorem
f(x)=a^x należy punkt
o współrzędnych
A=\left(\frac{3}{2},\frac{\sqrt{11}}{121}\right).
Wyznacz wartość parametru a.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 15. 1 pkt ⋅ Numer: pp-11210 ⋅ Poprawnie: 68/167 [40%] |
Rozwiąż |
Podpunkt 15.1 (1 pkt)
« Równość
f(x)=5, jeśli
f(x)=7^{2x}, zachodzi dla
x=-\log_{7}{p}.
Podaj liczbę p.
Odpowiedź: