Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11211 ⋅ Poprawnie: 162/263 [61%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wskaż argument, dla którego funkcja określona wzorem f(x)=(\sqrt{2})^x przyjmuje wartość 10:
Odpowiedzi:
A. \log_{10}{10} B. 10\cdot \log_{2}{100}
C. \log_{10}{4} D. \frac{\log_{2}{10}}{2}
E. \log_{2}{100} F. \log_{2}{10}
Zadanie 2.  1 pkt ⋅ Numer: pp-11200 ⋅ Poprawnie: 466/597 [78%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dana jest funkcja f(x)=a^x. Punkt A=(5, 1024) należy do wykresu tej funkcji.

Podaj liczbę a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11216 ⋅ Poprawnie: 78/190 [41%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Wyznacz ilość rozwiązań układu równań \begin{cases}y=-3x+2 \\y=5^{x-6}\end{cases}.
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11191 ⋅ Poprawnie: 56/131 [42%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Dana jest funkcja g(x)=\left(\sqrt{10}\right)^x.

Zbiór ZW_g nie zawiera liczby:

Odpowiedzi:
A. 5^{-5} B. 11\cdot \pi -35
C. 6\cdot \pi -18 D. \frac{\sqrt{\pi}}{9}
Zadanie 5.  1 pkt ⋅ Numer: pp-11196 ⋅ Poprawnie: 360/519 [69%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Dana jest funkcja f(x)=a^x. Do jej wykresu należy punkt o współrzędnych P=\left(-\frac{1}{2},9\right). Wówczas liczba a jest równa \frac{1}{9^m}.

Podaj liczbę m.

Odpowiedź:
m= (liczba zapisana dziesiętnie)
Zadanie 6.  1 pkt ⋅ Numer: pp-11199 ⋅ Poprawnie: 97/210 [46%] Rozwiąż 
Podpunkt 6.1 (0.2 pkt)
 » Funkcja f(x)=(8\cdot m-7)^x jest rosnąca wtedy i tylko wtedy gdy liczba m należy do pewnego przedziału.

Przedział ten ma postać:

Odpowiedzi:
A. (-\infty,p\rangle B. (p, +\infty)
C. \langle p, +\infty) D. (-\infty,p)
E. \langle p, q\rangle F. (p, q)
Podpunkt 6.2 (0.8 pkt)
 Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11201 ⋅ Poprawnie: 73/158 [46%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Funkcja g(x)=4^{2x+1} przyjmuje wartość:
Odpowiedzi:
A. \frac{\sqrt{5}}{5} B. -\frac{\pi}{2}
C. -\sqrt{2} D. -\frac{1}{2}
Zadanie 8.  1 pkt ⋅ Numer: pp-11189 ⋅ Poprawnie: 97/141 [68%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Zbiór wartości funkcji f(x)=8^x+2\sqrt{2} zawiera liczbę:
Odpowiedzi:
A. -12 B. \sqrt{8}-2
C. \frac{\sqrt{8}}{4} D. \sqrt{8}+3
Zadanie 9.  1 pkt ⋅ Numer: pp-11193 ⋅ Poprawnie: 71/124 [57%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Wykres funkcji g jest symetryczny do wykresu funkcji f(x)=4^{-x} względem pewnej prostej.

Zatem g(x) jest równe:

Odpowiedzi:
A. -4^{x} B. \left(\frac{1}{7}\right)^{x}
C. 4^{-x}-3 D. -4^{-x}
Zadanie 10.  1 pkt ⋅ Numer: pp-11198 ⋅ Poprawnie: 241/398 [60%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Funkcją malejącą jest funkcja określona wzorem:
Odpowiedzi:
A. h(x)=\left(\frac{1}{3}\right)^{-x} B. h(x)=-3^{-x}
C. h(x)=\left(\frac{1}{3}\right)^{3-x} D. h(x)=3^{5-x}
Zadanie 11.  1 pkt ⋅ Numer: pp-11207 ⋅ Poprawnie: 133/240 [55%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Dana jest funkcja f(x)=\left(\frac{1}{4}\right)^x.

Funkcja g(x)=f(x-6)-1:

Odpowiedzi:
A. ma jedno miejsce zerowe B. ma dwa miejsca zerowe
C. ma więcej niż dwa miejsca zerowe D. nie ma miejsc zerowych
Zadanie 12.  1 pkt ⋅ Numer: pp-11213 ⋅ Poprawnie: 491/627 [78%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
« Wykres funkcji f(x)=2^{x-3} przedstawia rysunek:
Odpowiedzi:
A. D B. B
C. C D. A
Zadanie 13.  1 pkt ⋅ Numer: pp-11202 ⋅ Poprawnie: 303/402 [75%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=3^x+m należy punkt o współrzędnych P=(2,-6).

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 14.  1 pkt ⋅ Numer: pp-11203 ⋅ Poprawnie: 224/400 [56%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=p\cdot a^x, gdzie a>0, należą punkty o współrzędnych A=\left(1,\frac{1}{2}\right) i B=\left(5,8\right).

Oblicz f(8).

Odpowiedź:
f(x_0)= (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-11210 ⋅ Poprawnie: 68/167 [40%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 « Równość f(x)=16, jeśli f(x)=5^{2x}, zachodzi dla x=-\log_{5}{p}.

Podaj liczbę p.

Odpowiedź:
p= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm