Podgląd testu : lo2@sp-fun-wyk-pp-3
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11218 ⋅ Poprawnie: 189/265 [71%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
» Funkcja
h określona jest wzorem
h(x)=3^{2x}.
Wówczas liczba
h\left(-\frac{9}{2}\right)
jest równa
\frac{1}{3^m}.
Podaj liczbę m.
Odpowiedź:
m=
(wpisz liczbę całkowitą)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11200 ⋅ Poprawnie: 466/597 [78%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Dana jest funkcja
f(x)=a^x. Punkt
A=(5, 16807) należy do wykresu tej funkcji.
Podaj liczbę a.
Odpowiedź:
a=
(wpisz liczbę całkowitą)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11217 ⋅ Poprawnie: 328/493 [66%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Funkcja wykładnicza
g(x)=a^x jest malejąca oraz
g(-3)=64.
Wyznacz liczbę a.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11191 ⋅ Poprawnie: 56/131 [42%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
» Dana jest funkcja
g(x)=\left(\sqrt{10}\right)^x.
Zbiór ZW_g nie zawiera liczby:
Odpowiedzi:
|
A. 23\cdot \pi -72
|
B. 15\cdot \pi -48
|
|
C. \frac{\sqrt{\pi}}{9}
|
D. 5^{-5}
|
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11194 ⋅ Poprawnie: 53/114 [46%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Wykres funkcji
y=6-\frac{1}{9^x} nie przecina
prostej:
Odpowiedzi:
|
A. x=\sqrt{26}
|
B. y=9x
|
|
C. y=6+\sqrt{2}
|
D. y=6-\sqrt{2}
|
|
Zadanie 6. 1 pkt ⋅ Numer: pp-11199 ⋅ Poprawnie: 97/210 [46%] |
Rozwiąż |
Podpunkt 6.1 (0.2 pkt)
» Funkcja
f(x)=(13\cdot m+6)^x jest rosnąca wtedy i tylko wtedy gdy
liczba
m należy do pewnego przedziału.
Przedział ten ma postać:
Odpowiedzi:
|
A. (p, +\infty)
|
B. (-\infty,p\rangle
|
|
C. (p, q)
|
D. (-\infty,p)
|
|
E. \langle p, +\infty)
|
F. \langle p, q\rangle
|
Podpunkt 6.2 (0.8 pkt)
Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 7. 1 pkt ⋅ Numer: pp-11208 ⋅ Poprawnie: 84/217 [38%] |
Rozwiąż |
Podpunkt 7.1 (0.2 pkt)
Funkcja
h(x)=(-8m+6)^x jest malejąca, wtedy i tylko wtedy, gdy
parametr
m należy do pewnego zbioru.
Zbiór ten ma postać:
Odpowiedzi:
|
A. (-\infty, p)\cup(q, +\infty)
|
B. (-\infty, p)
|
|
C. (p, q)
|
D. \langle p, +\infty)
|
|
E. (p, +\infty)
|
F. (-\infty, p\rangle
|
Podpunkt 7.2 (0.8 pkt)
Zapisz ten zbiór w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 1 pkt ⋅ Numer: pp-11189 ⋅ Poprawnie: 97/141 [68%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
Zbiór wartości funkcji
f(x)=8^x+2\sqrt{5}
zawiera liczbę:
Odpowiedzi:
|
A. \frac{\sqrt{20}}{4}
|
B. -24
|
|
C. \sqrt{20}+4
|
D. \sqrt{20}-6
|
|
Zadanie 9. 1 pkt ⋅ Numer: pp-11192 ⋅ Poprawnie: 47/88 [53%] |
Rozwiąż |
Podpunkt 9.1 (0.2 pkt)
» Dana jest funkcja
g(x)=-3^{3-x}+7.
Zbiór ZW_g ma postać:
Odpowiedzi:
|
A. (p, q)
|
B. (-\infty, p)\cup(q, +\infty)
|
|
C. (-\infty,p)
|
D. \langle p, q\rangle
|
|
E. (-\infty, p\rangle
|
F. \langle p, +\infty)
|
Podpunkt 9.2 (0.8 pkt)
Zapisz ten zbiór w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 10. 1 pkt ⋅ Numer: pp-11198 ⋅ Poprawnie: 241/398 [60%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Funkcją malejącą jest funkcja określona wzorem:
Odpowiedzi:
|
A. h(x)=\left(\frac{1}{9}\right)^{9-x}
|
B. h(x)=9^{5-x}
|
|
C. h(x)=-9^{-x}
|
D. h(x)=\left(\frac{1}{9}\right)^{-x}
|
|
Zadanie 11. 1 pkt ⋅ Numer: pp-11206 ⋅ Poprawnie: 131/229 [57%] |
Rozwiąż |
Podpunkt 11.1 (1 pkt)
» Wykres funkcji
f(x)=\frac{1}{625}\cdot 5^x otrzymamy
przesuwając wykres funkcji
g(x)=5^x o:
Odpowiedzi:
|
A. cztery jednostki w prawo
|
B. dwie jednostki w górę
|
|
C. cztery jednostki w lewo
|
D. cztery jednostki w dół
|
|
Zadanie 12. 1 pkt ⋅ Numer: pp-11213 ⋅ Poprawnie: 491/627 [78%] |
Rozwiąż |
Podpunkt 12.1 (1 pkt)
« Wykres funkcji
f(x)=2^{x-3} przedstawia rysunek:
Odpowiedzi:
|
Zadanie 13. 1 pkt ⋅ Numer: pp-11219 ⋅ Poprawnie: 105/197 [53%] |
Rozwiąż |
Podpunkt 13.1 (1 pkt)
» Dana jest funkcja
f(x)=3^{x-8}-2183.
Wyznacz miejsce zerowe funkcji określonej wzorem g(x)=f(x+1)-4.
Odpowiedź:
x=
(wpisz liczbę całkowitą)
|
Zadanie 14. 1 pkt ⋅ Numer: pp-11203 ⋅ Poprawnie: 224/400 [56%] |
Rozwiąż |
Podpunkt 14.1 (1 pkt)
Do wykresu funkcji określonej wzorem
f(x)=p\cdot a^x, gdzie
a>0,
należą punkty o współrzędnych
A=\left(4,4\right) i
B=\left(5,8\right).
Oblicz f(10).
Odpowiedź:
f(x_0)=
(wpisz liczbę całkowitą)
|
Zadanie 15. 1 pkt ⋅ Numer: pp-11209 ⋅ Poprawnie: 113/145 [77%] |
Rozwiąż |
Podpunkt 15.1 (1 pkt)
Podaj wspólne rozwiązanie równań
8^{x^2}\cdot 2\sqrt{2}=8^{\frac{129}{2}}
oraz
\log_{\frac{1}{8}}{x}=-1.
Odpowiedź:
x_0=
(wpisz liczbę całkowitą)