Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11211 ⋅ Poprawnie: 162/263 [61%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wskaż argument, dla którego funkcja określona wzorem f(x)=(\sqrt{3})^x przyjmuje wartość 6:
Odpowiedzi:
A. \frac{\log_{3}{6}}{2} B. \log_{3}{36}
C. \log_{3}{6} D. 6\cdot \log_{3}{36}
E. \log_{6}{6} F. \log_{6}{9}
Zadanie 2.  1 pkt ⋅ Numer: pp-11200 ⋅ Poprawnie: 466/597 [78%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dana jest funkcja f(x)=a^x. Punkt A=(3, 125) należy do wykresu tej funkcji.

Podaj liczbę a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11216 ⋅ Poprawnie: 78/190 [41%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Wyznacz ilość rozwiązań układu równań \begin{cases}y=-4x-2 \\y=5^{x+4}\end{cases}.
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11190 ⋅ Poprawnie: 154/306 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Wykres funkcji g(x)=-a^{x-b} zawiera punkt:
Dane
a=3
b=-2
Odpowiedzi:
A. A=(0,-9) B. A=(0,-3)
C. A=(-2,-9) D. A=(0,9)
Zadanie 5.  1 pkt ⋅ Numer: pp-11194 ⋅ Poprawnie: 53/114 [46%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wykres funkcji y=-1-\frac{1}{4^x} nie przecina prostej:
Odpowiedzi:
A. y=-1+\sqrt{2} B. x=\sqrt{17}
C. y=-1-\sqrt{2} D. y=4x
Zadanie 6.  1 pkt ⋅ Numer: pp-11197 ⋅ Poprawnie: 232/408 [56%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Dana jest funkcja f(x)=3^{4x}.

Do jej wykresu nie należy punkt:

Odpowiedzi:
A. A=\left(-\frac{1}{4},\frac{1}{3}\right) B. A=\left(\frac{3}{4},27\right)
C. A=\left(\frac{1}{4},3\right) D. A=\left(-\frac{1}{2},-\frac{1}{9}\right)
Zadanie 7.  1 pkt ⋅ Numer: pp-11208 ⋅ Poprawnie: 84/217 [38%] Rozwiąż 
Podpunkt 7.1 (0.2 pkt)
 Funkcja h(x)=(-3m-1)^x jest malejąca, wtedy i tylko wtedy, gdy parametr m należy do pewnego zbioru.

Zbiór ten ma postać:

Odpowiedzi:
A. (p, q) B. \langle p, +\infty)
C. (-\infty, p)\cup(q, +\infty) D. (p, +\infty)
E. (-\infty, p) F. (-\infty, p\rangle
Podpunkt 7.2 (0.8 pkt)
 Zapisz ten zbiór w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11214 ⋅ Poprawnie: 235/398 [59%] Rozwiąż 
Podpunkt 8.1 (0.2 pkt)
 Zbiór wartości funkcji f(x)=4^{-x}-5 ma postać:
Odpowiedzi:
A. (-\infty, p\rangle B. (-\infty, p)
C. (p, q) D. (-\infty, p)\cup(q, +\infty)
E. (p,+\infty) F. \langle p, +\infty)
Podpunkt 8.2 (0.8 pkt)
 Zapisz ten zbiór w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11193 ⋅ Poprawnie: 71/124 [57%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Wykres funkcji g jest symetryczny do wykresu funkcji f(x)=5^{-x} względem pewnej prostej.

Zatem g(x) jest równe:

Odpowiedzi:
A. \left(\frac{1}{7}\right)^{x} B. -5^{x}
C. 5^{-x}-4 D. -5^{-x}
Zadanie 10.  1 pkt ⋅ Numer: pp-11198 ⋅ Poprawnie: 241/398 [60%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Funkcją malejącą jest funkcja określona wzorem:
Odpowiedzi:
A. h(x)=-4^{-x} B. h(x)=4^{3-x}
C. h(x)=\left(\frac{1}{4}\right)^{-x} D. h(x)=\left(\frac{1}{4}\right)^{4-x}
Zadanie 11.  1 pkt ⋅ Numer: pp-11206 ⋅ Poprawnie: 131/229 [57%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 » Wykres funkcji f(x)=\frac{1}{81}\cdot 3^x otrzymamy przesuwając wykres funkcji g(x)=3^x o:
Odpowiedzi:
A. cztery jednostki w lewo B. dwie jednostki w górę
C. cztery jednostki w dół D. cztery jednostki w prawo
Zadanie 12.  1 pkt ⋅ Numer: pp-11213 ⋅ Poprawnie: 491/627 [78%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
« Wykres funkcji f(x)=2^{x-3} przedstawia rysunek:
Odpowiedzi:
A. A B. B
C. D D. C
Zadanie 13.  1 pkt ⋅ Numer: pp-11219 ⋅ Poprawnie: 105/197 [53%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 » Dana jest funkcja f(x)=3^{x-4}-77.

Wyznacz miejsce zerowe funkcji określonej wzorem g(x)=f(x+1)-4.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Zadanie 14.  1 pkt ⋅ Numer: pp-11203 ⋅ Poprawnie: 224/400 [56%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=p\cdot a^x, gdzie a>0, należą punkty o współrzędnych A=\left(2,1\right) i B=\left(3,2\right).

Oblicz f(8).

Odpowiedź:
f(x_0)= (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-11209 ⋅ Poprawnie: 113/145 [77%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Podaj wspólne rozwiązanie równań 5^{x^2}\cdot \sqrt{5}=5^{\frac{51}{2}} oraz \log_{\frac{1}{5}}{x}=-1.
Odpowiedź:
x_0= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm