Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11218 ⋅ Poprawnie: 189/265 [71%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Funkcja h określona jest wzorem h(x)=3^{2x}. Wówczas liczba h\left(-3\right) jest równa \frac{1}{3^m}.

Podaj liczbę m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11200 ⋅ Poprawnie: 466/597 [78%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dana jest funkcja f(x)=a^x. Punkt A=(1, 6) należy do wykresu tej funkcji.

Podaj liczbę a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11216 ⋅ Poprawnie: 78/190 [41%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Wyznacz ilość rozwiązań układu równań \begin{cases}y=-5x-5 \\y=5^{x+2}\end{cases}.
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11190 ⋅ Poprawnie: 154/306 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Wykres funkcji g(x)=-a^{x-b} zawiera punkt:
Dane
a=4
b=-5
Odpowiedzi:
A. A=(-3,-16) B. A=(-5,16)
C. A=(-3,-4) D. A=(-5,-16)
Zadanie 5.  1 pkt ⋅ Numer: pp-11194 ⋅ Poprawnie: 53/114 [46%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wykres funkcji y=-7-\frac{1}{5^x} nie przecina prostej:
Odpowiedzi:
A. y=-7-\sqrt{2} B. y=-7+\sqrt{2}
C. y=5x D. x=\sqrt{10}
Zadanie 6.  1 pkt ⋅ Numer: pp-11197 ⋅ Poprawnie: 232/408 [56%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Dana jest funkcja f(x)=3^{4x}.

Do jej wykresu nie należy punkt:

Odpowiedzi:
A. A=\left(-\frac{1}{2},-\frac{1}{9}\right) B. A=\left(-\frac{1}{4},\frac{1}{3}\right)
C. A=(0,1) D. A=\left(\frac{1}{4},3\right)
Zadanie 7.  1 pkt ⋅ Numer: pp-11208 ⋅ Poprawnie: 84/217 [38%] Rozwiąż 
Podpunkt 7.1 (0.2 pkt)
 Funkcja h(x)=(-4m-7)^x jest malejąca, wtedy i tylko wtedy, gdy parametr m należy do pewnego zbioru.

Zbiór ten ma postać:

Odpowiedzi:
A. (p, q) B. (-\infty, p)\cup(q, +\infty)
C. (p, +\infty) D. \langle p, +\infty)
E. (-\infty, p\rangle F. (-\infty, p)
Podpunkt 7.2 (0.8 pkt)
 Zapisz ten zbiór w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11214 ⋅ Poprawnie: 235/398 [59%] Rozwiąż 
Podpunkt 8.1 (0.2 pkt)
 Zbiór wartości funkcji f(x)=5^{-x}-2 ma postać:
Odpowiedzi:
A. (p, q) B. (-\infty, p)\cup(q, +\infty)
C. (-\infty, p\rangle D. \langle p, +\infty)
E. \langle p, q\rangle F. (p,+\infty)
Podpunkt 8.2 (0.8 pkt)
 Zapisz ten zbiór w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11193 ⋅ Poprawnie: 71/124 [57%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Wykres funkcji g jest symetryczny do wykresu funkcji f(x)=6^{-x} względem pewnej prostej.

Zatem g(x) jest równe:

Odpowiedzi:
A. \left(\frac{1}{7}\right)^{x} B. -6^{x}
C. 6^{-x}-5 D. -6^{-x}
Zadanie 10.  1 pkt ⋅ Numer: pp-11198 ⋅ Poprawnie: 241/398 [60%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Funkcją malejącą jest funkcja określona wzorem:
Odpowiedzi:
A. h(x)=\left(\frac{1}{5}\right)^{-x} B. h(x)=5^{1-x}
C. h(x)=\left(\frac{1}{5}\right)^{5-x} D. h(x)=-5^{-x}
Zadanie 11.  1 pkt ⋅ Numer: pp-11206 ⋅ Poprawnie: 131/229 [57%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 » Wykres funkcji f(x)=\frac{1}{81}\cdot 3^x otrzymamy przesuwając wykres funkcji g(x)=3^x o:
Odpowiedzi:
A. cztery jednostki w lewo B. cztery jednostki w dół
C. dwie jednostki w górę D. cztery jednostki w prawo
Zadanie 12.  1 pkt ⋅ Numer: pp-11213 ⋅ Poprawnie: 491/627 [78%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
« Wykres funkcji f(x)=2^{x-3} przedstawia rysunek:
Odpowiedzi:
A. C B. A
C. D D. B
Zadanie 13.  1 pkt ⋅ Numer: pp-11195 ⋅ Poprawnie: 63/138 [45%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 » Dana jest funkcja g(x)=5^x.

Funkcja określona wzorem h(x)=-2+g(x+7) z prostą o równaniu y+1=0:

Odpowiedzi:
A. ma dokładnie jeden punkt wspólny B. ma dokładnie dwa punkty wspólne
C. ma nieskończenie wiele punktów wspólnych D. nie ma punktów wspólnych
Zadanie 14.  1 pkt ⋅ Numer: pp-11205 ⋅ Poprawnie: 72/114 [63%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=a^x należy punkt o współrzędnych A=\left(\frac{3}{2},\frac{\sqrt{7}}{49}\right).

Wyznacz wartość parametru a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 15.  1 pkt ⋅ Numer: pp-11210 ⋅ Poprawnie: 68/167 [40%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 « Równość f(x)=3, jeśli f(x)=9^{2x}, zachodzi dla x=-\log_{9}{p}.

Podaj liczbę p.

Odpowiedź:
p= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm