Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11211 ⋅ Poprawnie: 162/263 [61%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wskaż argument, dla którego funkcja określona wzorem f(x)=(\sqrt{3})^x przyjmuje wartość 11:
Odpowiedzi:
A. \log_{11}{11} B. \log_{3}{11}
C. \log_{3}{121} D. 11\cdot \log_{3}{121}
E. \frac{\log_{3}{11}}{2} F. \log_{11}{9}
Zadanie 2.  1 pkt ⋅ Numer: pp-11200 ⋅ Poprawnie: 466/597 [78%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dana jest funkcja f(x)=a^x. Punkt A=(5, 7776) należy do wykresu tej funkcji.

Podaj liczbę a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11217 ⋅ Poprawnie: 328/493 [66%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Funkcja wykładnicza g(x)=a^x jest malejąca oraz g(-3)=27.

Wyznacz liczbę a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11190 ⋅ Poprawnie: 154/306 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Wykres funkcji g(x)=-a^{x-b} zawiera punkt:
Dane
a=4
b=3
Odpowiedzi:
A. A=(5,-16) B. A=(3,16)
C. A=(5,-4) D. A=(3,-16)
Zadanie 5.  1 pkt ⋅ Numer: pp-11196 ⋅ Poprawnie: 360/519 [69%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Dana jest funkcja f(x)=a^x. Do jej wykresu należy punkt o współrzędnych P=\left(-\frac{1}{4},9\right). Wówczas liczba a jest równa \frac{1}{9^m}.

Podaj liczbę m.

Odpowiedź:
m= (liczba zapisana dziesiętnie)
Zadanie 6.  1 pkt ⋅ Numer: pp-11197 ⋅ Poprawnie: 232/408 [56%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Dana jest funkcja f(x)=3^{4x}.

Do jej wykresu nie należy punkt:

Odpowiedzi:
A. A=\left(-\frac{1}{4},\frac{1}{3}\right) B. A=(0,1)
C. A=\left(\frac{4}{4},81\right) D. A=\left(-\frac{1}{2},-\frac{1}{9}\right)
Zadanie 7.  1 pkt ⋅ Numer: pp-11201 ⋅ Poprawnie: 73/158 [46%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Funkcja g(x)=4^{4x+1} przyjmuje wartość:
Odpowiedzi:
A. 0 B. \frac{\sqrt{10}}{10}
C. -\sqrt{3} D. -\frac{\pi}{2}
Zadanie 8.  1 pkt ⋅ Numer: pp-11214 ⋅ Poprawnie: 235/398 [59%] Rozwiąż 
Podpunkt 8.1 (0.2 pkt)
 Zbiór wartości funkcji f(x)=5^{-x}-9 ma postać:
Odpowiedzi:
A. (-\infty, p)\cup(q, +\infty) B. \langle p, +\infty)
C. (-\infty, p\rangle D. (p, q)
E. (p,+\infty) F. \langle p, q\rangle
Podpunkt 8.2 (0.8 pkt)
 Zapisz ten zbiór w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11192 ⋅ Poprawnie: 47/88 [53%] Rozwiąż 
Podpunkt 9.1 (0.2 pkt)
 » Dana jest funkcja g(x)=-3^{-3-x}-6.

Zbiór ZW_g ma postać:

Odpowiedzi:
A. (p, q) B. \langle p, q\rangle
C. (-\infty, p)\cup(q, +\infty) D. \langle p, +\infty)
E. (-\infty,p) F. (-\infty, p\rangle
Podpunkt 9.2 (0.8 pkt)
 Zapisz ten zbiór w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-11204 ⋅ Poprawnie: 208/479 [43%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Przesuwając wykres funkcji wykładniczej f(x)=\left(\frac{1}{a}\right)^x o dwie jednostki w prawo otrzymamy wykres funkcji g określonej wzorem:
Odpowiedzi:
A. g(x)=\left(\frac{1}{7}\right)^{x+2} B. g(x)=49\cdot\left(\frac{1}{7}\right)^x
C. g(x)=\left(\frac{1}{7}\right)^{x}-2 D. g(x)=7\cdot\left(\frac{1}{7}\right)^{x+1}
Zadanie 11.  1 pkt ⋅ Numer: pp-11207 ⋅ Poprawnie: 133/240 [55%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Dana jest funkcja f(x)=\left(\frac{1}{9}\right)^x.

Funkcja g(x)=f(x-6)-3:

Odpowiedzi:
A. ma więcej niż dwa miejsca zerowe B. ma dwa miejsca zerowe
C. ma jedno miejsce zerowe D. nie ma miejsc zerowych
Zadanie 12.  1 pkt ⋅ Numer: pp-11213 ⋅ Poprawnie: 491/627 [78%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
« Wykres funkcji f(x)=2^{x-3} przedstawia rysunek:
Odpowiedzi:
A. A B. B
C. C D. D
Zadanie 13.  1 pkt ⋅ Numer: pp-11219 ⋅ Poprawnie: 105/197 [53%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 » Dana jest funkcja f(x)=3^{x-5}-2183.

Wyznacz miejsce zerowe funkcji określonej wzorem g(x)=f(x+1)-4.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Zadanie 14.  1 pkt ⋅ Numer: pp-11205 ⋅ Poprawnie: 72/114 [63%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=a^x należy punkt o współrzędnych A=\left(\frac{3}{2},\frac{\sqrt{5}}{25}\right).

Wyznacz wartość parametru a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 15.  1 pkt ⋅ Numer: pp-11209 ⋅ Poprawnie: 113/145 [77%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Podaj wspólne rozwiązanie równań 6^{x^2}\cdot \sqrt{6}=6^{\frac{73}{2}} oraz \log_{\frac{1}{6}}{x}=-1.
Odpowiedź:
x_0= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm