Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11211 ⋅ Poprawnie: 162/263 [61%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wskaż argument, dla którego funkcja określona wzorem f(x)=(\sqrt{5})^x przyjmuje wartość 6:
Odpowiedzi:
A. \log_{5}{6} B. 6\cdot \log_{5}{36}
C. \log_{6}{6} D. \frac{\log_{5}{6}}{2}
E. \log_{5}{36} F. \log_{6}{25}
Zadanie 2.  1 pkt ⋅ Numer: pp-11200 ⋅ Poprawnie: 466/597 [78%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dana jest funkcja f(x)=a^x. Punkt A=(1, 5) należy do wykresu tej funkcji.

Podaj liczbę a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11217 ⋅ Poprawnie: 328/493 [66%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Funkcja wykładnicza g(x)=a^x jest malejąca oraz g(-3)=8.

Wyznacz liczbę a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11191 ⋅ Poprawnie: 56/131 [42%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Dana jest funkcja g(x)=\left(\sqrt{5}\right)^x.

Zbiór ZW_g nie zawiera liczby:

Odpowiedzi:
A. \frac{\sqrt{\pi}}{3} B. 22\cdot \pi -69
C. 5^{-5} D. 8\cdot \pi -26
Zadanie 5.  1 pkt ⋅ Numer: pp-11196 ⋅ Poprawnie: 360/519 [69%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Dana jest funkcja f(x)=a^x. Do jej wykresu należy punkt o współrzędnych P=\left(-\frac{1}{6},5\right). Wówczas liczba a jest równa \frac{1}{5^m}.

Podaj liczbę m.

Odpowiedź:
m= (liczba zapisana dziesiętnie)
Zadanie 6.  1 pkt ⋅ Numer: pp-11199 ⋅ Poprawnie: 97/210 [46%] Rozwiąż 
Podpunkt 6.1 (0.2 pkt)
 » Funkcja f(x)=(6\cdot m-5)^x jest rosnąca wtedy i tylko wtedy gdy liczba m należy do pewnego przedziału.

Przedział ten ma postać:

Odpowiedzi:
A. (-\infty,p) B. \langle p, +\infty)
C. \langle p, q\rangle D. (-\infty,p\rangle
E. (p, q) F. (p, +\infty)
Podpunkt 6.2 (0.8 pkt)
 Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11208 ⋅ Poprawnie: 84/217 [38%] Rozwiąż 
Podpunkt 7.1 (0.2 pkt)
 Funkcja h(x)=(-3m-5)^x jest malejąca, wtedy i tylko wtedy, gdy parametr m należy do pewnego zbioru.

Zbiór ten ma postać:

Odpowiedzi:
A. (-\infty, p\rangle B. (p, +\infty)
C. (p, q) D. \langle p, +\infty)
E. (-\infty, p) F. (-\infty, p)\cup(q, +\infty)
Podpunkt 7.2 (0.8 pkt)
 Zapisz ten zbiór w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11189 ⋅ Poprawnie: 97/141 [68%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Zbiór wartości funkcji f(x)=3^x+\sqrt{11} zawiera liczbę:
Odpowiedzi:
A. -14 B. \frac{\sqrt{11}}{2}
C. \sqrt{11}-4 D. \sqrt{11}+5
Zadanie 9.  1 pkt ⋅ Numer: pp-11193 ⋅ Poprawnie: 71/124 [57%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Wykres funkcji g jest symetryczny do wykresu funkcji f(x)=5^{-x} względem pewnej prostej.

Zatem g(x) jest równe:

Odpowiedzi:
A. \left(\frac{1}{7}\right)^{x} B. -5^{-x}
C. 5^{-x}-4 D. -5^{x}
Zadanie 10.  1 pkt ⋅ Numer: pp-11204 ⋅ Poprawnie: 208/479 [43%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Przesuwając wykres funkcji wykładniczej f(x)=\left(\frac{1}{a}\right)^x o dwie jednostki w prawo otrzymamy wykres funkcji g określonej wzorem:
Odpowiedzi:
A. g(x)=\left(\frac{1}{5}\right)^{x}+2 B. g(x)=5\cdot\left(\frac{1}{5}\right)^{x+1}
C. g(x)=\left(\frac{1}{5}\right)^{x+2} D. g(x)=25\cdot\left(\frac{1}{5}\right)^x
Zadanie 11.  1 pkt ⋅ Numer: pp-11207 ⋅ Poprawnie: 133/240 [55%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Dana jest funkcja f(x)=\left(\frac{1}{6}\right)^x.

Funkcja g(x)=f(x+5)+4:

Odpowiedzi:
A. ma dwa miejsca zerowe B. nie ma miejsc zerowych
C. ma więcej niż dwa miejsca zerowe D. ma jedno miejsce zerowe
Zadanie 12.  1 pkt ⋅ Numer: pp-11213 ⋅ Poprawnie: 491/627 [78%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
« Wykres funkcji f(x)=2^{x-3} przedstawia rysunek:
Odpowiedzi:
A. A B. B
C. D D. C
Zadanie 13.  1 pkt ⋅ Numer: pp-11195 ⋅ Poprawnie: 63/138 [45%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 » Dana jest funkcja g(x)=4^x.

Funkcja określona wzorem h(x)=5+g(x+5) z prostą o równaniu y-5=0:

Odpowiedzi:
A. nie ma punktów wspólnych B. ma dokładnie jeden punkt wspólny
C. ma dokładnie dwa punkty wspólne D. ma nieskończenie wiele punktów wspólnych
Zadanie 14.  1 pkt ⋅ Numer: pp-11205 ⋅ Poprawnie: 72/114 [63%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=a^x należy punkt o współrzędnych A=\left(\frac{3}{2},\frac{\sqrt{11}}{121}\right).

Wyznacz wartość parametru a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 15.  1 pkt ⋅ Numer: pp-11210 ⋅ Poprawnie: 68/167 [40%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 « Równość f(x)=5, jeśli f(x)=7^{2x}, zachodzi dla x=-\log_{7}{p}.

Podaj liczbę p.

Odpowiedź:
p= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm