Podgląd testu : lo2@sp-fun-wyk-pp-3
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11218 ⋅ Poprawnie: 189/265 [71%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
» Funkcja
h określona jest wzorem
h(x)=3^{2x}.
Wówczas liczba
h\left(-\frac{7}{2}\right)
jest równa
\frac{1}{3^m}.
Podaj liczbę m.
Odpowiedź:
m=
(wpisz liczbę całkowitą)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11215 ⋅ Poprawnie: 205/370 [55%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Dana jest funkcja
f(x)=6^{x+3}.
Wskaż rozwiązanie nierówności f(x) > 0:
Odpowiedzi:
|
A. \emptyset
|
B. (-\infty,0\rangle
|
|
C. (0,+\infty)
|
D. (-\infty,3)
|
|
E. \langle 0,+\infty)
|
F. \mathbb{R}
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11217 ⋅ Poprawnie: 328/493 [66%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Funkcja wykładnicza
g(x)=a^x jest malejąca oraz
g(-3)=27.
Wyznacz liczbę a.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11191 ⋅ Poprawnie: 56/131 [42%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
» Dana jest funkcja
g(x)=\left(\sqrt{7}\right)^x.
Zbiór ZW_g nie zawiera liczby:
Odpowiedzi:
|
A. \frac{\sqrt{\pi}}{9}
|
B. 5^{-2}
|
|
C. 17\cdot \pi -54
|
D. 12\cdot \pi -37
|
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11196 ⋅ Poprawnie: 360/519 [69%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
» Dana jest funkcja
f(x)=a^x. Do jej wykresu
należy punkt o współrzędnych
P=\left(-\frac{1}{4},9\right).
Wówczas liczba
a jest równa
\frac{1}{9^m}.
Podaj liczbę m.
Odpowiedź:
m=
(liczba zapisana dziesiętnie)
|
Zadanie 6. 1 pkt ⋅ Numer: pp-11199 ⋅ Poprawnie: 97/210 [46%] |
Rozwiąż |
Podpunkt 6.1 (0.2 pkt)
» Funkcja
f(x)=(9\cdot m+7)^x jest rosnąca wtedy i tylko wtedy gdy
liczba
m należy do pewnego przedziału.
Przedział ten ma postać:
Odpowiedzi:
|
A. \langle p, q\rangle
|
B. \langle p, +\infty)
|
|
C. (-\infty,p\rangle
|
D. (-\infty,p)
|
|
E. (p, +\infty)
|
F. (p, q)
|
Podpunkt 6.2 (0.8 pkt)
Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 7. 1 pkt ⋅ Numer: pp-11201 ⋅ Poprawnie: 73/158 [46%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Funkcja
g(x)=4^{4x+1} przyjmuje wartość:
Odpowiedzi:
|
A. 0
|
B. -\frac{1}{3}
|
|
C. -\sqrt{3}
|
D. \frac{\sqrt{10}}{10}
|
|
Zadanie 8. 1 pkt ⋅ Numer: pp-11214 ⋅ Poprawnie: 235/398 [59%] |
Rozwiąż |
Podpunkt 8.1 (0.2 pkt)
Zbiór wartości funkcji
f(x)=6^{-x}-9 ma postać:
Odpowiedzi:
|
A. (-\infty, p)\cup(q, +\infty)
|
B. (p, q)
|
|
C. (-\infty, p\rangle
|
D. \langle p, +\infty)
|
|
E. (-\infty, p)
|
F. (p,+\infty)
|
Podpunkt 8.2 (0.8 pkt)
Zapisz ten zbiór w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
|
Zadanie 9. 1 pkt ⋅ Numer: pp-11193 ⋅ Poprawnie: 71/124 [57%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
« Wykres funkcji
g jest symetryczny do wykresu
funkcji
f(x)=7^{-x} względem pewnej prostej.
Zatem g(x) jest równe:
Odpowiedzi:
|
A. -7^{-x}
|
B. \left(\frac{1}{7}\right)^{x}
|
|
C. -7^{x}
|
D. 7^{-x}-6
|
|
Zadanie 10. 1 pkt ⋅ Numer: pp-11204 ⋅ Poprawnie: 208/479 [43%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Przesuwając wykres funkcji wykładniczej
f(x)=\left(\frac{1}{a}\right)^x o dwie jednostki
w prawo otrzymamy wykres funkcji
g określonej wzorem:
Odpowiedzi:
|
A. g(x)=\left(\frac{1}{8}\right)^{x}+2
|
B. g(x)=8\cdot\left(\frac{1}{8}\right)^{x+1}
|
|
C. g(x)=\left(\frac{1}{8}\right)^{x}-2
|
D. g(x)=64\cdot\left(\frac{1}{8}\right)^x
|
|
Zadanie 11. 1 pkt ⋅ Numer: pp-11206 ⋅ Poprawnie: 131/229 [57%] |
Rozwiąż |
Podpunkt 11.1 (1 pkt)
» Wykres funkcji
f(x)=\frac{1}{256}\cdot 4^x otrzymamy
przesuwając wykres funkcji
g(x)=4^x o:
Odpowiedzi:
|
A. cztery jednostki w lewo
|
B. cztery jednostki w dół
|
|
C. cztery jednostki w prawo
|
D. dwie jednostki w górę
|
|
Zadanie 12. 1 pkt ⋅ Numer: pp-11212 ⋅ Poprawnie: 119/182 [65%] |
Rozwiąż |
Podpunkt 12.1 (1 pkt)
Dana jest funkcja
f(x)=5^x+1.
Oblicz wartość funkcji określonej wzorem g(x)=f(x-6)
dla argumentu x=7.
Odpowiedź:
g(7)=
(wpisz liczbę całkowitą)
|
Zadanie 13. 1 pkt ⋅ Numer: pp-11195 ⋅ Poprawnie: 63/138 [45%] |
Rozwiąż |
Podpunkt 13.1 (1 pkt)
» Dana jest funkcja
g(x)=6^x.
Funkcja określona wzorem h(x)=-3+g(x-7) z prostą o równaniu
y+5=0:
Odpowiedzi:
|
A. nie ma punktów wspólnych
|
B. ma dokładnie jeden punkt wspólny
|
|
C. ma nieskończenie wiele punktów wspólnych
|
D. ma dokładnie dwa punkty wspólne
|
|
Zadanie 14. 1 pkt ⋅ Numer: pp-11205 ⋅ Poprawnie: 72/114 [63%] |
Rozwiąż |
Podpunkt 14.1 (1 pkt)
Do wykresu funkcji określonej wzorem
f(x)=a^x należy punkt
o współrzędnych
A=\left(\frac{3}{2},\frac{\sqrt{14}}{196}\right).
Wyznacz wartość parametru a.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 15. 1 pkt ⋅ Numer: pp-11210 ⋅ Poprawnie: 68/167 [40%] |
Rozwiąż |
Podpunkt 15.1 (1 pkt)
« Równość
f(x)=17, jeśli
f(x)=10^{2x}, zachodzi dla
x=-\log_{10}{p}.
Podaj liczbę p.
Odpowiedź: