Podgląd testu : lo2@sp-fun-wyk-pp-3
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11211 ⋅ Poprawnie: 162/263 [61%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Wskaż argument, dla którego funkcja określona wzorem
f(x)=(\sqrt{3})^x
przyjmuje wartość
8:
Odpowiedzi:
|
A. \frac{\log_{3}{8}}{2}
|
B. \log_{8}{8}
|
|
C. \log_{8}{9}
|
D. \log_{3}{8}
|
|
E. 8\cdot \log_{3}{64}
|
F. \log_{3}{64}
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11200 ⋅ Poprawnie: 466/597 [78%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Dana jest funkcja
f(x)=a^x. Punkt
A=(3, 343) należy do wykresu tej funkcji.
Podaj liczbę a.
Odpowiedź:
a=
(wpisz liczbę całkowitą)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11217 ⋅ Poprawnie: 328/493 [66%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Funkcja wykładnicza
g(x)=a^x jest malejąca oraz
g(-3)=64.
Wyznacz liczbę a.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11191 ⋅ Poprawnie: 56/131 [42%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
» Dana jest funkcja
g(x)=\left(2\sqrt{2}\right)^x.
Zbiór ZW_g nie zawiera liczby:
Odpowiedzi:
|
A. 12\cdot \pi -38
|
B. 17\cdot \pi -53
|
|
C. \frac{\sqrt{\pi}}{8}
|
D. 5^{-7}
|
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11194 ⋅ Poprawnie: 53/114 [46%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Wykres funkcji
y=1-\frac{1}{8^x} nie przecina
prostej:
Odpowiedzi:
|
A. x=\sqrt{17}
|
B. y=1-\sqrt{2}
|
|
C. y=8x
|
D. y=1+\sqrt{2}
|
|
Zadanie 6. 1 pkt ⋅ Numer: pp-11199 ⋅ Poprawnie: 97/210 [46%] |
Rozwiąż |
Podpunkt 6.1 (0.2 pkt)
» Funkcja
f(x)=(10\cdot m+3)^x jest rosnąca wtedy i tylko wtedy gdy
liczba
m należy do pewnego przedziału.
Przedział ten ma postać:
Odpowiedzi:
|
A. (p, +\infty)
|
B. \langle p, q\rangle
|
|
C. (p, q)
|
D. (-\infty,p)
|
|
E. \langle p, +\infty)
|
F. (-\infty,p\rangle
|
Podpunkt 6.2 (0.8 pkt)
Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 7. 1 pkt ⋅ Numer: pp-11201 ⋅ Poprawnie: 73/158 [46%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Funkcja
g(x)=4^{5x+1} przyjmuje wartość:
Odpowiedzi:
|
A. 0
|
B. -\frac{1}{7}
|
|
C. -\sqrt{7}
|
D. \frac{\sqrt{6}}{6}
|
|
Zadanie 8. 1 pkt ⋅ Numer: pp-11214 ⋅ Poprawnie: 235/398 [59%] |
Rozwiąż |
Podpunkt 8.1 (0.2 pkt)
Zbiór wartości funkcji
f(x)=7^{-x}-6 ma postać:
Odpowiedzi:
|
A. (-\infty, p)\cup(q, +\infty)
|
B. (p, q)
|
|
C. (-\infty, p)
|
D. (-\infty, p\rangle
|
|
E. \langle p, +\infty)
|
F. (p,+\infty)
|
Podpunkt 8.2 (0.8 pkt)
Zapisz ten zbiór w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
|
Zadanie 9. 1 pkt ⋅ Numer: pp-11192 ⋅ Poprawnie: 47/88 [53%] |
Rozwiąż |
Podpunkt 9.1 (0.2 pkt)
» Dana jest funkcja
g(x)=-3^{2-x}+1.
Zbiór ZW_g ma postać:
Odpowiedzi:
|
A. \langle p, +\infty)
|
B. (-\infty,p)
|
|
C. (-\infty, p)\cup(q, +\infty)
|
D. (-\infty, p\rangle
|
|
E. \langle p, q\rangle
|
F. (p, q)
|
Podpunkt 9.2 (0.8 pkt)
Zapisz ten zbiór w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 10. 1 pkt ⋅ Numer: pp-11204 ⋅ Poprawnie: 208/479 [43%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Przesuwając wykres funkcji wykładniczej
f(x)=\left(\frac{1}{a}\right)^x o dwie jednostki
w prawo otrzymamy wykres funkcji
g określonej wzorem:
Odpowiedzi:
|
A. g(x)=100\cdot\left(\frac{1}{10}\right)^x
|
B. g(x)=10\cdot\left(\frac{1}{10}\right)^{x+1}
|
|
C. g(x)=\left(\frac{1}{10}\right)^{x}-2
|
D. g(x)=\left(\frac{1}{10}\right)^{x}+2
|
|
Zadanie 11. 1 pkt ⋅ Numer: pp-11206 ⋅ Poprawnie: 131/229 [57%] |
Rozwiąż |
Podpunkt 11.1 (1 pkt)
» Wykres funkcji
f(x)=\frac{1}{256}\cdot 4^x otrzymamy
przesuwając wykres funkcji
g(x)=4^x o:
Odpowiedzi:
|
A. dwie jednostki w górę
|
B. cztery jednostki w dół
|
|
C. cztery jednostki w lewo
|
D. cztery jednostki w prawo
|
|
Zadanie 12. 1 pkt ⋅ Numer: pp-11213 ⋅ Poprawnie: 491/627 [78%] |
Rozwiąż |
Podpunkt 12.1 (1 pkt)
« Wykres funkcji
f(x)=2^{x-3} przedstawia rysunek:
Odpowiedzi:
|
Zadanie 13. 1 pkt ⋅ Numer: pp-11202 ⋅ Poprawnie: 303/402 [75%] |
Rozwiąż |
Podpunkt 13.1 (1 pkt)
Do wykresu funkcji określonej wzorem
f(x)=3^x+m należy punkt
o współrzędnych
P=(5,-23).
Wyznacz wartość parametru m.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 14. 1 pkt ⋅ Numer: pp-11203 ⋅ Poprawnie: 224/400 [56%] |
Rozwiąż |
Podpunkt 14.1 (1 pkt)
Do wykresu funkcji określonej wzorem
f(x)=p\cdot a^x, gdzie
a>0,
należą punkty o współrzędnych
A=\left(4,4\right) i
B=\left(3,2\right).
Oblicz f(9).
Odpowiedź:
f(x_0)=
(wpisz liczbę całkowitą)
|
Zadanie 15. 1 pkt ⋅ Numer: pp-11210 ⋅ Poprawnie: 68/167 [40%] |
Rozwiąż |
Podpunkt 15.1 (1 pkt)
« Równość
f(x)=11, jeśli
f(x)=13^{2x}, zachodzi dla
x=-\log_{13}{p}.
Podaj liczbę p.
Odpowiedź: