Podgląd testu : lo2@sp-fun-wyk-pp-3
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11218 ⋅ Poprawnie: 189/265 [71%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
» Funkcja
h określona jest wzorem
h(x)=3^{2x}.
Wówczas liczba
h\left(-3\right)
jest równa
\frac{1}{3^m}.
Podaj liczbę m.
Odpowiedź:
m=
(wpisz liczbę całkowitą)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11215 ⋅ Poprawnie: 205/370 [55%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Dana jest funkcja
f(x)=5^{x-3}.
Wskaż rozwiązanie nierówności f(x) > 0:
Odpowiedzi:
|
A. \mathbb{R}
|
B. (-\infty,0)
|
|
C. (-\infty,-3)
|
D. \langle 0,+\infty)
|
|
E. (-\infty,0\rangle
|
F. \emptyset
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11216 ⋅ Poprawnie: 78/190 [41%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
« Wyznacz ilość rozwiązań układu równań
\begin{cases}y=-5x-3 \\y=5^{x-6}\end{cases}.
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11190 ⋅ Poprawnie: 154/306 [50%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
« Wykres funkcji
g(x)=-a^{x-b} zawiera punkt:
Dane
a=4
b=-3
Odpowiedzi:
|
A. A=(-1,-4)
|
B. A=(-1,16)
|
|
C. A=(-3,16)
|
D. A=(-1,-16)
|
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11196 ⋅ Poprawnie: 360/519 [69%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
» Dana jest funkcja
f(x)=a^x. Do jej wykresu
należy punkt o współrzędnych
P=\left(-\frac{1}{4},3\right).
Wówczas liczba
a jest równa
\frac{1}{3^m}.
Podaj liczbę m.
Odpowiedź:
m=
(liczba zapisana dziesiętnie)
|
Zadanie 6. 1 pkt ⋅ Numer: pp-11199 ⋅ Poprawnie: 97/210 [46%] |
Rozwiąż |
Podpunkt 6.1 (0.2 pkt)
» Funkcja
f(x)=(9\cdot m-4)^x jest rosnąca wtedy i tylko wtedy gdy
liczba
m należy do pewnego przedziału.
Przedział ten ma postać:
Odpowiedzi:
|
A. (p, q)
|
B. (-\infty,p\rangle
|
|
C. \langle p, q\rangle
|
D. \langle p, +\infty)
|
|
E. (p, +\infty)
|
F. (-\infty,p)
|
Podpunkt 6.2 (0.8 pkt)
Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 7. 1 pkt ⋅ Numer: pp-11201 ⋅ Poprawnie: 73/158 [46%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Funkcja
g(x)=4^{4x+1} przyjmuje wartość:
Odpowiedzi:
|
A. -\frac{1}{2}
|
B. -\sqrt{2}
|
|
C. -\frac{\pi}{2}
|
D. \frac{\sqrt{5}}{5}
|
|
Zadanie 8. 1 pkt ⋅ Numer: pp-11214 ⋅ Poprawnie: 235/398 [59%] |
Rozwiąż |
Podpunkt 8.1 (0.2 pkt)
Zbiór wartości funkcji
f(x)=5^{-x}-3 ma postać:
Odpowiedzi:
|
A. (-\infty, p)
|
B. (p,+\infty)
|
|
C. (p, q)
|
D. (-\infty, p)\cup(q, +\infty)
|
|
E. \langle p, +\infty)
|
F. \langle p, q\rangle
|
Podpunkt 8.2 (0.8 pkt)
Zapisz ten zbiór w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
|
Zadanie 9. 1 pkt ⋅ Numer: pp-11192 ⋅ Poprawnie: 47/88 [53%] |
Rozwiąż |
Podpunkt 9.1 (0.2 pkt)
» Dana jest funkcja
g(x)=-3^{-1-x}-7.
Zbiór ZW_g ma postać:
Odpowiedzi:
|
A. (-\infty, p\rangle
|
B. \langle p, q\rangle
|
|
C. (-\infty, p)\cup(q, +\infty)
|
D. (-\infty,p)
|
|
E. (p, q)
|
F. \langle p, +\infty)
|
Podpunkt 9.2 (0.8 pkt)
Zapisz ten zbiór w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 10. 1 pkt ⋅ Numer: pp-11198 ⋅ Poprawnie: 241/398 [60%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Funkcją malejącą jest funkcja określona wzorem:
Odpowiedzi:
|
A. h(x)=\left(\frac{1}{6}\right)^{6-x}
|
B. h(x)=-6^{-x}
|
|
C. h(x)=6^{2-x}
|
D. h(x)=\left(\frac{1}{6}\right)^{-x}
|
|
Zadanie 11. 1 pkt ⋅ Numer: pp-11206 ⋅ Poprawnie: 131/229 [57%] |
Rozwiąż |
Podpunkt 11.1 (1 pkt)
» Wykres funkcji
f(x)=\frac{1}{81}\cdot 3^x otrzymamy
przesuwając wykres funkcji
g(x)=3^x o:
Odpowiedzi:
|
A. cztery jednostki w lewo
|
B. cztery jednostki w prawo
|
|
C. dwie jednostki w górę
|
D. cztery jednostki w dół
|
|
Zadanie 12. 1 pkt ⋅ Numer: pp-11213 ⋅ Poprawnie: 491/627 [78%] |
Rozwiąż |
Podpunkt 12.1 (1 pkt)
« Wykres funkcji
f(x)=2^{x-3} przedstawia rysunek:
Odpowiedzi:
|
Zadanie 13. 1 pkt ⋅ Numer: pp-11202 ⋅ Poprawnie: 303/402 [75%] |
Rozwiąż |
Podpunkt 13.1 (1 pkt)
Do wykresu funkcji określonej wzorem
f(x)=3^x+m należy punkt
o współrzędnych
P=(4,-38).
Wyznacz wartość parametru m.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 14. 1 pkt ⋅ Numer: pp-11205 ⋅ Poprawnie: 72/114 [63%] |
Rozwiąż |
Podpunkt 14.1 (1 pkt)
Do wykresu funkcji określonej wzorem
f(x)=a^x należy punkt
o współrzędnych
A=\left(\frac{3}{2},\frac{\sqrt{7}}{49}\right).
Wyznacz wartość parametru a.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 15. 1 pkt ⋅ Numer: pp-11210 ⋅ Poprawnie: 68/167 [40%] |
Rozwiąż |
Podpunkt 15.1 (1 pkt)
« Równość
f(x)=6, jeśli
f(x)=10^{2x}, zachodzi dla
x=-\log_{10}{p}.
Podaj liczbę p.
Odpowiedź: