Podgląd testu : lo2@sp-fun-wyk-pp-3
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11218 ⋅ Poprawnie: 189/265 [71%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
» Funkcja
h określona jest wzorem
h(x)=3^{2x}.
Wówczas liczba
h\left(-\frac{3}{2}\right)
jest równa
\frac{1}{3^m}.
Podaj liczbę m.
Odpowiedź:
m=
(wpisz liczbę całkowitą)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11200 ⋅ Poprawnie: 466/597 [78%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Dana jest funkcja
f(x)=a^x. Punkt
A=(3, 64) należy do wykresu tej funkcji.
Podaj liczbę a.
Odpowiedź:
a=
(wpisz liczbę całkowitą)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11216 ⋅ Poprawnie: 78/190 [41%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
« Wyznacz ilość rozwiązań układu równań
\begin{cases}y=-2x-1 \\y=5^{x}\end{cases}.
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11190 ⋅ Poprawnie: 154/306 [50%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
« Wykres funkcji
g(x)=-a^{x-b} zawiera punkt:
Dane
a=2
b=-1
Odpowiedzi:
|
A. A=(-1,-4)
|
B. A=(1,-2)
|
|
C. A=(1,4)
|
D. A=(1,-4)
|
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11194 ⋅ Poprawnie: 53/114 [46%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Wykres funkcji
y=-1-\frac{1}{2^x} nie przecina
prostej:
Odpowiedzi:
|
A. y=-1-\sqrt{2}
|
B. y=-1+\sqrt{2}
|
|
C. x=\sqrt{10}
|
D. y=2x
|
|
Zadanie 6. 1 pkt ⋅ Numer: pp-11197 ⋅ Poprawnie: 232/408 [56%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Dana jest funkcja
f(x)=3^{2x}.
Do jej wykresu nie należy punkt:
Odpowiedzi:
|
A. A=(0,1)
|
B. A=\left(\frac{1}{2},3\right)
|
|
C. A=\left(\frac{3}{2},27\right)
|
D. A=\left(-\frac{1}{2},-\frac{1}{3}\right)
|
|
Zadanie 7. 1 pkt ⋅ Numer: pp-11201 ⋅ Poprawnie: 73/158 [46%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Funkcja
g(x)=4^{2x+1} przyjmuje wartość:
Odpowiedzi:
|
A. -\frac{\pi}{2}
|
B. -\sqrt{5}
|
|
C. -\frac{1}{5}
|
D. \frac{\sqrt{6}}{6}
|
|
Zadanie 8. 1 pkt ⋅ Numer: pp-11214 ⋅ Poprawnie: 235/398 [59%] |
Rozwiąż |
Podpunkt 8.1 (0.2 pkt)
Zbiór wartości funkcji
f(x)=2^{-x}-5 ma postać:
Odpowiedzi:
|
A. (p, q)
|
B. (-\infty, p)
|
|
C. (p,+\infty)
|
D. (-\infty, p\rangle
|
|
E. (-\infty, p)\cup(q, +\infty)
|
F. \langle p, q\rangle
|
Podpunkt 8.2 (0.8 pkt)
Zapisz ten zbiór w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
|
Zadanie 9. 1 pkt ⋅ Numer: pp-11193 ⋅ Poprawnie: 71/124 [57%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
« Wykres funkcji
g jest symetryczny do wykresu
funkcji
f(x)=3^{-x} względem pewnej prostej.
Zatem g(x) jest równe:
Odpowiedzi:
|
A. -3^{x}
|
B. 3^{-x}-2
|
|
C. -3^{-x}
|
D. \left(\frac{1}{7}\right)^{x}
|
|
Zadanie 10. 1 pkt ⋅ Numer: pp-11204 ⋅ Poprawnie: 208/479 [43%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Przesuwając wykres funkcji wykładniczej
f(x)=\left(\frac{1}{a}\right)^x o dwie jednostki
w prawo otrzymamy wykres funkcji
g określonej wzorem:
Odpowiedzi:
|
A. g(x)=2\cdot\left(\frac{1}{2}\right)^{x+1}
|
B. g(x)=4\cdot\left(\frac{1}{2}\right)^x
|
|
C. g(x)=\left(\frac{1}{2}\right)^{x+2}
|
D. g(x)=\left(\frac{1}{2}\right)^{x}+2
|
|
Zadanie 11. 1 pkt ⋅ Numer: pp-11206 ⋅ Poprawnie: 131/229 [57%] |
Rozwiąż |
Podpunkt 11.1 (1 pkt)
» Wykres funkcji
f(x)=\frac{1}{16}\cdot 2^x otrzymamy
przesuwając wykres funkcji
g(x)=2^x o:
Odpowiedzi:
|
A. cztery jednostki w lewo
|
B. dwie jednostki w górę
|
|
C. cztery jednostki w dół
|
D. cztery jednostki w prawo
|
|
Zadanie 12. 1 pkt ⋅ Numer: pp-11212 ⋅ Poprawnie: 119/182 [65%] |
Rozwiąż |
Podpunkt 12.1 (1 pkt)
Dana jest funkcja
f(x)=2^x+1.
Oblicz wartość funkcji określonej wzorem g(x)=f(x-4)
dla argumentu x=7.
Odpowiedź:
g(7)=
(wpisz liczbę całkowitą)
|
Zadanie 13. 1 pkt ⋅ Numer: pp-11195 ⋅ Poprawnie: 63/138 [45%] |
Rozwiąż |
Podpunkt 13.1 (1 pkt)
» Dana jest funkcja
g(x)=2^x.
Funkcja określona wzorem h(x)=-2+g(x+1) z prostą o równaniu
y+2=0:
Odpowiedzi:
|
A. ma dokładnie dwa punkty wspólne
|
B. nie ma punktów wspólnych
|
|
C. ma dokładnie jeden punkt wspólny
|
D. ma nieskończenie wiele punktów wspólnych
|
|
Zadanie 14. 1 pkt ⋅ Numer: pp-11203 ⋅ Poprawnie: 224/400 [56%] |
Rozwiąż |
Podpunkt 14.1 (1 pkt)
Do wykresu funkcji określonej wzorem
f(x)=p\cdot a^x, gdzie
a>0,
należą punkty o współrzędnych
A=\left(1,\frac{1}{2}\right) i
B=\left(3,2\right).
Oblicz f(8).
Odpowiedź:
f(x_0)=
(wpisz liczbę całkowitą)
|
Zadanie 15. 1 pkt ⋅ Numer: pp-11210 ⋅ Poprawnie: 68/167 [40%] |
Rozwiąż |
Podpunkt 15.1 (1 pkt)
« Równość
f(x)=9, jeśli
f(x)=3^{2x}, zachodzi dla
x=-\log_{3}{p}.
Podaj liczbę p.
Odpowiedź: