Podgląd testu : lo2@sp-fun-wyk-pp-3
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11218 ⋅ Poprawnie: 189/265 [71%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
» Funkcja
h określona jest wzorem
h(x)=3^{2x}.
Wówczas liczba
h\left(-\frac{3}{2}\right)
jest równa
\frac{1}{3^m}.
Podaj liczbę m.
Odpowiedź:
m=
(wpisz liczbę całkowitą)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11215 ⋅ Poprawnie: 205/370 [55%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Dana jest funkcja
f(x)=2^{x+2}.
Wskaż rozwiązanie nierówności f(x) > 0:
Odpowiedzi:
|
A. \mathbb{R}
|
B. \emptyset
|
|
C. (0,+\infty)
|
D. (2,+\infty)
|
|
E. (-\infty,2)
|
F. \langle 0,+\infty)
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11217 ⋅ Poprawnie: 328/493 [66%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Funkcja wykładnicza
g(x)=a^x jest malejąca oraz
g(-3)=8.
Wyznacz liczbę a.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11191 ⋅ Poprawnie: 56/131 [42%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
» Dana jest funkcja
g(x)=\left(\sqrt{3}\right)^x.
Zbiór ZW_g nie zawiera liczby:
Odpowiedzi:
|
A. \frac{\sqrt{\pi}}{10}
|
B. 5^{-5}
|
|
C. 14\cdot \pi -43
|
D. 16\cdot \pi -51
|
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11194 ⋅ Poprawnie: 53/114 [46%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Wykres funkcji
y=5-\frac{1}{2^x} nie przecina
prostej:
Odpowiedzi:
|
A. x=\sqrt{17}
|
B. y=2x
|
|
C. y=5-\sqrt{2}
|
D. y=5+\sqrt{2}
|
|
Zadanie 6. 1 pkt ⋅ Numer: pp-11197 ⋅ Poprawnie: 232/408 [56%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Dana jest funkcja
f(x)=3^{2x}.
Do jej wykresu nie należy punkt:
Odpowiedzi:
|
A. A=\left(\frac{1}{2},3\right)
|
B. A=\left(\frac{4}{2},81\right)
|
|
C. A=(0,1)
|
D. A=\left(-\frac{1}{2},-\frac{1}{3}\right)
|
|
Zadanie 7. 1 pkt ⋅ Numer: pp-11208 ⋅ Poprawnie: 84/217 [38%] |
Rozwiąż |
Podpunkt 7.1 (0.2 pkt)
Funkcja
h(x)=(-m+5)^x jest malejąca, wtedy i tylko wtedy, gdy
parametr
m należy do pewnego zbioru.
Zbiór ten ma postać:
Odpowiedzi:
|
A. (p, +\infty)
|
B. \langle p, +\infty)
|
|
C. (p, q)
|
D. (-\infty, p\rangle
|
|
E. (-\infty, p)\cup(q, +\infty)
|
F. (-\infty, p)
|
Podpunkt 7.2 (0.8 pkt)
Zapisz ten zbiór w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 1 pkt ⋅ Numer: pp-11214 ⋅ Poprawnie: 235/398 [59%] |
Rozwiąż |
Podpunkt 8.1 (0.2 pkt)
Zbiór wartości funkcji
f(x)=2^{-x}-8 ma postać:
Odpowiedzi:
|
A. (-\infty, p)
|
B. (p,+\infty)
|
|
C. (p, q)
|
D. (-\infty, p\rangle
|
|
E. \langle p, q\rangle
|
F. \langle p, +\infty)
|
Podpunkt 8.2 (0.8 pkt)
Zapisz ten zbiór w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
|
Zadanie 9. 1 pkt ⋅ Numer: pp-11193 ⋅ Poprawnie: 71/124 [57%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
« Wykres funkcji
g jest symetryczny do wykresu
funkcji
f(x)=3^{-x} względem pewnej prostej.
Zatem g(x) jest równe:
Odpowiedzi:
|
A. -3^{x}
|
B. 3^{-x}-2
|
|
C. -3^{-x}
|
D. \left(\frac{1}{7}\right)^{x}
|
|
Zadanie 10. 1 pkt ⋅ Numer: pp-11198 ⋅ Poprawnie: 241/398 [60%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Funkcją malejącą jest funkcja określona wzorem:
Odpowiedzi:
|
A. h(x)=2^{5-x}
|
B. h(x)=-2^{-x}
|
|
C. h(x)=\left(\frac{1}{2}\right)^{2-x}
|
D. h(x)=\left(\frac{1}{2}\right)^{-x}
|
|
Zadanie 11. 1 pkt ⋅ Numer: pp-11207 ⋅ Poprawnie: 133/240 [55%] |
Rozwiąż |
Podpunkt 11.1 (1 pkt)
Dana jest funkcja
f(x)=\left(\frac{1}{3}\right)^x.
Funkcja g(x)=f(x-5)-1:
Odpowiedzi:
|
A. ma jedno miejsce zerowe
|
B. ma dwa miejsca zerowe
|
|
C. nie ma miejsc zerowych
|
D. ma więcej niż dwa miejsca zerowe
|
|
Zadanie 12. 1 pkt ⋅ Numer: pp-11212 ⋅ Poprawnie: 119/182 [65%] |
Rozwiąż |
Podpunkt 12.1 (1 pkt)
Dana jest funkcja
f(x)=2^x+1.
Oblicz wartość funkcji określonej wzorem g(x)=f(x-6)
dla argumentu x=7.
Odpowiedź:
g(7)=
(wpisz liczbę całkowitą)
|
Zadanie 13. 1 pkt ⋅ Numer: pp-11219 ⋅ Poprawnie: 105/197 [53%] |
Rozwiąż |
Podpunkt 13.1 (1 pkt)
» Dana jest funkcja
f(x)=3^{x-2}-2183.
Wyznacz miejsce zerowe funkcji określonej wzorem g(x)=f(x+1)-4.
Odpowiedź:
x=
(wpisz liczbę całkowitą)
|
Zadanie 14. 1 pkt ⋅ Numer: pp-11205 ⋅ Poprawnie: 72/114 [63%] |
Rozwiąż |
Podpunkt 14.1 (1 pkt)
Do wykresu funkcji określonej wzorem
f(x)=a^x należy punkt
o współrzędnych
A=\left(\frac{3}{2},\frac{\sqrt{10}}{100}\right).
Wyznacz wartość parametru a.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 15. 1 pkt ⋅ Numer: pp-11210 ⋅ Poprawnie: 68/167 [40%] |
Rozwiąż |
Podpunkt 15.1 (1 pkt)
« Równość
f(x)=15, jeśli
f(x)=4^{2x}, zachodzi dla
x=-\log_{4}{p}.
Podaj liczbę p.
Odpowiedź: