Podgląd testu : lo2@sp-fun-wyk-pp-3
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11211 ⋅ Poprawnie: 162/263 [61%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Wskaż argument, dla którego funkcja określona wzorem
f(x)=(\sqrt{3})^x
przyjmuje wartość
11:
Odpowiedzi:
|
A. \log_{11}{11}
|
B. \log_{3}{11}
|
|
C. \log_{3}{121}
|
D. 11\cdot \log_{3}{121}
|
|
E. \frac{\log_{3}{11}}{2}
|
F. \log_{11}{9}
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11200 ⋅ Poprawnie: 466/597 [78%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Dana jest funkcja
f(x)=a^x. Punkt
A=(5, 7776) należy do wykresu tej funkcji.
Podaj liczbę a.
Odpowiedź:
a=
(wpisz liczbę całkowitą)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11217 ⋅ Poprawnie: 328/493 [66%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Funkcja wykładnicza
g(x)=a^x jest malejąca oraz
g(-3)=27.
Wyznacz liczbę a.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11190 ⋅ Poprawnie: 154/306 [50%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
« Wykres funkcji
g(x)=-a^{x-b} zawiera punkt:
Dane
a=4
b=3
Odpowiedzi:
|
A. A=(5,-16)
|
B. A=(3,16)
|
|
C. A=(5,-4)
|
D. A=(3,-16)
|
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11196 ⋅ Poprawnie: 360/519 [69%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
» Dana jest funkcja
f(x)=a^x. Do jej wykresu
należy punkt o współrzędnych
P=\left(-\frac{1}{4},9\right).
Wówczas liczba
a jest równa
\frac{1}{9^m}.
Podaj liczbę m.
Odpowiedź:
m=
(liczba zapisana dziesiętnie)
|
Zadanie 6. 1 pkt ⋅ Numer: pp-11197 ⋅ Poprawnie: 232/408 [56%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Dana jest funkcja
f(x)=3^{4x}.
Do jej wykresu nie należy punkt:
Odpowiedzi:
|
A. A=\left(-\frac{1}{4},\frac{1}{3}\right)
|
B. A=(0,1)
|
|
C. A=\left(\frac{4}{4},81\right)
|
D. A=\left(-\frac{1}{2},-\frac{1}{9}\right)
|
|
Zadanie 7. 1 pkt ⋅ Numer: pp-11201 ⋅ Poprawnie: 73/158 [46%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Funkcja
g(x)=4^{4x+1} przyjmuje wartość:
Odpowiedzi:
|
A. 0
|
B. \frac{\sqrt{10}}{10}
|
|
C. -\sqrt{3}
|
D. -\frac{\pi}{2}
|
|
Zadanie 8. 1 pkt ⋅ Numer: pp-11214 ⋅ Poprawnie: 235/398 [59%] |
Rozwiąż |
Podpunkt 8.1 (0.2 pkt)
Zbiór wartości funkcji
f(x)=5^{-x}-9 ma postać:
Odpowiedzi:
|
A. (-\infty, p)\cup(q, +\infty)
|
B. \langle p, +\infty)
|
|
C. (-\infty, p\rangle
|
D. (p, q)
|
|
E. (p,+\infty)
|
F. \langle p, q\rangle
|
Podpunkt 8.2 (0.8 pkt)
Zapisz ten zbiór w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
|
Zadanie 9. 1 pkt ⋅ Numer: pp-11192 ⋅ Poprawnie: 47/88 [53%] |
Rozwiąż |
Podpunkt 9.1 (0.2 pkt)
» Dana jest funkcja
g(x)=-3^{-3-x}-6.
Zbiór ZW_g ma postać:
Odpowiedzi:
|
A. (p, q)
|
B. \langle p, q\rangle
|
|
C. (-\infty, p)\cup(q, +\infty)
|
D. \langle p, +\infty)
|
|
E. (-\infty,p)
|
F. (-\infty, p\rangle
|
Podpunkt 9.2 (0.8 pkt)
Zapisz ten zbiór w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 10. 1 pkt ⋅ Numer: pp-11204 ⋅ Poprawnie: 208/479 [43%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Przesuwając wykres funkcji wykładniczej
f(x)=\left(\frac{1}{a}\right)^x o dwie jednostki
w prawo otrzymamy wykres funkcji
g określonej wzorem:
Odpowiedzi:
|
A. g(x)=\left(\frac{1}{7}\right)^{x+2}
|
B. g(x)=49\cdot\left(\frac{1}{7}\right)^x
|
|
C. g(x)=\left(\frac{1}{7}\right)^{x}-2
|
D. g(x)=7\cdot\left(\frac{1}{7}\right)^{x+1}
|
|
Zadanie 11. 1 pkt ⋅ Numer: pp-11207 ⋅ Poprawnie: 133/240 [55%] |
Rozwiąż |
Podpunkt 11.1 (1 pkt)
Dana jest funkcja
f(x)=\left(\frac{1}{9}\right)^x.
Funkcja g(x)=f(x-6)-3:
Odpowiedzi:
|
A. ma więcej niż dwa miejsca zerowe
|
B. ma dwa miejsca zerowe
|
|
C. ma jedno miejsce zerowe
|
D. nie ma miejsc zerowych
|
|
Zadanie 12. 1 pkt ⋅ Numer: pp-11213 ⋅ Poprawnie: 491/627 [78%] |
Rozwiąż |
Podpunkt 12.1 (1 pkt)
« Wykres funkcji
f(x)=2^{x-3} przedstawia rysunek:
Odpowiedzi:
|
Zadanie 13. 1 pkt ⋅ Numer: pp-11219 ⋅ Poprawnie: 105/197 [53%] |
Rozwiąż |
Podpunkt 13.1 (1 pkt)
» Dana jest funkcja
f(x)=3^{x-5}-2183.
Wyznacz miejsce zerowe funkcji określonej wzorem g(x)=f(x+1)-4.
Odpowiedź:
x=
(wpisz liczbę całkowitą)
|
Zadanie 14. 1 pkt ⋅ Numer: pp-11205 ⋅ Poprawnie: 72/114 [63%] |
Rozwiąż |
Podpunkt 14.1 (1 pkt)
Do wykresu funkcji określonej wzorem
f(x)=a^x należy punkt
o współrzędnych
A=\left(\frac{3}{2},\frac{\sqrt{5}}{25}\right).
Wyznacz wartość parametru a.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 15. 1 pkt ⋅ Numer: pp-11209 ⋅ Poprawnie: 113/145 [77%] |
Rozwiąż |
Podpunkt 15.1 (1 pkt)
Podaj wspólne rozwiązanie równań
6^{x^2}\cdot \sqrt{6}=6^{\frac{73}{2}}
oraz
\log_{\frac{1}{6}}{x}=-1.
Odpowiedź:
x_0=
(wpisz liczbę całkowitą)