Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11211 ⋅ Poprawnie: 162/263 [61%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wskaż argument, dla którego funkcja określona wzorem f(x)=(\sqrt{5})^x przyjmuje wartość 4:
Odpowiedzi:
A. \log_{4}{4} B. \frac{\log_{5}{4}}{2}
C. \log_{5}{16} D. \log_{4}{25}
E. 4\cdot \log_{5}{16} F. \log_{5}{4}
Zadanie 2.  1 pkt ⋅ Numer: pp-11200 ⋅ Poprawnie: 466/597 [78%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dana jest funkcja f(x)=a^x. Punkt A=(2, 49) należy do wykresu tej funkcji.

Podaj liczbę a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11217 ⋅ Poprawnie: 328/493 [66%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Funkcja wykładnicza g(x)=a^x jest malejąca oraz g(-3)=64.

Wyznacz liczbę a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11190 ⋅ Poprawnie: 154/306 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Wykres funkcji g(x)=-a^{x-b} zawiera punkt:
Dane
a=5
b=-3
Odpowiedzi:
A. A=(-3,25) B. A=(-1,-5)
C. A=(-3,-25) D. A=(-1,-25)
Zadanie 5.  1 pkt ⋅ Numer: pp-11194 ⋅ Poprawnie: 53/114 [46%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wykres funkcji y=-4-\frac{1}{9^x} nie przecina prostej:
Odpowiedzi:
A. y=-4-\sqrt{2} B. y=9x
C. x=\sqrt{26} D. y=-4+\sqrt{2}
Zadanie 6.  1 pkt ⋅ Numer: pp-11197 ⋅ Poprawnie: 232/408 [56%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Dana jest funkcja f(x)=3^{8x}.

Do jej wykresu nie należy punkt:

Odpowiedzi:
A. A=\left(\frac{1}{8},3\right) B. A=\left(-\frac{1}{8},\frac{1}{3}\right)
C. A=(0,1) D. A=\left(-\frac{1}{2},-\frac{1}{81}\right)
Zadanie 7.  1 pkt ⋅ Numer: pp-11208 ⋅ Poprawnie: 84/217 [38%] Rozwiąż 
Podpunkt 7.1 (0.2 pkt)
 Funkcja h(x)=(-8m-4)^x jest malejąca, wtedy i tylko wtedy, gdy parametr m należy do pewnego zbioru.

Zbiór ten ma postać:

Odpowiedzi:
A. (p, q) B. (-\infty, p\rangle
C. (-\infty, p) D. (p, +\infty)
E. \langle p, +\infty) F. (-\infty, p)\cup(q, +\infty)
Podpunkt 7.2 (0.8 pkt)
 Zapisz ten zbiór w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11189 ⋅ Poprawnie: 97/141 [68%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Zbiór wartości funkcji f(x)=3^x+2\sqrt{5} zawiera liczbę:
Odpowiedzi:
A. \sqrt{20}+4 B. \frac{\sqrt{20}}{3}
C. \sqrt{20}-4 D. -21
Zadanie 9.  1 pkt ⋅ Numer: pp-11193 ⋅ Poprawnie: 71/124 [57%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Wykres funkcji g jest symetryczny do wykresu funkcji f(x)=9^{-x} względem pewnej prostej.

Zatem g(x) jest równe:

Odpowiedzi:
A. -9^{x} B. -9^{-x}
C. 9^{-x}-8 D. \left(\frac{1}{7}\right)^{x}
Zadanie 10.  1 pkt ⋅ Numer: pp-11198 ⋅ Poprawnie: 241/398 [60%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Funkcją malejącą jest funkcja określona wzorem:
Odpowiedzi:
A. h(x)=9^{2-x} B. h(x)=\left(\frac{1}{9}\right)^{9-x}
C. h(x)=\left(\frac{1}{9}\right)^{-x} D. h(x)=-9^{-x}
Zadanie 11.  1 pkt ⋅ Numer: pp-11206 ⋅ Poprawnie: 131/229 [57%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 » Wykres funkcji f(x)=\frac{1}{625}\cdot 5^x otrzymamy przesuwając wykres funkcji g(x)=5^x o:
Odpowiedzi:
A. dwie jednostki w górę B. cztery jednostki w lewo
C. cztery jednostki w prawo D. cztery jednostki w dół
Zadanie 12.  1 pkt ⋅ Numer: pp-11213 ⋅ Poprawnie: 491/627 [78%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
« Wykres funkcji f(x)=2^{x-3} przedstawia rysunek:
Odpowiedzi:
A. C B. A
C. D D. B
Zadanie 13.  1 pkt ⋅ Numer: pp-11195 ⋅ Poprawnie: 63/138 [45%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 » Dana jest funkcja g(x)=9^x.

Funkcja określona wzorem h(x)=4+g(x+4) z prostą o równaniu y-4=0:

Odpowiedzi:
A. ma nieskończenie wiele punktów wspólnych B. ma dokładnie dwa punkty wspólne
C. ma dokładnie jeden punkt wspólny D. nie ma punktów wspólnych
Zadanie 14.  1 pkt ⋅ Numer: pp-11203 ⋅ Poprawnie: 224/400 [56%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=p\cdot a^x, gdzie a>0, należą punkty o współrzędnych A=\left(4,4\right) i B=\left(2,1\right).

Oblicz f(10).

Odpowiedź:
f(x_0)= (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-11210 ⋅ Poprawnie: 68/167 [40%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 « Równość f(x)=6, jeśli f(x)=14^{2x}, zachodzi dla x=-\log_{14}{p}.

Podaj liczbę p.

Odpowiedź:
p= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm