Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-fun-wyk-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11211 ⋅ Poprawnie: 162/263 [61%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wskaż argument, dla którego funkcja określona wzorem f(x)=(\sqrt{3})^x przyjmuje wartość 7:
Odpowiedzi:
A. 7\cdot \log_{3}{49} B. \log_{7}{9}
C. \frac{\log_{3}{7}}{2} D. \log_{7}{7}
E. \log_{3}{49} F. \log_{3}{7}
Zadanie 2.  1 pkt ⋅ Numer: pp-11215 ⋅ Poprawnie: 205/370 [55%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dana jest funkcja f(x)=5^{x-1}.

Wskaż rozwiązanie nierówności f(x) > 0:

Odpowiedzi:
A. (-\infty,0\rangle B. \mathbb{R}
C. (-\infty,0) D. (-1,+\infty)
E. \langle 0,+\infty) F. \emptyset
Zadanie 3.  1 pkt ⋅ Numer: pp-11217 ⋅ Poprawnie: 328/493 [66%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Funkcja wykładnicza g(x)=a^x jest malejąca oraz g(-3)=27.

Wyznacz liczbę a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11191 ⋅ Poprawnie: 56/131 [42%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Dana jest funkcja g(x)=\left(\sqrt{6}\right)^x.

Zbiór ZW_g nie zawiera liczby:

Odpowiedzi:
A. 11\cdot \pi -34 B. \frac{\sqrt{\pi}}{8}
C. 5^{-3} D. 12\cdot \pi -38
Zadanie 5.  1 pkt ⋅ Numer: pp-11194 ⋅ Poprawnie: 53/114 [46%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wykres funkcji y=-3-\frac{1}{4^x} nie przecina prostej:
Odpowiedzi:
A. x=\sqrt{26} B. y=-3+\sqrt{2}
C. y=-3-\sqrt{2} D. y=4x
Zadanie 6.  1 pkt ⋅ Numer: pp-11199 ⋅ Poprawnie: 97/210 [46%] Rozwiąż 
Podpunkt 6.1 (0.2 pkt)
 » Funkcja f(x)=(5\cdot m-3)^x jest rosnąca wtedy i tylko wtedy gdy liczba m należy do pewnego przedziału.

Przedział ten ma postać:

Odpowiedzi:
A. (-\infty,p) B. (-\infty,p\rangle
C. \langle p, +\infty) D. \langle p, q\rangle
E. (p, +\infty) F. (p, q)
Podpunkt 6.2 (0.8 pkt)
 Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11208 ⋅ Poprawnie: 84/217 [38%] Rozwiąż 
Podpunkt 7.1 (0.2 pkt)
 Funkcja h(x)=(-3m-3)^x jest malejąca, wtedy i tylko wtedy, gdy parametr m należy do pewnego zbioru.

Zbiór ten ma postać:

Odpowiedzi:
A. (-\infty, p)\cup(q, +\infty) B. (p, +\infty)
C. (p, q) D. (-\infty, p\rangle
E. \langle p, +\infty) F. (-\infty, p)
Podpunkt 7.2 (0.8 pkt)
 Zapisz ten zbiór w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11189 ⋅ Poprawnie: 97/141 [68%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Zbiór wartości funkcji f(x)=5^x+2\sqrt{3} zawiera liczbę:
Odpowiedzi:
A. \frac{\sqrt{12}}{5} B. \sqrt{12}+2
C. \sqrt{12}-3 D. -14
Zadanie 9.  1 pkt ⋅ Numer: pp-11192 ⋅ Poprawnie: 47/88 [53%] Rozwiąż 
Podpunkt 9.1 (0.2 pkt)
 » Dana jest funkcja g(x)=-3^{2-x}-2.

Zbiór ZW_g ma postać:

Odpowiedzi:
A. (-\infty,p) B. \langle p, +\infty)
C. (-\infty, p\rangle D. (-\infty, p)\cup(q, +\infty)
E. (p, q) F. \langle p, q\rangle
Podpunkt 9.2 (0.8 pkt)
 Zapisz ten zbiór w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-11204 ⋅ Poprawnie: 208/479 [43%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Przesuwając wykres funkcji wykładniczej f(x)=\left(\frac{1}{a}\right)^x o dwie jednostki w prawo otrzymamy wykres funkcji g określonej wzorem:
Odpowiedzi:
A. g(x)=36\cdot\left(\frac{1}{6}\right)^x B. g(x)=\left(\frac{1}{6}\right)^{x}-2
C. g(x)=\left(\frac{1}{6}\right)^{x+2} D. g(x)=6\cdot\left(\frac{1}{6}\right)^{x+1}
Zadanie 11.  1 pkt ⋅ Numer: pp-11206 ⋅ Poprawnie: 131/229 [57%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 » Wykres funkcji f(x)=\frac{1}{81}\cdot 3^x otrzymamy przesuwając wykres funkcji g(x)=3^x o:
Odpowiedzi:
A. cztery jednostki w dół B. cztery jednostki w prawo
C. dwie jednostki w górę D. cztery jednostki w lewo
Zadanie 12.  1 pkt ⋅ Numer: pp-11212 ⋅ Poprawnie: 119/182 [65%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Dana jest funkcja f(x)=4^x+1.

Oblicz wartość funkcji określonej wzorem g(x)=f(x-4) dla argumentu x=7.

Odpowiedź:
g(7)= (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-11195 ⋅ Poprawnie: 63/138 [45%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 » Dana jest funkcja g(x)=8^x.

Funkcja określona wzorem h(x)=-4+g(x+1) z prostą o równaniu y+6=0:

Odpowiedzi:
A. nie ma punktów wspólnych B. ma dokładnie dwa punkty wspólne
C. ma nieskończenie wiele punktów wspólnych D. ma dokładnie jeden punkt wspólny
Zadanie 14.  1 pkt ⋅ Numer: pp-11205 ⋅ Poprawnie: 72/114 [63%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=a^x należy punkt o współrzędnych A=\left(\frac{3}{2},\frac{\sqrt{7}}{49}\right).

Wyznacz wartość parametru a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 15.  1 pkt ⋅ Numer: pp-11210 ⋅ Poprawnie: 68/167 [40%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 « Równość f(x)=10, jeśli f(x)=8^{2x}, zachodzi dla x=-\log_{8}{p}.

Podaj liczbę p.

Odpowiedź:
p= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm