Podgląd testu : lo2@sp-fun-wyk-pp-3
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11218 ⋅ Poprawnie: 189/265 [71%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
» Funkcja
h określona jest wzorem
h(x)=3^{2x}.
Wówczas liczba
h\left(-\frac{3}{2}\right)
jest równa
\frac{1}{3^m}.
Podaj liczbę m.
Odpowiedź:
m=
(wpisz liczbę całkowitą)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11200 ⋅ Poprawnie: 466/597 [78%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Dana jest funkcja
f(x)=a^x. Punkt
A=(1, 4) należy do wykresu tej funkcji.
Podaj liczbę a.
Odpowiedź:
a=
(wpisz liczbę całkowitą)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11216 ⋅ Poprawnie: 78/190 [41%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
« Wyznacz ilość rozwiązań układu równań
\begin{cases}y=-2x-5 \\y=4^{x+5}\end{cases}.
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11190 ⋅ Poprawnie: 154/306 [50%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
« Wykres funkcji
g(x)=-a^{x-b} zawiera punkt:
Dane
a=2
b=-5
Odpowiedzi:
|
A. A=(-5,4)
|
B. A=(-3,4)
|
|
C. A=(-3,-4)
|
D. A=(-5,-4)
|
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11194 ⋅ Poprawnie: 53/114 [46%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Wykres funkcji
y=-7-\frac{1}{2^x} nie przecina
prostej:
Odpowiedzi:
|
A. x=\sqrt{10}
|
B. y=2x
|
|
C. y=-7-\sqrt{2}
|
D. y=-7+\sqrt{2}
|
|
Zadanie 6. 1 pkt ⋅ Numer: pp-11197 ⋅ Poprawnie: 232/408 [56%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Dana jest funkcja
f(x)=3^{2x}.
Do jej wykresu nie należy punkt:
Odpowiedzi:
|
A. A=\left(\frac{1}{2},3\right)
|
B. A=\left(-\frac{1}{2},-\frac{1}{3}\right)
|
|
C. A=\left(\frac{2}{2},9\right)
|
D. A=\left(-\frac{1}{2},\frac{1}{3}\right)
|
|
Zadanie 7. 1 pkt ⋅ Numer: pp-11208 ⋅ Poprawnie: 84/217 [38%] |
Rozwiąż |
Podpunkt 7.1 (0.2 pkt)
Funkcja
h(x)=(-m-7)^x jest malejąca, wtedy i tylko wtedy, gdy
parametr
m należy do pewnego zbioru.
Zbiór ten ma postać:
Odpowiedzi:
|
A. (-\infty, p)\cup(q, +\infty)
|
B. (-\infty, p\rangle
|
|
C. (p, q)
|
D. (-\infty, p)
|
|
E. (p, +\infty)
|
F. \langle p, +\infty)
|
Podpunkt 7.2 (0.8 pkt)
Zapisz ten zbiór w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 1 pkt ⋅ Numer: pp-11214 ⋅ Poprawnie: 235/398 [59%] |
Rozwiąż |
Podpunkt 8.1 (0.2 pkt)
Zbiór wartości funkcji
f(x)=3^{-x}-9 ma postać:
Odpowiedzi:
|
A. (-\infty, p\rangle
|
B. (p, q)
|
|
C. (-\infty, p)
|
D. \langle p, +\infty)
|
|
E. (p,+\infty)
|
F. \langle p, q\rangle
|
Podpunkt 8.2 (0.8 pkt)
Zapisz ten zbiór w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
|
Zadanie 9. 1 pkt ⋅ Numer: pp-11192 ⋅ Poprawnie: 47/88 [53%] |
Rozwiąż |
Podpunkt 9.1 (0.2 pkt)
» Dana jest funkcja
g(x)=-3^{-4-x}-8.
Zbiór ZW_g ma postać:
Odpowiedzi:
|
A. \langle p, q\rangle
|
B. (p, q)
|
|
C. (-\infty, p)\cup(q, +\infty)
|
D. (-\infty, p\rangle
|
|
E. (-\infty,p)
|
F. \langle p, +\infty)
|
Podpunkt 9.2 (0.8 pkt)
Zapisz ten zbiór w postaci sumy przedziałów.
Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 10. 1 pkt ⋅ Numer: pp-11198 ⋅ Poprawnie: 241/398 [60%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Funkcją malejącą jest funkcja określona wzorem:
Odpowiedzi:
|
A. h(x)=\left(\frac{1}{2}\right)^{2-x}
|
B. h(x)=-2^{-x}
|
|
C. h(x)=2^{1-x}
|
D. h(x)=\left(\frac{1}{2}\right)^{-x}
|
|
Zadanie 11. 1 pkt ⋅ Numer: pp-11206 ⋅ Poprawnie: 131/229 [57%] |
Rozwiąż |
Podpunkt 11.1 (1 pkt)
» Wykres funkcji
f(x)=\frac{1}{16}\cdot 2^x otrzymamy
przesuwając wykres funkcji
g(x)=2^x o:
Odpowiedzi:
|
A. cztery jednostki w lewo
|
B. cztery jednostki w prawo
|
|
C. cztery jednostki w dół
|
D. dwie jednostki w górę
|
|
Zadanie 12. 1 pkt ⋅ Numer: pp-11213 ⋅ Poprawnie: 491/627 [78%] |
Rozwiąż |
Podpunkt 12.1 (1 pkt)
« Wykres funkcji
f(x)=2^{x-3} przedstawia rysunek:
Odpowiedzi:
|
Zadanie 13. 1 pkt ⋅ Numer: pp-11195 ⋅ Poprawnie: 63/138 [45%] |
Rozwiąż |
Podpunkt 13.1 (1 pkt)
» Dana jest funkcja
g(x)=2^x.
Funkcja określona wzorem h(x)=-4+g(x+7) z prostą o równaniu
y+1=0:
Odpowiedzi:
|
A. ma nieskończenie wiele punktów wspólnych
|
B. ma dokładnie dwa punkty wspólne
|
|
C. nie ma punktów wspólnych
|
D. ma dokładnie jeden punkt wspólny
|
|
Zadanie 14. 1 pkt ⋅ Numer: pp-11205 ⋅ Poprawnie: 72/114 [63%] |
Rozwiąż |
Podpunkt 14.1 (1 pkt)
Do wykresu funkcji określonej wzorem
f(x)=a^x należy punkt
o współrzędnych
A=\left(\frac{3}{2},\frac{\sqrt{3}}{9}\right).
Wyznacz wartość parametru a.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 15. 1 pkt ⋅ Numer: pp-11210 ⋅ Poprawnie: 68/167 [40%] |
Rozwiąż |
Podpunkt 15.1 (1 pkt)
« Równość
f(x)=3, jeśli
f(x)=4^{2x}, zachodzi dla
x=-\log_{4}{p}.
Podaj liczbę p.
Odpowiedź: