Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11437 ⋅ Poprawnie: 355/474 [74%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Punkt o współrzędnych oraz punkty A=(-2,8), B i C są wierzchołkami trójkąta równoramiennego o podstawie AB, a punkt D=(0,9) jest spodkiem wysokości tego trójkąta opuszczonej z wierzchołka C. Wówczas punkt B ma współrzędne B=(x_B, y_B).

Wyznacz współrzędne x_B i y_B.

Odpowiedzi:
x_B= (wpisz liczbę całkowitą)
y_B= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11251 ⋅ Poprawnie: 222/438 [50%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Prostą k o równaniu y=7x-4 przekształcono przez symetrię względem początku układu współrzędnych i otrzymano prostą l o równaniu y=ax+b.

Podaj współczynniki a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11250 ⋅ Poprawnie: 171/321 [53%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Punkty A=(2,-1), B=(3,2), C=\left(-\frac{17}{3},-\frac{4}{3}\right) i D=(x_D,y_D) są czterema kolejnymi wierzchołkami równoległoboku (odwrotnie do ruchu wskazówek zegara).

Podaj współrzędne x_D i y_D.

Odpowiedzi:
x_D= (dwie liczby całkowite)

y_D= (dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11240 ⋅ Poprawnie: 334/469 [71%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Punkt S=(-5,-5) jest środkiem odcinka AC, gdzie A=(x_A,y_A) i C=\left(\frac{3}{2},-3\right).

Podaj współrzędne x_A i y_A.

Odpowiedzi:
x_A= (dwie liczby całkowite)

y_A= (dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11511 ⋅ Poprawnie: 542/919 [58%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkty o współrzędnych A=\left(2,6\right) i B=\left(6,6\right) są wierzchołkami trójkąta równobocznego ABC.

Oblicz długość promienia okręgu opisanego na tym trójkącie.

Odpowiedź:
r= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-11228 ⋅ Poprawnie: 154/267 [57%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Obwód L rombu o sąsiednich wierzchołkach A=(-9,-6) i B=(8,-4) spełnia nierówność m\leqslant L\lessdot m+1, gdzie m\in\mathbb{Z}.

Wyznacz liczbę m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-11242 ⋅ Poprawnie: 467/632 [73%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Punkt C=(-2m,y_C) jest środkiem odcinka o końcach A=(-4,6) i B=(-3,0).

Zatem liczba m jest równa:

Odpowiedzi:
A. \frac{7}{2} B. -\frac{7}{4}
C. -\frac{7}{2} D. \frac{7}{4}
Zadanie 8.  1 pkt ⋅ Numer: pp-11233 ⋅ Poprawnie: 197/362 [54%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Odcinek AB jest średnicą okręgu oraz A=(a+2,8) i B=(-7,b+1). Punkt C=(-9,-6) jest środkiem tego okręgu.

Wyznacz wartości parametrów a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11235 ⋅ Poprawnie: 189/301 [62%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Punkt przecięcia prostych określonych równaniami 2x+y=m+15 i x-3y=6 należy do osi Ox.

Wyznacz wartość parametru m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11236 ⋅ Poprawnie: 89/145 [61%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Proste o równaniach \frac{\sqrt{3}}{3}x-y+\frac{5}{2}=0 i -3y+5=0:
Odpowiedzi:
A. przecinają się pod kątem 60^{\circ} B. są równoległe
C. przecinają się pod kątem 45^{\circ} D. przecinają się pod kątem 30^{\circ}
Zadanie 11.  1 pkt ⋅ Numer: pp-11238 ⋅ Poprawnie: 73/161 [45%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Punkty A=(-9,-6) i C są dwoma przeciwległymi wierzchołkami kwadratu, a punkt P=(8,-4) jest środkiem boku BC tego kwadratu.

Oblicz pole powierzchni tego kwadratu.

Odpowiedź:
P_{\square}=
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-11222 ⋅ Poprawnie: 233/589 [39%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Symetralną odcinka o końcach A=(-5,5) i B=\left(-\frac{7}{2},5\right) jest prosta określona równaniem x+by=c.

Podaj liczby b i c.

Odpowiedzi:
b= (dwie liczby całkowite)

c= (dwie liczby całkowite)
Zadanie 13.  1 pkt ⋅ Numer: pp-11540 ⋅ Poprawnie: 81/149 [54%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Punkty o współrzędnych K=(-10,-7) oraz L=(9,-5) są środkami dwóch sąsiednich boków kwadratu.

Oblicz pole powierzchni tego kwadratu.

Odpowiedź:
P_{\square}= (wpisz liczbę całkowitą)
Zadanie 14.  1 pkt ⋅ Numer: pp-11246 ⋅ Poprawnie: 152/291 [52%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Prosta, do której należą punkty A=(45,31) i B=(56,-24) przecina oś Ox w punkcie o odciętej x_0.

Podaj x_0.

Odpowiedź:
x_0=
(wpisz dwie liczby całkowite)
Zadanie 15.  1 pkt ⋅ Numer: pp-11231 ⋅ Poprawnie: 201/333 [60%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Środek odcinka o końcach (-5,-7) i (-3,-7) należy do prostej o równaniu y+ax=-3-6a.

Wyznacz wartość parametru a.

Odpowiedź:
a= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm