Podgląd testu : lo2@sp-geom-analit-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11248 ⋅ Poprawnie: 222/345 [64%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Dany jest kwadrat
ABCD . Punkty o współrzędnych
E=(-6,6) i
F=(-1,-5) są
środkami dwóch jego boków odpowiednio
AB i
BC . Zapisz długość przekątnej tego kwadratu w najprostszej postaci
a\sqrt{b} , gdzie
a,b\in\mathbb{N} .
Podaj liczby a i b .
Odpowiedź:
d=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11251 ⋅ Poprawnie: 222/438 [50%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Prostą
k o równaniu
y=-4x+7 przekształcono przez symetrię względem
początku układu współrzędnych i otrzymano prostą
l o równaniu
y=ax+b .
Podaj współczynniki a i b .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-11229 ⋅ Poprawnie: 306/476 [64%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Przeciwległe wierzchołki prostokąta maja współrzędne
A=(-6,6) i
C=(-1,-5) .
Okrąg opisany na tym prostokącie ma obwód długości:
Odpowiedzi:
A. \frac{\sqrt{146}}{2}\pi
B. \frac{3\sqrt{146}}{2}\pi
C. \sqrt{146}\pi
D. 2\sqrt{73}\pi
E. \frac{\sqrt{146}}{4}\pi
F. 2\sqrt{146}\pi
Zadanie 4. 1 pkt ⋅ Numer: pp-11241 ⋅ Poprawnie: 273/431 [63%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Punkt
S=\left(\frac{1}{4},6\right) jest środkiem odcinka
AB , gdzie
A=(x_A,y_A) i
B=(-5,-5) .
Podaj współrzedne x_A i y_A .
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pp-11511 ⋅ Poprawnie: 542/919 [58%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Punkty o współrzędnych
A=\left(6\sqrt{3},2\right) i
B=\left(12\sqrt{3},2\right) są wierzchołkami trójkąta
równobocznego
ABC .
Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
Zadanie 6. 1 pkt ⋅ Numer: pp-11228 ⋅ Poprawnie: 154/267 [57%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Obwód
L rombu o sąsiednich wierzchołkach
A=(-9,9) i
B=(-1,-7)
spełnia nierówność
m\leqslant L\lessdot m+1 , gdzie
m\in\mathbb{Z} .
Wyznacz liczbę m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-11242 ⋅ Poprawnie: 467/632 [73%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Punkt
C=(-2m,y_C) jest środkiem odcinka o końcach
A=(-3,0) i
B=(1,0) .
Zatem liczba m jest równa:
Odpowiedzi:
A. 1
B. \frac{1}{2}
C. -1
D. -\frac{1}{2}
Zadanie 8. 1 pkt ⋅ Numer: pp-11232 ⋅ Poprawnie: 119/254 [46%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
«« Punkty
A=(-2,-4) i
B=(28,12)
są środkami okręgów stycznych wewnętrznie. Promienie tych okręgów
r_1,r_2 spełniają warunek
r_1=2r_2 .
Oblicz sumę długości promieni tych okręgów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 1 pkt ⋅ Numer: pp-11235 ⋅ Poprawnie: 189/301 [62%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Punkt przecięcia prostych określonych równaniami
2x+y=m+3 i
x-3y=6 należy do osi
Ox .
Wyznacz wartość parametru m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-11237 ⋅ Poprawnie: 119/180 [66%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Punkt
S=(-8,1) jest środkiem okręgu, a
odległość punktu
A=(-4,4) od punktu
S jest
trzykrotnie większa od długości promienia tego okręgu.
Oblicz długość promienia tego okręgu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-11238 ⋅ Poprawnie: 73/161 [45%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
« Punkty
A=(-9,9) i
C
są dwoma przeciwległymi wierzchołkami kwadratu, a punkt
P=(-1,-7)
jest środkiem boku
BC tego kwadratu.
Oblicz pole powierzchni tego kwadratu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-11223 ⋅ Poprawnie: 388/630 [61%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Środkiem odcinka o końcach
A=(0,2a) i
B=(6b,-1) jest punkt
C=(-6,-4) .
Wyznacz wartości parametrów a i b .
Odpowiedzi:
Zadanie 13. 1 pkt ⋅ Numer: pp-11540 ⋅ Poprawnie: 81/149 [54%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Punkty o współrzędnych
K=(-10,10) oraz
L=(-2,-8)
są środkami dwóch sąsiednich boków kwadratu.
Oblicz pole powierzchni tego kwadratu.
Odpowiedź:
P_{\square}=
(wpisz liczbę całkowitą)
Zadanie 14. 1 pkt ⋅ Numer: pp-11246 ⋅ Poprawnie: 152/291 [52%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Prosta, do której należą punkty
A=(-34,40) i
B=(-11,-29)
przecina oś
Ox w punkcie o odciętej
x_0 .
Podaj x_0 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 15. 1 pkt ⋅ Numer: pp-11231 ⋅ Poprawnie: 201/333 [60%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
Środek odcinka o końcach
(-3,-6) i
(-1,-6) należy do prostej o równaniu
y+ax=-2-4a .
Wyznacz wartość parametru a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Rozwiąż