Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11248 ⋅ Poprawnie: 222/345 [64%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dany jest kwadrat ABCD. Punkty o współrzędnych E=(-4,1) i F=(-1,2) są środkami dwóch jego boków odpowiednio AB i BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{N}.

Podaj liczby a i b.

Odpowiedź:
d= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11251 ⋅ Poprawnie: 222/438 [50%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Prostą k o równaniu y=-5x+1 przekształcono przez symetrię względem początku układu współrzędnych i otrzymano prostą l o równaniu y=ax+b.

Podaj współczynniki a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11250 ⋅ Poprawnie: 171/321 [53%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Punkty A=(2,-1), B=(3,2), C=\left(-\frac{17}{3},-\frac{4}{3}\right) i D=(x_D,y_D) są czterema kolejnymi wierzchołkami równoległoboku (odwrotnie do ruchu wskazówek zegara).

Podaj współrzędne x_D i y_D.

Odpowiedzi:
x_D= (dwie liczby całkowite)

y_D= (dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11241 ⋅ Poprawnie: 273/431 [63%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Punkt S=\left(-\frac{15}{4},1\right) jest środkiem odcinka AB, gdzie A=(x_A,y_A) i B=(-1,2).

Podaj współrzedne x_A i y_A.

Odpowiedzi:
x_A= (dwie liczby całkowite)

y_A= (dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11244 ⋅ Poprawnie: 201/325 [61%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkty A=(-4,1) i B=(-1,2) są wierzchołkami trójąta równobocznego. Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
P_{\triangle}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-11228 ⋅ Poprawnie: 154/267 [57%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Obwód L rombu o sąsiednich wierzchołkach A=(-6,1) i B=(-1,3) spełnia nierówność m\leqslant L\lessdot m+1, gdzie m\in\mathbb{Z}.

Wyznacz liczbę m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-11252 ⋅ Poprawnie: 239/368 [64%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Do okręgu o środku w punkcie S=(-3,1) i promieniu długości \sqrt{5} należy punkt:
Odpowiedzi:
A. (-2,1) B. (-1,2)
C. (-4,-2) D. (-5,1)
E. (3,5) F. (1,4)
Zadanie 8.  1 pkt ⋅ Numer: pp-11233 ⋅ Poprawnie: 197/362 [54%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Odcinek AB jest średnicą okręgu oraz A=(a+2,8) i B=(-7,b+1). Punkt C=(2,-5) jest środkiem tego okręgu.

Wyznacz wartości parametrów a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11235 ⋅ Poprawnie: 189/301 [62%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Punkt przecięcia prostych określonych równaniami 2x+y=m+1 i x-3y=6 należy do osi Ox.

Wyznacz wartość parametru m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11236 ⋅ Poprawnie: 89/145 [61%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Proste o równaniach x-y+1=0 i -4y+5=0:
Odpowiedzi:
A. są prostopadłe B. przecinają się pod kątem 45^{\circ}
C. przecinają się pod kątem 30^{\circ} D. są równoległe
Zadanie 11.  1 pkt ⋅ Numer: pp-11221 ⋅ Poprawnie: 71/162 [43%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
Punkty A=(2,0), B=(5,0) i C=(4,3) są wierzchołkami trójkąta. Zbiór wszystkich punktów M należacych do trójkąta ABC spełniających warunek |MA|\leqslant |MB| jest:
Odpowiedzi:
A. czworokątem B. wycinkiem koła
C. trójkątem ostrokątnym D. trójkątem prostokątnym
Zadanie 12.  1 pkt ⋅ Numer: pp-11222 ⋅ Poprawnie: 233/589 [39%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Symetralną odcinka o końcach A=(2,-2) i B=\left(-\frac{5}{2},-2\right) jest prosta określona równaniem x+by=c.

Podaj liczby b i c.

Odpowiedzi:
b= (dwie liczby całkowite)

c= (dwie liczby całkowite)
Zadanie 13.  1 pkt ⋅ Numer: pp-11540 ⋅ Poprawnie: 81/149 [54%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Punkty o współrzędnych K=(-6,1) oraz L=(-2,3) są środkami dwóch sąsiednich boków kwadratu.

Oblicz pole powierzchni tego kwadratu.

Odpowiedź:
P_{\square}= (wpisz liczbę całkowitą)
Zadanie 14.  1 pkt ⋅ Numer: pp-11245 ⋅ Poprawnie: 86/163 [52%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Punkt A=(8,-14) jest środkiem okręgu o promieniu 2019. Okrąg ten przekształcono przez symetrię względem osi Oy i otrzymano okrąg o środku w punkcie A_1.

Oblicz długość odcinka AA_1.

Odpowiedź:
|AA_1|= (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-11231 ⋅ Poprawnie: 201/333 [60%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Środek odcinka o końcach (2,-6) i (4,-6) należy do prostej o równaniu y+ax=-2+a.

Wyznacz wartość parametru a.

Odpowiedź:
a= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm