Dany jest kwadrat ABCD. Punkty o współrzędnych
E=(-4,1) i F=(-1,2) są
środkami dwóch jego boków odpowiednio AB i
BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci
a\sqrt{b}, gdzie a,b\in\mathbb{N}.
Podaj liczby a i b.
Odpowiedź:
d=\cdot√
(wpisz dwie liczby całkowite)
Zadanie 2.1 pkt ⋅ Numer: pp-11251 ⋅ Poprawnie: 222/438 [50%]
» Punkty A=(2,-1), B=(3,2),
C=\left(-\frac{17}{3},-\frac{4}{3}\right) i D=(x_D,y_D) są czterema kolejnymi wierzchołkami
równoległoboku (odwrotnie do ruchu wskazówek zegara).
Podaj współrzędne x_D i y_D.
Odpowiedzi:
x_D
=
(dwie liczby całkowite)
y_D
=
(dwie liczby całkowite)
Zadanie 4.1 pkt ⋅ Numer: pp-11241 ⋅ Poprawnie: 273/431 [63%]
Punkty A=(2,0), B=(5,0)
i C=(4,3) są wierzchołkami trójkąta. Zbiór wszystkich
punktów M należacych do trójkąta
ABC spełniających warunek
|MA|\leqslant |MB| jest:
Odpowiedzi:
A. czworokątem
B. wycinkiem koła
C. trójkątem ostrokątnym
D. trójkątem prostokątnym
Zadanie 12.1 pkt ⋅ Numer: pp-11222 ⋅ Poprawnie: 233/589 [39%]
Punkt A=(8,-14) jest środkiem okręgu o promieniu
2019. Okrąg ten przekształcono przez symetrię
względem osi Oy i otrzymano okrąg o środku w
punkcie A_1.
Oblicz długość odcinka AA_1.
Odpowiedź:
|AA_1|=(wpisz liczbę całkowitą)
Zadanie 15.1 pkt ⋅ Numer: pp-11231 ⋅ Poprawnie: 201/333 [60%]