« Punkty o współrzędnych A=(12,-6) i
C=(4,-12) są przeciwległymi wierzchołkami
kwadratu, na którym opisano okrąg. Zapisz długość promienia tego okręgu w najprostszej postaci
\frac{a\sqrt{b}}{c}, gdzie a,b,c\in\mathbb{N}.
Podaj liczby a, b i c.
Odpowiedź:
r=
\cdot√
(wpisz trzy liczby całkowite)
Zadanie 2.1 pkt ⋅ Numer: pp-11225 ⋅ Poprawnie: 257/416 [61%]
« W kwadracie o wierzchołkach ABCD punkty
K=(-4,-6) i L=(5,2) są
środkami boków odpowiednio AB i
BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci
a\sqrt{b}, gdzie a,b\in\mathbb{N}.
Podaj liczby a i b.
Odpowiedź:
d=\cdot√
(wpisz dwie liczby całkowite)
Zadanie 3.1 pkt ⋅ Numer: pp-11229 ⋅ Poprawnie: 306/476 [64%]
(1 pkt)
Obrazami punktów o współrzędnych A=(-20,-28) oraz B=(26,10)
w symetrii środkowej względem punktu O=(0,0) są punkty odpowiednio
A' i B'.
Środek odcinka A'B' ma współrzędne S=(x_S, y_S).
Podaj współrzędne x_S i y_S.
Odpowiedzi:
x_S
=
(wpisz liczbę całkowitą)
y_S
=
(wpisz liczbę całkowitą)
Zadanie 7.1 pkt ⋅ Numer: pp-11252 ⋅ Poprawnie: 239/368 [64%]
Punkt A=(-10,-14) jest środkiem okręgu o promieniu
2024. Okrąg ten przekształcono przez symetrię
względem osi Oy i otrzymano okrąg o środku w
punkcie A_1.
Oblicz długość odcinka AA_1.
Odpowiedź:
|AA_1|=(wpisz liczbę całkowitą)
Zadanie 15.1 pkt ⋅ Numer: pp-11220 ⋅ Poprawnie: 183/331 [55%]