Podgląd testu : lo2@sp-geom-analit-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11437 ⋅ Poprawnie: 355/474 [74%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Punkt o współrzędnych oraz punkty
A=(6,1) ,
B i
C są wierzchołkami trójkąta równoramiennego
o podstawie
AB , a punkt
D=(8,2) jest spodkiem wysokości tego trójkąta
opuszczonej z wierzchołka
C .
Wówczas punkt
B ma współrzędne
B=(x_B, y_B) .
Wyznacz współrzędne x_B i y_B .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11224 ⋅ Poprawnie: 125/231 [54%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Pole powierzchni trójkąta o wierzchołkach
K=(3,5) ,
L=(8,0) i
M=(8,8)
jest równe
P .
Oblicz długość boku kwadratu o polu powierzchni
P .
Odpowiedź:
a=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11230 ⋅ Poprawnie: 183/268 [68%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Zapisz długość okręgu o środku w punkcie
S=(4,-1) , do którego
należy punkt o współrzędnych
A=(3,3) w postaci
p\cdot\pi .
Podaj liczbę p .
Odpowiedź:
p=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-11239 ⋅ Poprawnie: 147/266 [55%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Punkty
A=(3,4) i
C=\left(-5,\frac{1}{2}\right)
są dwoma przeciwległymi wierzchołkami prostokąta.
Oblicz długość promienia okręgu opisanego
na tym prostokącie.
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-11243 ⋅ Poprawnie: 166/304 [54%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Punkty
A=(3,4) i
B=(-5,1)
są wierzchołkami trójąta równobocznego.
Oblicz wysokość tego trójkąta.
Odpowiedź:
Zadanie 6. 1 pkt ⋅ Numer: pp-11537 ⋅ Poprawnie: 41/82 [50%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
(1 pkt)
Obrazami punktów o współrzędnych
A=(6,18) oraz
B=(-2,12)
w symetrii środkowej względem punktu
O=(0,0) są punkty odpowiednio
A' i
B' .
Środek odcinka
A'B' ma współrzędne
S=(x_S, y_S) .
Podaj współrzędne x_S i y_S .
Odpowiedzi:
Zadanie 7. 1 pkt ⋅ Numer: pp-11242 ⋅ Poprawnie: 467/632 [73%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Punkt
C=(-2m,y_C) jest środkiem odcinka o końcach
A=(4,-1) i
B=(3,3) .
Zatem liczba m jest równa:
Odpowiedzi:
A. \frac{7}{4}
B. \frac{7}{2}
C. -\frac{7}{4}
D. -\frac{7}{2}
Zadanie 8. 1 pkt ⋅ Numer: pp-11233 ⋅ Poprawnie: 197/362 [54%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
» Odcinek
AB jest średnicą okręgu oraz
A=(a+2,8) i
B=(-7,b+1) .
Punkt
C=(2,5) jest środkiem tego okręgu.
Wyznacz wartości parametrów a i b .
Odpowiedzi:
Zadanie 9. 1 pkt ⋅ Numer: pp-11235 ⋅ Poprawnie: 189/301 [62%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Punkt przecięcia prostych określonych równaniami
2x+y=m i
x-3y=6 należy do osi
Ox .
Wyznacz wartość parametru m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-11237 ⋅ Poprawnie: 119/180 [66%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Punkt
S=(1,-3) jest środkiem okręgu, a
odległość punktu
A=(13,32) od punktu
S jest
trzykrotnie większa od długości promienia tego okręgu.
Oblicz długość promienia tego okręgu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-11238 ⋅ Poprawnie: 73/161 [45%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
« Punkty
A=(2,5) i
C
są dwoma przeciwległymi wierzchołkami kwadratu, a punkt
P=(-1,4)
jest środkiem boku
BC tego kwadratu.
Oblicz pole powierzchni tego kwadratu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-11223 ⋅ Poprawnie: 388/630 [61%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Środkiem odcinka o końcach
A=(0,2a) i
B=(6b,-1) jest punkt
C=(2,5) .
Wyznacz wartości parametrów a i b .
Odpowiedzi:
Zadanie 13. 1 pkt ⋅ Numer: pp-11247 ⋅ Poprawnie: 223/443 [50%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Prosta o równaniu
10x+2y-10=0 wraz z osiami układu
współrzędnych ogranicza trójkąt.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 14. 1 pkt ⋅ Numer: pp-11246 ⋅ Poprawnie: 152/291 [52%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Prosta, do której należą punkty
A=(-44,14) i
B=(-33,47)
przecina oś
Ox w punkcie o odciętej
x_0 .
Podaj x_0 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 15. 1 pkt ⋅ Numer: pp-11220 ⋅ Poprawnie: 183/331 [55%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
Punkt
M=\left(-\frac{3m}{2},7\right) jest środkiem odcinka o końcach
A=(1,5) i
B=(4,9) .
Wyznacz wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż