Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-11417 ⋅ Poprawnie: 535/1040 [51%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Punkty o współrzędnych A=(11,-12) i C=(-1,-7) są przeciwległymi wierzchołkami kwadratu, na którym opisano okrąg. Zapisz długość promienia tego okręgu w najprostszej postaci \frac{a\sqrt{b}}{c}, gdzie a,b,c\in\mathbb{N}.

Podaj liczby a, b i c.

Odpowiedź:
r= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11243 ⋅ Poprawnie: 166/304 [54%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkty A=(-2,1) i B=(4,-4) są wierzchołkami trójąta równobocznego.

Oblicz wysokość tego trójkąta.

Odpowiedź:
h= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11252 ⋅ Poprawnie: 239/368 [64%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Do okręgu o środku w punkcie S=(-4,-2) i promieniu długości \sqrt{113} należy punkt:
Odpowiedzi:
A. (4,5) B. (4,8)
C. (1,1) D. (7,6)
E. (4,8) F. (7,2)
Zadanie 4.  1 pkt ⋅ Numer: pp-11236 ⋅ Poprawnie: 89/145 [61%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Proste o równaniach \frac{\sqrt{3}}{3}x-y+\frac{5}{2}=0 i -7y+5=0:
Odpowiedzi:
A. przecinają się pod kątem 30^{\circ} B. przecinają się pod kątem 45^{\circ}
C. są równoległe D. przecinają się pod kątem 60^{\circ}
Zadanie 5.  1 pkt ⋅ Numer: pp-11245 ⋅ Poprawnie: 86/163 [52%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt A=(-11,-6) jest środkiem okręgu o promieniu 2023. Okrąg ten przekształcono przez symetrię względem osi Oy i otrzymano okrąg o środku w punkcie A_1.

Oblicz długość odcinka AA_1.

Odpowiedź:
|AA_1|= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20599 ⋅ Poprawnie: 32/163 [19%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Prosta k:ax+by+c=0 względem punktu A=(x_a,y_a) jest tak położona, że d(A, k)=\sqrt{7}. Wyznacz c.

Podaj najmniejsze możliwe c.

Dane
x_a=-6
y_a=-1
a=4
b=-3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj największe możliwe c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20602 ⋅ Poprawnie: 28/152 [18%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Prosta y=ax+b jest symetralną odcinka AB, przy czym A=(x_a,y_a) i B=(x_b, y_b).

Podaj x_b.

Dane
a=2
b=-4
x_a=-\frac{7}{2}=-3.500000000000000
y_a=-\frac{3}{2}=-1.500000000000000
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20627 ⋅ Poprawnie: 35/297 [11%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Punkty A=(x_a,y_a), B=(x_b,y_b) i C=(x_c,y_c) są wierzchołkami trójkąta. Uzasadnij, że trójkąta ABC jest prostokątny.

Wyznacz pole koła opisanego na tym trójkącie.

Dane
x_a=-11
y_a=-3
x_b=-5
y_b=-5
x_c=-9
y_c=-1
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Prosta ax+y+c=0 zawiera środkową CD tego trójkąta.

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pp-30217 ⋅ Poprawnie: 1/4 [25%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Punkty A=(-4,0), B=(-8,3) i C=(-6,-1) są wierzchołkami trójkąta.

Oblicz sinus najmniejszego kąta tego trójkąta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Prosta y=ax+b zawiera wysokość tego trójkąta opuszczoną z wierzchołka kąta prostego i przecina przeciwprostokątną tego trójkąta w punkcie D=(x_d,y_d).

Wyznacz b

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
 Podaj x_d
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.4 (1 pkt)
 Podaj y_d
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm