Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-11224 ⋅ Poprawnie: 125/231 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Pole powierzchni trójkąta o wierzchołkach K=(5,-5), L=(10,-10) i M=(10,-2) jest równe P.

Oblicz długość boku kwadratu o polu powierzchni P.

Odpowiedź:
a= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11240 ⋅ Poprawnie: 334/469 [71%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt S=(-2,-5) jest środkiem odcinka AC, gdzie A=(x_A,y_A) i C=\left(\frac{1}{2},-1\right).

Podaj współrzędne x_A i y_A.

Odpowiedzi:
x_A= (dwie liczby całkowite)

y_A= (dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11233 ⋅ Poprawnie: 197/362 [54%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Odcinek AB jest średnicą okręgu oraz A=(a+2,8) i B=(-7,b+1). Punkt C=(5,-8) jest środkiem tego okręgu.

Wyznacz wartości parametrów a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11222 ⋅ Poprawnie: 233/589 [39%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Symetralną odcinka o końcach A=(-6,5) i B=\left(\frac{5}{2},5\right) jest prosta określona równaniem x+by=c.

Podaj liczby b i c.

Odpowiedzi:
b= (dwie liczby całkowite)

c= (dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11234 ⋅ Poprawnie: 152/322 [47%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz odległość między prostymi określonymi równaniami y=x+5 i x-y=8.
Odpowiedź:
d= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20591 ⋅ Poprawnie: 55/177 [31%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Prosta o równaniu y=ax+b przechodzi przez punkt P=(-2,-5) i jest nachylona do osi Ox pod kątem o mierze 120^{\circ}.

Podaj a.

Odpowiedź:
a= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20612 ⋅ Poprawnie: 24/81 [29%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Przekątne rombu o wierzchołkach A=(13,4) i B=(-3,-9) przecinają się w punkcie S=(1,-12).

Oblicz pole powierzchni tego rombu.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Oblicz długość obwodu tego rombu.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20621 ⋅ Poprawnie: 20/44 [45%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 » Wierzchołkiem trójkąta równobocznego ABC jest punkt A=(-4,-3), a środkiem okręgu wpisanego w ten trójkąt punkt S=(2,5).

Oblicz P_{ABC}.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pp-30207 ⋅ Poprawnie: 0/21 [0%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Na prostej o równaniu x-3y-23=0 leży wierzchołek D rombu ABCD, w którym A=(-5,5) i przekątne przecinają się w punkcie S=(3,-8). Prosta o równaniu 4x+by+c=0 zawiera przekątną BD tego rombu. Wyznacz wierzchołki B=(x_b,y_b) i D=(x_d,y_d) (odwrotnie do ruchu wskazówek zegara) tego rombu.

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj x_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.4 (1 pkt)
 Wyznacz P_{ABCD}.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm