Dany jest kwadrat ABCD. Punkty o współrzędnych
E=(3,-6) i F=(2,4) są
środkami dwóch jego boków odpowiednio AB i
BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci
a\sqrt{b}, gdzie a,b\in\mathbb{N}.
Podaj liczby a i b.
Odpowiedź:
d=\cdot√
(wpisz dwie liczby całkowite)
Zadanie 2.1 pkt ⋅ Numer: pp-11244 ⋅ Poprawnie: 201/325 [61%]
Trzy wierzchołki równoległoboku ABCD mają współrzędne
A=\left(\frac{13}{2},-12\right), B=(x_b,y_b) i
D=(x_d,y_d) (odwrotnie do ruchu wskazówek zegara).
Bok BC tego równoległoboku
zawarty jest w prostej o równaniu y=-x+\frac{3}{2}, zaś bok
CD w prostej o równaniu y=3x-10.
Podaj x_b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8.2 pkt ⋅ Numer: pp-20622 ⋅ Poprawnie: 9/16 [56%]
Punkty A=(4,-6) i D=(2,-2)
są wierzchołkami rombu (odwrotnie do ruchu wskazówek zegara), którego przekątna AC zawiera
się w prostej o równaniu y=2x-14.
Przekątna BC tego rombu opisana jest równaniem
BC:y=ax+b. Podaj b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Punkt S=(x_s,y_s) jest punktem przecięcia przekątnych tego rombu.
Podaj y_s.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
Wyznacz współrzędne wierzchołeka B=(x_b,y_b) tego rombu.
Podaj x_b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.4 (1 pkt)
Wyznacz pole powierzchni tego rombu.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat