Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-11225 ⋅ Poprawnie: 257/416 [61%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « W kwadracie o wierzchołkach ABCD punkty K=(2,-2) i L=(-5,4) są środkami boków odpowiednio AB i BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{N}.

Podaj liczby a i b.

Odpowiedź:
d= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11240 ⋅ Poprawnie: 334/469 [71%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt S=(2,-2) jest środkiem odcinka AC, gdzie A=(x_A,y_A) i C=\left(-\frac{5}{2},4\right).

Podaj współrzędne x_A i y_A.

Odpowiedzi:
x_A= (dwie liczby całkowite)

y_A= (dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11511 ⋅ Poprawnie: 542/919 [58%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkty o współrzędnych A=\left(4\sqrt{3},-5\right) i B=\left(12\sqrt{3},-5\right) są wierzchołkami trójkąta równobocznego ABC.

Oblicz długość promienia okręgu opisanego na tym trójkącie.

Odpowiedź:
r= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11238 ⋅ Poprawnie: 73/161 [45%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Punkty A=(2,-3) i C są dwoma przeciwległymi wierzchołkami kwadratu, a punkt P=(-8,5) jest środkiem boku BC tego kwadratu.

Oblicz pole powierzchni tego kwadratu.

Odpowiedź:
P_{\square}=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11221 ⋅ Poprawnie: 71/162 [43%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
Punkty A=(2,0), B=(5,0) i C=(4,3) są wierzchołkami trójkąta. Zbiór wszystkich punktów M należacych do trójkąta ABC spełniających warunek |MA|\leqslant |MB| jest:
Odpowiedzi:
A. czworokątem B. trójkątem ostrokątnym
C. wycinkiem koła D. trójkątem prostokątnym
Zadanie 6.  2 pkt ⋅ Numer: pp-20589 ⋅ Poprawnie: 123/358 [34%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Prosta o równaniu y=ax+b przechodzi przez punkt P=(-2-2\sqrt{3},1 ) i jest nachylona do osi Ox pod kątem o mierze 60^{\circ}.

Podaj a.

Odpowiedź:
a= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20605 ⋅ Poprawnie: 19/31 [61%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Znajdź punkt A=(x_a,y_a) leżący na prostej y=2x+c taki, żeby jego odległość od punktu K=(x_k,y_k) była najmniejsza możliwa.

Podaj x_a.

Dane
x_k=12
y_k=-8
c=-22
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj y_a.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20631 ⋅ Poprawnie: 33/187 [17%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 «« Wierzchołkami trójkąta są punkty A=(-7,2), B=(1,4) i C=(-12,13), a punkt D jest środkiem boku AB. Wyznacz równanie prostej CD: y=ax+b.

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pp-30195 ⋅ Poprawnie: 6/103 [5%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Do prostej o równaniu 2x+y+11=0 należy punkt P=(m,-7).

Podaj m.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
 Punkt Q=(p, -2) jest odległy od tej prostej o 3\sqrt{5}.

Podaj najmniejsze możliwe p.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
 Podaj największe możliwe p.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm