Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-11224 ⋅ Poprawnie: 125/231 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Pole powierzchni trójkąta o wierzchołkach K=(5,6), L=(10,1) i M=(10,9) jest równe P.

Oblicz długość boku kwadratu o polu powierzchni P.

Odpowiedź:
a= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11244 ⋅ Poprawnie: 201/325 [61%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkty A=(3,5) i B=(-5,1) są wierzchołkami trójąta równobocznego. Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
P_{\triangle}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11252 ⋅ Poprawnie: 239/368 [64%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Do okręgu o środku w punkcie S=(2,4) i promieniu długości \sqrt{58} należy punkt:
Odpowiedzi:
A. (-3,5) B. (-4,2)
C. (-5,1) D. (-2,5)
E. (-8,0) F. (-9,-2)
Zadanie 4.  1 pkt ⋅ Numer: pp-11236 ⋅ Poprawnie: 89/145 [61%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Proste o równaniach \sqrt{3}x-y+\frac{1}{6}=0 i -5y+5=0:
Odpowiedzi:
A. są prostopadłe B. przecinają się pod kątem 45^{\circ}
C. przecinają się pod kątem 60^{\circ} D. przecinają się pod kątem 30^{\circ}
Zadanie 5.  1 pkt ⋅ Numer: pp-11245 ⋅ Poprawnie: 86/163 [52%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt A=(7,13) jest środkiem okręgu o promieniu 2017. Okrąg ten przekształcono przez symetrię względem osi Oy i otrzymano okrąg o środku w punkcie A_1.

Oblicz długość odcinka AA_1.

Odpowiedź:
|AA_1|= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20585 ⋅ Poprawnie: 341/540 [63%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Punkty A=(5,-2) i B=(6,-1) należą do prostej określonej równaniem y=ax+b.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 7.  3 pkt ⋅ Numer: pp-20618 ⋅ Poprawnie: 7/76 [9%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Podstawę trapezu równoramiennego ABCD wyznaczają punkty A=(1,4) i B=(9,8), zaś C=(3,11) jest jednym z jego pozostałych wierzchołków. Wyznacz równanie osi symetrii y=ax+b tego trapezu.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Wierzchołek D tego trapezu ma współrzędne D=(x_d,y_d).

Podaj x_d.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.3 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20627 ⋅ Poprawnie: 35/297 [11%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Punkty A=(x_a,y_a), B=(x_b,y_b) i C=(x_c,y_c) są wierzchołkami trójkąta. Uzasadnij, że trójkąta ABC jest prostokątny.

Wyznacz pole koła opisanego na tym trójkącie.

Dane
x_a=-5
y_a=3
x_b=1
y_b=1
x_c=-3
y_c=5
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Prosta ax+y+c=0 zawiera środkową CD tego trójkąta.

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pp-30185 ⋅ Poprawnie: 12/92 [13%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Wyznacz równania prostych, które przechodzą przez punkt A=(6,-1) i są równo oddalone od punktów B=(3,-4) oraz C=(7,-6). Wyznaczone równania zapisz w postaci kierunkowej y=ax+b.

Podaj współczynnik a tej prostej, która ma oba współczynniki całkowite.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj współczynnik b tej prostej, która ma oba współczynniki całkowite.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 9.3 (2 pkt)
 Podaj współczynnik b tej prostej, która nie ma obu współczynników całkowitych.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm