« Punkt o współrzędnych oraz punkty A=(8,1),
B i C są wierzchołkami trójkąta równoramiennego
o podstawie AB, a punkt
D=(10,2) jest spodkiem wysokości tego trójkąta
opuszczonej z wierzchołka C.
Wówczas punkt B ma współrzędne B=(x_B, y_B).
Wyznacz współrzędne x_B i y_B.
Odpowiedzi:
x_B
=
(wpisz liczbę całkowitą)
y_B
=
(wpisz liczbę całkowitą)
Zadanie 2.1 pkt ⋅ Numer: pp-11230 ⋅ Poprawnie: 183/268 [68%]
(1 pkt)
Obrazami punktów o współrzędnych A=(2,-2) oraz B=(-4,28)
w symetrii środkowej względem punktu O=(0,0) są punkty odpowiednio
A' i B'.
Środek odcinka A'B' ma współrzędne S=(x_S, y_S).
Podaj współrzędne x_S i y_S.
Odpowiedzi:
x_S
=
(wpisz liczbę całkowitą)
y_S
=
(wpisz liczbę całkowitą)
Zadanie 4.1 pkt ⋅ Numer: pp-11235 ⋅ Poprawnie: 189/301 [62%]
« Dwa wierzchołki trójkąta ABC mają współrzędne
A=(1,6) i B=(0,9). Trzeci
wierzchołek C tego trójkąta należy do prostej
x=p i jest tak położony, że trójkąt
ABC jest prostokątny.
Wyznacz współrzędne punktu C=(x_c,y_c).
Ile rozwiązań ma to zadanie?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Podaj największe możliwe y_c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
Podaj sumę wszystkich wartości y_c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat