» Punkty A=(2,-1), B=(3,2),
C=\left(-\frac{17}{3},-\frac{4}{3}\right) i D=(x_D,y_D) są czterema kolejnymi wierzchołkami
równoległoboku (odwrotnie do ruchu wskazówek zegara).
Podaj współrzędne x_D i y_D.
Odpowiedzi:
x_D
=
(dwie liczby całkowite)
y_D
=
(dwie liczby całkowite)
Zadanie 2.1 pkt ⋅ Numer: pp-11241 ⋅ Poprawnie: 273/431 [63%]
Dane są punkty A=(2,1) i
B=\left(\frac{13}{2},\frac{17}{2}\right), które są wierzchołkami trójkąta
prostokątnego o przeciwprostokątnej AB.
Wyznacz środek S=(x_s,y_s) okręgu opisanego na tym
trójkącie.
Podaj x_s.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Podaj y_s.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9.4 pkt ⋅ Numer: pp-30219 ⋅ Poprawnie: 0/29 [0%]
» W trójkącie ABC punkty
A=(-5,4) i B=(5,4) są
końcami przeciwprostokątnej, natomiast punkt C
leży na prostej o równaniu x-y+11=0. Wyznacz
współrzędne punktu C=(x_c,y_c).
Podaj najmniejsze możliwe y_c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Podaj największe możliwe y_c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.3 (2 pkt)
Symetralna przeciwprostokątnej wyznaczonego trójkąta o mniejszym polu powierzchni przecięła
bok BC w punkcie D=(x_d,y_d).
Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat