Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-11248 ⋅ Poprawnie: 222/345 [64%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dany jest kwadrat ABCD. Punkty o współrzędnych E=(-6,-3) i F=(-3,-5) są środkami dwóch jego boków odpowiednio AB i BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{N}.

Podaj liczby a i b.

Odpowiedź:
d= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11229 ⋅ Poprawnie: 306/476 [64%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Przeciwległe wierzchołki prostokąta maja współrzędne A=(-6,-3) i C=(-3,-5). Okrąg opisany na tym prostokącie ma obwód długości:
Odpowiedzi:
A. \frac{\sqrt{13}}{4}\pi B. \frac{3\sqrt{13}}{2}\pi
C. \sqrt{26}\pi D. \frac{\sqrt{13}}{2}\pi
E. \sqrt{13}\pi F. 2\sqrt{13}\pi
Zadanie 3.  1 pkt ⋅ Numer: pp-11233 ⋅ Poprawnie: 197/362 [54%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Odcinek AB jest średnicą okręgu oraz A=(a+2,8) i B=(-7,b+1). Punkt C=(-9,-5) jest środkiem tego okręgu.

Wyznacz wartości parametrów a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11222 ⋅ Poprawnie: 233/589 [39%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Symetralną odcinka o końcach A=(-9,-3) i B=\left(-\frac{5}{2},-3\right) jest prosta określona równaniem x+by=c.

Podaj liczby b i c.

Odpowiedzi:
b= (dwie liczby całkowite)

c= (dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11235 ⋅ Poprawnie: 189/301 [62%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt przecięcia prostych określonych równaniami 2x+y=m+15 i x-3y=6 należy do osi Ox.

Wyznacz wartość parametru m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20586 ⋅ Poprawnie: 24/88 [27%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Wyznacz rzedną punktu wspólnego osi Oy i symetralnej odcinka o końcach A=(-8,-4) i B=(-5,-6).

Podaj tę rzędną.

Odpowiedź:
y=
(wpisz dwie liczby całkowite)
Zadanie 7.  4 pkt ⋅ Numer: pp-20617 ⋅ Poprawnie: 0/12 [0%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Punkty A=(-3,-3) i B=(-1,-1) wyznaczają jedną z podstaw trapezu ABCD. Punkt O=\left(-9,-\frac{9}{2}\right) jest środkiem drugiej podstawy CD tego trapezu, przy czym |CD|=2\cdot|AB|.
Wyznacz C=(x_c,y_c) i D=(x_d,y_d).

Podaj x_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.3 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.4 (1 pkt)
 Oblicz P_{ABCD}.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20621 ⋅ Poprawnie: 20/44 [45%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 » Wierzchołkiem trójkąta równobocznego ABC jest punkt A=(1,1), a środkiem okręgu wpisanego w ten trójkąt punkt S=(7,9).

Oblicz P_{ABC}.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pp-30213 ⋅ Poprawnie: 0/9 [0%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Wierzchołki trapezu ABCD mają współrzędne: A=(-7,-6), B=(-6,-2), C=(-10,-1) i D=(-15,-4). Wysokość tego trapezu opuszczona z wierzchołka C zawiera się w prostej o równaniu ax+y+c=0 i przecina podstawę AD w punkcie E.

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
 Oblicz pole powierzchni trójkąta DEC.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.4 (1 pkt)
 Oblicz pole powierzchni trapezu ABCD.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm