Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-11437 ⋅ Poprawnie: 355/474 [74%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Punkt o współrzędnych oraz punkty A=(-4,4), B i C są wierzchołkami trójkąta równoramiennego o podstawie AB, a punkt D=(-2,5) jest spodkiem wysokości tego trójkąta opuszczonej z wierzchołka C. Wówczas punkt B ma współrzędne B=(x_B, y_B).

Wyznacz współrzędne x_B i y_B.

Odpowiedzi:
x_B= (wpisz liczbę całkowitą)
y_B= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11229 ⋅ Poprawnie: 306/476 [64%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Przeciwległe wierzchołki prostokąta maja współrzędne A=(1,3) i C=(-1,6). Okrąg opisany na tym prostokącie ma obwód długości:
Odpowiedzi:
A. \sqrt{13}\pi B. 2\sqrt{13}\pi
C. \frac{\sqrt{13}}{2}\pi D. \sqrt{26}\pi
E. \frac{3\sqrt{13}}{2}\pi F. \frac{\sqrt{13}}{4}\pi
Zadanie 3.  1 pkt ⋅ Numer: pp-11228 ⋅ Poprawnie: 154/267 [57%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Obwód L rombu o sąsiednich wierzchołkach A=(-1,-8) i B=(-2,-9) spełnia nierówność m\leqslant L\lessdot m+1, gdzie m\in\mathbb{Z}.

Wyznacz liczbę m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11235 ⋅ Poprawnie: 189/301 [62%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Punkt przecięcia prostych określonych równaniami 2x+y=m+2 i x-3y=6 należy do osi Ox.

Wyznacz wartość parametru m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11232 ⋅ Poprawnie: 119/254 [46%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 «« Punkty A=(-2,-5) i B=(6,10) są środkami okręgów stycznych wewnętrznie. Promienie tych okręgów r_1,r_2 spełniają warunek r_1=3r_2.

Oblicz sumę długości promieni tych okręgów.

Odpowiedź:
r_1+r_2=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20593 ⋅ Poprawnie: 170/416 [40%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Proste (m+a)x-y=3 i y=(m-a)x+\sqrt{2} są prostopadłe.

Podaj najmniejsze możliwe m.

Dane
a=8
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20610 ⋅ Poprawnie: 6/23 [26%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Prosta o równaniu 4x+by+c=0 zawiera przekątną BD rombu o wierzchołkach A=(4,-10) i C=(0,-3).

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20627 ⋅ Poprawnie: 35/297 [11%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Punkty A=(x_a,y_a), B=(x_b,y_b) i C=(x_c,y_c) są wierzchołkami trójkąta. Uzasadnij, że trójkąta ABC jest prostokątny.

Wyznacz pole koła opisanego na tym trójkącie.

Dane
x_a=-6
y_a=-6
x_b=0
y_b=-8
x_c=-4
y_c=-4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Prosta ax+y+c=0 zawiera środkową CD tego trójkąta.

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pp-30307 ⋅ Poprawnie: 2/12 [16%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 W układzie współrzędnych punkty A=(x_a,y_a) i B=(x_b,y_b) są wierzchołkami trójkąta ABC. Wierzchołek C tego trójkąta leży na prostej o równaniu y=ax+b. Oblicz współrzędne punktu C=(x_c,y_c), dla którego kąt ABC jest prosty.

Podaj najmniejsze możliwe x_c.

Dane
x_a=5
y_a=-3
x_b=11
y_b=-1
a=2
b=-5
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
 Podaj najmniejsze możliwe y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm