Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-11248 ⋅ Poprawnie: 222/345 [64%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dany jest kwadrat ABCD. Punkty o współrzędnych E=(-3,3) i F=(-6,2) są środkami dwóch jego boków odpowiednio AB i BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{N}.

Podaj liczby a i b.

Odpowiedź:
d= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11241 ⋅ Poprawnie: 273/431 [63%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt S=\left(-\frac{11}{4},3\right) jest środkiem odcinka AB, gdzie A=(x_A,y_A) i B=(-6,2).

Podaj współrzedne x_A i y_A.

Odpowiedzi:
x_A= (dwie liczby całkowite)

y_A= (dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11242 ⋅ Poprawnie: 467/632 [73%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Punkt C=(-2m,y_C) jest środkiem odcinka o końcach A=(3,-6) i B=(2,2).

Zatem liczba m jest równa:

Odpowiedzi:
A. \frac{5}{2} B. \frac{5}{4}
C. -\frac{5}{4} D. -\frac{5}{2}
Zadanie 4.  1 pkt ⋅ Numer: pp-11236 ⋅ Poprawnie: 89/145 [61%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Proste o równaniach \frac{\sqrt{3}}{3}x-y+\frac{1}{5}=0 i -5y+5=0:
Odpowiedzi:
A. przecinają się pod kątem 45^{\circ} B. przecinają się pod kątem 60^{\circ}
C. są równoległe D. przecinają się pod kątem 30^{\circ}
Zadanie 5.  1 pkt ⋅ Numer: pp-11232 ⋅ Poprawnie: 119/254 [46%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 «« Punkty A=(-1,-6) i B=(23,1) są środkami okręgów stycznych wewnętrznie. Promienie tych okręgów r_1,r_2 spełniają warunek r_1=4r_2.

Oblicz sumę długości promieni tych okręgów.

Odpowiedź:
r_1+r_2=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20594 ⋅ Poprawnie: 54/317 [17%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Proste (m-2a)x-(2a+3-m)y-3=0 i (m+1-2a)x+y+2=0 są prostopadłe.

Podaj najmniejsze możliwe m.

Dane
a=-3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20609 ⋅ Poprawnie: 10/54 [18%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Na prostej o równaniu y=2x+19 leży wierzchołek D rombu ABCD, w którym A=(-2,1) i C=(0,6). Wyznacz wierzchołki B=(x_b,y_b) i D=(x_d,y_d) tego rombu (odwrotnie do ruchu wskazówek zegara).

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20630 ⋅ Poprawnie: 1/96 [1%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Trójkąt równoramienny o podstawie AB ma wierzchołki A=(0,-3) i B=(8,-3). Wierzchołek C tego trójkąta należy do prostej o równaniu y=x+\frac{27}{2}. Wyznacz współrzędne wierzchołka C=(x_C,y_C).

Podaj y_C.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Oblicz P_{\triangle ABC}.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pp-30211 ⋅ Poprawnie: 0/4 [0%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Prosta x+2y-4=0 zawiera podstawę trapezu równoramiennego AB, a prosta 2x-y+12=0 jest osią symetrii tego trapezu. Wierzchołki trapezu mają współrzędne: A=(0,2), B=(x_b,y_b), D=(0,-5), zaś prosta zawierająca bok CD równanie CD:y=ax+b.

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
 Podaj a.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.4 (1 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm