Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-11248 ⋅ Poprawnie: 222/345 [64%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dany jest kwadrat ABCD. Punkty o współrzędnych E=(-3,-1) i F=(6,-5) są środkami dwóch jego boków odpowiednio AB i BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{N}.

Podaj liczby a i b.

Odpowiedź:
d= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11244 ⋅ Poprawnie: 201/325 [61%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkty A=(-3,-1) i B=(6,-5) są wierzchołkami trójąta równobocznego. Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
P_{\triangle}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11537 ⋅ Poprawnie: 41/82 [50%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 (1 pkt) Obrazami punktów o współrzędnych A=(-14,-4) oraz B=(26,-26) w symetrii środkowej względem punktu O=(0,0) są punkty odpowiednio A' i B'. Środek odcinka A'B' ma współrzędne S=(x_S, y_S).

Podaj współrzędne x_S i y_S.

Odpowiedzi:
x_S= (wpisz liczbę całkowitą)
y_S= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11221 ⋅ Poprawnie: 71/162 [43%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
Punkty A=(2,0), B=(5,0) i C=(4,3) są wierzchołkami trójkąta. Zbiór wszystkich punktów M należacych do trójkąta ABC spełniających warunek |MA|\leqslant |MB| jest:
Odpowiedzi:
A. czworokątem B. wycinkiem koła
C. trójkątem prostokątnym D. trójkątem ostrokątnym
Zadanie 5.  1 pkt ⋅ Numer: pp-11235 ⋅ Poprawnie: 189/301 [62%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt przecięcia prostych określonych równaniami 2x+y=m+9 i x-3y=6 należy do osi Ox.

Wyznacz wartość parametru m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20597 ⋅ Poprawnie: 82/274 [29%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Prosta x+by+c=0 jest równoległa do prostej x+2y=0 i przechodzi przez punkt A=(-3,6).

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20606 ⋅ Poprawnie: 7/62 [11%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Środkiem odcinka o końcach A=(x-2,0) i B=(0,3y) jest punkt P=(-4,-1).

Podaj najmniejsze możliwe x.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj największe możliwe y.
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20632 ⋅ Poprawnie: 17/27 [62%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Dany jest trójkąt równoramienny o wierzchołkach A=(-6,-4), B=(1,0) i C=(-5,4).

Oblicz długość ramienia tego trójkąta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pp-30214 ⋅ Poprawnie: 0/8 [0%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Punkty A=(-5,-2), B=(1,0), C=(-9,6) i D=(-12,5) są kolejnymi wierzchołkami trapezu o podstawach AB i CD. Ramiona tego trapezu przedłużono do punktu ich przecięcia w punkcie O=(x_o,y_o), a następnie narysowano okrąg o środku w punkcie O, do którego podstawa AB tego trapezu jest styczną w punkcie E=(x_e,y_e).

Podaj x_o.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj y_o.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
 Podaj x_e.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.4 (1 pkt)
 Podaj x_e.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm