» Na prostej o równaniu y=2x+17 leży
wierzchołek D rombu ABCD,
w którym A=(0,3) i C=(2,8).
Wyznacz wierzchołki B=(x_b,y_b) i
D=(x_d,y_d) tego rombu (odwrotnie do ruchu wskazówek zegara).
Podaj x_b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8.2 pkt ⋅ Numer: pp-20629 ⋅ Poprawnie: 6/15 [40%]
Punkt A=(0,6) należy do prostych
k i l. Prosta
l wraz z osiami układu ogranicza trójkąt
o polu 30, zaś prosta k
trójkąt o polu \frac{99}{2}. Proste te przecinają dodatnią
półoś Ox w punktach P i
Q.
Oblicz pole trójkąta o wierzchołkach w punktach A,
P i Q.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9.4 pkt ⋅ Numer: pp-30210 ⋅ Poprawnie: 1/30 [3%]
» Dane są trzy kolejne wierzchołki trapezu
A=(0,3), B=(4,15) i
C=(-3,13), w którym
kąt przy wierzchołku A jest prosty. Punkt
D ma współrzędne
D=(x_d, y_d), a prosta zawierająca bok AD
opisana jest równaniem x+by+c=0
Podaj c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Podaj x_d.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.4 (1 pkt)
Oblicz pole powierzchni tego trapezu.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat