Dany jest kwadrat ABCD. Punkty o współrzędnych
E=(4,-1) i F=(2,-3) są
środkami dwóch jego boków odpowiednio AB i
BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci
a\sqrt{b}, gdzie a,b\in\mathbb{N}.
Podaj liczby a i b.
Odpowiedź:
d=\cdot√
(wpisz dwie liczby całkowite)
Zadanie 2.1 pkt ⋅ Numer: pp-11230 ⋅ Poprawnie: 183/268 [68%]
Punkty A=(2,0), B=(5,0)
i C=(4,3) są wierzchołkami trójkąta. Zbiór wszystkich
punktów M należacych do trójkąta
ABC spełniających warunek
|MA|\leqslant |MB| jest:
Odpowiedzi:
A. czworokątem
B. trójkątem prostokątnym
C. wycinkiem koła
D. trójkątem ostrokątnym
Zadanie 6.2 pkt ⋅ Numer: pp-20599 ⋅ Poprawnie: 32/163 [19%]
Dane są punkty A=(4,1) i
B=\left(\frac{5}{2},-\frac{1}{2}\right), które są wierzchołkami trójkąta
prostokątnego o przeciwprostokątnej AB.
Wyznacz środek S=(x_s,y_s) okręgu opisanego na tym
trójkącie.
Podaj x_s.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Podaj y_s.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9.4 pkt ⋅ Numer: pp-30190 ⋅ Poprawnie: 20/166 [12%]
«« Punkt A=(1,-2) jest wierzchołkiem trójkąta
ABC, w którym
\overrightarrow{AB}=[7,3] i
\overrightarrow{BC}=[-6,1].
Wyznacz równanie wysokości tego trójkąta przechodzącej przez punkt
C i zapisz je w postaci
ax+y+c=0.
Podaj a.
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (2 pkt)
Podaj c.
Odpowiedź:
c=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat