Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-11248 ⋅ Poprawnie: 222/345 [64%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dany jest kwadrat ABCD. Punkty o współrzędnych E=(-1,-5) i F=(-3,6) są środkami dwóch jego boków odpowiednio AB i BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{N}.

Podaj liczby a i b.

Odpowiedź:
d= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11239 ⋅ Poprawnie: 147/266 [55%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkty A=(-1,-5) i C=\left(-3,3\right) są dwoma przeciwległymi wierzchołkami prostokąta.

Oblicz długość promienia okręgu opisanego na tym prostokącie.

Odpowiedź:
r= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11537 ⋅ Poprawnie: 41/82 [50%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 (1 pkt) Obrazami punktów o współrzędnych A=(26,4) oraz B=(-30,6) w symetrii środkowej względem punktu O=(0,0) są punkty odpowiednio A' i B'. Środek odcinka A'B' ma współrzędne S=(x_S, y_S).

Podaj współrzędne x_S i y_S.

Odpowiedzi:
x_S= (wpisz liczbę całkowitą)
y_S= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11221 ⋅ Poprawnie: 71/162 [43%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
Punkty A=(2,0), B=(5,0) i C=(4,3) są wierzchołkami trójkąta. Zbiór wszystkich punktów M należacych do trójkąta ABC spełniających warunek |MA|\leqslant |MB| jest:
Odpowiedzi:
A. wycinkiem koła B. trójkątem prostokątnym
C. trójkątem ostrokątnym D. czworokątem
Zadanie 5.  1 pkt ⋅ Numer: pp-11222 ⋅ Poprawnie: 233/589 [39%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Symetralną odcinka o końcach A=(5,6) i B=\left(\frac{1}{2},6\right) jest prosta określona równaniem x+by=c.

Podaj liczby b i c.

Odpowiedzi:
b= (dwie liczby całkowite)

c= (dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20597 ⋅ Poprawnie: 82/274 [29%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Prosta x+by+c=0 jest równoległa do prostej x+2y-12=0 i przechodzi przez punkt A=(5,8).

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20611 ⋅ Poprawnie: 0/13 [0%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Prosta y-7=0 zawiera jeden z wierzchołków rombu o wierzchołkach A=(5,-3) i C=(12,0). Wyznacz wierzchołki B=(x_b,y_b) i D=(x_d,y_d) tego rombu (odwrotnie do ruchu wskazówek zegara)

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj x_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20624 ⋅ Poprawnie: 14/67 [20%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Prosta k przechodząca przez punkt C=(7,24) przecina osie układu współrzędnych w punktach A i B=(x_b,y_b) i jest prostopadła o odcinka OC:

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Oblicz |AB|.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pp-30201 ⋅ Poprawnie: 3/165 [1%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » Dane są punkty M=(-1,4) oraz N=(7,7). Symetralna odcinka MN opisana jest wzorem x+by+c=0.

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Symetralna odcinka MN przecina prostą 3x-2y-10=0 w punkcie P=(x_p,y_p).

Podaj x_p.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
 Podaj y_p.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm