Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-11224 ⋅ Poprawnie: 125/231 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Pole powierzchni trójkąta o wierzchołkach K=(7,5), L=(12,0) i M=(12,8) jest równe P.

Oblicz długość boku kwadratu o polu powierzchni P.

Odpowiedź:
a= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11240 ⋅ Poprawnie: 334/469 [71%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt S=(5,4) jest środkiem odcinka AC, gdzie A=(x_A,y_A) i C=\left(-\frac{3}{2},-6\right).

Podaj współrzędne x_A i y_A.

Odpowiedzi:
x_A= (dwie liczby całkowite)

y_A= (dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11252 ⋅ Poprawnie: 239/368 [64%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Do okręgu o środku w punkcie S=(4,3) i promieniu długości \sqrt{113} należy punkt:
Odpowiedzi:
A. (-3,-5) B. (-4,-9)
C. (-7,-1) D. (-4,-2)
E. (-5,-6) F. (-4,-1)
Zadanie 4.  1 pkt ⋅ Numer: pp-11235 ⋅ Poprawnie: 189/301 [62%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Punkt przecięcia prostych określonych równaniami 2x+y=m-7 i x-3y=6 należy do osi Ox.

Wyznacz wartość parametru m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11247 ⋅ Poprawnie: 223/443 [50%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Prosta o równaniu 10x+7y-35=0 wraz z osiami układu współrzędnych ogranicza trójkąt.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20585 ⋅ Poprawnie: 341/540 [63%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Punkty A=(4,0) i B=(5,1) należą do prostej określonej równaniem y=ax+b.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20610 ⋅ Poprawnie: 6/23 [26%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Prosta o równaniu 4x+by+c=0 zawiera przekątną BD rombu o wierzchołkach A=(7,-2) i C=(3,5).

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20632 ⋅ Poprawnie: 17/27 [62%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Dany jest trójkąt równoramienny o wierzchołkach A=(2,1), B=(9,5) i C=(3,9).

Oblicz długość ramienia tego trójkąta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  3 pkt ⋅ Numer: pp-30234 ⋅ Poprawnie: 0/7 [0%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Dwa wierzchołki trójkąta ABC mają współrzędne A=(6,4) i B=(5,7). Trzeci wierzchołek C tego trójkąta należy do prostej x=p i jest tak położony, że trójkąt ABC jest prostokątny. Wyznacz współrzędne punktu C=(x_c,y_c).

Ile rozwiązań ma to zadanie?

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj największe możliwe y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
 Podaj sumę wszystkich wartości y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm