» Punkty A=(5,2), B=(-1,1),
C=\left(\frac{10}{3},-\frac{13}{3}\right) i D=(x_D,y_D) są czterema kolejnymi wierzchołkami
równoległoboku (odwrotnie do ruchu wskazówek zegara).
Podaj współrzędne x_D i y_D.
Odpowiedzi:
x_D
=
(wpisz liczbę zapisaną dziesiętnie)
y_D
=
(wpisz liczbę zapisaną dziesiętnie)
Zadanie 2.(1 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-11239
Podpunkt 2.1 (1 pkt)
Punkty A=(-1,3) i C=\left(-2,-2\right)
są dwoma przeciwległymi wierzchołkami prostokąta. Zapisz długość promienia okręgu opisanego
na tym prostokącie w najprostszej postaci \frac{a\sqrt{b}}{c},
gdzie a,b,c\in\mathbb{N}.
Podaj liczby a, b i
c.
Odpowiedzi:
a
=
(wpisz liczbę zapisaną dziesiętnie)
b
=
(wpisz liczbę zapisaną dziesiętnie)
c
=
(wpisz liczbę zapisaną dziesiętnie)
Zadanie 3.(1 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-11537
Podpunkt 3.1 (1 pkt)
(1 pkt)
Obrazami punktów o współrzędnych A=(-22,-4) oraz B=(4,26)
w symetrii środkowej względem punktu O=(0,0) są punkty odpowiednio
A' i B'.
Środek odcinka A'B' ma współrzędne S=(x_S, y_S).
Podaj współrzędne x_S i y_S.
Odpowiedzi:
x_S
=
(wpisz liczbę zapisaną dziesiętnie)
y_S
=
(wpisz liczbę zapisaną dziesiętnie)
Zadanie 4.(1 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-11238
Podpunkt 4.1 (1 pkt)
Punkty A=(-1,4) i C
są dwoma przeciwległymi wierzchołkami kwadratu, a punkt P=(-3,-5)
jest środkiem boku BC tego kwadratu.
Oblicz pole powierzchni tego kwadratu.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 5.(1 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-11234
Podpunkt 5.1 (1 pkt)
Zapisz odległość między prostymi określonymi równaniami y=x-1 i
x-y=-4 w najprostszej postaci
\frac{a\sqrt{b}}{c}, gdzie a,b,c\in\mathbb{N}.
Podaj liczby a i c.
Odpowiedzi:
a
=
(wpisz liczbę zapisaną dziesiętnie)
c
=
(wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.(2 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-20586
Podpunkt 6.1 (2 pkt)
Wyznacz rzedną punktu wspólnego osi Oy i symetralnej
odcinka o końcach A=(x_a,y_a) i
B=(x_b,y_b).
Podaj tę rzędną.
Dane
x_a=-1.00 y_a=3.00 x_b=-2.00 y_b=-4.00
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7.(2 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-20615
Podpunkt 7.1 (1 pkt)
Trzy wierzchołki równoległoboku ABCD mają współrzędne
A=\left(\frac{3}{2},-1\right), B=(x_b,y_b) i
D=(x_d,y_d) (odwrotnie do ruchu wskazówek zegara).
Bok BC tego równoległoboku
zawarty jest w prostej o równaniu y=-x+\frac{15}{2}, zaś bok
CD w prostej o równaniu y=3x+16.
Podaj x_b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8.(3 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-20813
Podpunkt 8.1 (1 pkt)
(1 pkt) Punkty A=(x_A, y_A),
B=(x_B, y_B) i C=(x_C, y_C)
są wierzchołkami trójkąta równoramiennego.
Jaką długość ma najdłuższy bok tego trójkąta?
Dane
x_A=-6 y_A=0 x_B=2 y_B=-8 x_C=3 y_C=1
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
(1 pkt) Punkt D=(x_D, y_D) jest środkiem boku
AB tego trójkąta.
Podaj sumę jego współrzędnych, czyli x_D+y_D.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
(1 pkt) Prosta określona równaniem y=x+b jest
osią symetrii tego trójkąta.
Podaj b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9.(4 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-30222
Podpunkt 9.1 (1 pkt)
Punkty A=(-2,-4) i B=(-5,2)
wyznaczają podstawę trójkąta równoramiennego ABC.
Prosta o równaniu y=x-2 zawiera bok
AC tego trójkąta. Wyznacz
C=(x_c, y_c).