Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-11248 ⋅ Poprawnie: 222/345 [64%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dany jest kwadrat ABCD. Punkty o współrzędnych E=(5,4) i F=(-2,5) są środkami dwóch jego boków odpowiednio AB i BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{N}.

Podaj liczby a i b.

Odpowiedź:
d= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11239 ⋅ Poprawnie: 147/266 [55%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkty A=(5,4) i C=\left(-2,\frac{5}{2}\right) są dwoma przeciwległymi wierzchołkami prostokąta.

Oblicz długość promienia okręgu opisanego na tym prostokącie.

Odpowiedź:
r= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11511 ⋅ Poprawnie: 542/919 [58%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkty o współrzędnych A=\left(\sqrt{3},-6\right) i B=\left(7\sqrt{3},-6\right) są wierzchołkami trójkąta równobocznego ABC.

Oblicz długość promienia okręgu opisanego na tym trójkącie.

Odpowiedź:
r= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11234 ⋅ Poprawnie: 152/322 [47%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oblicz odległość między prostymi określonymi równaniami y=x+2 i x-y=9.
Odpowiedź:
d= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11231 ⋅ Poprawnie: 201/333 [60%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Środek odcinka o końcach (2,-9) i (4,-9) należy do prostej o równaniu y+ax=-5+a.

Wyznacz wartość parametru a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20585 ⋅ Poprawnie: 341/540 [63%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Punkty A=(2,7) i B=(3,8) należą do prostej określonej równaniem y=ax+b.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20613 ⋅ Poprawnie: 1/20 [5%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Dwa sąsiednie boki równoległoboku ABCD zawarte są w prostych 5x-2y-52=0 i x+2y+16=0 i mają wspólny punkt B. Przekątne tego równoległoboku przecinają się w punkcie O=\left(\frac{16}{3},-\frac{61}{8}\right). Wyznacz równanie boku AD:y=ax+b (odwrotnie do ruchu wskazówek zegara).

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Bok CD zawiera się w prostej o równaniu CD:y=cx+d.

Podaj d.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  3 pkt ⋅ Numer: pp-20623 ⋅ Poprawnie: 5/45 [11%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Dane są punkty A=(3,-6) i B=\left(-\frac{11}{2},\frac{5}{2}\right), które są wierzchołkami trójkąta prostokątnego o przeciwprostokątnej AB. Wyznacz środek S=(x_s,y_s) okręgu opisanego na tym trójkącie.

Podaj x_s.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj y_s.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
 Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pp-30212 ⋅ Poprawnie: 0/4 [0%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dane są kolejne wierzchołki trapezu A=(-1,-11), B=(7,-5), C=(1,-2) i D=(-3,-5). Bok CD tego trapezu zawiera sie w prostej 3x+by+c=0.

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Wysokość tego trapezu opuszczona z wierzchołka D zawiera się w prostej o równaniu y=ax+b.

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.4 (1 pkt)
 Wyznacz pole powierzchni tego trapezu.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm