Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-11250 ⋅ Poprawnie: 171/321 [53%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Punkty A=(2,-1), B=(3,2), C=\left(-\frac{17}{3},-\frac{4}{3}\right) i D=(x_D,y_D) są czterema kolejnymi wierzchołkami równoległoboku (odwrotnie do ruchu wskazówek zegara).

Podaj współrzędne x_D i y_D.

Odpowiedzi:
x_D= (dwie liczby całkowite)

y_D= (dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11229 ⋅ Poprawnie: 306/476 [64%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Przeciwległe wierzchołki prostokąta maja współrzędne A=(2,6) i C=(-1,-6). Okrąg opisany na tym prostokącie ma obwód długości:
Odpowiedzi:
A. \frac{3\sqrt{17}}{4}\pi B. 6\sqrt{17}\pi
C. 3\sqrt{17}\pi D. 3\sqrt{34}\pi
E. \frac{9\sqrt{17}}{2}\pi F. \frac{3\sqrt{17}}{2}\pi
Zadanie 3.  1 pkt ⋅ Numer: pp-11233 ⋅ Poprawnie: 197/362 [54%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Odcinek AB jest średnicą okręgu oraz A=(a+2,8) i B=(-7,b+1). Punkt C=(-1,-9) jest środkiem tego okręgu.

Wyznacz wartości parametrów a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11237 ⋅ Poprawnie: 119/180 [66%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Punkt S=(4,-8) jest środkiem okręgu, a odległość punktu A=(10,0) od punktu S jest trzykrotnie większa od długości promienia tego okręgu.

Oblicz długość promienia tego okręgu.

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11220 ⋅ Poprawnie: 183/331 [55%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt M=\left(-\frac{3m}{2},7\right) jest środkiem odcinka o końcach A=(-1,5) i B=(-6,9).

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20588 ⋅ Poprawnie: 157/384 [40%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Prosta o równaniu ax+y+c=0 przechodzi przez punkty A=\left(5,21) i B=\left(-1,-3\right).

Podaj c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20635 ⋅ Poprawnie: 6/10 [60%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Dane są punkty A=(-5,-6), B=(-3,-10), C=(-1,-6) i D=(-2,-2).

Wyznacz P_{ABCD}.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20631 ⋅ Poprawnie: 33/187 [17%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 «« Wierzchołkami trójkąta są punkty A=(-2,-13), B=(6,-11) i C=(-7,-2), a punkt D jest środkiem boku AB. Wyznacz równanie prostej CD: y=ax+b.

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pp-30185 ⋅ Poprawnie: 12/92 [13%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Wyznacz równania prostych, które przechodzą przez punkt A=(-3,9) i są równo oddalone od punktów B=(-6,6) oraz C=(-2,4). Wyznaczone równania zapisz w postaci kierunkowej y=ax+b.

Podaj współczynnik a tej prostej, która ma oba współczynniki całkowite.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj współczynnik b tej prostej, która ma oba współczynniki całkowite.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 9.3 (2 pkt)
 Podaj współczynnik b tej prostej, która nie ma obu współczynników całkowitych.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm