Podgląd testu : lo2@sp-geom-analit-pp-4
Zadanie 1. 1 pkt ⋅ Numer: pp-11250 ⋅ Poprawnie: 171/321 [53%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
» Punkty
A=(2,-1) ,
B=(3,2) ,
C=\left(-\frac{17}{3},-\frac{4}{3}\right) i
D=(x_D,y_D) są czterema kolejnymi wierzchołkami
równoległoboku (odwrotnie do ruchu wskazówek zegara).
Podaj współrzędne x_D i y_D .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11244 ⋅ Poprawnie: 201/325 [61%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Punkty
A=(4,4) i
B=(2,-6)
są wierzchołkami trójąta równobocznego.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-11232 ⋅ Poprawnie: 119/254 [46%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
«« Punkty
A=(0,0) i
B=(30,16)
są środkami okręgów stycznych wewnętrznie. Promienie tych okręgów
r_1,r_2 spełniają warunek
r_1=4r_2 .
Oblicz sumę długości promieni tych okręgów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-11221 ⋅ Poprawnie: 71/162 [43%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Punkty A=(2,0) , B=(5,0)
i C=(4,3) są wierzchołkami trójkąta. Zbiór wszystkich
punktów M należacych do trójkąta
ABC spełniających warunek
|MA|\leqslant |MB| jest:
Odpowiedzi:
A. wycinkiem koła
B. czworokątem
C. trójkątem prostokątnym
D. trójkątem ostrokątnym
Zadanie 5. 1 pkt ⋅ Numer: pp-11246 ⋅ Poprawnie: 152/291 [52%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Prosta, do której należą punkty
A=(-3,59) i
B=(3,-25)
przecina oś
Ox w punkcie o odciętej
x_0 .
Podaj x_0 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20592 ⋅ Poprawnie: 53/220 [24%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Punkty
A=(3p^2+6p+4, 3-m) oraz
B=(p+2,2m-1) są symetryczne względem osi
Ox .
Podaj m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj największe możliwe p .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20602 ⋅ Poprawnie: 28/152 [18%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
» Prosta
y=ax+b jest symetralną odcinka
AB , przy czym
A=(x_a,y_a)
i
B=(x_b, y_b) .
Podaj x_b .
Dane
a=2
b=-11
x_a=\frac{7}{2}=3.500000000000000
y_a=\frac{11}{2}=5.500000000000000
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 3 pkt ⋅ Numer: pp-20813 ⋅ Poprawnie: 77/334 [23%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
(1 pkt) Punkty
A=(x_A, y_A) ,
B=(x_B, y_B) i
C=(x_C, y_C)
są wierzchołkami trójkąta równoramiennego.
Jaką długość ma najdłuższy bok tego trójkąta?
Dane
x_A=-3
y_A=5
x_B=5
y_B=-3
x_C=6
y_C=6
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
(1 pkt) Punkt
D=(x_D, y_D) jest środkiem boku
AB tego trójkąta.
Podaj sumę jego współrzędnych, czyli x_D+y_D .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
(1 pkt) Prosta określona równaniem
y=x+b jest
osią symetrii tego trójkąta.
Podaj b .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 6 pkt ⋅ Numer: pp-30194 ⋅ Poprawnie: 6/58 [10%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
» Trapez
ABCD ma wierzchołki:
A=(6,3) ,
B=(6,8) ,
C=(3,9) i
D=(-12,9) .
Wyznacz równanie prostej
y=ax+b zawierającej
najdłuższy bok tego trapezu.
Podaj a .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.3 (2 pkt)
Wyznacz odległość podstaw tego trapezu.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż