« Punkty o współrzędnych A=(11,12) i
C=(-7,-12) są przeciwległymi wierzchołkami
kwadratu, na którym opisano okrąg. Zapisz długość promienia tego okręgu w najprostszej postaci
\frac{a\sqrt{b}}{c}, gdzie a,b,c\in\mathbb{N}.
Podaj liczby a, b i c.
Odpowiedź:
r=
\cdot√
(wpisz trzy liczby całkowite)
Zadanie 2.1 pkt ⋅ Numer: pp-11243 ⋅ Poprawnie: 166/304 [54%]
Punkty A=(2,0), B=(5,0)
i C=(4,3) są wierzchołkami trójkąta. Zbiór wszystkich
punktów M należacych do trójkąta
ABC spełniających warunek
|MA|\leqslant |MB| jest:
Odpowiedzi:
A. trójkątem ostrokątnym
B. trójkątem prostokątnym
C. czworokątem
D. wycinkiem koła
Zadanie 5.1 pkt ⋅ Numer: pp-11238 ⋅ Poprawnie: 73/161 [45%]
Punkty A=(10,-6) i B=(12,-4)
wyznaczają jedną z podstaw trapezu ABCD. Punkt
O=\left(4,-\frac{15}{2}\right) jest środkiem drugiej podstawy
CD tego trapezu, przy czym
|CD|=2\cdot|AB|.
Wyznacz C=(x_c,y_c) i
D=(x_d,y_d).
Podaj x_c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Podaj y_c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.3 (1 pkt)
Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.4 (1 pkt)
Oblicz P_{ABCD}.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8.2 pkt ⋅ Numer: pp-20619 ⋅ Poprawnie: 14/54 [25%]
Na prostej o równaniu x-3y-24=0 leży wierzchołek
D rombu ABCD, w którym
A=(-4,5) i przekątne przecinają się w punkcie
S=(4,-8). Prosta o równaniu
4x+by+c=0 zawiera przekątną BD
tego rombu. Wyznacz wierzchołki
B=(x_b,y_b) i D=(x_d,y_d) (odwrotnie do ruchu
wskazówek zegara) tego rombu.
Podaj c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Podaj x_b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.4 (1 pkt)
Wyznacz P_{ABCD}.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat