Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-11417 ⋅ Poprawnie: 535/1040 [51%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Punkty o współrzędnych A=(8,3) i C=(3,-9) są przeciwległymi wierzchołkami kwadratu, na którym opisano okrąg. Zapisz długość promienia tego okręgu w najprostszej postaci \frac{a\sqrt{b}}{c}, gdzie a,b,c\in\mathbb{N}.

Podaj liczby a, b i c.

Odpowiedź:
r= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11229 ⋅ Poprawnie: 306/477 [64%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Przeciwległe wierzchołki prostokąta maja współrzędne A=(6,6) i C=(-4,4). Okrąg opisany na tym prostokącie ma obwód długości:
Odpowiedzi:
A. 4\sqrt{13}\pi B. 4\sqrt{26}\pi
C. \frac{\sqrt{26}}{2}\pi D. 3\sqrt{26}\pi
E. 2\sqrt{26}\pi F. \sqrt{26}\pi
Zadanie 3.  1 pkt ⋅ Numer: pp-11252 ⋅ Poprawnie: 239/368 [64%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Do okręgu o środku w punkcie S=(5,5) i promieniu długości \sqrt{65} należy punkt:
Odpowiedzi:
A. (-5,7) B. (-6,7)
C. (0,5) D. (0,8)
E. (0,6) F. (-3,4)
Zadanie 4.  1 pkt ⋅ Numer: pp-11234 ⋅ Poprawnie: 152/322 [47%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oblicz odległość między prostymi określonymi równaniami y=x-5 i x-y=-6.
Odpowiedź:
d= \cdot
(wpisz trzy liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11238 ⋅ Poprawnie: 73/161 [45%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Punkty A=(8,9) i C są dwoma przeciwległymi wierzchołkami kwadratu, a punkt P=(-5,6) jest środkiem boku BC tego kwadratu.

Oblicz pole powierzchni tego kwadratu.

Odpowiedź:
P_{\square}=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20585 ⋅ Poprawnie: 341/540 [63%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Punkty A=(6,-1) i B=(7,0) należą do prostej określonej równaniem y=ax+b.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20613 ⋅ Poprawnie: 1/20 [5%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Dwa sąsiednie boki równoległoboku ABCD zawarte są w prostych 5x-2y-45=0 i x+2y-21=0 i mają wspólny punkt B. Przekątne tego równoległoboku przecinają się w punkcie O=\left(\frac{31}{3},\frac{67}{8}\right). Wyznacz równanie boku AD:y=ax+b (odwrotnie do ruchu wskazówek zegara).

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Bok CD zawiera się w prostej o równaniu CD:y=cx+d.

Podaj d.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20622 ⋅ Poprawnie: 9/16 [56%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Prosta y=ax+b jest osią symetrii trójkąta o wierzchołkach A=(4,5), B=(8,1) i C=(10,7).

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pp-30237 ⋅ Poprawnie: 0/11 [0%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Punkt A należy do prostej o równaniu x=7 oraz B=(7,-1) i C=(11,1). Trójkąt ABC jest prostokątny, a prosty jest kąt przy wierzchołku C. Wyznacz punkt A=(x_a,y_a).

Podaj y_a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
 Oblicz obwód tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm