Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pp-4

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11251  
Podpunkt 1.1 (1 pkt)
 Prostą k o równaniu y=-7x+1 przekształcono przez symetrię względem początku układu współrzędnych i otrzymano prostą l o równaniu y=ax+b.

Podaj współczynniki a i b.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11230  
Podpunkt 2.1 (1 pkt)
 Zapisz długość okręgu o środku w punkcie S=(1,2), do którego należy punkt o współrzędnych A=(3,-5) w najprostszej postaci \frac{a\sqrt{b}}{c}\cdot\pi, gdzie a,b,c\in\mathbb{N}.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11537  
Podpunkt 3.1 (1 pkt)
 (1 pkt) Obrazami punktów o współrzędnych A=(-4,16) oraz B=(16,-2) w symetrii środkowej względem punktu O=(0,0) są punkty odpowiednio A' i B'. Środek odcinka A'B' ma współrzędne S=(x_S, y_S).

Podaj współrzędne x_S i y_S.

Odpowiedzi:
x_S= (wpisz liczbę zapisaną dziesiętnie)
y_S= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11221  
Podpunkt 4.1 (1 pkt)
Punkty o współrzędnych A=(2,0), B=(5,0) i C=(4,3) są wierzchołkami trójkąta. Zbiór wszystkich punktów M należacych do trójkąta ABC spełniających warunek |MA|\leqslant |MB| jest:
Odpowiedzi:
A. czworokątem B. trójkątem prostokątnym
C. trójkątem ostrokątnym D. wycinkiem koła
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11540  
Podpunkt 5.1 (1 pkt)
 Punkty o współrzędnych K=(-1,5) oraz L=(6,-1) są środkami dwóch sąsiednich boków kwadratu.

Oblicz pole powierzchni tego kwadratu.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20597  
Podpunkt 6.1 (2 pkt)
 « Prosta x+by+c=0 jest równoległa do prostej x+2y-13=0 i przechodzi przez punkt A=(4,9).

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20611  
Podpunkt 7.1 (1 pkt)
 « Prosta y-7=0 zawiera jeden z wierzchołków rombu o wierzchołkach A=(5,-3) i C=(12,0). Wyznacz wierzchołki B=(x_b,y_b) i D=(x_d,y_d) tego rombu (odwrotnie do ruchu wskazówek zegara)

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj x_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  (3 pkt) [ Dodaj do testu ]  Numer zadania: pp-20813  
Podpunkt 8.1 (1 pkt)
 (1 pkt) Punkty A=(x_A, y_A), B=(x_B, y_B) i C=(x_C, y_C) są wierzchołkami trójkąta równoramiennego.

Jaką długość ma najdłuższy bok tego trójkąta?

Dane
x_A=-7
y_A=1
x_B=1
y_B=-7
x_C=2
y_C=2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 (1 pkt) Punkt D=(x_D, y_D) jest środkiem boku AB tego trójkąta.

Podaj sumę jego współrzędnych, czyli x_D+y_D.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
 (1 pkt) Prosta określona równaniem y=x+b jest osią symetrii tego trójkąta.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30231  
Podpunkt 9.1 (1 pkt)
 « Prosta k przechodzi przez punkty A=(7,2) i B=(13,0). Punkt D=(5,5) jest środkiem odcinka AC, a prosta l:ax+y+c=0 wysokością trójkąta ABC opuszczoną z punktu C, która przecina prostą k w punkcie E=(x_e,y_e).

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
 Podaj x_e.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.4 (1 pkt)
 Podaj y_e.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm