Podgląd testu : lo2@sp-geom-analit-pp-4
Zadanie 1. 1 pkt ⋅ Numer: pp-11225 ⋅ Poprawnie: 257/416 [61%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« W kwadracie o wierzchołkach
ABCD punkty
K=(3,3) i
L=(-4,-1) są
środkami boków odpowiednio
AB i
BC . Zapisz długość przekątnej tego kwadratu w najprostszej postaci
a\sqrt{b} , gdzie
a,b\in\mathbb{N} .
Podaj liczby a i b .
Odpowiedź:
d=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11239 ⋅ Poprawnie: 147/266 [55%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Punkty
A=(3,3) i
C=\left(-4,-\frac{1}{2}\right)
są dwoma przeciwległymi wierzchołkami prostokąta.
Oblicz długość promienia okręgu opisanego
na tym prostokącie.
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-11232 ⋅ Poprawnie: 119/254 [46%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
«« Punkty
A=(2,-4) i
B=(18,8)
są środkami okręgów stycznych wewnętrznie. Promienie tych okręgów
r_1,r_2 spełniają warunek
r_1=4r_2 .
Oblicz sumę długości promieni tych okręgów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-11234 ⋅ Poprawnie: 152/322 [47%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Oblicz odległość między prostymi określonymi równaniami
y=x-6 i
x-y=1 .
Odpowiedź:
Zadanie 5. 1 pkt ⋅ Numer: pp-11221 ⋅ Poprawnie: 71/162 [43%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Punkty A=(2,0) , B=(5,0)
i C=(4,3) są wierzchołkami trójkąta. Zbiór wszystkich
punktów M należacych do trójkąta
ABC spełniających warunek
|MA|\leqslant |MB| jest:
Odpowiedzi:
A. trójkątem prostokątnym
B. trójkątem ostrokątnym
C. czworokątem
D. wycinkiem koła
Zadanie 6. 2 pkt ⋅ Numer: pp-20590 ⋅ Poprawnie: 54/189 [28%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Prosta o równaniu
y=ax+b przechodzi przez punkt
P=(2+\sqrt{6},-4+2\sqrt{2}) i jest nachylona do osi
Ox pod kątem o mierze
150^{\circ} .
Podaj a .
Odpowiedź:
Podpunkt 6.2 (1 pkt)
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7. 2 pkt ⋅ Numer: pp-20605 ⋅ Poprawnie: 19/31 [61%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
» Znajdź punkt
A=(x_a,y_a) leżący na prostej
y=2x+c taki, żeby jego odległość od punktu
K=(x_k,y_k) była najmniejsza możliwa.
Podaj x_a .
Dane
x_k=7
y_k=-7
c=-11
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 2 pkt ⋅ Numer: pp-20632 ⋅ Poprawnie: 17/27 [62%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Dany jest trójkąt równoramienny o wierzchołkach
A=(0,0) ,
B=(7,4) i
C=(1,8) .
Oblicz długość ramienia tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 4 pkt ⋅ Numer: pp-30189 ⋅ Poprawnie: 24/90 [26%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Okrąg o środku
S=(x_S,y_S) przechodzi przez
punkty
A=(-3,-2) ,
B=(-1,4) i
C=(-11,10) .
Podaj x_S .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż