Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pp-4

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11417  
Podpunkt 1.1 (1 pkt)
 « Punkty o współrzędnych A=(-10,-11) i C=(5,9) są przeciwległymi wierzchołkami kwadratu, na którym opisano okrąg. Zapisz długość promienia tego okręgu w najprostszej postaci \frac{a\sqrt{b}}{c}, gdzie a,b,c\in\mathbb{N}.

Podaj liczby a, b i c.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
c= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11230  
Podpunkt 2.1 (1 pkt)
 Zapisz długość okręgu o środku w punkcie S=(2,3), do którego należy punkt o współrzędnych A=(-4,-1) w najprostszej postaci \frac{a\sqrt{b}}{c}\cdot\pi, gdzie a,b,c\in\mathbb{N}.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11537  
Podpunkt 3.1 (1 pkt)
 (1 pkt) Obrazami punktów o współrzędnych A=(16,-12) oraz B=(-22,-20) w symetrii środkowej względem punktu O=(0,0) są punkty odpowiednio A' i B'. Środek odcinka A'B' ma współrzędne S=(x_S, y_S).

Podaj współrzędne x_S i y_S.

Odpowiedzi:
x_S= (wpisz liczbę zapisaną dziesiętnie)
y_S= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11222  
Podpunkt 4.1 (1 pkt)
 Symetralną odcinka o końcach A=(7,3) i B=\left(\frac{3}{2},3\right) jest prosta określona równaniem x+by=c.

Podaj liczby b i c.

Odpowiedzi:
b= (wpisz liczbę zapisaną dziesiętnie)
c= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11223  
Podpunkt 5.1 (1 pkt)
 Środkiem odcinka o końcach A=(0,2a) i B=(6b,-1) jest punkt C=(7,3).

Wyznacz wartości parametrów a i b.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20588  
Podpunkt 6.1 (2 pkt)
 « Prosta o równaniu ax+y+c=0 przechodzi przez punkty A=(x_a,y_a) i B=(x_b,y_b).

Podaj c.

Dane
x_a=1
y_a=-7
x_b=3
y_b=-17
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20613  
Podpunkt 7.1 (1 pkt)
 » Dwa sąsiednie boki równoległoboku ABCD zawarte są w prostych 5x-2y-52=0 i x+2y-8=0 i mają wspólny punkt B. Przekątne tego równoległoboku przecinają się w punkcie O=\left(\frac{28}{3},\frac{19}{8}\right). Wyznacz równanie boku AD:y=ax+b (odwrotnie do ruchu wskazówek zegara).

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Bok CD zawiera się w prostej o równaniu CD:y=cx+d.

Podaj d.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20632  
Podpunkt 8.1 (2 pkt)
 Dany jest trójkąt równoramienny o wierzchołkach A=(2,-1), B=(9,3) i C=(3,7).

Oblicz długość ramienia tego trójkąta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30206  
Podpunkt 9.1 (1 pkt)
 » W prostej o równaniu 2x-y+3=0 zawiera się przekątna AC rombu ABCD (odwrotnie do ruchu wskazówek zegara), przy czym A=(3,-1) i D=(-2,9).

Przekątna BD tego rombu opisana jest równaniem BD:x+by+c=0.

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Wierzchołek C tego rombu ma współrzędne C=(x_c,y_c).

Podaj y_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
 Wyznacz długość obwodu tego rombu.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.4 (1 pkt)
 Wyznacz pole powierzchni tego rombu.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm