Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-11225 ⋅ Poprawnie: 257/416 [61%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « W kwadracie o wierzchołkach ABCD punkty K=(-4,-3) i L=(-5,-2) są środkami boków odpowiednio AB i BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{N}.

Podaj liczby a i b.

Odpowiedź:
d= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11230 ⋅ Poprawnie: 183/268 [68%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Zapisz długość okręgu o środku w punkcie S=(-3,-5), do którego należy punkt o współrzędnych A=(-2,2) w postaci p\cdot\pi.

Podaj liczbę p.

Odpowiedź:
p= \cdot
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11242 ⋅ Poprawnie: 467/632 [73%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Punkt C=(-2m,y_C) jest środkiem odcinka o końcach A=(-3,-5) i B=(-2,2).

Zatem liczba m jest równa:

Odpowiedzi:
A. -\frac{5}{2} B. \frac{5}{2}
C. \frac{5}{4} D. -\frac{5}{4}
Zadanie 4.  1 pkt ⋅ Numer: pp-11237 ⋅ Poprawnie: 119/180 [66%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Punkt S=(2,-6) jest środkiem okręgu, a odległość punktu A=(62,5) od punktu S jest trzykrotnie większa od długości promienia tego okręgu.

Oblicz długość promienia tego okręgu.

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11232 ⋅ Poprawnie: 119/254 [46%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 «« Punkty A=(1,-9) i B=(21,12) są środkami okręgów stycznych wewnętrznie. Promienie tych okręgów r_1,r_2 spełniają warunek r_1=3r_2.

Oblicz sumę długości promieni tych okręgów.

Odpowiedź:
r_1+r_2=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20596 ⋅ Poprawnie: 34/206 [16%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Prosta x+b_1y+c_1=0 jest równoległa do prostej a_2x+b_2y+c_2=0 i przechodzi przez punkt A=(x_A,y_A).

Podaj c_1.

Dane
x_A=-3
y_A=-5
a_2=3
b_2=-4
c_2=-1
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20605 ⋅ Poprawnie: 19/31 [61%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Znajdź punkt A=(x_a,y_a) leżący na prostej y=2x+c taki, żeby jego odległość od punktu K=(x_k,y_k) była najmniejsza możliwa.

Podaj x_a.

Dane
x_k=7
y_k=-8
c=-12
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj y_a.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  3 pkt ⋅ Numer: pp-20813 ⋅ Poprawnie: 77/334 [23%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 (1 pkt) Punkty A=(x_A, y_A), B=(x_B, y_B) i C=(x_C, y_C) są wierzchołkami trójkąta równoramiennego.

Jaką długość ma najdłuższy bok tego trójkąta?

Dane
x_A=-8
y_A=1
x_B=0
y_B=-7
x_C=1
y_C=2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 (1 pkt) Punkt D=(x_D, y_D) jest środkiem boku AB tego trójkąta.

Podaj sumę jego współrzędnych, czyli x_D+y_D.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
 (1 pkt) Prosta określona równaniem y=x+b jest osią symetrii tego trójkąta.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  8 pkt ⋅ Numer: pp-30204 ⋅ Poprawnie: 0/31 [0%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Punkty C=(-5,7) i D=(-10,-3) są dwoma kolejnymi wierzchołkami prostokąta ABCD, do boku AB którego należy punkt P=\left(-\frac{5}{2},0\right). Wyznacz wierzchołek A=(x_a,y_a) tego prostokąta (odwrotnie do ruchu wskazówek zegara).

Podaj x_a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
 Podaj y_a.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (2 pkt)
 Przez punkt D i środek boku AB poprowadzono prostą o równaniu y=ax+b.

Wyznacz a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.4 (2 pkt)
 Wyznacz b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm