Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-11250 ⋅ Poprawnie: 171/321 [53%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Punkty A=(2,-1), B=(3,2), C=\left(-\frac{17}{3},-\frac{4}{3}\right) i D=(x_D,y_D) są czterema kolejnymi wierzchołkami równoległoboku (odwrotnie do ruchu wskazówek zegara).

Podaj współrzędne x_D i y_D.

Odpowiedzi:
x_D= (dwie liczby całkowite)

y_D= (dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11229 ⋅ Poprawnie: 306/477 [64%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Przeciwległe wierzchołki prostokąta maja współrzędne A=(-3,-6) i C=(-4,4). Okrąg opisany na tym prostokącie ma obwód długości:
Odpowiedzi:
A. 2\sqrt{101}\pi B. \frac{\sqrt{101}}{4}\pi
C. \sqrt{101}\pi D. \frac{\sqrt{101}}{2}\pi
E. \frac{3\sqrt{101}}{2}\pi F. \sqrt{202}\pi
Zadanie 3.  1 pkt ⋅ Numer: pp-11242 ⋅ Poprawnie: 467/632 [73%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Punkt C=(-2m,y_C) jest środkiem odcinka o końcach A=(-6,-4) i B=(4,-4).

Zatem liczba m jest równa:

Odpowiedzi:
A. -\frac{1}{2} B. 1
C. -1 D. \frac{1}{2}
Zadanie 4.  1 pkt ⋅ Numer: pp-11236 ⋅ Poprawnie: 89/145 [61%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Proste o równaniach \frac{\sqrt{3}}{3}x-y+2=0 i -6y+5=0:
Odpowiedzi:
A. są prostopadłe B. przecinają się pod kątem 30^{\circ}
C. przecinają się pod kątem 45^{\circ} D. przecinają się pod kątem 60^{\circ}
Zadanie 5.  1 pkt ⋅ Numer: pp-11237 ⋅ Poprawnie: 119/180 [66%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt S=(-6,2) jest środkiem okręgu, a odległość punktu A=(-2,5) od punktu S jest trzykrotnie większa od długości promienia tego okręgu.

Oblicz długość promienia tego okręgu.

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20587 ⋅ Poprawnie: 14/85 [16%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Dla jakich wartości parametru m punkt przecięcia prostych y=-3m+2x-11 oraz m+x+2y-8=0 należy do prostej o równaniu 3x-2y-11=0?

Podaj najmniejsze możliwe m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20603 ⋅ Poprawnie: 6/13 [46%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Dane są punkty A=(x_a,y_a) i B=(x_b,y_b) oraz punkt K\in AB taki, że |AK|=\frac{1}{4}|AB|. Wyznacz współrzędne punktu K=(x_k,y_k).

Podaj x_k.

Dane
x_a=0
y_a=-2
x_b=8
y_b=-3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj y_k.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20626 ⋅ Poprawnie: 6/14 [42%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Prosta prostopadła do wektora [p,q] przechodzi przez punkt A=(x_A,y_A).

Wyznacz pole trójkąta ograniczonego przez tę prostą i osie układu współrzednych.

Dane
x_A=11
y_A=4
u_1=-4
u_2=-2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pp-30307 ⋅ Poprawnie: 2/12 [16%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 W układzie współrzędnych punkty A=(x_a,y_a) i B=(x_b,y_b) są wierzchołkami trójkąta ABC. Wierzchołek C tego trójkąta leży na prostej o równaniu y=ax+b. Oblicz współrzędne punktu C=(x_c,y_c), dla którego kąt ABC jest prosty.

Podaj najmniejsze możliwe x_c.

Dane
x_a=1
y_a=-3
x_b=7
y_b=-1
a=2
b=3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
 Podaj najmniejsze możliwe y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm