Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-11225 ⋅ Poprawnie: 257/416 [61%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « W kwadracie o wierzchołkach ABCD punkty K=(-6,-3) i L=(-1,-5) są środkami boków odpowiednio AB i BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{N}.

Podaj liczby a i b.

Odpowiedź:
d= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11229 ⋅ Poprawnie: 306/476 [64%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Przeciwległe wierzchołki prostokąta maja współrzędne A=(-6,-3) i C=(-1,-5). Okrąg opisany na tym prostokącie ma obwód długości:
Odpowiedzi:
A. \sqrt{29}\pi B. \sqrt{58}\pi
C. \frac{\sqrt{29}}{2}\pi D. \frac{3\sqrt{29}}{2}\pi
E. 2\sqrt{29}\pi F. \frac{\sqrt{29}}{4}\pi
Zadanie 3.  1 pkt ⋅ Numer: pp-11511 ⋅ Poprawnie: 542/919 [58%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkty o współrzędnych A=\left(4,-1\right) i B=\left(6,-1\right) są wierzchołkami trójkąta równobocznego ABC.

Oblicz długość promienia okręgu opisanego na tym trójkącie.

Odpowiedź:
r= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11222 ⋅ Poprawnie: 233/589 [39%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Symetralną odcinka o końcach A=(-8,3) i B=\left(-\frac{5}{2},3\right) jest prosta określona równaniem x+by=c.

Podaj liczby b i c.

Odpowiedzi:
b= (dwie liczby całkowite)

c= (dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11234 ⋅ Poprawnie: 152/322 [47%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz odległość między prostymi określonymi równaniami y=x-9 i x-y=4.
Odpowiedź:
d= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20588 ⋅ Poprawnie: 157/384 [40%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Prosta o równaniu ax+y+c=0 przechodzi przez punkty A=\left(-5,24) i B=\left(-3,14\right).

Podaj c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 7.  3 pkt ⋅ Numer: pp-20616 ⋅ Poprawnie: 12/57 [21%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 W trapezie ABCD dane są wierzchołki: A=(-13,-3), B=(-9,-1) i C=(-12,3). Kąty przy wierzchołkach A i D=(x_d,y_d) są proste. Prosta zawierająca podstawę CD tego trapezu ma równanie BD:y=ax+b.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj x_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.3 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20629 ⋅ Poprawnie: 6/15 [40%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Punkt A=(0,2) należy do prostych k i l. Prosta l wraz z osiami układu ogranicza trójkąt o polu 7, zaś prosta k trójkąt o polu \frac{23}{2}. Proste te przecinają dodatnią półoś Ox w punktach P i Q.

Oblicz pole trójkąta o wierzchołkach w punktach A, P i Q.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  3 pkt ⋅ Numer: pp-30225 ⋅ Poprawnie: 1/5 [20%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Wysokość opuszczona z wierzchołka C trójkąta równoramiennego ABC o podstawie AB zawiera się w prostej x+2y-14=0. Wiadomo, że A=(-9,-16) i C=(-6,10). Podstawa AB tego trójkata zawiera się w prostej o równaniu ax+y+c=0.

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
 Oblicz P_{\triangle ABC}.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm