Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-11417 ⋅ Poprawnie: 535/1040 [51%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Punkty o współrzędnych A=(11,12) i C=(-7,-12) są przeciwległymi wierzchołkami kwadratu, na którym opisano okrąg. Zapisz długość promienia tego okręgu w najprostszej postaci \frac{a\sqrt{b}}{c}, gdzie a,b,c\in\mathbb{N}.

Podaj liczby a, b i c.

Odpowiedź:
r= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11243 ⋅ Poprawnie: 166/304 [54%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkty A=(4,5) i B=(-6,6) są wierzchołkami trójąta równobocznego.

Oblicz wysokość tego trójkąta.

Odpowiedź:
h= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11233 ⋅ Poprawnie: 197/362 [54%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Odcinek AB jest średnicą okręgu oraz A=(a+2,8) i B=(-7,b+1). Punkt C=(5,-8) jest środkiem tego okręgu.

Wyznacz wartości parametrów a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11221 ⋅ Poprawnie: 71/162 [43%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
Punkty A=(2,0), B=(5,0) i C=(4,3) są wierzchołkami trójkąta. Zbiór wszystkich punktów M należacych do trójkąta ABC spełniających warunek |MA|\leqslant |MB| jest:
Odpowiedzi:
A. trójkątem ostrokątnym B. trójkątem prostokątnym
C. czworokątem D. wycinkiem koła
Zadanie 5.  1 pkt ⋅ Numer: pp-11238 ⋅ Poprawnie: 73/161 [45%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Punkty A=(5,-8) i C są dwoma przeciwległymi wierzchołkami kwadratu, a punkt P=(7,9) jest środkiem boku BC tego kwadratu.

Oblicz pole powierzchni tego kwadratu.

Odpowiedź:
P_{\square}=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20601 ⋅ Poprawnie: 36/111 [32%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Prosta k:8x-15y-76=0 względem punktu A=(x_a,-2) jest tak położona, że d(A, k)=13.

Podaj najmniejsze możliwe x_a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj największe możliwe x_a.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  4 pkt ⋅ Numer: pp-20617 ⋅ Poprawnie: 0/12 [0%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Punkty A=(10,-6) i B=(12,-4) wyznaczają jedną z podstaw trapezu ABCD. Punkt O=\left(4,-\frac{15}{2}\right) jest środkiem drugiej podstawy CD tego trapezu, przy czym |CD|=2\cdot|AB|.
Wyznacz C=(x_c,y_c) i D=(x_d,y_d).

Podaj x_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.3 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.4 (1 pkt)
 Oblicz P_{ABCD}.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20619 ⋅ Poprawnie: 14/54 [25%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 » Prosta 3x-5y+15=0 przecina osie układu w punktach M i N. Punkt P należy do dodatniej półosi Ox i jest tak położony, że P_{\triangle MNP}=18.

Wyznacz odciętą punktu P.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pp-30207 ⋅ Poprawnie: 0/21 [0%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Na prostej o równaniu x-3y-24=0 leży wierzchołek D rombu ABCD, w którym A=(-4,5) i przekątne przecinają się w punkcie S=(4,-8). Prosta o równaniu 4x+by+c=0 zawiera przekątną BD tego rombu. Wyznacz wierzchołki B=(x_b,y_b) i D=(x_d,y_d) (odwrotnie do ruchu wskazówek zegara) tego rombu.

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj x_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.4 (1 pkt)
 Wyznacz P_{ABCD}.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm