Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-11248 ⋅ Poprawnie: 222/345 [64%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dany jest kwadrat ABCD. Punkty o współrzędnych E=(6,-6) i F=(-2,-3) są środkami dwóch jego boków odpowiednio AB i BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{N}.

Podaj liczby a i b.

Odpowiedź:
d= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11241 ⋅ Poprawnie: 273/431 [63%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt S=\left(-\frac{15}{4},-3\right) jest środkiem odcinka AB, gdzie A=(x_A,y_A) i B=(-4,-4).

Podaj współrzedne x_A i y_A.

Odpowiedzi:
x_A= (dwie liczby całkowite)

y_A= (dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11252 ⋅ Poprawnie: 239/368 [64%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Do okręgu o środku w punkcie S=(5,-5) i promieniu długości \sqrt{53} należy punkt:
Odpowiedzi:
A. (-1,1) B. (-5,-2)
C. (1,1) D. (-2,-3)
E. (-5,0) F. (-6,-7)
Zadanie 4.  1 pkt ⋅ Numer: pp-11222 ⋅ Poprawnie: 233/589 [39%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Symetralną odcinka o końcach A=(-6,6) i B=\left(-\frac{7}{2},6\right) jest prosta określona równaniem x+by=c.

Podaj liczby b i c.

Odpowiedzi:
b= (dwie liczby całkowite)

c= (dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11232 ⋅ Poprawnie: 119/254 [46%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 «« Punkty A=(-3,-10) i B=(9,25) są środkami okręgów stycznych wewnętrznie. Promienie tych okręgów r_1,r_2 spełniają warunek r_1=2r_2.

Oblicz sumę długości promieni tych okręgów.

Odpowiedź:
r_1+r_2=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20598 ⋅ Poprawnie: 28/102 [27%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Prosta o równaniu y=ax+b przecina prostą a_1x+b_1y+c_1=0 w punkcie o rzędnej równej 0 i jest do niej prostopadła.

Podaj a.

Dane
a_1=-5
b_1=-4
c_1=\frac{-45}{2}=-22.500000000000000
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20609 ⋅ Poprawnie: 10/54 [18%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Na prostej o równaniu y=2x+17 leży wierzchołek D rombu ABCD, w którym A=(-5,-7) i C=(-3,-2). Wyznacz wierzchołki B=(x_b,y_b) i D=(x_d,y_d) tego rombu (odwrotnie do ruchu wskazówek zegara).

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  3 pkt ⋅ Numer: pp-20623 ⋅ Poprawnie: 5/45 [11%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Dane są punkty A=(-5,-5) i B=\left(\frac{5}{2},\frac{15}{2}\right), które są wierzchołkami trójkąta prostokątnego o przeciwprostokątnej AB. Wyznacz środek S=(x_s,y_s) okręgu opisanego na tym trójkącie.

Podaj x_s.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj y_s.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
 Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pp-30211 ⋅ Poprawnie: 0/4 [0%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Prosta x+2y+14=0 zawiera podstawę trapezu równoramiennego AB, a prosta 2x-y+8=0 jest osią symetrii tego trapezu. Wierzchołki trapezu mają współrzędne: A=(-2,-6), B=(x_b,y_b), D=(0,-5), zaś prosta zawierająca bok CD równanie CD:y=ax+b.

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
 Podaj a.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.4 (1 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm