Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11225 ⋅ Poprawnie: 257/416 [61%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « W kwadracie o wierzchołkach ABCD punkty K=(2,-6) i L=(-3,-5) są środkami boków odpowiednio AB i BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{N}.

Podaj liczby a i b.

Odpowiedź:
d= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11233 ⋅ Poprawnie: 197/362 [54%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Odcinek AB jest średnicą okręgu oraz A=(a+2,8) i B=(-7,b+1). Punkt C=(-6,7) jest środkiem tego okręgu.

Wyznacz wartości parametrów a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11247 ⋅ Poprawnie: 223/443 [50%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Prosta o równaniu 12x-6y+36=0 wraz z osiami układu współrzędnych ogranicza trójkąt.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10233 ⋅ Poprawnie: 22/21 [104%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
Dany jest wektor \vec{u}=[-3,5] oraz punkt B=(2,-3). Punkt A spełnia równanie \overrightarrow{AB}=-3\vec{u}. Zatem:
Odpowiedzi:
A. A=(-7,12) B. A=(11,-18)
C. A=(18,14) D. A=(15,-25)
Zadanie 5.  1 pkt ⋅ Numer: pr-10304 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz długość promienia okręgu o równaniu x^2+y^2-6y=0.
Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pr-20357 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Prosta o równaniu 2x-(2m+17)y+2m+25=0 przecina prostą (2m+17)x+y-m-\frac{19}{2}=0 w punkcie P=(0, y_0).

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20403 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Wyznacz zbiór tych wszystkich wartości parametru m\in\mathbb{R}, dla których okręgi (x-m-2a)^2+(y-2m-2a-b)^2=1 i (x-2-a)^2+(y+1-b)^2=16 są rozłączne zewnętrznie.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z tych wszystkich końców tych przedziałów, które są liczbami.

Dane
a=-4
b=5
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj największy z tych wszystkich końców tych przedziałów, które są liczbami.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pp-30219 ⋅ Poprawnie: 0/29 [0%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » W trójkącie ABC punkty A=(-8,4) i B=(2,4) są końcami przeciwprostokątnej, natomiast punkt C leży na prostej o równaniu x-y+14=0. Wyznacz współrzędne punktu C=(x_c,y_c).

Podaj najmniejsze możliwe y_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj największe możliwe y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.3 (2 pkt)
 Symetralna przeciwprostokątnej wyznaczonego trójkąta o mniejszym polu powierzchni przecięła bok BC w punkcie D=(x_d,y_d).

Podaj y_d.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  5 pkt ⋅ Numer: pr-30797 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 (2 pkt) Punkty A=(x_A, y_A), B=(x_B, y_B) i C=(x_C, y_C) są trzema kolejnymi wierzchołkami prostokąta ABCD (kolejność wierzchołków jest zgodna z kierunkiem odwrotnym do ruchu wskazówek zegara).

Podaj odciętą wierzchołka D tego prostokąta.

Dane
x_A=-8
y_A=0
x_B=-5
y_B=3
x_C=-10
y_C=8
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 (1 pkt) Podaj rzedną wierzchołka D tego prostokąta.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
 (1 pkt) Oblicz pole powierzchni tego prostokąta.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.4 (1 pkt)
 (1 pkt) Oblicz promień okręgu opisanego na tym prostokącie.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.5 (1 pkt)
 (1 pkt) Oblicz sinus kąta pod jakim przecinają się przekątne tego prostokąta.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm