Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11230 ⋅ Poprawnie: 183/268 [68%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Zapisz długość okręgu o środku w punkcie S=(-5,-1), do którego należy punkt o współrzędnych A=(-1,-6) w postaci p\cdot\pi.

Podaj liczbę p.

Odpowiedź:
p= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11252 ⋅ Poprawnie: 239/368 [64%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Do okręgu o środku w punkcie S=(2,2) i promieniu długości \sqrt{74} należy punkt:
Odpowiedzi:
A. (-3,-7) B. (1,-7)
C. (-3,-5) D. (-6,-4)
E. (-1,-4) F. (-1,-6)
Zadanie 3.  1 pkt ⋅ Numer: pp-11245 ⋅ Poprawnie: 86/163 [52%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkt A=(6,6) jest środkiem okręgu o promieniu 2019. Okrąg ten przekształcono przez symetrię względem osi Oy i otrzymano okrąg o środku w punkcie A_1.

Oblicz długość odcinka AA_1.

Odpowiedź:
|AA_1|= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10233 ⋅ Poprawnie: 22/21 [104%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
Dany jest wektor \vec{u}=[-3,5] oraz punkt B=(2,-3). Punkt A spełnia równanie \overrightarrow{AB}=-3\vec{u}. Zatem:
Odpowiedzi:
A. A=(-7,12) B. A=(11,-18)
C. A=(15,-25) D. A=(18,14)
Zadanie 5.  1 pkt ⋅ Numer: pr-10219 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt S=(1,-3) jest środkiem okręgu, a do tego okręgu należą punkty (-2,0) i (-2,-6).

Okrąg ten ma równanie:

Odpowiedzi:
A. (x-1)^2+(y+5)^2=18 B. (x+5)^2+(y+3)^2=18
C. (x-1)^2+(y+3)^2=18 D. (x+5)^2+(y+5)^2=18
Zadanie 6.  2 pkt ⋅ Numer: pp-20611 ⋅ Poprawnie: 0/13 [0%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Prosta y-1=0 zawiera jeden z wierzchołków rombu o wierzchołkach A=(3,-9) i C=(12,0). Wyznacz wierzchołki B=(x_b,y_b) i D=(x_d,y_d) tego rombu (odwrotnie do ruchu wskazówek zegara)

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj x_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20401 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
» Środek okręgu S=(x_s,y_s) stycznego do obu osi układu należy do ćwiartki drugiej układu współrzędnych. Okrąg ten przechodzi przez punkt P=(-8,1).

Podaj najmniejsze możliwe x_s.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Podaj największe możliwe x_s.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pp-30210 ⋅ Poprawnie: 1/30 [3%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Dane są trzy kolejne wierzchołki trapezu A=(2,-10), B=(6,2) i C=(-1,0), w którym kąt przy wierzchołku A jest prosty. Punkt D ma współrzędne D=(x_d, y_d), a prosta zawierająca bok AD opisana jest równaniem x+by+c=0

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj x_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.4 (1 pkt)
 Oblicz pole powierzchni tego trapezu.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pr-30288 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
« Dwa kolejne wierzchołki równoległoboku KLMN (odwrotnie do ruchu wskazówek zegara) mają współrzędne K=(2,1) i L=(1,-2), a jego pole powierzchni wynosi 26. Przekątne tego równoległoboku przecinają się w punkcie O należącym do prostej x+y-4=0. Wiedząc, że punkt O ma obie współrzędne całkowite, wyznacz współrzędne punktu M=(x_M,y_M).

Podaj x_M.

Odpowiedź:
x_M= (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Podaj y_M.
Odpowiedź:
y_M= (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm