Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11248 ⋅ Poprawnie: 222/345 [64%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dany jest kwadrat ABCD. Punkty o współrzędnych E=(-6,-3) i F=(1,-1) są środkami dwóch jego boków odpowiednio AB i BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{N}.

Podaj liczby a i b.

Odpowiedź:
d= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11241 ⋅ Poprawnie: 273/431 [63%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt S=\left(\frac{13}{4},-3\right) jest środkiem odcinka AB, gdzie A=(x_A,y_A) i B=(3,5).

Podaj współrzedne x_A i y_A.

Odpowiedzi:
x_A= (dwie liczby całkowite)

y_A= (dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11231 ⋅ Poprawnie: 201/333 [60%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Środek odcinka o końcach (4,-6) i (6,-6) należy do prostej o równaniu y+ax=-2+3a.

Wyznacz wartość parametru a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10196 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Punkty o współrzędnych A=(7,-5), B=(12,-5), C=(15,-1) i D=(10,-1) są wierzchołkami rombu.

Okrąg wpisany w ten romb ma równanie:

Odpowiedzi:
A. (x-3)^2+(y+7)^2=2 B. (x-11)^2+(y+3)^2=2
C. (x-11)^2+(y+3)^2=4 D. (x-3)^2+(y+7)^2=4
Zadanie 5.  1 pkt ⋅ Numer: pr-10219 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt S=(3,11) jest środkiem okręgu, a do tego okręgu należą punkty (0,14) i (0,8).

Okrąg ten ma równanie:

Odpowiedzi:
A. (x-3)^2+(y-9)^2=18 B. (x-3)^2+(y-11)^2=18
C. (x+3)^2+(y-9)^2=18 D. (x+3)^2+(y-11)^2=18
Zadanie 6.  2 pkt ⋅ Numer: pp-20586 ⋅ Poprawnie: 24/88 [27%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Wyznacz rzedną punktu wspólnego osi Oy i symetralnej odcinka o końcach A=(4,-4) i B=(3,7).

Podaj tę rzędną.

Odpowiedź:
y=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20390 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Prosta y=mx+n jest styczną do okręgu x^2+y^2+ax+by+c=0 w punkcie A=(x_a,y_a).

Podaj m.

Dane
x_a=3
y_a=1
a=-14
b=4
c=28
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj n.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pp-30209 ⋅ Poprawnie: 1/30 [3%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Prosta y=-\frac{1}{5}x+\frac{21}{10} zawiera bok AB równoległoboku ABCD, a prosta y=-7x+\frac{113}{2} zawiera bok AD tego równoległoboku. Przekątne tego równoległoboku przecinają się w punkcie S=\left(\frac{7}{2},-2\right). Wierzchołek C ma współrzędne C=(x_c,y_c) (odwrotnie do ruchu wskazówek zegara).

Podaj y_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Wierzchołek B ma współrzędne B=(x_b,y_b).

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
 Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.4 (1 pkt)
 Przekątna BD tego równoległoboku opisana jest równaniem BD:9x+by+c=0.

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pr-30286 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
« W trójkącie równoramiennym ABC mamy: |AB|=|AC| oraz A=(-4,7) (odwrotnie do ruch u wskazówek zegara). Pole powierzchni tego trójkąta jest równe 24, a bok BC zawiera się w prostej x-y+5=0. Wyznacz współrzędne pozostałych wierzchołków (x,y) tego trójkąta.

Podaj najmniejsze możliwe x.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Podaj największe możliwe y.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm