Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11417 ⋅ Poprawnie: 535/1040 [51%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Punkty o współrzędnych A=(9,9) i C=(-11,-12) są przeciwległymi wierzchołkami kwadratu, na którym opisano okrąg. Zapisz długość promienia tego okręgu w najprostszej postaci \frac{a\sqrt{b}}{c}, gdzie a,b,c\in\mathbb{N}.

Podaj liczby a, b i c.

Odpowiedź:
r= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11228 ⋅ Poprawnie: 154/267 [57%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Obwód L rombu o sąsiednich wierzchołkach A=(7,-1) i B=(6,-4) spełnia nierówność m\leqslant L\lessdot m+1, gdzie m\in\mathbb{Z}.

Wyznacz liczbę m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11220 ⋅ Poprawnie: 183/331 [55%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkt M=\left(-\frac{3m}{2},7\right) jest środkiem odcinka o końcach A=(5,5) i B=(-1,9).

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10198 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Obrazem punktu A=(4,-3) w jednokładności o środku S=(5,-1) jest punkt B=(4,-3).

Oblicz skalę tej jednokładności.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pr-10219 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt S=(-7,-4) jest środkiem okręgu, a do tego okręgu należą punkty (-10,-1) i (-10,-7).

Okrąg ten ma równanie:

Odpowiedzi:
A. (x+7)^2+(y+4)^2=18 B. (x+13)^2+(y+6)^2=18
C. (x+7)^2+(y+6)^2=18 D. (x+13)^2+(y+4)^2=18
Zadanie 6.  2 pkt ⋅ Numer: pp-20586 ⋅ Poprawnie: 24/88 [27%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Wyznacz rzedną punktu wspólnego osi Oy i symetralnej odcinka o końcach A=(6,6) i B=(-7,-8).

Podaj tę rzędną.

Odpowiedź:
y=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20406 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Punkty A=(x_a,y_a) i B=(x_b,y_b) są końcami odcinka AB, a punkt S=(x_s,y_s) środkiem jednokładności. Wyznacz A'=(x_{a'},y_{a'})=J^k_S(A) i B'=(x_{b'},y_{b'})=J^k_S(B).

Podaj \min(x_{a'},x_{b'}).

Dane
x_s=3
y_s=-2
x_a=-3
y_a=3
x_b=5
y_b=-1
k=\frac{1}{2}=0.500000000000000
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj \max(y_{a'},y_{b'}).
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pp-30216 ⋅ Poprawnie: 0/14 [0%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Punkt C=(x_c,y_c) neleży do symetralnej odcinka AB, gdzie A=(x_a,y_a) i B=(x_b,y_b). Wyznacz współrzedne tego punktu wiedząc, że P_{\triangle ABC}=30.

Podaj najmniejsze możliwe x_c.

Dane
x_a=3
y_a=0
x_b=9
y_b=-2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj największe możliwe y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.3 (2 pkt)
 Wyznacz obwód trójkąta ABC.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pr-30304 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
Dane są proste k:x+y+5=0, l:7x-y-37=0 oraz punkt P=(6,5)\in l. Istnieją dwa okręgi styczne do prostej k i do prostej l w punkcie P.
Wyznacz równanie (x-a)^2+(y-b)^2=r^2 tego z okręgów, którego środek ma mniejszą odciętą.

Podaj a+b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Podaj r.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm