Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11229 ⋅ Poprawnie: 306/476 [64%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Przeciwległe wierzchołki prostokąta maja współrzędne A=(-5,-2) i C=(4,3). Okrąg opisany na tym prostokącie ma obwód długości:
Odpowiedzi:
A. 2\sqrt{106}\pi B. \frac{3\sqrt{106}}{2}\pi
C. \frac{\sqrt{106}}{2}\pi D. \frac{\sqrt{106}}{4}\pi
E. \sqrt{106}\pi F. 2\sqrt{53}\pi
Zadanie 2.  1 pkt ⋅ Numer: pp-11537 ⋅ Poprawnie: 41/82 [50%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 (1 pkt) Obrazami punktów o współrzędnych A=(-26,-8) oraz B=(18,14) w symetrii środkowej względem punktu O=(0,0) są punkty odpowiednio A' i B'. Środek odcinka A'B' ma współrzędne S=(x_S, y_S).

Podaj współrzędne x_S i y_S.

Odpowiedzi:
x_S= (wpisz liczbę całkowitą)
y_S= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11220 ⋅ Poprawnie: 183/331 [55%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkt M=\left(-\frac{3m}{2},7\right) jest środkiem odcinka o końcach A=(2,5) i B=(1,9).

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10199 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
W jednokładności o środku S i skali k=-3 obrazem wektora \overrightarrow{AB} jest wektor \overrightarrow{A'B'}. Wówczas:
Odpowiedzi:
A. wektory \overrightarrow{AB},\overrightarrow{A'B'} są przeciwne B. |AA'|=3|SA|
C. \overrightarrow{AB}=3\overrightarrow{A'B'} D. \overrightarrow{BB'}=4\overrightarrow{BS}
Zadanie 5.  1 pkt ⋅ Numer: pr-10217 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Ustal, ile punktów wspólnych ma okrąg o równaniu (x-5)^2+(y-6)^2=3 z prostą określoną wzorem y=2+2\cos3\alpha.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20629 ⋅ Poprawnie: 6/15 [40%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Punkt A=(0,2) należy do prostych k i l. Prosta l wraz z osiami układu ogranicza trójkąt o polu 8, zaś prosta k trójkąt o polu \frac{27}{2}. Proste te przecinają dodatnią półoś Ox w punktach P i Q.

Oblicz pole trójkąta o wierzchołkach w punktach A, P i Q.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20402 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
» Okrąg o środku S=(x_s,y_s) jest styczny do prostych 2x+y+10=0 i 2x+y-10=0 i przechodzi przez punkt A=(-3,0).

Podaj najmniejsze możliwe x_s.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Podaj największe możliwe y_s.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pp-30186 ⋅ Poprawnie: 50/164 [30%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 » Punkt K=(-1,4) jest środkiem odcinka PQ. Wyznacz równanie prostej k prostopadłej do odcinka PQ i przechodzącej przez punkt Q, wiedząc, że P=(-7,-8). Zapisz równanie prostej k w postaci kierunkowej y=ax+b.

Podaj a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (2 pkt)
 Podaj b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Zadanie 9.  4 pkt ⋅ Numer: pr-30287 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
Dane są punkty A=(-3,1), B=(1,3), C=(-1,5) i D=(-4,7). Prosta k przechodzi przez punkt D oraz k\perp AB. Punkt P=(x_p,y_p) należy do prostej k i zachodzi równość pól P_{\triangle ABC}=P_{\triangle ABP}.

Podaj największe możliwe x_p.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Podaj największe możliwe y_p.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm