Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11248 ⋅ Poprawnie: 222/345 [64%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dany jest kwadrat ABCD. Punkty o współrzędnych E=(-4,4) i F=(3,-5) są środkami dwóch jego boków odpowiednio AB i BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{N}.

Podaj liczby a i b.

Odpowiedź:
d= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11242 ⋅ Poprawnie: 467/632 [73%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Punkt C=(-2m,y_C) jest środkiem odcinka o końcach A=(4,3) i B=(-5,4).

Zatem liczba m jest równa:

Odpowiedzi:
A. -\frac{1}{2} B. \frac{1}{2}
C. \frac{1}{4} D. -\frac{1}{4}
Zadanie 3.  1 pkt ⋅ Numer: pp-11222 ⋅ Poprawnie: 233/589 [39%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Symetralną odcinka o końcach A=(-5,3) i B=\left(\frac{5}{2},3\right) jest prosta określona równaniem x+by=c.

Podaj liczby b i c.

Odpowiedzi:
b= (dwie liczby całkowite)

c= (dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10197 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Obrazem odcinka AB w jednokładności o skali k=-\frac{5}{2} jest odcinek o końcach A'=(5,12) i B'=(-11,0).

Oblicz |AB|.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pr-10219 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt S=(-5,9) jest środkiem okręgu, a do tego okręgu należą punkty (-8,12) i (-8,6).

Okrąg ten ma równanie:

Odpowiedzi:
A. (x+5)^2+(y-9)^2=18 B. (x+5)^2+(y-7)^2=18
C. (x+11)^2+(y-9)^2=18 D. (x+11)^2+(y-7)^2=18
Zadanie 6.  4 pkt ⋅ Numer: pp-20625 ⋅ Poprawnie: 29/80 [36%] Rozwiąż 
Podpunkt 6.1 (4 pkt)
 Oblicz pole powierzchni figury ograniczonej przez wykres funkcji f(x)=ax+b oraz osie układu współrzędnych.
Dane
a=\frac{1}{2}=0.500000000000000
b=3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20365 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Proste y=a_1x+b_1 oraz y=a_2x+b_2 przecinają się pod kątem ostrym \alpha.

Podaj \sin\alpha.

Dane
a_1=\frac{\sqrt{3}}{3}=0.5773502691896258
b_1=\frac{6+3\sqrt{3}}{3}=3.7320508075688773
a_2=-\frac{\sqrt{3}}{3}=-0.5773502691896258
b_2=\frac{15-3\sqrt{3}}{3}=3.2679491924311227
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pp-30218 ⋅ Poprawnie: 1/11 [9%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Punkty B=(0,9) i C=(0,1) są dwoma wierzchołkami trójkąta prostokątnego ABC o kącie prostym przy wierzchołku A. Przyprostokątna AC zawiera się w prostej x-2y+2=0. Oblicz współrzędne punktu A=(x_a,y_a).

Podaj x_a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj y_a.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
 Podaj |AC|.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.4 (1 pkt)
 Prosta y=ax+b zawiera środkową AD tego trójkąta.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pr-30312 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dane sa okręgi o_1:x^2+y^2+a_1x+b_1y+c_1=0 oraz o_2:x^2+y^2+a_2x+b_2y+c_2=0. Wiadomo, że J^{k}_{S}(o_1)=o_2. Wyznacz środek S=(x_s,y_s) i skalę k tej jednokładności.

Podaj ujemną skalę k.

Dane
a_1=0
b_1=6
c_1=-16
a_2=-48
b_2=24
c_2=320
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj x_s wyznaczone dla skali dodatniej.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
 Podaj y_s wyznaczone dla skali dodatniej.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.4 (1 pkt)
 Podaj x_s wyznaczone dla skali ujemnej.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm