Punkty A=(2,0), B=(5,0)
i C=(4,3) są wierzchołkami trójkąta. Zbiór wszystkich
punktów M należacych do trójkąta
ABC spełniających warunek
|MA|\leqslant |MB| jest:
Odpowiedzi:
A. czworokątem
B. trójkątem ostrokątnym
C. wycinkiem koła
D. trójkątem prostokątnym
Zadanie 4.1 pkt ⋅ Numer: pr-10226 ⋅ Poprawnie: 0/0
Odcinki AB i CD o końcach
A=(x_a,y_a), B=(x_b,y_b),
C=(x_c,y_c) i D=(x_d,y_d)
są jednokładne w jednokładności J. Wyznacz środek
i skalę tej jednokładności.
» W prostej o równaniu 3x-4y+7=0 zawiera się
przeciwprostokątna AB trójkąta
ABC, przy czym A=(-5,-2),
C=(-2,2) oraz B=(x_b,y_b).
Prosta o równaniu 3x+by+c=0 zawiera bok BC
tego trójkąta.
Podaj b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Podaj c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
Podaj x_b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.4 (1 pkt)
Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9.4 pkt ⋅ Numer: pr-30288 ⋅ Poprawnie: 0/0
« Dwa kolejne wierzchołki równoległoboku KLMN
(odwrotnie do ruchu wskazówek zegara) mają współrzędne
K=(2,1) i L=(1,-2), a
jego pole powierzchni wynosi 26. Przekątne tego
równoległoboku przecinają się w punkcie O należącym do prostej
x+y-4=0. Wiedząc, że punkt
O ma obie współrzędne całkowite, wyznacz współrzędne
punktu M=(x_M,y_M).
Podaj x_M.
Odpowiedź:
x_M=(liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Podaj y_M.
Odpowiedź:
y_M=(liczba zapisana dziesiętnie)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat