Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11250 ⋅ Poprawnie: 171/321 [53%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Punkty A=(2,-1), B=(3,2), C=\left(-\frac{17}{3},-\frac{4}{3}\right) i D=(x_D,y_D) są czterema kolejnymi wierzchołkami równoległoboku (odwrotnie do ruchu wskazówek zegara).

Podaj współrzędne x_D i y_D.

Odpowiedzi:
x_D= (dwie liczby całkowite)

y_D= (dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11241 ⋅ Poprawnie: 273/431 [63%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt S=\left(-\frac{7}{4},3\right) jest środkiem odcinka AB, gdzie A=(x_A,y_A) i B=(-6,-1).

Podaj współrzedne x_A i y_A.

Odpowiedzi:
x_A= (dwie liczby całkowite)

y_A= (dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11221 ⋅ Poprawnie: 71/162 [43%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Punkty A=(2,0), B=(5,0) i C=(4,3) są wierzchołkami trójkąta. Zbiór wszystkich punktów M należacych do trójkąta ABC spełniających warunek |MA|\leqslant |MB| jest:
Odpowiedzi:
A. wycinkiem koła B. trójkątem ostrokątnym
C. trójkątem prostokątnym D. czworokątem
Zadanie 4.  1 pkt ⋅ Numer: pr-10197 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Obrazem odcinka AB w jednokładności o skali k=-\frac{6}{5} jest odcinek o końcach A'=(3,2) i B'=(-13,-10).

Oblicz |AB|.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pr-10207 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dana jest prosta o równaniu x-y=0 oraz okrąg określony równaniem (x)^2+y^2-4y+2=0. Wówczas:
Odpowiedzi:
A. prosta jest styczną do okręgu B. prosta przecina okrąg w dwóch punktach
C. prosta i okrąg są rozłączne D. środek okręgu należy do prostej
Zadanie 6.  2 pkt ⋅ Numer: pp-20587 ⋅ Poprawnie: 14/85 [16%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Dla jakich wartości parametru m punkt przecięcia prostych y=-3m+2x-8 oraz m+x+2y-9=0 należy do prostej o równaniu 3x-2y-11=0?

Podaj najmniejsze możliwe m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20407 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Dane są punkty A=(x_a,y_a) i B=(x_b,y_b), przy czym B=J^k_S(A). Wyznacz S=(x_s,y_s).

Podaj x_s.

Dane
x_a=1
y_a=5
x_b=-5
y_b=8
k=\frac{1}{3}=0.333333333333333
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj y_s.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pp-30214 ⋅ Poprawnie: 0/8 [0%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Punkty A=(-4,3), B=(2,5), C=(-8,11) i D=(-11,10) są kolejnymi wierzchołkami trapezu o podstawach AB i CD. Ramiona tego trapezu przedłużono do punktu ich przecięcia w punkcie O=(x_o,y_o), a następnie narysowano okrąg o środku w punkcie O, do którego podstawa AB tego trapezu jest styczną w punkcie E=(x_e,y_e).

Podaj x_o.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj y_o.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
 Podaj x_e.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.4 (1 pkt)
 Podaj x_e.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pr-30315 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
Dany jest trójkąt o wierzchołkach A=(-3,6), B=(-2,0) i C=(-5,7). Trójkąt A_1B_1C_1 jest obrazem trójkąta ABC w jednokładności o środku S=(-2,4) i skali k=-3. Wyznacz współrzędne wszystkich wierzchołków trójkąta A_1B_1C_1.

Podaj sumę odciętych wszystkich wierzchołków trójkąta A_1B_1C_1.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Podaj sumę rzędnych wszystkich wierzchołków trójkąta A_1B_1C_1.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm