Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11229 ⋅ Poprawnie: 306/476 [64%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Przeciwległe wierzchołki prostokąta maja współrzędne A=(2,3) i C=(-6,1). Okrąg opisany na tym prostokącie ma obwód długości:
Odpowiedzi:
A. 3\sqrt{17}\pi B. 2\sqrt{34}\pi
C. \sqrt{17}\pi D. 4\sqrt{17}\pi
E. \frac{\sqrt{17}}{2}\pi F. 2\sqrt{17}\pi
Zadanie 2.  1 pkt ⋅ Numer: pp-11242 ⋅ Poprawnie: 467/632 [73%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Punkt C=(-2m,y_C) jest środkiem odcinka o końcach A=(3,-6) i B=(1,0).

Zatem liczba m jest równa:

Odpowiedzi:
A. -1 B. 1
C. -2 D. 2
Zadanie 3.  1 pkt ⋅ Numer: pp-11222 ⋅ Poprawnie: 233/589 [39%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Symetralną odcinka o końcach A=(4,-6) i B=\left(\frac{5}{2},-6\right) jest prosta określona równaniem x+by=c.

Podaj liczby b i c.

Odpowiedzi:
b= (dwie liczby całkowite)

c= (dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10233 ⋅ Poprawnie: 22/21 [104%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
Dany jest wektor \vec{u}=[-3,5] oraz punkt B=(2,-3). Punkt A spełnia równanie \overrightarrow{AB}=-3\vec{u}. Zatem:
Odpowiedzi:
A. A=(-7,12) B. A=(15,-25)
C. A=(18,14) D. A=(11,-18)
Zadanie 5.  1 pkt ⋅ Numer: pr-10219 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt S=(3,8) jest środkiem okręgu, a do tego okręgu należą punkty (0,11) i (0,5).

Okrąg ten ma równanie:

Odpowiedzi:
A. (x-3)^2+(y-6)^2=18 B. (x+3)^2+(y-8)^2=18
C. (x+3)^2+(y-6)^2=18 D. (x-3)^2+(y-8)^2=18
Zadanie 6.  2 pkt ⋅ Numer: pp-20624 ⋅ Poprawnie: 14/67 [20%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Prosta k przechodząca przez punkt C=(15,8) przecina osie układu współrzędnych w punktach A i B=(x_b,y_b) i jest prostopadła o odcinka OC:

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Oblicz |AB|.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20385 ⋅ Poprawnie: 3/2 [150%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Punkty A=(10,-1) i B=(-2,-17) należą do okręgu, którego środek należy do prostej y=x-13.

Podaj długość promienia tego okręgu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Środkiem tego okręgu jest punkt S=(x_S,y_S).

Podaj x_S+y_S.

Odpowiedź:
x_S+y_S= (wpisz liczbę całkowitą)
Zadanie 8.  4 pkt ⋅ Numer: pp-30206 ⋅ Poprawnie: 0/44 [0%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » W prostej o równaniu 2x-y+3=0 zawiera się przekątna AC rombu ABCD (odwrotnie do ruchu wskazówek zegara), przy czym A=(0,1) i D=(-5,11).

Przekątna BD tego rombu opisana jest równaniem BD:x+by+c=0.

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Wierzchołek C tego rombu ma współrzędne C=(x_c,y_c).

Podaj y_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
 Wyznacz długość obwodu tego rombu.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.4 (1 pkt)
 Wyznacz pole powierzchni tego rombu.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pr-30298 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
« Styczne do okręgu x^2+y^2+2x-6y=10 są nachylone do osi Ox pod takim kątem \alpha, że 2\cos\alpha+\sin\alpha=0. Wyznacz równania tych stycznych.

Zapisz równania stycznych w postaci kierunkowej y=mx+b_1 i y=mx+b_2. Podaj mniejszą z liczb b_1 i b_2.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Podaj większa z liczb b_1 i b_2.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm