Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11229 ⋅ Poprawnie: 306/476 [64%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Przeciwległe wierzchołki prostokąta maja współrzędne A=(-2,5) i C=(-4,3). Okrąg opisany na tym prostokącie ma obwód długości:
Odpowiedzi:
A. \sqrt{2}\pi B. 3\sqrt{2}\pi
C. \frac{\sqrt{2}}{2}\pi D. 4\sqrt{2}\pi
E. 4\pi F. 2\sqrt{2}\pi
Zadanie 2.  1 pkt ⋅ Numer: pp-11242 ⋅ Poprawnie: 467/632 [73%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Punkt C=(-2m,y_C) jest środkiem odcinka o końcach A=(1,-2) i B=(5,-2).

Zatem liczba m jest równa:

Odpowiedzi:
A. -3 B. -\frac{3}{2}
C. 3 D. \frac{3}{2}
Zadanie 3.  1 pkt ⋅ Numer: pp-11220 ⋅ Poprawnie: 183/331 [55%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkt M=\left(-\frac{3m}{2},7\right) jest środkiem odcinka o końcach A=(-2,5) i B=(1,9).

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10231 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Wierzchołkiem trójkąta równobocznego jest punkt o współrzędnych A=(-7,2). Punkt P=(-3,2) jest środkiem okręgu opisanego na tym trójkącie. W trójkąt ten wpisano okrąg o równaniu (x-a)^2+(y-b)^2=r^2, gdzie. r > 0.

Podaj liczby a, b i r.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
r= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10220 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Do okręgu o równaniu (x-2)^2+(y+2)^2=5 styczna jest prosta określona równaniem 2x+y+m-1=0.

Wyznacz najmniejszą i największą możliwą wartość parametru m.

Odpowiedzi:
m_{min}= (wpisz liczbę zapisaną dziesiętnie)
m_{max}= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20587 ⋅ Poprawnie: 14/85 [16%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Dla jakich wartości parametru m punkt przecięcia prostych y=-3m+2x-8 oraz m+x+2y-9=0 należy do prostej o równaniu 3x-2y-11=0?

Podaj najmniejsze możliwe m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20381 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Punkty A=(3,-5), B=(2,2) i C=(-1,3) należą do okręgu o, zaś punkt D do prostej 2x-y+10=0 i okręgu o.
Wyznacz D=(x_D,y_D).

Podaj najmniejsze możliwe x_D.

Odpowiedź:
x_{D_{min}}= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj największe możliwe y_D.
Odpowiedź:
y_{D_{max}}= (wpisz liczbę całkowitą)
Zadanie 8.  4 pkt ⋅ Numer: pp-30214 ⋅ Poprawnie: 0/8 [0%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Punkty A=(-3,0), B=(3,2), C=(-7,8) i D=(-10,7) są kolejnymi wierzchołkami trapezu o podstawach AB i CD. Ramiona tego trapezu przedłużono do punktu ich przecięcia w punkcie O=(x_o,y_o), a następnie narysowano okrąg o środku w punkcie O, do którego podstawa AB tego trapezu jest styczną w punkcie E=(x_e,y_e).

Podaj x_o.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj y_o.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
 Podaj x_e.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.4 (1 pkt)
 Podaj x_e.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pr-30276 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
» W trójkącie prostokątnym ABC kąt przy wierzchołku A=(4,6) jest prosty oraz |AB|=|AC|. Bok BC tego trójkąta zawiera się w prostej o równaniu 2x+y-20=0. Wyznacz współrzędne pozostałych wierzchołków trójkąta B=(x_b,y_b) i C=(x_c,y_c) (odwrotnie do ruchu wskazówek zegara).

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Podaj x_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm