Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11250 ⋅ Poprawnie: 171/321 [53%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Punkty A=(2,-1), B=(3,2), C=\left(-\frac{17}{3},-\frac{4}{3}\right) i D=(x_D,y_D) są czterema kolejnymi wierzchołkami równoległoboku (odwrotnie do ruchu wskazówek zegara).

Podaj współrzędne x_D i y_D.

Odpowiedzi:
x_D= (dwie liczby całkowite)

y_D= (dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11242 ⋅ Poprawnie: 467/632 [73%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Punkt C=(-2m,y_C) jest środkiem odcinka o końcach A=(2,-3) i B=(0,1).

Zatem liczba m jest równa:

Odpowiedzi:
A. -1 B. 1
C. \frac{1}{2} D. -\frac{1}{2}
Zadanie 3.  1 pkt ⋅ Numer: pp-11540 ⋅ Poprawnie: 81/149 [54%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkty o współrzędnych K=(1,-7) oraz L=(-10,-6) są środkami dwóch sąsiednich boków kwadratu.

Oblicz pole powierzchni tego kwadratu.

Odpowiedź:
P_{\square}= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10228 ⋅ Poprawnie: 17/26 [65%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oblicz odległość prostych równoległych y=-\frac{3}{4}x-\frac{65}{2} i -3x-4y+90=0.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pr-10219 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt S=(3,-4) jest środkiem okręgu, a do tego okręgu należą punkty (0,-1) i (0,-7).

Okrąg ten ma równanie:

Odpowiedzi:
A. (x+3)^2+(y+6)^2=18 B. (x+3)^2+(y+4)^2=18
C. (x-3)^2+(y+4)^2=18 D. (x-3)^2+(y+6)^2=18
Zadanie 6.  2 pkt ⋅ Numer: pp-20615 ⋅ Poprawnie: 3/11 [27%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Trzy wierzchołki równoległoboku ABCD mają współrzędne A=\left(\frac{11}{2},-13\right), B=(x_b,y_b) i D=(x_d,y_d) (odwrotnie do ruchu wskazówek zegara). Bok BC tego równoległoboku zawarty jest w prostej o równaniu y=-x-\frac{1}{2}, zaś bok CD w prostej o równaniu y=3x-8.

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20392 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
Prosta 21x-28y-164=0 jest styczną do okręgu o środku S=(3,-4).

Oblicz promień tego okręgu.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pp-30197 ⋅ Poprawnie: 5/26 [19%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Prosta y=2x-9 zawiera przekątną BD kwadratu ABCD o wierzchołku A=\left(5,-\frac{7}{2}\right).
Wyznacz wierzchołek C=(x_c,y_c) (odwrotnie do ruchu wskazówek zegara).

Podaj x_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.3 (2 pkt)
 Wyznacz pole powierzchni tego kwadratu.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pr-30284 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Punkty A=(x_a,y_a), B=(x_b,y_b) i C=(x_c,0) są wierzchołkami trójkąta. Wiedząc, że P_{\triangle ABC}=12, oblicz x_c.

Podaj najmniejsze możliwe x_c.

Dane
x_a=4
y_a=-3
x_b=8
y_b=3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
 Podaj największe możliwe x_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm