Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11240 ⋅ Poprawnie: 334/469 [71%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt S=(-5,4) jest środkiem odcinka AC, gdzie A=(x_A,y_A) i C=\left(\frac{3}{2},1\right).

Podaj współrzędne x_A i y_A.

Odpowiedzi:
x_A= (dwie liczby całkowite)

y_A= (dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11241 ⋅ Poprawnie: 273/431 [63%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt S=\left(-\frac{15}{4},-4\right) jest środkiem odcinka AB, gdzie A=(x_A,y_A) i B=(2,5).

Podaj współrzedne x_A i y_A.

Odpowiedzi:
x_A= (dwie liczby całkowite)

y_A= (dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11231 ⋅ Poprawnie: 201/333 [60%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Środek odcinka o końcach (6,3) i (8,3) należy do prostej o równaniu y+ax=7+5a.

Wyznacz wartość parametru a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10229 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Bok trójkąta zawiera się w prostej o równaniu 2x+3y-19=0. W trójkąt ten wpisano okrąg o środku w punkcie o współrzednych (7,3). Prosta o równaniu 3x-2y+m=0 zawiera inny bok tego trójkąta.

Wyznacz największą możliwą wartość parametru m.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pr-10390 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Rozwiązaniem nierówności |x-a| > b jest zbiór (-\infty, 7)\cup(17,+\infty).

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20634 ⋅ Poprawnie: 3/9 [33%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Przekątne wielokąta o wierzchołkach A=(5,10), B=(2,8), C=(0,0), D=(3,1) przecinają się w punkcie o współrzędnych S=(x,y).

Podaj x.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj y.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  4 pkt ⋅ Numer: pr-20360 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
W rombie o boku długości 5 końcami przekątnej są punkty A=(-9,5) i B=(-1,9). Wyznacz współrzędne pozostałych wierzchołków tego rombu.

Podaj sumę rzędnych dwóch pozostałych wierzchołków.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (2 pkt)
Podaj sumę odciętych dwóch pozostałych wierzchołków.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pp-30232 ⋅ Poprawnie: 0/5 [0%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Punkty A=(3,5), B=(14,7) i C=(4,12) są wierzchołkami trójkąta ABC. Prosta CD jest wysokością tego trójkąta, D=(x_d,y_d)\in AB. Prosta k:x+by+c=0 przechodzi przez punkt D i k\parallel BC.

Wyznacz x_d.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Wyznacz y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.4 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pr-30299 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
» Okrąg (x-a)^2+(y-b)^2=r^2 jest styczny do osi Oy w punkcie C=(0,5) i przechodzi przez punkt M=(4,9).

Podaj a+b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Punkty A=(x_a,y_a) i B=(x_b,y_b) należą do tego okręgu i wraz z punktem C tworzą trójkąt równoboczny.

Podaj x_a+x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (2 pkt)
Podaj max(y_a,y_b).
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm