(1 pkt)
Obrazami punktów o współrzędnych A=(-8,2) oraz B=(2,28)
w symetrii środkowej względem punktu O=(0,0) są punkty odpowiednio
A' i B'.
Środek odcinka A'B' ma współrzędne S=(x_S, y_S).
Podaj współrzędne x_S i y_S.
Odpowiedzi:
x_S
=
(wpisz liczbę całkowitą)
y_S
=
(wpisz liczbę całkowitą)
Zadanie 3.1 pkt ⋅ Numer: pp-11221 ⋅ Poprawnie: 71/162 [43%]
Punkty A=(2,0), B=(5,0)
i C=(4,3) są wierzchołkami trójkąta. Zbiór wszystkich
punktów M należacych do trójkąta
ABC spełniających warunek
|MA|\leqslant |MB| jest:
Odpowiedzi:
A. trójkątem ostrokątnym
B. czworokątem
C. wycinkiem koła
D. trójkątem prostokątnym
Zadanie 4.1 pkt ⋅ Numer: pr-10233 ⋅ Poprawnie: 22/21 [104%]
« Okręgi o równaniach x^2-4x+y^2+4y+4=0 oraz
(x)^2+(y-3)^2=4m^2
(m > 0) są styczne zewnętrznie. Wyznacz liczbę m
i zapisz wynik w najprostszej postaci \frac{a+b\sqrt{c}}{d}, gdzie
a,b,c,d\in\mathbb{Z}.
Podaj liczby a i c.
Odpowiedzi:
a
=
(wpisz liczbę zapisaną dziesiętnie)
c
=
(wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.2 pkt ⋅ Numer: pp-20593 ⋅ Poprawnie: 170/416 [40%]
W układzie współrzędnych punkty A=(x_a,y_a) i
B=(x_b,y_b) są wierzchołkami trójkąta
ABC. Wierzchołek C
tego trójkąta leży na prostej o równaniu y=ax+b.
Oblicz współrzędne punktu C=(x_c,y_c), dla którego
kąt ABC jest prosty.
Podaj najmniejsze możliwe x_c.
Dane
x_a=3 y_a=-1 x_b=9 y_b=1 a=2 b=1
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (2 pkt)
Podaj najmniejsze możliwe y_c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9.4 pkt ⋅ Numer: pr-30308 ⋅ Poprawnie: 0/0
Wyznacz zbiór tych wszystkich wartości parametru
m\in\mathbb{R}, dla których okręgi
(x-m-2a)^2+(y+2-b)^2=20 i
(x+1-a)^2+(y-2m-2a-b)^2=5 są styczne wewnętrznie.
Podaj najmniejsze możliwe m.
Dane
a=-1 b=-4
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Dla najmniejszej możliwej wartości m okręgi są
styczne w punkcie P=(x_p,y_p).
Podaj x_p.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
Podaj y_p.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.4 (1 pkt)
Podaj największe możliwe m, dla którego okręgi są
styczne wewnętrznie.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat