Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11248 ⋅ Poprawnie: 222/345 [64%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dany jest kwadrat ABCD. Punkty o współrzędnych E=(1,1) i F=(6,-4) są środkami dwóch jego boków odpowiednio AB i BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{N}.

Podaj liczby a i b.

Odpowiedź:
d= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11511 ⋅ Poprawnie: 542/919 [58%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkty o współrzędnych A=\left(7,5\right) i B=\left(9,5\right) są wierzchołkami trójkąta równobocznego ABC.

Oblicz długość promienia okręgu opisanego na tym trójkącie.

Odpowiedź:
r= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11247 ⋅ Poprawnie: 223/443 [50%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Prosta o równaniu 4x-6y+12=0 wraz z osiami układu współrzędnych ogranicza trójkąt.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10199 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
W jednokładności o środku S i skali k=-3 obrazem wektora \overrightarrow{AB} jest wektor \overrightarrow{A'B'}. Wówczas:
Odpowiedzi:
A. \overrightarrow{AB}=3\overrightarrow{A'B'} B. |AA'|=3|SA|
C. \overrightarrow{BB'}=4\overrightarrow{BS} D. wektory \overrightarrow{AB},\overrightarrow{A'B'} są przeciwne
Zadanie 5.  1 pkt ⋅ Numer: pr-10218 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt S=(-3,5) jest środkiem okręgu, a do tego okręgu należy punkt o współrzędnych (-6,1). Okrąg ten opisany jest równaniem (x-a)^2+(y-b)^2=r^2, gdzie r > 0.

Podaj liczby a, b i r.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
r= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pr-20356 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 «« Środkami boków BC, CD i AB równoległoboku ABCD (odwrotnie do ruchu wskazówek zegara) są odpowiednio punkty K=(-7,9), L=(-11,11) i M=(-5,3). Punkt D ma współrzędne D=(x_D,y_D).

Wyznacz współrzedne x_D i y_D.

Odpowiedzi:
x_D= (wpisz liczbę zapisaną dziesiętnie)
y_D= (wpisz liczbę zapisaną dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Punkt A ma współrzędne A=(x_A,y_A).

Wyznacz współrzedne x_A i y_A.

Odpowiedzi:
x_A= (wpisz liczbę zapisaną dziesiętnie)
y_A= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20405 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Punkt C'=(x_{c'},y_{c'}) jest obrazem środka odcinka o końcach A=(x_a,y_a) i B=(x_b,y_b) w jednokładności o środku S=(x_s,y_s) i skali k.

Podaj x_{c'}.

Dane
x_s=-5
y_s=1
x_a=22
y_a=109
x_b=-7
y_b=-2
k=-\frac{1}{5}=-0.200000000000000
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj y_{c'}.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pp-30217 ⋅ Poprawnie: 1/4 [25%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Punkty A=(-4,3), B=(-8,6) i C=(-6,2) są wierzchołkami trójkąta.

Oblicz sinus najmniejszego kąta tego trójkąta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Prosta y=ax+b zawiera wysokość tego trójkąta opuszczoną z wierzchołka kąta prostego i przecina przeciwprostokątną tego trójkąta w punkcie D=(x_d,y_d).

Wyznacz b

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
 Podaj x_d
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.4 (1 pkt)
 Podaj y_d
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pr-30309 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Wyznacz zbiór tych wszystkich wartości parametru m\in\mathbb{R}, dla których okręgi (x-a+5)^2+(y+m-a-b)^2=16 i (x-2m+a)^2+(y+m-a-b)^2=9 przecinają się w dwóch różnych punktach.

Rozwiazanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z tych wszystkich końców tych przedziałów, które są liczbami.

Dane
a=-5
b=1
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj największy z tych wszystkich końców tych przedziałów, które są liczbami.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (2 pkt)
 Podaj długość rozwiązania, czyli łączną długość tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm