« Punkty o współrzędnych A=(9,9) i
C=(-11,-12) są przeciwległymi wierzchołkami
kwadratu, na którym opisano okrąg. Zapisz długość promienia tego okręgu w najprostszej postaci
\frac{a\sqrt{b}}{c}, gdzie a,b,c\in\mathbb{N}.
Podaj liczby a, b i c.
Odpowiedź:
r=
\cdot√
(wpisz trzy liczby całkowite)
Zadanie 2.1 pkt ⋅ Numer: pp-11228 ⋅ Poprawnie: 154/267 [57%]
Punkty A=(x_a,y_a) i
B=(x_b,y_b) są końcami odcinka
AB, a punkt S=(x_s,y_s)
środkiem jednokładności. Wyznacz
A'=(x_{a'},y_{a'})=J^k_S(A) i
B'=(x_{b'},y_{b'})=J^k_S(B).
Dane są proste k:x+y+5=0,
l:7x-y-37=0 oraz punkt
P=(6,5)\in l. Istnieją dwa okręgi styczne do prostej
k i do prostej l w punkcie
P.
Wyznacz równanie (x-a)^2+(y-b)^2=r^2 tego z okręgów,
którego środek ma mniejszą odciętą.
Podaj a+b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Podaj r.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat