Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11225 ⋅ Poprawnie: 257/416 [61%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « W kwadracie o wierzchołkach ABCD punkty K=(4,0) i L=(3,4) są środkami boków odpowiednio AB i BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{N}.

Podaj liczby a i b.

Odpowiedź:
d= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11232 ⋅ Poprawnie: 119/254 [46%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 «« Punkty A=(-1,0) i B=(35,27) są środkami okręgów stycznych wewnętrznie. Promienie tych okręgów r_1,r_2 spełniają warunek r_1=3r_2.

Oblicz sumę długości promieni tych okręgów.

Odpowiedź:
r_1+r_2=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11222 ⋅ Poprawnie: 233/589 [39%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Symetralną odcinka o końcach A=(6,5) i B=\left(-\frac{3}{2},5\right) jest prosta określona równaniem x+by=c.

Podaj liczby b i c.

Odpowiedzi:
b= (dwie liczby całkowite)

c= (dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10227 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Równanie y^2-8x^2=0 opisuje na płaszczyźnie:
Odpowiedzi:
A. prostą B. punkt
C. zbiór pusty D. dwie proste przecinające się pod kątem innym niż prosty
E. dwie proste prostopadłe F. parabolę
Zadanie 5.  1 pkt ⋅ Numer: pr-10207 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dana jest prosta o równaniu x-y-6=0 oraz okrąg określony równaniem (x-7)^2+y^2-6y+7=0. Wówczas:
Odpowiedzi:
A. prosta i okrąg są rozłączne B. prosta jest styczną do okręgu
C. prosta przecina okrąg w dwóch punktach D. środek okręgu należy do prostej
Zadanie 6.  2 pkt ⋅ Numer: pp-20607 ⋅ Poprawnie: 24/63 [38%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Prosta y=-2x+7 jest styczną do okręgu o środku w punkcie S=(1,9). Wyznacz współrzędne punktu styczności P=(x_p,y_p).

Podaj x_p.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj y_p.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20364 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Proste y=a_1x+b_1 oraz y=a_2x+b_2 przecinaja się pod kątem ostrym \alpha.

Podaj \sin\alpha.

Dane
a_1=1
b_1=-9
a_2=2-\sqrt{3}=0.267949192431
b_2=14+2\sqrt{3}=17.4641016151377550
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pr-30261 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
 » W prostokącie ABCD dane są: C=(5,2), \overrightarrow{AB}=[4,4] oraz prosta y=x-9, do której należy wierzchołek A tego prostokąta. Wyznacz równanie przekątnej AC:y=cx+d.

Podaj c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Podpunkt 8.2 (2 pkt)
 Podaj d.
Odpowiedź:
d= (wpisz liczbę całkowitą)
Zadanie 9.  4 pkt ⋅ Numer: pr-30281 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Punkty A=(x_a,y_a), B=(x_b,y_b) i C=(x_c,y_c) są trzema kolejnymi wierzchołkami równoległoboku ABCD.

Oblicz pole powierzchni tego równoległoboku.

Dane
x_a=5
y_a=8
x_b=9
y_b=7
x_c=7
y_c=3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Punkt D ma współrzędne (x_d,y_d).

Wyznacz x_d+y_d.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
 Punkty M i N są środkami boków równoległoboku odpowiednio BC i CD.

Oblicz \cos\sphericalangle(\overrightarrow{AM},\overrightarrow{AN}).

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm