« Punkt o współrzędnych oraz punkty A=(-2,4),
B i C są wierzchołkami trójkąta równoramiennego
o podstawie AB, a punkt
D=(0,5) jest spodkiem wysokości tego trójkąta
opuszczonej z wierzchołka C.
Wówczas punkt B ma współrzędne B=(x_B, y_B).
Wyznacz współrzędne x_B i y_B.
Odpowiedzi:
x_B
=
(wpisz liczbę całkowitą)
y_B
=
(wpisz liczbę całkowitą)
Zadanie 2.1 pkt ⋅ Numer: pp-11241 ⋅ Poprawnie: 273/431 [63%]
Punkty A=(2,0), B=(5,0)
i C=(4,3) są wierzchołkami trójkąta. Zbiór wszystkich
punktów M należacych do trójkąta
ABC spełniających warunek
|MA|\leqslant |MB| jest:
Odpowiedzi:
A. trójkątem ostrokątnym
B. trójkątem prostokątnym
C. czworokątem
D. wycinkiem koła
Zadanie 4.1 pkt ⋅ Numer: pr-10227 ⋅ Poprawnie: 0/0
Punkt A=(0,4) należy do prostych
k i l. Prosta
l wraz z osiami układu ogranicza trójkąt
o polu 14, zaś prosta k
trójkąt o polu 25. Proste te przecinają dodatnią
półoś Ox w punktach P i
Q.
Oblicz pole trójkąta o wierzchołkach w punktach A,
P i Q.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7.2 pkt ⋅ Numer: pr-20371 ⋅ Poprawnie: 0/0
« Prosta 3x-4y+c_1=0 zawiera bok
CD kwadratu ABCD
(odwrotnie do ruchu wskazówek zegara, przy czym odcięta punktu
C jest mniejsza od odciętej punktu
D) o polu powierzchni
P_{\Box ABCD}=4. Wyznacz równanie prostej
AB:x+b_2y+c_2=0
Podaj b_2.
Dane
c_1=-8
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Podaj c_2.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8.4 pkt ⋅ Numer: pp-30211 ⋅ Poprawnie: 0/4 [0%]
» Prosta x+2y+15=0 zawiera podstawę trapezu
równoramiennego AB, a prosta
2x-y+5=0 jest osią symetrii tego trapezu. Wierzchołki
trapezu mają współrzędne: A=(-1,-7),
B=(x_b,y_b), D=(0,-5), zaś prosta zawierająca
bok CD równanie CD:y=ax+b.
Podaj x_b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
Podaj a.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.4 (1 pkt)
Podaj b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9.4 pkt ⋅ Numer: pr-30279 ⋅ Poprawnie: 0/0
Punkty A i C, których
współrzędne spełniają układ rówńań
\begin{cases}
2x+y+1=0 \\
y=x^2-9
\end{cases}
wyznaczają jedną z przekątnych rombu o polu powierzchni
P_{ABCD}=30.
Oblicz B=(x_B,y_B) i
D=(x_D,y_D).
Podaj x_B+x_D.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Podaj y_B+y_D.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat