« Odcinek o długości 4 zawarty jest w prostej
o równaniu 3x-4y-22=0. Symetralna tego odcinka
przecięła oś Oy w punkcie
A=(0,2). Wyznacz współrzedne końców tego odcinka.
Podaj sumę odciętej i rzędnej tego punktu, który ma obie współrzędne całkowite.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Podaj odciętą drugiego z punktów.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.3 (1 pkt)
Podaj rzędną drugiego z punktów.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8.4 pkt ⋅ Numer: pp-30222 ⋅ Poprawnie: 2/4 [50%]
Punkty A=(-4,-11) i B=(-7,-5)
wyznaczają podstawę trójkąta równoramiennego ABC.
Prosta o równaniu y=x-7 zawiera bok
AC tego trójkąta. Wyznacz
C=(x_c, y_c).
Podaj x_c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Podaj y_c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.3 (2 pkt)
Oś symetrii tego trójkąta ma równanie y=ax+b.
Podaj b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9.4 pkt ⋅ Numer: pr-30303 ⋅ Poprawnie: 0/0
» Punkty M=(-2,0) i
N=(0,2) są punktami styczności okręgu z osiami
układu współrzędnych. Prosta k, która jest
wykresem funkcji malejącej, jest styczną do tego okręgu w punkcie o odciętej
równiej -1.
Wyznacz równanie prostej k:y=ax+b.
Podaj a.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Podaj b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat