Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11240 ⋅ Poprawnie: 334/469 [71%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt S=(5,2) jest środkiem odcinka AC, gdzie A=(x_A,y_A) i C=\left(-\frac{1}{2},-4\right).

Podaj współrzędne x_A i y_A.

Odpowiedzi:
x_A= (dwie liczby całkowite)

y_A= (dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11252 ⋅ Poprawnie: 239/368 [64%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Do okręgu o środku w punkcie S=(4,2) i promieniu długości \sqrt{61} należy punkt:
Odpowiedzi:
A. (3,-7) B. (-4,-3)
C. (-1,-4) D. (-1,-2)
E. (3,-7) F. (-4,-5)
Zadanie 3.  1 pkt ⋅ Numer: pp-11223 ⋅ Poprawnie: 388/630 [61%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Środkiem odcinka o końcach A=(0,2a) i B=(6b,-1) jest punkt C=(7,3).

Wyznacz wartości parametrów a i b.

Odpowiedzi:
a= (dwie liczby całkowite)

b= (dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10231 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Wierzchołkiem trójkąta równobocznego jest punkt o współrzędnych A=(0,3). Punkt P=(4,3) jest środkiem okręgu opisanego na tym trójkącie. W trójkąt ten wpisano okrąg o równaniu (x-a)^2+(y-b)^2=r^2, gdzie. r > 0.

Podaj liczby a, b i r.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
r= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10217 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Ustal, ile punktów wspólnych ma okrąg o równaniu (x-8)^2+(y-7)^2=3 z prostą określoną wzorem y=3+2\cos3\alpha.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20634 ⋅ Poprawnie: 3/9 [33%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Przekątne wielokąta o wierzchołkach A=(3,-3), B=(6,-1), C=(8,7), D=(5,6) przecinają się w punkcie o współrzędnych S=(x,y).

Podaj x.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj y.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20374 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Dany jest punkt B=(x_b,y_b). Przez punkt A=(x_a,y_a) przechodzi prosta k:y=ax+b taka, że d(B, k)=5.

Podaj najmniejsze możliwe b.

Dane
x_a=5
y_a=1
x_b=12
y_b=0
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Dany jest punkt B=(x_b,y_b). Przez punkt A=(x_a,y_a) przechodzi prosta k:y=ax+b taka, że d(B, k)=5.

Podaj największe możliwe b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pp-30231 ⋅ Poprawnie: 0/10 [0%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Prosta k przechodzi przez punkty A=(9,3) i B=(15,1). Punkt D=(7,6) jest środkiem odcinka AC, a prosta l:ax+y+c=0 wysokością trójkąta ABC opuszczoną z punktu C, która przecina prostą k w punkcie E=(x_e,y_e).

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
 Podaj x_e.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.4 (1 pkt)
 Podaj y_e.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pr-30308 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wyznacz zbiór tych wszystkich wartości parametru m\in\mathbb{R}, dla których okręgi (x-m-2a)^2+(y+2-b)^2=20 i (x+1-a)^2+(y-2m-2a-b)^2=5 są styczne wewnętrznie.

Podaj najmniejsze możliwe m.

Dane
a=5
b=2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Dla najmniejszej możliwej wartości m okręgi są styczne w punkcie P=(x_p,y_p).

Podaj x_p.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
 Podaj y_p.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.4 (1 pkt)
 Podaj największe możliwe m, dla którego okręgi są styczne wewnętrznie.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm