Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11224 ⋅ Poprawnie: 125/231 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Pole powierzchni trójkąta o wierzchołkach K=(7,6), L=(12,1) i M=(12,9) jest równe P.

Oblicz długość boku kwadratu o polu powierzchni P.

Odpowiedź:
a= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11241 ⋅ Poprawnie: 273/431 [63%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt S=\left(\frac{21}{4},5\right) jest środkiem odcinka AB, gdzie A=(x_A,y_A) i B=(6,1).

Podaj współrzedne x_A i y_A.

Odpowiedzi:
x_A= (dwie liczby całkowite)

y_A= (dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11236 ⋅ Poprawnie: 89/145 [61%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Proste o równaniach \sqrt{3}x-y+\frac{5}{6}=0 i -5y+5=0:
Odpowiedzi:
A. przecinają się pod kątem 45^{\circ} B. są prostopadłe
C. przecinają się pod kątem 60^{\circ} D. są równoległe
Zadanie 4.  1 pkt ⋅ Numer: pr-10228 ⋅ Poprawnie: 17/26 [65%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oblicz odległość prostych równoległych y=-\frac{3}{4}x-\frac{77}{4} i -3x-4y+143=0.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pr-10219 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt S=(8,5) jest środkiem okręgu, a do tego okręgu należą punkty (5,8) i (5,2).

Okrąg ten ma równanie:

Odpowiedzi:
A. (x-2)^2+(y-5)^2=18 B. (x-8)^2+(y-5)^2=18
C. (x-8)^2+(y-3)^2=18 D. (x-2)^2+(y-3)^2=18
Zadanie 6.  2 pkt ⋅ Numer: pr-20356 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 «« Środkami boków BC, CD i AB równoległoboku ABCD (odwrotnie do ruchu wskazówek zegara) są odpowiednio punkty K=(5,13), L=(1,15) i M=(7,7). Punkt D ma współrzędne D=(x_D,y_D).

Wyznacz współrzedne x_D i y_D.

Odpowiedzi:
x_D= (wpisz liczbę zapisaną dziesiętnie)
y_D= (wpisz liczbę zapisaną dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Punkt A ma współrzędne A=(x_A,y_A).

Wyznacz współrzedne x_A i y_A.

Odpowiedzi:
x_A= (wpisz liczbę zapisaną dziesiętnie)
y_A= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20380 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Środki wszystkich okręgów o równaniu x^2-(m+5)x+y^2+m+4=0 należą do prostej k.

Jaki kąt tworzy prosta k z osią Ox.

Odpowiedź:
\alpha\ [^{\circ}]= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Wyznacz tę wartość parametru m, dla której okrąg ten jest styczny do prostej 4-x=0.
Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 8.  4 pkt ⋅ Numer: pr-30266 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
 «« Podstawy AB i CD trapezu równoramiennego są prostopadłe do prostej k:\frac{1}{2}x+y-9=0, do której należy wierzchołek D tego trapezu. Wiedząc, że B=(9,12) i C=(4,12) wyznacz współrzędne pozostałych wierzchołków A=(x_A,y_A) i D=(x_D,y_D).

Podaj najmniejsze możliwe y_A.

Odpowiedź:
y_{A_{min}}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj największe możliwe y_A.
Odpowiedź:
y_{A_{max}}= (wpisz liczbę całkowitą)
Podpunkt 8.3 (1 pkt)
 Podaj sumę x_D+y_D.
Odpowiedź:
x_D+y_D= (wpisz liczbę całkowitą)
Zadanie 9.  4 pkt ⋅ Numer: pr-30283 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Punkty A=(x_a,y_a), B=(x_b,y_b) i C=(0,y_c) są wierzchołkami trójkąta. Wiedząc, że P_{\triangle ABC}=32, oblicz y_c.

Podaj najmniejsze możliwe y_c.

Dane
x_a=-2
y_a=-3
x_b=8
y_b=0
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
 Podaj największe możliwe y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm