Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11239 ⋅ Poprawnie: 147/266 [55%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkty A=(4,-3) i C=\left(3,-\frac{5}{2}\right) są dwoma przeciwległymi wierzchołkami prostokąta.

Oblicz długość promienia okręgu opisanego na tym prostokącie.

Odpowiedź:
r= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11235 ⋅ Poprawnie: 189/301 [62%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt przecięcia prostych określonych równaniami 2x+y=m-5 i x-3y=6 należy do osi Ox.

Wyznacz wartość parametru m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11246 ⋅ Poprawnie: 152/291 [52%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Prosta, do której należą punkty A=(40,-44) i B=(48,4) przecina oś Ox w punkcie o odciętej x_0.

Podaj x_0.

Odpowiedź:
x_0=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10228 ⋅ Poprawnie: 17/26 [65%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oblicz odległość prostych równoległych y=-\frac{3}{4}x-28 i -3x-4y+108=0.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pr-10223 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz długość promienia okręgu o równaniu x^2+y^2-10y+19=0.
Odpowiedź:
r= \cdot
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20629 ⋅ Poprawnie: 6/15 [40%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Punkt A=(0,10) należy do prostych k i l. Prosta l wraz z osiami układu ogranicza trójkąt o polu 35, zaś prosta k trójkąt o polu \frac{125}{2}. Proste te przecinają dodatnią półoś Ox w punktach P i Q.

Oblicz pole trójkąta o wierzchołkach w punktach A, P i Q.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  4 pkt ⋅ Numer: pr-20362 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
«« Punkty A=(-3,-5) i B=(1,-7) są kolejnymi wierzchołkami czworokąta ABCD (odwrotnie do ruchu wskazówek zegara) wpisanego w okrąg, którego osią symetrii jest prosta x-y-2=0.
Wyznacz C=(x_c,y_c) i D=(x_d,y_d).

Podaj x_c+y_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (2 pkt)
Podaj x_d+y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pp-30187 ⋅ Poprawnie: 17/65 [26%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 «« Punkty K=(-7,4) oraz L są środkami boków odpowiednio AC i BC trójkata ABC. Wiadomo, że \overrightarrow{AK}=[1,6] oraz \overrightarrow{KL}=[8,4]. Wyznacz równanie boku AB tego trójkąta i zapisz go w postaci kierunkowej y=ax+b.

Podaj a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (2 pkt)
 Podaj b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Zadanie 9.  4 pkt ⋅ Numer: pr-30275 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Punkt P=(x_p,y_p) należy do kąta utworzonego przez proste a_1x+b_1y+c_1=0 oraz a_2x+b_2y+c_2=0, a prosta 4x+by+c=0 jest dwusieczną tego kąta.

Podaj b.

Dane
x_p=6
y_p=-1
a_1=1
b_1=3
c_1=2
a_2=6
b_2=-2
c_2=-21
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm