Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11250 ⋅ Poprawnie: 171/321 [53%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Punkty A=(2,-1), B=(3,2), C=\left(-\frac{17}{3},-\frac{4}{3}\right) i D=(x_D,y_D) są czterema kolejnymi wierzchołkami równoległoboku (odwrotnie do ruchu wskazówek zegara).

Podaj współrzędne x_D i y_D.

Odpowiedzi:
x_D= (dwie liczby całkowite)

y_D= (dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11244 ⋅ Poprawnie: 201/325 [61%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkty A=(-6,5) i B=(-4,4) są wierzchołkami trójąta równobocznego. Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
P_{\triangle}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11223 ⋅ Poprawnie: 388/630 [61%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Środkiem odcinka o końcach A=(0,2a) i B=(6b,-1) jest punkt C=(-4,5).

Wyznacz wartości parametrów a i b.

Odpowiedzi:
a= (dwie liczby całkowite)

b= (dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10224 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oblicz odległość punktu o współrzędnych (-2,6) od prostej o równaniu 2x-y+14=0.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pr-10210 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
Punkty (22,17), (20,15) i (20,17) należą do okręgu. Okrąg ten ma równanie:
Odpowiedzi:
A. x^2-40x+y^2-32y+655=0 B. x^2-42x+y^2-34y+729=0
C. x^2-42x+y^2-32y+695=0 D. x^2-40x+y^2-34y+645=0
Zadanie 6.  2 pkt ⋅ Numer: pp-20633 ⋅ Poprawnie: 11/126 [8%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Punkty A=(-8,1), B=(1,-1), C=(5,5), D=(-2,10) i E=(-7,8) są wierzchołkami wielokąta.

Oblicz pole powierzchni tego wielokąta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20373 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Punkt P=(x_0,y_0) jest równooddalony od prostych 2x+y+c_1=0 i 11x-2y+c_2=0.

Podaj najmniejsze możliwe y_0.

Dane
x_0=-3
c_1=2
c_2=40
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj największe możliwe y_0.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pp-30205 ⋅ Poprawnie: 0/16 [0%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Punkty A=(-4,6) i D=(-6,10) są wierzchołkami rombu (odwrotnie do ruchu wskazówek zegara), którego przekątna AC zawiera się w prostej o równaniu y=2x+14.

Przekątna BC tego rombu opisana jest równaniem BC:y=ax+b. Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Punkt S=(x_s,y_s) jest punktem przecięcia przekątnych tego rombu.

Podaj y_s.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
 Wyznacz współrzędne wierzchołeka B=(x_b,y_b) tego rombu.

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.4 (1 pkt)
 Wyznacz pole powierzchni tego rombu.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pr-30288 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
« Dwa kolejne wierzchołki równoległoboku KLMN (odwrotnie do ruchu wskazówek zegara) mają współrzędne K=(2,1) i L=(1,-2), a jego pole powierzchni wynosi 26. Przekątne tego równoległoboku przecinają się w punkcie O należącym do prostej x+y-4=0. Wiedząc, że punkt O ma obie współrzędne całkowite, wyznacz współrzędne punktu M=(x_M,y_M).

Podaj x_M.

Odpowiedź:
x_M= (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Podaj y_M.
Odpowiedź:
y_M= (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm