Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11224 ⋅ Poprawnie: 125/231 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Pole powierzchni trójkąta o wierzchołkach K=(-3,4), L=(2,-1) i M=(2,7) jest równe P.

Oblicz długość boku kwadratu o polu powierzchni P.

Odpowiedź:
a= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11252 ⋅ Poprawnie: 239/368 [64%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Do okręgu o środku w punkcie S=(-4,2) i promieniu długości \sqrt{130} należy punkt:
Odpowiedzi:
A. (3,-4) B. (3,-2)
C. (3,-3) D. (9,-1)
E. (5,-5) F. (4,-5)
Zadanie 3.  1 pkt ⋅ Numer: pp-11540 ⋅ Poprawnie: 81/149 [54%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkty o współrzędnych K=(-8,5) oraz L=(9,-9) są środkami dwóch sąsiednich boków kwadratu.

Oblicz pole powierzchni tego kwadratu.

Odpowiedź:
P_{\square}= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10230 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Trójkąt równoboczny o wysokości h jest opisany na okręgu o równaniu x^2+14x+49+y^2-8y-\frac{57}{4}=0.

Podaj liczbę h.

Odpowiedź:
h=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10219 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt S=(-7,8) jest środkiem okręgu, a do tego okręgu należą punkty (-10,11) i (-10,5).

Okrąg ten ma równanie:

Odpowiedzi:
A. (x+7)^2+(y-8)^2=18 B. (x+7)^2+(y-6)^2=18
C. (x+13)^2+(y-6)^2=18 D. (x+13)^2+(y-8)^2=18
Zadanie 6.  3 pkt ⋅ Numer: pp-20623 ⋅ Poprawnie: 5/45 [11%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Dane są punkty A=(-5,5) i B=\left(\frac{17}{2},-\frac{11}{2}\right), które są wierzchołkami trójkąta prostokątnego o przeciwprostokątnej AB. Wyznacz środek S=(x_s,y_s) okręgu opisanego na tym trójkącie.

Podaj x_s.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj y_s.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.3 (1 pkt)
 Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20415 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 W romb ABCD, w którym |\sphericalangle BCD|=60^{\circ}, wpisano okrąg o równaniu x^2-16x+y^2-10y+86=0.

Wyznacz P_{ABCD}.

Odpowiedź:
P_{ABCD}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 8.  4 pkt ⋅ Numer: pr-30266 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
 «« Podstawy AB i CD trapezu równoramiennego są prostopadłe do prostej k:\frac{1}{2}x+y-7=0, do której należy wierzchołek D tego trapezu. Wiedząc, że B=(7,11) i C=(2,11) wyznacz współrzędne pozostałych wierzchołków A=(x_A,y_A) i D=(x_D,y_D).

Podaj najmniejsze możliwe y_A.

Odpowiedź:
y_{A_{min}}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj największe możliwe y_A.
Odpowiedź:
y_{A_{max}}= (wpisz liczbę całkowitą)
Podpunkt 8.3 (1 pkt)
 Podaj sumę x_D+y_D.
Odpowiedź:
x_D+y_D= (wpisz liczbę całkowitą)
Zadanie 9.  5 pkt ⋅ Numer: pr-30297 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
Punkty A=(5,0) i B=(-2,-1) należą do okręgui, którego środek leży na prostej y+4=0. Wyznacz równanie kanoniczne (x-a)^2+(y-b)^2=r^2tego okręgu.

Podaj a+b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Podaj r.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (2 pkt)
Prosta k:y=ax+b jest prostopadła do prostej AB i oddalona od punktu (4,-4) o \sqrt{2}.

Podaj najmniejsze możliwe b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm