Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11225 ⋅ Poprawnie: 257/416 [61%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « W kwadracie o wierzchołkach ABCD punkty K=(-2,-1) i L=(2,-5) są środkami boków odpowiednio AB i BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{N}.

Podaj liczby a i b.

Odpowiedź:
d= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11234 ⋅ Poprawnie: 152/322 [47%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz odległość między prostymi określonymi równaniami y=x+3 i x-y=7.
Odpowiedź:
d= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11220 ⋅ Poprawnie: 183/331 [55%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkt M=\left(-\frac{3m}{2},7\right) jest środkiem odcinka o końcach A=(-2,5) i B=(-1,9).

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10226 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Równanie x^2+8x=y^2-16 opisuje na płaszczyźnie
Odpowiedzi:
A. parabolę B. okrąg
C. punkt D. prostą
E. dwie proste F. zbiór pusty
Zadanie 5.  1 pkt ⋅ Numer: pr-10220 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Do okręgu o równaniu (x-1)^2+(y+4)^2=5 styczna jest prosta określona równaniem 2x+y+m+3=0.

Wyznacz najmniejszą i największą możliwą wartość parametru m.

Odpowiedzi:
m_{min}= (wpisz liczbę zapisaną dziesiętnie)
m_{max}= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  3 pkt ⋅ Numer: pp-20616 ⋅ Poprawnie: 12/57 [21%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 W trapezie ABCD dane są wierzchołki: A=(-8,-1), B=(-4,1) i C=(-7,5). Kąty przy wierzchołkach A i D=(x_d,y_d) są proste. Prosta zawierająca podstawę CD tego trapezu ma równanie BD:y=ax+b.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj x_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.3 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20403 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Wyznacz zbiór tych wszystkich wartości parametru m\in\mathbb{R}, dla których okręgi (x-m-2a)^2+(y-2m-2a-b)^2=1 i (x-2-a)^2+(y+1-b)^2=16 są rozłączne zewnętrznie.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z tych wszystkich końców tych przedziałów, które są liczbami.

Dane
a=-2
b=-1
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj największy z tych wszystkich końców tych przedziałów, które są liczbami.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pp-30213 ⋅ Poprawnie: 0/9 [0%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Wierzchołki trapezu ABCD mają współrzędne: A=(-2,-3), B=(-1,1), C=(-5,2) i D=(-10,-1). Wysokość tego trapezu opuszczona z wierzchołka C zawiera się w prostej o równaniu ax+y+c=0 i przecina podstawę AD w punkcie E.

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
 Oblicz pole powierzchni trójkąta DEC.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.4 (1 pkt)
 Oblicz pole powierzchni trapezu ABCD.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pr-30281 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Punkty A=(x_a,y_a), B=(x_b,y_b) i C=(x_c,y_c) są trzema kolejnymi wierzchołkami równoległoboku ABCD.

Oblicz pole powierzchni tego równoległoboku.

Dane
x_a=0
y_a=3
x_b=4
y_b=2
x_c=2
y_c=-2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Punkt D ma współrzędne (x_d,y_d).

Wyznacz x_d+y_d.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
 Punkty M i N są środkami boków równoległoboku odpowiednio BC i CD.

Oblicz \cos\sphericalangle(\overrightarrow{AM},\overrightarrow{AN}).

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm