Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11240 ⋅ Poprawnie: 334/469 [71%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt S=(3,-4) jest środkiem odcinka AC, gdzie A=(x_A,y_A) i C=\left(-\frac{5}{2},-6\right).

Podaj współrzędne x_A i y_A.

Odpowiedzi:
x_A= (dwie liczby całkowite)

y_A= (dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11233 ⋅ Poprawnie: 197/362 [54%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Odcinek AB jest średnicą okręgu oraz A=(a+2,8) i B=(-7,b+1). Punkt C=(1,-4) jest środkiem tego okręgu.

Wyznacz wartości parametrów a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11220 ⋅ Poprawnie: 183/331 [55%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkt M=\left(-\frac{3m}{2},7\right) jest środkiem odcinka o końcach A=(1,5) i B=(-3,9).

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10232 ⋅ Poprawnie: 10/26 [38%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Dane są punkty P=(-6,-8) i Q=\left(\frac{6}{5},-\frac{32}{5}\right). Punkt R=\left(x-2,y+3\right) dzieli odcinek PQ w taki sposób, że \frac{|PR|}{|RQ|}=\frac{1}{3}.

Wyznacz liczby x i y.

Odpowiedzi:
x= (wpisz liczbę zapisaną dziesiętnie)
y= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pr-10221 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Okręgi o równaniach x^2-4x+y^2+4y+4=0 oraz (x)^2+(y-3)^2=4m^2 (m > 0) są styczne zewnętrznie. Wyznacz liczbę m i zapisz wynik w najprostszej postaci \frac{a+b\sqrt{c}}{d}, gdzie a,b,c,d\in\mathbb{Z}.

Podaj liczby a i c.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
c= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20614 ⋅ Poprawnie: 11/60 [18%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Trzy kolejne wierzchołki równoległoboku mają współrzędne: A=(-2,-6), B=(2,-2) i C=(1,3). Bok CD tego równoległoboku zawarty jest w prostej o równaniu CD:x+by+c=0.

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Oblicz pole powierzchni tego równoległoboku.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20367 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Prosta x+2y-\frac{5}{3}=0 zawiera przekątną AC kwadratu ABCD o obwodzie 16\sqrt{10} i wierzchołku B=\left(5,\frac{25}{3}\right).
Wyznacz A=(x_a,y_a) (odwrotnie do ruchu wskazówek zegara).

Podaj x_a+y_a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Wyznacz D=(x_d,y_d) (odwrotnie do ruchu wskazówek zegara).

Podaj x_d+y_d.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pp-30233 ⋅ Poprawnie: 1/7 [14%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Punkt A=(3,3) jest wierzchołkiem trójkąta ABC. Wysokość BM tego trójkąta zawarta jest w prostej o równaniu x+2y+21=0, natomiast wysokość CN zawarta jest w prostej o równaniu 3x+y+28=0. Wyznacz równanie boku AB:x+by+c=0 tego trójkąta oraz wierzchołek C=(x_c,y_c).

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
 Podaj x_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.4 (1 pkt)
 Podaj y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pr-30292 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Wykres funkcji f(x)=-|x+8|-6 przecina okrąg x^2+y^2+10x+12y+52=0 w punktach A i B.

Podaj długość cięciwy AB.

Odpowiedź:
|AB|= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (2 pkt)
 Podaj odległość środka okręgu od cięciwy AB.
Odpowiedź:
d= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm