Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11251 ⋅ Poprawnie: 222/438 [50%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Prostą k o równaniu y=4x-7 przekształcono przez symetrię względem początku układu współrzędnych i otrzymano prostą l o równaniu y=ax+b.

Podaj współczynniki a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11244 ⋅ Poprawnie: 201/325 [61%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkty A=(-2,-6) i B=(-6,4) są wierzchołkami trójąta równobocznego. Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
P_{\triangle}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11247 ⋅ Poprawnie: 223/443 [50%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Prosta o równaniu -14x+4y+28=0 wraz z osiami układu współrzędnych ogranicza trójkąt.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10199 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
W jednokładności o środku S i skali k=-3 obrazem wektora \overrightarrow{AB} jest wektor \overrightarrow{A'B'}. Wówczas:
Odpowiedzi:
A. |AA'|=3|SA| B. \overrightarrow{AB}=3\overrightarrow{A'B'}
C. wektory \overrightarrow{AB},\overrightarrow{A'B'} są przeciwne D. \overrightarrow{BB'}=4\overrightarrow{BS}
Zadanie 5.  1 pkt ⋅ Numer: pr-10218 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt S=(7,4) jest środkiem okręgu, a do tego okręgu należy punkt o współrzędnych (4,0). Okrąg ten opisany jest równaniem (x-a)^2+(y-b)^2=r^2, gdzie r > 0.

Podaj liczby a, b i r.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
r= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20587 ⋅ Poprawnie: 14/85 [16%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Dla jakich wartości parametru m punkt przecięcia prostych y=-3m+2x+13 oraz m+x+2y-16=0 należy do prostej o równaniu 3x-2y-11=0?

Podaj najmniejsze możliwe m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20399 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
Środkiem okręgu stycznego do osi Ox w punkcie (-1,0) i przechodzącego przez punkt A=(2,9), jest punkt S=(x_s,y_s).

Podaj x_s.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Podaj y_s.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pp-30209 ⋅ Poprawnie: 1/30 [3%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Prosta y=-\frac{1}{5}x-\frac{9}{10} zawiera bok AB równoległoboku ABCD, a prosta y=-7x+\frac{107}{2} zawiera bok AD tego równoległoboku. Przekątne tego równoległoboku przecinają się w punkcie S=\left(\frac{7}{2},-5\right). Wierzchołek C ma współrzędne C=(x_c,y_c) (odwrotnie do ruchu wskazówek zegara).

Podaj y_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Wierzchołek B ma współrzędne B=(x_b,y_b).

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
 Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.4 (1 pkt)
 Przekątna BD tego równoległoboku opisana jest równaniem BD:9x+by+c=0.

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pr-30296 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
Okrąg o:(x-a)^2+(y-b)^2=\left(1\frac{2}{5}\right)^2 przechodzi przez punkty wspólne okręgów x^2-4x+y^2-2y+4=0 i x^2-4x+y^2+8y-1=0.

Podaj najmniejsze możliwe b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Podaj największe możliwe b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm