Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11248 ⋅ Poprawnie: 222/345 [64%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dany jest kwadrat ABCD. Punkty o współrzędnych E=(-4,-2) i F=(-5,4) są środkami dwóch jego boków odpowiednio AB i BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{N}.

Podaj liczby a i b.

Odpowiedź:
d= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11233 ⋅ Poprawnie: 197/362 [54%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Odcinek AB jest średnicą okręgu oraz A=(a+2,8) i B=(-7,b+1). Punkt C=(9,8) jest środkiem tego okręgu.

Wyznacz wartości parametrów a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11231 ⋅ Poprawnie: 201/333 [60%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Środek odcinka o końcach (7,2) i (9,2) należy do prostej o równaniu y+ax=6+6a.

Wyznacz wartość parametru a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10231 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Wierzchołkiem trójkąta równobocznego jest punkt o współrzędnych A=(1,6). Punkt P=(5,6) jest środkiem okręgu opisanego na tym trójkącie. W trójkąt ten wpisano okrąg o równaniu (x-a)^2+(y-b)^2=r^2, gdzie. r > 0.

Podaj liczby a, b i r.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
r= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10220 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Do okręgu o równaniu (x-12)^2+(y-4)^2=5 styczna jest prosta określona równaniem 2x+y+m-27=0.

Wyznacz najmniejszą i największą możliwą wartość parametru m.

Odpowiedzi:
m_{min}= (wpisz liczbę zapisaną dziesiętnie)
m_{max}= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20612 ⋅ Poprawnie: 24/81 [29%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Przekątne rombu o wierzchołkach A=(17,18) i B=(1,5) przecinają się w punkcie S=(5,2).

Oblicz pole powierzchni tego rombu.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Oblicz długość obwodu tego rombu.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20393 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
» Punkty M=(0,2) i N=(2,0) są punktami styczności okręgu i osi układu współrzędnych, zaś prosta k: y=ax+b jest styczną do tego okręgu w punkcie o odciętej równej 1 i tworzy z osią Ox kąt \alpha\in(0^{\circ},90^{\circ}).

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pp-30219 ⋅ Poprawnie: 0/29 [0%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » W trójkącie ABC punkty A=(1,4) i B=(11,4) są końcami przeciwprostokątnej, natomiast punkt C leży na prostej o równaniu x-y+5=0. Wyznacz współrzędne punktu C=(x_c,y_c).

Podaj najmniejsze możliwe y_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj największe możliwe y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.3 (2 pkt)
 Symetralna przeciwprostokątnej wyznaczonego trójkąta o mniejszym polu powierzchni przecięła bok BC w punkcie D=(x_d,y_d).

Podaj y_d.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  5 pkt ⋅ Numer: pr-30358 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Punkt A=(x_a,y_a) jest wierzchołkiem rombu o przekątnej BD opisanej równaniem ax+by+c=0 i polu powierzchni równym P. Punkty B, C i D mają współrzędne B=(x_b,y_b), C=(x_c,y_c), D=(x_d, y_d).

Podaj x_c.

Dane
x_a=3
y_a=10
a=2
b=-1
c=-11
P=102
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (2 pkt)
 Podaj min(x_b, x_d).
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.4 (1 pkt)
 Podaj największe możliwe max(y_b, y_d).
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm