Dany jest kwadrat ABCD. Punkty o współrzędnych
E=(5,-2) i F=(-3,6) są
środkami dwóch jego boków odpowiednio AB i
BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci
a\sqrt{b}, gdzie a,b\in\mathbb{N}.
Podaj liczby a i b.
Odpowiedź:
d=\cdot√
(wpisz dwie liczby całkowite)
Zadanie 2.1 pkt ⋅ Numer: pp-11232 ⋅ Poprawnie: 119/254 [46%]
Punkt A=(12,-4) jest środkiem okręgu o promieniu
2019. Okrąg ten przekształcono przez symetrię
względem osi Oy i otrzymano okrąg o środku w
punkcie A_1.
Oblicz długość odcinka AA_1.
Odpowiedź:
|AA_1|=(wpisz liczbę całkowitą)
Zadanie 4.1 pkt ⋅ Numer: pr-10228 ⋅ Poprawnie: 17/26 [65%]
« Z koła opisanego nierównością
x^2-10x+y^2+4y+20\leqslant 0
wycięto kąt środkowy tego koła o mierze 90^{\circ}.
Oblicz pole powierzchni tego wycinka koła i zapisz wynik w postaci
p\cdot\pi.
Podaj liczbę p.
Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 6.3 pkt ⋅ Numer: pp-20813 ⋅ Poprawnie: 77/334 [23%]
« Dwa wierzchołki trójkąta ABC mają współrzędne
A=(6,-1) i B=(5,2). Trzeci
wierzchołek C tego trójkąta należy do prostej
x=p i jest tak położony, że trójkąt
ABC jest prostokątny.
Wyznacz współrzędne punktu C=(x_c,y_c).
Ile rozwiązań ma to zadanie?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Podaj największe możliwe y_c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
Podaj sumę wszystkich wartości y_c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9.4 pkt ⋅ Numer: pr-30299 ⋅ Poprawnie: 0/0