Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11251 ⋅ Poprawnie: 222/438 [50%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Prostą k o równaniu y=-6x+5 przekształcono przez symetrię względem początku układu współrzędnych i otrzymano prostą l o równaniu y=ax+b.

Podaj współczynniki a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11234 ⋅ Poprawnie: 152/322 [47%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz odległość między prostymi określonymi równaniami y=x-7 i x-y=-6.
Odpowiedź:
d= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11247 ⋅ Poprawnie: 223/443 [50%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Prosta o równaniu 10x-6y+30=0 wraz z osiami układu współrzędnych ogranicza trójkąt.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10224 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oblicz odległość punktu o współrzędnych (-4,6) od prostej o równaniu 2x-y+18=0.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pr-10219 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt S=(-6,9) jest środkiem okręgu, a do tego okręgu należą punkty (-9,12) i (-9,6).

Okrąg ten ma równanie:

Odpowiedzi:
A. (x+6)^2+(y-9)^2=18 B. (x+12)^2+(y-7)^2=18
C. (x+6)^2+(y-7)^2=18 D. (x+12)^2+(y-9)^2=18
Zadanie 6.  2 pkt ⋅ Numer: pp-20595 ⋅ Poprawnie: 32/142 [22%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Proste (m-a+2)x+12y-8=0 i 9x+(m-a-26)y-\frac{7}{2}=0 są prostopadłe.

Podaj najmniejsze możliwe m.

Dane
a=-5
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20402 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
» Okrąg o środku S=(x_s,y_s) jest styczny do prostych 2x+y+10=0 i 2x+y-10=0 i przechodzi przez punkt A=(-3,0).

Podaj najmniejsze możliwe x_s.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Podaj największe możliwe y_s.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pp-30209 ⋅ Poprawnie: 1/30 [3%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Prosta y=-\frac{1}{5}x+\frac{91}{10} zawiera bok AB równoległoboku ABCD, a prosta y=-7x-\frac{9}{2} zawiera bok AD tego równoległoboku. Przekątne tego równoległoboku przecinają się w punkcie S=\left(-\frac{13}{2},7\right). Wierzchołek C ma współrzędne C=(x_c,y_c) (odwrotnie do ruchu wskazówek zegara).

Podaj y_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Wierzchołek B ma współrzędne B=(x_b,y_b).

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
 Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.4 (1 pkt)
 Przekątna BD tego równoległoboku opisana jest równaniem BD:9x+by+c=0.

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pr-30284 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Punkty A=(x_a,y_a), B=(x_b,y_b) i C=(x_c,0) są wierzchołkami trójkąta. Wiedząc, że P_{\triangle ABC}=12, oblicz x_c.

Podaj najmniejsze możliwe x_c.

Dane
x_a=-3
y_a=-3
x_b=1
y_b=3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
 Podaj największe możliwe x_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm