Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11229 ⋅ Poprawnie: 306/476 [64%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Przeciwległe wierzchołki prostokąta maja współrzędne A=(-2,4) i C=(1,-5). Okrąg opisany na tym prostokącie ma obwód długości:
Odpowiedzi:
A. \frac{3\sqrt{10}}{2}\pi B. 6\sqrt{5}\pi
C. 6\sqrt{10}\pi D. 3\sqrt{10}\pi
E. \frac{9\sqrt{10}}{2}\pi F. \frac{3\sqrt{10}}{4}\pi
Zadanie 2.  1 pkt ⋅ Numer: pp-11241 ⋅ Poprawnie: 273/431 [63%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt S=\left(-\frac{7}{4},4\right) jest środkiem odcinka AB, gdzie A=(x_A,y_A) i B=(1,-5).

Podaj współrzedne x_A i y_A.

Odpowiedzi:
x_A= (dwie liczby całkowite)

y_A= (dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11246 ⋅ Poprawnie: 152/291 [52%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Prosta, do której należą punkty A=(-1,38) i B=(-8,-53) przecina oś Ox w punkcie o odciętej x_0.

Podaj x_0.

Odpowiedź:
x_0=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10227 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Równanie y^2-3x^2=0 opisuje na płaszczyźnie:
Odpowiedzi:
A. prostą B. okrąg
C. zbiór pusty D. dwie proste przecinające się pod kątem innym niż prosty
E. punkt F. parabolę
Zadanie 5.  1 pkt ⋅ Numer: pr-10216 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Nierówność 16x^2+16x+y^2-8y+11\leqslant 0 opisuje:
Odpowiedzi:
A. całą płaszczyznę B. dwie przecinające się proste
C. punkt D. koło
E. okrąg F. zbiór pusty
Zadanie 6.  2 pkt ⋅ Numer: pr-20356 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 «« Środkami boków BC, CD i AB równoległoboku ABCD (odwrotnie do ruchu wskazówek zegara) są odpowiednio punkty K=(4,15), L=(0,17) i M=(6,9). Punkt D ma współrzędne D=(x_D,y_D).

Wyznacz współrzedne x_D i y_D.

Odpowiedzi:
x_D= (wpisz liczbę zapisaną dziesiętnie)
y_D= (wpisz liczbę zapisaną dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Punkt A ma współrzędne A=(x_A,y_A).

Wyznacz współrzedne x_A i y_A.

Odpowiedzi:
x_A= (wpisz liczbę zapisaną dziesiętnie)
y_A= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 7.  4 pkt ⋅ Numer: pr-20376 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
« Prosta x-2y+6=0 zawiera jeden z boków rombu ABCD, a wierzchołek A ma współrzędne A=(-2,2). Przekątne tego rombu przecinają się w punkcie O=(1,6). Wierzchołek D ma współrzędne D=(x_D,y_D).

Podaj x_D+y_D.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (2 pkt)
Oblicz P_{ABCD}.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pp-30307 ⋅ Poprawnie: 2/12 [16%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 W układzie współrzędnych punkty A=(x_a,y_a) i B=(x_b,y_b) są wierzchołkami trójkąta ABC. Wierzchołek C tego trójkąta leży na prostej o równaniu y=ax+b. Oblicz współrzędne punktu C=(x_c,y_c), dla którego kąt ABC jest prosty.

Podaj najmniejsze możliwe x_c.

Dane
x_a=8
y_a=9
x_b=14
y_b=11
a=2
b=1
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (2 pkt)
 Podaj najmniejsze możliwe y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pr-30300 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Prosta a_1x+b_1y+c_1=0 przecina okrąg x^2+y^2+ax+by+c=0 w punktach A i B. Przez punkty A i B poprowadzono dwie styczne do tego okręgu, które przecięły się w punkcie C. Wyznacz środek okręgu S=(x_s,y_s) opisanego na trójkącie ABC.

Podaj x_s.

Dane
a_1=1
b_1=-2
c_1=12
a=-6
b=-18
c=81
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj y_s.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (2 pkt)
 Wyznacz długość promienia okręgu opisanego na trójkącie ABC.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm