Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11230 ⋅ Poprawnie: 183/268 [68%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Zapisz długość okręgu o środku w punkcie S=(-3,-5), do którego należy punkt o współrzędnych A=(-2,5) w postaci p\cdot\pi.

Podaj liczbę p.

Odpowiedź:
p= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11233 ⋅ Poprawnie: 197/362 [54%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Odcinek AB jest średnicą okręgu oraz A=(a+2,8) i B=(-7,b+1). Punkt C=(1,-8) jest środkiem tego okręgu.

Wyznacz wartości parametrów a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11540 ⋅ Poprawnie: 81/149 [54%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkty o współrzędnych K=(5,-5) oraz L=(-9,-3) są środkami dwóch sąsiednich boków kwadratu.

Oblicz pole powierzchni tego kwadratu.

Odpowiedź:
P_{\square}= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10199 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
W jednokładności o środku S i skali k=-3 obrazem wektora \overrightarrow{AB} jest wektor \overrightarrow{A'B'}. Wówczas:
Odpowiedzi:
A. wektory \overrightarrow{AB},\overrightarrow{A'B'} są przeciwne B. \overrightarrow{BB'}=4\overrightarrow{BS}
C. |AA'|=3|SA| D. \overrightarrow{AB}=3\overrightarrow{A'B'}
Zadanie 5.  1 pkt ⋅ Numer: pr-10209 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Okrąg o równaniu (x-a)^2+(y-b)^2=r^2, gdzie r > 0, jest styczny do osi układu w punktach o współrzędnych (7,0) i (0,-7).

Podaj wartości parametrów a, b i r.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
r= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20610 ⋅ Poprawnie: 6/23 [26%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Prosta o równaniu 4x+by+c=0 zawiera przekątną BD rombu o wierzchołkach A=(4,-10) i C=(0,-3).

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20386 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Okrąg o_2 jest symetryczny do okręgu o_1:x^2+y^2+20x-2y+76=0 względem punktu P=(-19,2). Wyznacz środek S=(x_S,y_S) okręgu o_2.

Podaj x_S.

Odpowiedź:
x_S= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj y_S.
Odpowiedź:
y_S= (wpisz liczbę całkowitą)
Zadanie 8.  4 pkt ⋅ Numer: pr-30261 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
 » W prostokącie ABCD dane są: C=(-3,7), \overrightarrow{AB}=[4,4] oraz prosta y=x+4, do której należy wierzchołek A tego prostokąta. Wyznacz równanie przekątnej AC:y=cx+d.

Podaj c.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Podpunkt 8.2 (2 pkt)
 Podaj d.
Odpowiedź:
d= (wpisz liczbę całkowitą)
Zadanie 9.  4 pkt ⋅ Numer: pr-30303 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
» Punkty M=(-2,0) i N=(0,2) są punktami styczności okręgu z osiami układu współrzędnych. Prosta k, która jest wykresem funkcji malejącej, jest styczną do tego okręgu w punkcie o odciętej równiej -1.
Wyznacz równanie prostej k:y=ax+b.

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm