Bok trójkąta zawiera się w prostej o równaniu 2x+3y-5=0. W
trójkąt ten wpisano okrąg o środku w punkcie o współrzednych (3,1).
Prosta o równaniu 3x-2y+m=0 zawiera inny bok tego trójkąta.
Wyznacz największą możliwą wartość parametru m.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 5.1 pkt ⋅ Numer: pr-10213 ⋅ Poprawnie: 0/0
Punkty A=(0,-2) i B=(-3,4)
wyznaczają podstawę trójkąta równoramiennego ABC.
Prosta o równaniu y=x-2 zawiera bok
AC tego trójkąta. Wyznacz
C=(x_c, y_c).
Podaj x_c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Podaj y_c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.3 (2 pkt)
Oś symetrii tego trójkąta ma równanie y=ax+b.
Podaj b.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9.4 pkt ⋅ Numer: pr-30287 ⋅ Poprawnie: 0/0
Dane są punkty A=(-3,1),
B=(1,3), C=(-1,5) i
D=(-4,7). Prosta k
przechodzi przez punkt D oraz
k\perp AB. Punkt
P=(x_p,y_p) należy do prostej
k i zachodzi równość pól
P_{\triangle ABC}=P_{\triangle ABP}.
Podaj największe możliwe x_p.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Podaj największe możliwe y_p.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat