Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11240 ⋅ Poprawnie: 334/469 [71%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt S=(4,-2) jest środkiem odcinka AC, gdzie A=(x_A,y_A) i C=\left(-\frac{3}{2},4\right).

Podaj współrzędne x_A i y_A.

Odpowiedzi:
x_A= (dwie liczby całkowite)

y_A= (dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11242 ⋅ Poprawnie: 467/632 [73%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Punkt C=(-2m,y_C) jest środkiem odcinka o końcach A=(-2,-3) i B=(4,-1).

Zatem liczba m jest równa:

Odpowiedzi:
A. 1 B. \frac{1}{2}
C. -\frac{1}{2} D. -1
Zadanie 3.  1 pkt ⋅ Numer: pp-11223 ⋅ Poprawnie: 388/630 [61%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Środkiem odcinka o końcach A=(0,2a) i B=(6b,-1) jest punkt C=(6,-3).

Wyznacz wartości parametrów a i b.

Odpowiedzi:
a= (dwie liczby całkowite)

b= (dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10225 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oblicz odległość punktu o współrzędnych (-1,0) od prostej o równaniu 2x-y-3=0.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pr-10222 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Ustal, ile jest okręgów o promieniu 1, które są styczne do prostej o równaniu y=4 i okręgu o równaniu x^2+8x+y^2-16y+70=0?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20631 ⋅ Poprawnie: 33/187 [17%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 «« Wierzchołkami trójkąta są punkty A=(5,-6), B=(13,-4) i C=(0,5), a punkt D jest środkiem boku AB. Wyznacz równanie prostej CD: y=ax+b.

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  4 pkt ⋅ Numer: pr-20361 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 «« W rombie o polu 300 punkt S=(7, 2) jest punktem przecięcia przekątnych, a punkt A=(6,-5) jednym z wierzchołków tego rombu. Wyznacz pozostałe wierzchołki.

Punkty B=(x_B,y_B) i D=(x_D,y_D) są dwoma przeciwległymi wierzchołkami tego rombu (odwrotnie do ruchu wskazówek zegara).

Podaj min(x_B, x_D).

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (2 pkt)
 Podaj max(x_B, x_D).
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pp-30227 ⋅ Poprawnie: 2/17 [11%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 » Punkty A=(x_a,y_a), B=(x_b,y_b) i C=(x_c,0) są wierzchołkami trójkąta ABC, przy czym P_{\triangle ABC}=49.

Podaj najmniejsze możliwe x_c.

Dane
x_a=7
y_a=-8
x_b=16
y_b=-18
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (2 pkt)
 Podaj największe możliwe x_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pr-30285 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
« Punkt C trójkąta o wierzchołkach A=(-1,1) i B=(2,2) należy do prostej x-y+4=0, zaś pole trójkąta ABC wynosi 5.

Podaj najmniejszą możliwą rzędną punktu C.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Podaj największą możliwą odciętą punktu C.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm