Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11240 ⋅ Poprawnie: 334/469 [71%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt S=(-5,-2) jest środkiem odcinka AC, gdzie A=(x_A,y_A) i C=\left(\frac{1}{2},3\right).

Podaj współrzędne x_A i y_A.

Odpowiedzi:
x_A= (dwie liczby całkowite)

y_A= (dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11228 ⋅ Poprawnie: 154/267 [57%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Obwód L rombu o sąsiednich wierzchołkach A=(-7,-3) i B=(2,4) spełnia nierówność m\leqslant L\lessdot m+1, gdzie m\in\mathbb{Z}.

Wyznacz liczbę m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11231 ⋅ Poprawnie: 201/333 [60%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Środek odcinka o końcach (-3,-9) i (-1,-9) należy do prostej o równaniu y+ax=-5-4a.

Wyznacz wartość parametru a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10227 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Równanie y^2-3x^2=0 opisuje na płaszczyźnie:
Odpowiedzi:
A. punkt B. zbiór pusty
C. dwie proste przecinające się pod kątem innym niż prosty D. dwie proste prostopadłe
E. okrąg F. parabolę
Zadanie 5.  1 pkt ⋅ Numer: pr-10222 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Ustal, ile jest okręgów o promieniu 1, które są styczne do prostej o równaniu y=-9 i okręgu o równaniu x^2+10x+y^2+10y+40=0?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20596 ⋅ Poprawnie: 34/206 [16%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Prosta x+b_1y+c_1=0 jest równoległa do prostej a_2x+b_2y+c_2=0 i przechodzi przez punkt A=(x_A,y_A).

Podaj c_1.

Dane
x_A=-2
y_A=-8
a_2=3
b_2=-4
c_2=-16
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  4 pkt ⋅ Numer: pr-20370 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
« Odcinek o długości 4 zawarty jest w prostej o równaniu 3x-4y-22=0. Symetralna tego odcinka przecięła oś Oy w punkcie A=(0,2). Wyznacz współrzedne końców tego odcinka.

Podaj sumę odciętej i rzędnej tego punktu, który ma obie współrzędne całkowite.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Podaj odciętą drugiego z punktów.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.3 (1 pkt)
Podaj rzędną drugiego z punktów.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pp-30222 ⋅ Poprawnie: 2/4 [50%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Punkty A=(-4,-11) i B=(-7,-5) wyznaczają podstawę trójkąta równoramiennego ABC. Prosta o równaniu y=x-7 zawiera bok AC tego trójkąta. Wyznacz C=(x_c, y_c).

Podaj x_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.3 (2 pkt)
 Oś symetrii tego trójkąta ma równanie y=ax+b.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pr-30303 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
» Punkty M=(-2,0) i N=(0,2) są punktami styczności okręgu z osiami układu współrzędnych. Prosta k, która jest wykresem funkcji malejącej, jest styczną do tego okręgu w punkcie o odciętej równiej -1.
Wyznacz równanie prostej k:y=ax+b.

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm