Dany jest kwadrat ABCD. Punkty o współrzędnych
E=(1,1) i F=(6,-4) są
środkami dwóch jego boków odpowiednio AB i
BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci
a\sqrt{b}, gdzie a,b\in\mathbb{N}.
Podaj liczby a i b.
Odpowiedź:
d=\cdot√
(wpisz dwie liczby całkowite)
Zadanie 2.1 pkt ⋅ Numer: pp-11511 ⋅ Poprawnie: 542/919 [58%]
Punkt S=(-3,5) jest środkiem okręgu, a do tego okręgu
należy punkt o współrzędnych (-6,1). Okrąg ten opisany jest
równaniem (x-a)^2+(y-b)^2=r^2, gdzie
r > 0.
Podaj liczby a, b i
r.
Odpowiedzi:
a
=
(wpisz liczbę całkowitą)
b
=
(wpisz liczbę całkowitą)
r
=
(wpisz liczbę całkowitą)
Zadanie 6.2 pkt ⋅ Numer: pr-20356 ⋅ Poprawnie: 0/0
«« Środkami boków BC,
CD i AB równoległoboku
ABCD (odwrotnie do ruchu wskazówek zegara) są
odpowiednio punkty K=(-7,9), L=(-11,11) i
M=(-5,3). Punkt D ma
współrzędne D=(x_D,y_D).
Wyznacz współrzedne x_D i y_D.
Odpowiedzi:
x_D
=
(wpisz liczbę zapisaną dziesiętnie)
y_D
=
(wpisz liczbę zapisaną dziesiętnie)
Podpunkt 6.2 (1 pkt)
Punkt A ma
współrzędne A=(x_A,y_A).
Wyznacz współrzedne x_A i y_A.
Odpowiedzi:
x_A
=
(wpisz liczbę zapisaną dziesiętnie)
y_A
=
(wpisz liczbę zapisaną dziesiętnie)
Zadanie 7.2 pkt ⋅ Numer: pr-20405 ⋅ Poprawnie: 0/0
« Wyznacz zbiór tych wszystkich wartości parametru
m\in\mathbb{R}, dla których okręgi
(x-a+5)^2+(y+m-a-b)^2=16 i
(x-2m+a)^2+(y+m-a-b)^2=9 przecinają się w dwóch
różnych punktach.
Rozwiazanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z tych
wszystkich końców tych przedziałów, które są liczbami.
Dane
a=-5 b=1
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Podaj największy z tych wszystkich końców tych przedziałów, które są liczbami.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 9.3 (2 pkt)
Podaj długość rozwiązania, czyli łączną długość tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat