Dany jest kwadrat ABCD. Punkty o współrzędnych
E=(4,1) i F=(-1,-5) są
środkami dwóch jego boków odpowiednio AB i
BC. Zapisz długość przekątnej tego kwadratu w najprostszej postaci
a\sqrt{b}, gdzie a,b\in\mathbb{N}.
Podaj liczby a i b.
Odpowiedź:
d=\cdot√
(wpisz dwie liczby całkowite)
Zadanie 2.1 pkt ⋅ Numer: pp-11232 ⋅ Poprawnie: 119/254 [46%]
Punkt A=(10,3) jest środkiem okręgu o promieniu
2020. Okrąg ten przekształcono przez symetrię
względem osi Oy i otrzymano okrąg o środku w
punkcie A_1.
Oblicz długość odcinka AA_1.
Odpowiedź:
|AA_1|=(wpisz liczbę całkowitą)
Zadanie 4.1 pkt ⋅ Numer: pr-10232 ⋅ Poprawnie: 10/26 [38%]
« Dane są punkty P=(-1,-3) i
Q=\left(\frac{31}{5},-\frac{7}{5}\right).
Punkt R=\left(x-2,y+3\right) dzieli odcinek
PQ w taki sposób, że
\frac{|PR|}{|RQ|}=\frac{1}{3}.
Wyznacz liczby x i y.
Odpowiedzi:
x
=
(wpisz liczbę zapisaną dziesiętnie)
y
=
(wpisz liczbę zapisaną dziesiętnie)
Zadanie 5.1 pkt ⋅ Numer: pr-10208 ⋅ Poprawnie: 0/0
» Dane są trzy kolejne wierzchołki trapezu
A=(7,-2), B=(11,10) i
C=(4,8), w którym
kąt przy wierzchołku A jest prosty. Punkt
D ma współrzędne
D=(x_d, y_d), a prosta zawierająca bok AD
opisana jest równaniem x+by+c=0
Podaj c.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Podaj x_d.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.4 (1 pkt)
Oblicz pole powierzchni tego trapezu.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9.4 pkt ⋅ Numer: pr-30294 ⋅ Poprawnie: 0/0
« Punkty A=(15,11) i
B=(-15,-13) są kolejnymi wierzchołkami czworokąta
ABCD, który jest wpisany w okrąg. Przekątna
AC:y=x-4 tego czworokąta jest jego jedyną osią
symetrii.
Wyznacz C=(x_C,y_C).
Odpowiedzi:
x_C
=
(dwie liczby całkowite)
y_C
=
(dwie liczby całkowite)
Podpunkt 9.2 (2 pkt)
Wyznacz D=(x_D,y_D).
Odpowiedzi:
x_D
=
(wpisz liczbę całkowitą)
y_D
=
(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat