Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11251 ⋅ Poprawnie: 222/438 [50%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Prostą k o równaniu y=-6x+2 przekształcono przez symetrię względem początku układu współrzędnych i otrzymano prostą l o równaniu y=ax+b.

Podaj współczynniki a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11243 ⋅ Poprawnie: 166/304 [54%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkty A=(1,1) i B=(-5,2) są wierzchołkami trójąta równobocznego.

Oblicz wysokość tego trójkąta.

Odpowiedź:
h= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11221 ⋅ Poprawnie: 71/162 [43%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Punkty A=(2,0), B=(5,0) i C=(4,3) są wierzchołkami trójkąta. Zbiór wszystkich punktów M należacych do trójkąta ABC spełniających warunek |MA|\leqslant |MB| jest:
Odpowiedzi:
A. trójkątem ostrokątnym B. czworokątem
C. trójkątem prostokątnym D. wycinkiem koła
Zadanie 4.  1 pkt ⋅ Numer: pr-10232 ⋅ Poprawnie: 10/26 [38%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Dane są punkty P=(-5,-3) i Q=\left(\frac{11}{5},-\frac{7}{5}\right). Punkt R=\left(x-2,y+3\right) dzieli odcinek PQ w taki sposób, że \frac{|PR|}{|RQ|}=\frac{1}{3}.

Wyznacz liczby x i y.

Odpowiedzi:
x= (wpisz liczbę zapisaną dziesiętnie)
y= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pr-10214 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Okręgi x^2+2x+y^2-10y+22=0 i (x-2)^2+(y-3)^2=1:
Odpowiedzi:
A. mają dokładnie dwa punkty wspólne B. są rozłączne
C. są styczne wewnętrznie D. są styczne zewnętrznie
Zadanie 6.  2 pkt ⋅ Numer: pp-20600 ⋅ Poprawnie: 17/135 [12%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Prosta k:ax+by+c=0 względem punktu A=(x_a,y_a) jest tak położona, że d(A, k)=15. Wyznacz c.

Podaj najmniejsze możliwe c.

Dane
x_a=1
y_a=5
a=4
b=-3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj największe możliwe c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20378 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Proste o równaniach a_1x+b_1y+c_1=0, a_2x+b_2y+c_2=0 i a_3x+b_3y+c_3=0 zawierają boki trójkąta.

Oblicz pole powierzchni tego trójkąta.

Dane
a_1=3
b_1=-1
c_1=-9
a_2=2
b_2=1
c_2=-6
a_3=1
b_3=1
c_3=-7
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pp-30210 ⋅ Poprawnie: 1/30 [3%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Dane są trzy kolejne wierzchołki trapezu A=(3,-2), B=(7,10) i C=(0,8), w którym kąt przy wierzchołku A jest prosty. Punkt D ma współrzędne D=(x_d, y_d), a prosta zawierająca bok AD opisana jest równaniem x+by+c=0

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj x_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.4 (1 pkt)
 Oblicz pole powierzchni tego trapezu.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  5 pkt ⋅ Numer: pr-30297 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
Punkty A=(5,0) i B=(-2,-1) należą do okręgui, którego środek leży na prostej y+4=0. Wyznacz równanie kanoniczne (x-a)^2+(y-b)^2=r^2tego okręgu.

Podaj a+b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Podaj r.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (2 pkt)
Prosta k:y=ax+b jest prostopadła do prostej AB i oddalona od punktu (4,-4) o \sqrt{2}.

Podaj najmniejsze możliwe b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm