Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11437 ⋅ Poprawnie: 355/474 [74%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Punkt o współrzędnych oraz punkty A=(-2,4), B i C są wierzchołkami trójkąta równoramiennego o podstawie AB, a punkt D=(0,5) jest spodkiem wysokości tego trójkąta opuszczonej z wierzchołka C. Wówczas punkt B ma współrzędne B=(x_B, y_B).

Wyznacz współrzędne x_B i y_B.

Odpowiedzi:
x_B= (wpisz liczbę całkowitą)
y_B= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11241 ⋅ Poprawnie: 273/431 [63%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt S=\left(\frac{5}{4},4\right) jest środkiem odcinka AB, gdzie A=(x_A,y_A) i B=(-1,3).

Podaj współrzedne x_A i y_A.

Odpowiedzi:
x_A= (dwie liczby całkowite)

y_A= (dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11221 ⋅ Poprawnie: 71/162 [43%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Punkty A=(2,0), B=(5,0) i C=(4,3) są wierzchołkami trójkąta. Zbiór wszystkich punktów M należacych do trójkąta ABC spełniających warunek |MA|\leqslant |MB| jest:
Odpowiedzi:
A. trójkątem ostrokątnym B. trójkątem prostokątnym
C. czworokątem D. wycinkiem koła
Zadanie 4.  1 pkt ⋅ Numer: pr-10227 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Równanie y^2-4x^2=0 opisuje na płaszczyźnie:
Odpowiedzi:
A. punkt B. dwie proste prostopadłe
C. okrąg D. dwie proste przecinające się pod kątem innym niż prosty
E. prostą F. parabolę
Zadanie 5.  1 pkt ⋅ Numer: pr-10214 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Okręgi x^2+16x+y^2+12y+96=0 i (x+5)^2+(y+8)^2=1:
Odpowiedzi:
A. są styczne zewnętrznie B. są rozłączne
C. mają dokładnie dwa punkty wspólne D. są styczne wewnętrznie
Zadanie 6.  2 pkt ⋅ Numer: pp-20629 ⋅ Poprawnie: 6/15 [40%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Punkt A=(0,4) należy do prostych k i l. Prosta l wraz z osiami układu ogranicza trójkąt o polu 14, zaś prosta k trójkąt o polu 25. Proste te przecinają dodatnią półoś Ox w punktach P i Q.

Oblicz pole trójkąta o wierzchołkach w punktach A, P i Q.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20371 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Prosta 3x-4y+c_1=0 zawiera bok CD kwadratu ABCD (odwrotnie do ruchu wskazówek zegara, przy czym odcięta punktu C jest mniejsza od odciętej punktu D) o polu powierzchni P_{\Box ABCD}=4. Wyznacz równanie prostej AB:x+b_2y+c_2=0

Podaj b_2.

Dane
c_1=-8
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj c_2.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pp-30211 ⋅ Poprawnie: 0/4 [0%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Prosta x+2y+15=0 zawiera podstawę trapezu równoramiennego AB, a prosta 2x-y+5=0 jest osią symetrii tego trapezu. Wierzchołki trapezu mają współrzędne: A=(-1,-7), B=(x_b,y_b), D=(0,-5), zaś prosta zawierająca bok CD równanie CD:y=ax+b.

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
 Podaj a.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.4 (1 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pr-30279 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
Punkty A i C, których współrzędne spełniają układ rówńań \begin{cases} 2x+y+1=0 \\ y=x^2-9 \end{cases} wyznaczają jedną z przekątnych rombu o polu powierzchni P_{ABCD}=30. Oblicz B=(x_B,y_B) i D=(x_D,y_D).

Podaj x_B+x_D.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Podaj y_B+y_D.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm