Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11224 ⋅ Poprawnie: 125/231 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Pole powierzchni trójkąta o wierzchołkach K=(8,-1), L=(13,-6) i M=(13,2) jest równe P.

Oblicz długość boku kwadratu o polu powierzchni P.

Odpowiedź:
a= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11243 ⋅ Poprawnie: 166/304 [54%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkty A=(6,-2) i B=(5,-3) są wierzchołkami trójąta równobocznego.

Oblicz wysokość tego trójkąta.

Odpowiedź:
h= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11245 ⋅ Poprawnie: 86/163 [52%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkt A=(14,-5) jest środkiem okręgu o promieniu 2024. Okrąg ten przekształcono przez symetrię względem osi Oy i otrzymano okrąg o środku w punkcie A_1.

Oblicz długość odcinka AA_1.

Odpowiedź:
|AA_1|= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10229 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Bok trójkąta zawiera się w prostej o równaniu 2x+3y+3=0. W trójkąt ten wpisano okrąg o środku w punkcie o współrzednych (8,-5). Prosta o równaniu 3x-2y+m=0 zawiera inny bok tego trójkąta.

Wyznacz największą możliwą wartość parametru m.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pr-10215 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
Okrąg (x+1)^2+y^2=r^2 (r > 0) przecina prostą x=-3 w dwóch punktach. Zatem:
Odpowiedzi:
A. 1 \lessdot r \lessdot 2 B. r=2
C. r=1 D. r \lessdot 2
E. 0 \lessdot r \lessdot 1 F. r > 2
Zadanie 6.  2 pkt ⋅ Numer: pp-20606 ⋅ Poprawnie: 7/62 [11%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Środkiem odcinka o końcach A=(x-2,0) i B=(0,3y) jest punkt P=(9,-3).

Podaj najmniejsze możliwe x.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj największe możliwe y.
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20368 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
» Proste x+y-1=0 i x-\sqrt{3}y=0 przecinają się pod kątem ostrym \alpha.

Podaj \alpha.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pp-30229 ⋅ Poprawnie: 0/8 [0%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Proste o równaniach AB:3x+y-15=0, BC:7x+3y-55=0 i AC:x+3y-13=0 wyznaczają trójkąt ABC. Symetralna boku AB ma równanie x+by+c=0.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
 Punkt S=(x_s,y_s) jest środkiem okręgu opisanego na trójkącie ABC.

Podaj x_s.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.4 (1 pkt)
 Podaj y_s.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  5 pkt ⋅ Numer: pr-30358 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Punkt A=(x_a,y_a) jest wierzchołkiem rombu o przekątnej BD opisanej równaniem ax+by+c=0 i polu powierzchni równym P. Punkty B, C i D mają współrzędne B=(x_b,y_b), C=(x_c,y_c), D=(x_d, y_d).

Podaj x_c.

Dane
x_a=3
y_a=4
a=2
b=-1
c=-17
P=102
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (2 pkt)
 Podaj min(x_b, x_d).
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.4 (1 pkt)
 Podaj największe możliwe max(y_b, y_d).
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm