Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11240 ⋅ Poprawnie: 334/469 [71%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt S=(-1,-1) jest środkiem odcinka AC, gdzie A=(x_A,y_A) i C=\left(-\frac{3}{2},2\right).

Podaj współrzędne x_A i y_A.

Odpowiedzi:
x_A= (dwie liczby całkowite)

y_A= (dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11242 ⋅ Poprawnie: 467/632 [73%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Punkt C=(-2m,y_C) jest środkiem odcinka o końcach A=(-4,1) i B=(5,-1).

Zatem liczba m jest równa:

Odpowiedzi:
A. \frac{1}{2} B. -\frac{1}{4}
C. -\frac{1}{2} D. \frac{1}{4}
Zadanie 3.  1 pkt ⋅ Numer: pp-11246 ⋅ Poprawnie: 152/291 [52%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Prosta, do której należą punkty A=(46,39) i B=(29,5) przecina oś Ox w punkcie o odciętej x_0.

Podaj x_0.

Odpowiedź:
x_0=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10196 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Punkty o współrzędnych A=(1,-6), B=(6,-6), C=(9,-2) i D=(4,-2) są wierzchołkami rombu.

Okrąg wpisany w ten romb ma równanie:

Odpowiedzi:
A. (x-5)^2+(y+4)^2=2 B. (x+3)^2+(y+8)^2=4
C. (x+3)^2+(y+8)^2=2 D. (x-5)^2+(y+4)^2=4
Zadanie 5.  1 pkt ⋅ Numer: pr-10215 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
Okrąg (x+1)^2+y^2=r^2 (r > 0) przecina prostą x=-3 w dwóch punktach. Zatem:
Odpowiedzi:
A. r=2 B. 1 \lessdot r \lessdot 2
C. r=1 D. r \lessdot 2
E. r > 2 F. 0 \lessdot r \lessdot 1
Zadanie 6.  2 pkt ⋅ Numer: pr-20356 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 «« Środkami boków BC, CD i AB równoległoboku ABCD (odwrotnie do ruchu wskazówek zegara) są odpowiednio punkty K=(-3,2), L=(-7,4) i M=(-1,-4). Punkt D ma współrzędne D=(x_D,y_D).

Wyznacz współrzedne x_D i y_D.

Odpowiedzi:
x_D= (wpisz liczbę zapisaną dziesiętnie)
y_D= (wpisz liczbę zapisaną dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Punkt A ma współrzędne A=(x_A,y_A).

Wyznacz współrzedne x_A i y_A.

Odpowiedzi:
x_A= (wpisz liczbę zapisaną dziesiętnie)
y_A= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20382 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Dany jest okrąg o:x^2+y^2+(6-2\sqrt{3}),x-4y+7-6\sqrt{3}=0.

Podaj długość promienia tego okręgu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Wyznacz środek S=(x_s,y_s)tego okręgu.

Podaj x_s+y_s.

Odpowiedź:
x_s+y_s= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 8.  4 pkt ⋅ Numer: pp-30218 ⋅ Poprawnie: 1/11 [9%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Punkty B=(2,3) i C=(2,-5) są dwoma wierzchołkami trójkąta prostokątnego ABC o kącie prostym przy wierzchołku A. Przyprostokątna AC zawiera się w prostej x-2y-12=0. Oblicz współrzędne punktu A=(x_a,y_a).

Podaj x_a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj y_a.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
 Podaj |AC|.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.4 (1 pkt)
 Prosta y=ax+b zawiera środkową AD tego trójkąta.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pr-30276 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
» W trójkącie prostokątnym ABC kąt przy wierzchołku A=(4,6) jest prosty oraz |AB|=|AC|. Bok BC tego trójkąta zawiera się w prostej o równaniu 2x+y-20=0. Wyznacz współrzędne pozostałych wierzchołków trójkąta B=(x_b,y_b) i C=(x_c,y_c) (odwrotnie do ruchu wskazówek zegara).

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Podaj x_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm