Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11240 ⋅ Poprawnie: 334/469 [71%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt S=(4,6) jest środkiem odcinka AC, gdzie A=(x_A,y_A) i C=\left(\frac{3}{2},-2\right).

Podaj współrzędne x_A i y_A.

Odpowiedzi:
x_A= (dwie liczby całkowite)

y_A= (dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11242 ⋅ Poprawnie: 467/632 [73%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Punkt C=(-2m,y_C) jest środkiem odcinka o końcach A=(-6,0) i B=(5,-4).

Zatem liczba m jest równa:

Odpowiedzi:
A. -\frac{1}{4} B. \frac{1}{2}
C. \frac{1}{4} D. -\frac{1}{2}
Zadanie 3.  1 pkt ⋅ Numer: pp-11221 ⋅ Poprawnie: 71/162 [43%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Punkty A=(2,0), B=(5,0) i C=(4,3) są wierzchołkami trójkąta. Zbiór wszystkich punktów M należacych do trójkąta ABC spełniających warunek |MA|\leqslant |MB| jest:
Odpowiedzi:
A. czworokątem B. trójkątem ostrokątnym
C. wycinkiem koła D. trójkątem prostokątnym
Zadanie 4.  1 pkt ⋅ Numer: pr-10226 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Równanie x^2+12x=y^2-36 opisuje na płaszczyźnie
Odpowiedzi:
A. punkt B. parabolę
C. prostą D. okrąg
E. dwie proste F. zbiór pusty
Zadanie 5.  1 pkt ⋅ Numer: pr-10208 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dana jest prosta 3x-4y+52=0. Który z okręgów jest styczny do tej prostej:
Odpowiedzi:
A. (x+8)^2+(y-4)^2=3 B. (x+8)^2+(y-3)^2=3
C. (x+7)^2+(y-4)^2=9 D. (x+8)^2+(y-3)^2=9
Zadanie 6.  2 pkt ⋅ Numer: pp-20593 ⋅ Poprawnie: 170/416 [40%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Proste (m+a)x-y=3 i y=(m-a)x+\sqrt{2} są prostopadłe.

Podaj najmniejsze możliwe m.

Dane
a=8
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20408 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Odcinki AB i CD o końcach A=(x_a,y_a), B=(x_b,y_b), C=(x_c,y_c) i D=(x_d,y_d) są jednokładne w jednokładności J. Wyznacz środek i skalę tej jednokładności.

Podaj największą możliwą skalę jednokładności J.

Dane
x_a=-9
y_a=2
x_b=-7
y_b=6
x_c=-3
y_c=0
x_d=0
y_d=6
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Punkt S=(x_s,y_s) jest środkiem tej jednokładności w skali ujemnej.

Podaj x_s.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pp-30224 ⋅ Poprawnie: 0/13 [0%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » W prostej o równaniu 3x-4y+7=0 zawiera się przeciwprostokątna AB trójkąta ABC, przy czym A=(-5,-2), C=(-2,2) oraz B=(x_b,y_b). Prosta o równaniu 3x+by+c=0 zawiera bok BC tego trójkąta.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
 Podaj x_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.4 (1 pkt)
 Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pr-30288 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
« Dwa kolejne wierzchołki równoległoboku KLMN (odwrotnie do ruchu wskazówek zegara) mają współrzędne K=(2,1) i L=(1,-2), a jego pole powierzchni wynosi 26. Przekątne tego równoległoboku przecinają się w punkcie O należącym do prostej x+y-4=0. Wiedząc, że punkt O ma obie współrzędne całkowite, wyznacz współrzędne punktu M=(x_M,y_M).

Podaj x_M.

Odpowiedź:
x_M= (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Podaj y_M.
Odpowiedź:
y_M= (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm