Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11224 ⋅ Poprawnie: 125/231 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Pole powierzchni trójkąta o wierzchołkach K=(8,0), L=(13,-5) i M=(13,3) jest równe P.

Oblicz długość boku kwadratu o polu powierzchni P.

Odpowiedź:
a= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11537 ⋅ Poprawnie: 41/82 [50%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 (1 pkt) Obrazami punktów o współrzędnych A=(28,-4) oraz B=(-6,-8) w symetrii środkowej względem punktu O=(0,0) są punkty odpowiednio A' i B'. Środek odcinka A'B' ma współrzędne S=(x_S, y_S).

Podaj współrzędne x_S i y_S.

Odpowiedzi:
x_S= (wpisz liczbę całkowitą)
y_S= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11245 ⋅ Poprawnie: 86/163 [52%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkt A=(14,-2) jest środkiem okręgu o promieniu 2020. Okrąg ten przekształcono przez symetrię względem osi Oy i otrzymano okrąg o środku w punkcie A_1.

Oblicz długość odcinka AA_1.

Odpowiedź:
|AA_1|= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pr-10232 ⋅ Poprawnie: 10/26 [38%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Dane są punkty P=(1,-5) i Q=\left(\frac{41}{5},-\frac{17}{5}\right). Punkt R=\left(x-2,y+3\right) dzieli odcinek PQ w taki sposób, że \frac{|PR|}{|RQ|}=\frac{1}{3}.

Wyznacz liczby x i y.

Odpowiedzi:
x= (wpisz liczbę zapisaną dziesiętnie)
y= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pr-10210 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
Punkty (22,17), (20,15) i (20,17) należą do okręgu. Okrąg ten ma równanie:
Odpowiedzi:
A. x^2-42x+y^2-32y+695=0 B. x^2-40x+y^2-32y+655=0
C. x^2-40x+y^2-34y+645=0 D. x^2-42x+y^2-34y+729=0
Zadanie 6.  2 pkt ⋅ Numer: pp-20604 ⋅ Poprawnie: 3/13 [23%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Punkt C=(x_c,y_c) jest punktem przecięcia prostej x+y+c=0 z odcinkiem o końcach A=(x_a,y_a) i B=(x_b,y_b).

Podaj \frac{|AC|}{|CB|}.

Dane
x_a=-1
y_a=-1
x_b=5
y_b=3
c=-4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20383 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Okrąg o:x^2+y^2+ax+by+c=0 ma środek w punkcie S=(-3,3) i przechodzi przez punkt A=(3,9).

Podaj b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 8.  3 pkt ⋅ Numer: pp-30225 ⋅ Poprawnie: 1/5 [20%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Wysokość opuszczona z wierzchołka C trójkąta równoramiennego ABC o podstawie AB zawiera się w prostej x+2y-26=0. Wiadomo, że A=(1,-15) i C=(4,11). Podstawa AB tego trójkata zawiera się w prostej o równaniu ax+y+c=0.

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
 Oblicz P_{\triangle ABC}.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pr-30308 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wyznacz zbiór tych wszystkich wartości parametru m\in\mathbb{R}, dla których okręgi (x-m-2a)^2+(y+2-b)^2=20 i (x+1-a)^2+(y-2m-2a-b)^2=5 są styczne wewnętrznie.

Podaj najmniejsze możliwe m.

Dane
a=6
b=-1
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Dla najmniejszej możliwej wartości m okręgi są styczne w punkcie P=(x_p,y_p).

Podaj x_p.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
 Podaj y_p.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.4 (1 pkt)
 Podaj największe możliwe m, dla którego okręgi są styczne wewnętrznie.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm