Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-geom-analit-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11417 ⋅ Poprawnie: 535/1040 [51%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Punkty o współrzędnych A=(-3,-1) i C=(12,-9) są przeciwległymi wierzchołkami kwadratu, na którym opisano okrąg. Zapisz długość promienia tego okręgu w najprostszej postaci \frac{a\sqrt{b}}{c}, gdzie a,b,c\in\mathbb{N}.

Podaj liczby a, b i c.

Odpowiedź:
r= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11234 ⋅ Poprawnie: 152/322 [47%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz odległość między prostymi określonymi równaniami y=x+6 i x-y=9.
Odpowiedź:
d= \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11220 ⋅ Poprawnie: 183/331 [55%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkt M=\left(-\frac{3m}{2},7\right) jest środkiem odcinka o końcach A=(4,5) i B=(-6,9).

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10199 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
W jednokładności o środku S i skali k=-3 obrazem wektora \overrightarrow{AB} jest wektor \overrightarrow{A'B'}. Wówczas:
Odpowiedzi:
A. \overrightarrow{BB'}=4\overrightarrow{BS} B. |AA'|=3|SA|
C. \overrightarrow{AB}=3\overrightarrow{A'B'} D. wektory \overrightarrow{AB},\overrightarrow{A'B'} są przeciwne
Zadanie 5.  1 pkt ⋅ Numer: pr-10211 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz pole kwadratu wpisanego w okrąg o równaniu x^2+y^2-8x+12y=-36.
Odpowiedź:
P_{\square}= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20622 ⋅ Poprawnie: 9/16 [56%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Prosta y=ax+b jest osią symetrii trójkąta o wierzchołkach A=(3,-11), B=(7,-15) i C=(9,-9).

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20377 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Punkty A=(x_a,y_a), B=(x_b,y_b) i C=(x_c,y_c) są wierzchołkami trójkąta.

Oblicz pole powierzchni tego trójkąta.

Dane
x_a=4
y_a=-5
x_b=6
y_b=-1
x_c=2
y_c=-3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pp-30240 ⋅ Poprawnie: 0/19 [0%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Punkty A=(-3,-4), B=(9,0) i C=(3,4) sa wierzchołkami trójkąta. Wysokość tego trójkąta opuszczona z wierzchołka C przecięła bok AB w punkcie D=(x_d,y_d).

Podaj x_d.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
 Prosta o równaniu 10x+by+c=0 jest równoległa do boku BC trójkąta i przechodzi przez punkt D.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.4 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pr-30304 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
Dane są proste k:x+y+5=0, l:7x-y-37=0 oraz punkt P=(6,5)\in l. Istnieją dwa okręgi styczne do prostej k i do prostej l w punkcie P.
Wyznacz równanie (x-a)^2+(y-b)^2=r^2 tego z okręgów, którego środek ma mniejszą odciętą.

Podaj a+b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
Podaj r.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm