Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@zd-02-03-zbior-c-pr

Zadanie 1.  1 pkt ⋅ Numer: pp-10211 ⋅ Poprawnie: 247/296 [83%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Suma pięciu kolejnych liczb całkowitych jest równa 210.

Wyznacz najmniejszą z tych liczb.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pp-10216 ⋅ Poprawnie: 107/157 [68%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Ustal dla ilu liczb całkowitych wyrażenie \frac{12}{n-5} jest liczbą całkowitą.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-10202 ⋅ Poprawnie: 160/161 [99%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 W ciągu czterech minut urządzenie wytwarza 10 sztuk pewnego produktu. Na każde 100 wytworzonych sztuk średnio 12 jest wadliwych.

Ile sztuk dobrych urządzenie wytwarza w ciągu 8 godzin?

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 4.  1 pkt ⋅ Numer: pp-10205 ⋅ Poprawnie: 132/213 [61%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Jaka jest ostatnia cyfra liczby 2^{10015}?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  2 pkt ⋅ Numer: pp-20812 ⋅ Poprawnie: 76/411 [18%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dana jest liczba całkowita 6^{72}-2\cdot 6^{71}+4\cdot 6^{70}.

Podaj największą możliwą cyfrę, którą jest liczbą pierwszą i równocześnie jest dzielnikiem podanej liczby.

Odpowiedź:
max= (wpisz liczbę całkowitą)
Podpunkt 5.2 (1 pkt)
 Liczba ta jest podzielna przez potęgę liczby 2 o wykładniku naturalnym, czyli przez liczbę postaci 2^k, gdzie k jest liczbą naturalną.

Podaj największą możliwą wartość wykładnika k.

Odpowiedź:
k_{max}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm