Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@zd-03-04-wzory-skr-mno-pr

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10446  
Podpunkt 1.1 (1 pkt)
 Zapisz wyrażenie \frac{\sqrt{10}+7}{\sqrt{10}-7} w najprostszej postaci \frac{m+n\sqrt{k}}{p}, gdzie m,n,k,p\in\mathbb{Z}.

Podaj liczby m, n, k i p.

Odpowiedź:
\frac{m+n\sqrt{k}}{p}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10462  
Podpunkt 2.1 (1 pkt)
Wyrażenie \frac{1}{x-1}-\frac{1}{x+1} jest równe:
Odpowiedzi:
A. \frac{x}{x^2-1} B. \frac{x}{(x-1)^2}
C. \frac{2}{(x+1)^2} D. \frac{2}{x^2-1}
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10060  
Podpunkt 3.1 (1 pkt)
Oblicz wartość wyrażenia \frac{2a^2+4ab+2b^2}{(a+b)^3} wiedząc, że a+b=10.
Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 4.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20196  
Podpunkt 4.1 (2 pkt)
Wykaż, że różnica liczby trzycyfrowej i liczby o takich samych cyfrach zapisanych w odwrotnej kolejności jest podzielna przez 3.

Podaj największą liczbę całkowitą, która zawsze dzieli taką różnicę.

Odpowiedź:
max= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm