Podgląd testu : lo2@zd-05-04-wlas-zadania-rozne-pr
Zadanie 1. 1 pkt ⋅ Numer: pp-10800 ⋅ Poprawnie: 47/76 [61%]
Rozwiąż
Podpunkt 1.1 (0.8 pkt)
Nierówności
\left(8+\sqrt{65}\right)\left(\sqrt{65}-8\right)x > 2x-4
oraz
(-2-3x)^2+3x\leqslant (3x-2)^2-5x+4 są spełnione
przez każdą liczbę z pewnego przedziału.
Podaj koniec tego przedziału, który jest liczbą.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 0
B. +\infty
C. -4
D. -\infty
Zadanie 2. 1 pkt ⋅ Numer: pp-10930 ⋅ Poprawnie: 99/132 [75%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Funkcje określone wzorami
f(x)=-2x-1 i
g(x)=\frac{1}{2}x+6 przyjmują równą wartość dla argumentu
x_0 .
Wyznacz x_0 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-10737 ⋅ Poprawnie: 117/206 [56%]
Rozwiąż
Podpunkt 3.1 (0.8 pkt)
« Dana jest funkcja określona wzorem
f(x)=-\frac{8}{7}x+2 .
Funkcja ta wartości ujemne przyjmuje dla argumentów z pewnego przedziału.
Podaj ten koniec tego przedziału, który jest liczbą wymierną niecałkowitą.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 3.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 7
B. +\infty
C. -7
D. -\infty
E. -8
F. 8
Zadanie 4. 2 pkt ⋅ Numer: pp-20335 ⋅ Poprawnie: 24/84 [28%]
Rozwiąż
Podpunkt 4.1 (2 pkt)
Do wykresu nie stałej funkcji liniowej
h(x)=bx-4ab
należy punkt
P=(b, 16a^2-4ab) oraz
h(b-4a)\neq 48a^2 .
Oblicz wartość ilorazu \frac{a}{b} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 4 pkt ⋅ Numer: pp-30049 ⋅ Poprawnie: 38/68 [55%]
Rozwiąż
Podpunkt 5.1 (2 pkt)
« Rozwiąż nierówność
\frac{(x-1)^2}{3}+\frac{11}{2}<=\frac{16}{9}x-\frac{1-x}{2}\cdot \left(\frac{2}{3}x+3\right) .
Podaj najmniejszą liczbe spęłniającą tę nierówność.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (2 pkt)
Najmniejszą liczbę spęłniającą tę nierówność zapisz w postaci ułamka
nieskracalnego o dodatnim mianowniku.
Podaj mianownik tego ułamka.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Rozwiąż