Podgląd testu : lo2@zd-09-02-fun-kat-podst-pr
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10674 ⋅ Poprawnie: 264/697 [37%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
« Przekątna równoległoboku o kącie ostrym
\alpha o mierze
60^{\circ} i wysokości o długości
22\sqrt{3}, tworzy kąt prosty z jego bokiem.
Oblicz obwód tego równoległoboku.
Odpowiedź:
L=
(wpisz liczbę całkowitą)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10662 ⋅ Poprawnie: 341/475 [71%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Zapisz obwód trójkąta
ABC w postaci
p\cdot a:
Podaj p.
Odpowiedź:
p=
+
\cdot
√
(wpisz trzy liczby całkowite)
|
Zadanie 3. 2 pkt ⋅ Numer: pp-20259 ⋅ Poprawnie: 165/275 [60%] |
Rozwiąż |
Podpunkt 3.1 (2 pkt)
Oblicz
x-y, gdy
x=\sin^4{60^{\circ}}-\cos^4{60^{\circ}},
y=1-4\sin^2{60^{\circ}}\cdot \cos^2{60^{\circ}}.
Odpowiedź:
x-y=
(liczba zapisana dziesiętnie)
|
Zadanie 4. 2 pkt ⋅ Numer: pp-20741 ⋅ Poprawnie: 91/247 [36%] |
Rozwiąż |
Podpunkt 4.1 (2 pkt)
Oblicz wartość wyrażenia
w=
(\tan{60^{\circ}}-\sin{45^{\circ}})(\cot{60^{\circ}}-\cos{30^{\circ}})
.
Odpowiedź: