Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@zd-09-03-tozsamosci-tryg-pr

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10611  
Podpunkt 1.1 (1 pkt)
 Kąt \alpha jest ostry oraz \tan\alpha=\frac{2}{3}.

Oblicz wartość wyrażenia \frac{2-\cos\alpha}{2+\cos\alpha}.

Odpowiedź:
\frac{2-\cos\alpha}{2+\cos\alpha}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11538  
Podpunkt 2.1 (1 pkt)
 Kąt \alpha jest ostry i spełnia warunek \sin\alpha=\frac{1}{3}. Oblicz wartość wyrażenia \sin^2\alpha-\cos^2\alpha.
Odpowiedź:
\sin^2\alpha-\cos^2\alpha=
(wpisz dwie liczby całkowite)
Zadanie 3.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20253  
Podpunkt 3.1 (2 pkt)
 « Wiadomo, że x=\sin\alpha. Wyraź za pomocą x wyrażenie 2\tan^{2}{\alpha}+2 i zapisz je w postaci nieskracalnego ułamka.

Podaj licznik tego ułamka.

Dane
\alpha=69^{\circ}
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 4.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20277  
Podpunkt 4.1 (2 pkt)
» Kąt ostry \alpha spełnia równanie \sin\alpha+\cos\alpha=\frac{\sqrt{7}}{2}.

Oblicz (\sin\alpha-\cos\alpha)^2

Odpowiedź:
(\sin\alpha-\cos\alpha)^2=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm