Okręgi o_1(A, r_1) oraz o_2(B,r_2)
(r_1\lessdot r_2) są styczne zewnętrznie, a odległość ich środków jest równa \frac{29}{6}.
Różnica długości promieni tych okręgów jest równa \frac{7}{6}.
Oblicz r_1.
Odpowiedź:
r_1=
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
Oblicz r_2.
Odpowiedź:
r_2=
(wpisz dwie liczby całkowite)
Zadanie 2.1 pkt ⋅ Numer: pp-10564 ⋅ Poprawnie: 131/190 [68%]
Dane są dwa okręgi o środkach w punktach P
i R, styczne zewnętrznie w punkcie
C.
Prosta AB jest styczna do obu okręgów odpowiednio
w punktach A i B oraz
|\sphericalangle ABC|=\beta:
Oblicz miarę kąta \alpha. Wynik zapisz w stopniach
bez jednostki.
Dane
\beta=74^{\circ}
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 4.4 pkt ⋅ Numer: pp-30019 ⋅ Poprawnie: 14/42 [33%]
« Okręgi o_1 i o_2
o środkach odpowiednio A i
B i promieniach odpowiednio
r_1 i r_2 są styczne
wewnętrznie. Z punktu A poprowadzono półproste
styczne do okręgu o_2 w punktach
M i N.
Oblicz pole czworokąta AMBN.
Dane
r_1=22 r_2=6
Odpowiedź:
P_{AMBN}=\cdot√
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat