Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@zd-13-03-okregi-i-kola-pr

Zadanie 1.  1 pkt ⋅ Numer: pp-10567 ⋅ Poprawnie: 274/452 [60%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Okręgi o_1(A, 6) i o_2(B, 8) przecinają się w dwóch punktach:

Do odcinka AB należy środek okręgu o_3(C, r_3) stycznego wewnętrznie do obu okręgów o_1 i o_2.

Oblicz długość promienia r_3 wiedząc, że |AB|=12.

Odpowiedź:
r_3= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10569 ⋅ Poprawnie: 300/393 [76%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dane są okręgi o_1\left(A, 7\right) i o_2\left(B, 2\right), przy czym |AB|=5.

Okręgi te:

Odpowiedzi:
A. są rozłączne zewnętrznie B. są styczne zewnętrznie
C. są rozłączne wewnętrznie D. są styczne wewnętrznie
Zadanie 3.  2 pkt ⋅ Numer: pp-20230 ⋅ Poprawnie: 32/52 [61%] Rozwiąż 
Podpunkt 3.1 (2 pkt)
» Czworokąt na rysunku jest kwadratem:

Oblicz |AB|:|CO|.

Odpowiedź:
|AB|:|CO|= \cdot
(wpisz dwie liczby całkowite)
Zadanie 4.  4 pkt ⋅ Numer: pp-30012 ⋅ Poprawnie: 18/51 [35%] Rozwiąż 
Podpunkt 4.1 (4 pkt)
 «« Prosta k jest styczną do dwóch rozłącznych zewnętrznie okręgów o promieniach r_1 cm i r_2 cm i poprowadzona jest w taki sposób, że środki okręgów znajdują sie po tej samej stronie prostej k.

Wiedząc, że odległość między środkami okręgów wynosi d cm oblicz odległość pomiędzy punktami styczności.

Dane
r_1=1
r_2=19
d=30
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm