Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@zd-13-03-okregi-i-kola-pr

Zadanie 1.  1 pkt ⋅ Numer: pp-11653 ⋅ Poprawnie: 14/33 [42%] Rozwiąż 
Podpunkt 1.1 (0.5 pkt)
 « Okręgi o_1(A, 10) oraz o_2(B,2m-3) są styczne wewnętrznie, a odległość ich środków jest równa 20.

Wyznacz najmniejszą wartość parametru m.

Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
 Wyznacz największą wartość parametru m.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10565 ⋅ Poprawnie: 113/203 [55%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dany jest okrąg o_1(S_1, 2026), przy czym S_1=(-6,-11). Okrąg o_2(S_2,2026) jest obrazem okręgu o_1 w symetrii względem osi Oy.

Wyznacz długość odcinka S_1S_2.

Odpowiedź:
|S_1S_2|= (wpisz liczbę całkowitą)
Zadanie 3.  2 pkt ⋅ Numer: pp-20231 ⋅ Poprawnie: 116/163 [71%] Rozwiąż 
Podpunkt 3.1 (2 pkt)
 Dane są dwa okręgi o środkach w punktach P i R, styczne zewnętrznie w punkcie C. Prosta AB jest styczna do obu okręgów odpowiednio w punktach A i B oraz |\sphericalangle ABC|=\beta:

Oblicz miarę kąta \alpha. Wynik zapisz w stopniach bez jednostki.

Dane
\beta=64^{\circ}
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 4.  4 pkt ⋅ Numer: pp-30019 ⋅ Poprawnie: 14/42 [33%] Rozwiąż 
Podpunkt 4.1 (4 pkt)
 « Okręgi o_1 i o_2 o środkach odpowiednio A i B i promieniach odpowiednio r_1 i r_2 są styczne wewnętrznie. Z punktu A poprowadzono półproste styczne do okręgu o_2 w punktach M i N.

Oblicz pole czworokąta AMBN.

Dane
r_1=12
r_2=2
Odpowiedź:
P_{AMBN}= \cdot
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm