Okręgi o_1(A, r_1) oraz o_2(B,r_2)
(r_1\lessdot r_2) są styczne zewnętrznie, a odległość ich środków jest równa 12.
Stosunek długości promieni tych okręgów jest równy 7.
Oblicz r_1.
Odpowiedź:
r_1=
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
Oblicz r_2.
Odpowiedź:
r_2=
(wpisz dwie liczby całkowite)
Zadanie 2.1 pkt ⋅ Numer: pp-10565 ⋅ Poprawnie: 113/203 [55%]
Na trójkątach równobocznych ACD i
BEC, których podstawy zawierają się w jednej
prostej, opisano dwa okręgi jak na rysunku. Okręgi te przecięły się w punktach
C i P.
Oblicz miarę stopniową kąta APB.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 4.4 pkt ⋅ Numer: pp-30013 ⋅ Poprawnie: 14/46 [30%]
» Prosta k jest styczną do dwóch rozłącznych
zewnętrznie okręgów o promieniach r_1 i
r_2 i poprowadzona jest w taki
sposób, że środki okręgów znajdują sie po różnych stronach prostej
k.
Wiedząc, że odległość między środkami okręgów wynosi
d oblicz odległość pomiędzy punktami styczności.
Dane
r_1=2 r_2=7 d=42
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat