Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@zd-13-03-okregi-i-kola-pr

Zadanie 1.  1 pkt ⋅ Numer: pp-11652 ⋅ Poprawnie: 69/116 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Okręgi o_1(A, 1) oraz o_2(B,2m-4) są styczne zewnętrznie, a odległość ich środków jest równa 16.

Wyznacz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10566 ⋅ Poprawnie: 192/310 [61%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Okręgi o_1(O_1, 6) i o_2(O_2, 9) są styczne zewnętrznie w punkcie S, a prosta k jest styczną do tych okręgów:

Oblicz długość odcinka AB.

Odpowiedź:
|AB|= \cdot
(wpisz dwie liczby całkowite)
Zadanie 3.  2 pkt ⋅ Numer: pp-20230 ⋅ Poprawnie: 32/52 [61%] Rozwiąż 
Podpunkt 3.1 (2 pkt)
» Czworokąt na rysunku jest kwadratem:

Oblicz |AB|:|CO|.

Odpowiedź:
|AB|:|CO|= \cdot
(wpisz dwie liczby całkowite)
Zadanie 4.  4 pkt ⋅ Numer: pp-30013 ⋅ Poprawnie: 14/46 [30%] Rozwiąż 
Podpunkt 4.1 (4 pkt)
 » Prosta k jest styczną do dwóch rozłącznych zewnętrznie okręgów o promieniach r_1 i r_2 i poprowadzona jest w taki sposób, że środki okręgów znajdują sie po różnych stronach prostej k.

Wiedząc, że odległość między środkami okręgów wynosi d oblicz odległość pomiędzy punktami styczności.

Dane
r_1=10
r_2=25
d=50
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm