Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@zd-13-06-okrag-opisany-pr

Zadanie 1.  1 pkt ⋅ Numer: pp-10550 ⋅ Poprawnie: 475/678 [70%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Promień okręgu opisanego na trójkącie równobocznym jest równy \frac{\sqrt{3}}{18}.

Oblicz długość wysokości tego trójkąta.

Odpowiedź:
h= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  2 pkt ⋅ Numer: pp-20210 ⋅ Poprawnie: 52/126 [41%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Na trójkącie rozwartokątnym ABC, w którym kąt przy wierzchołku C jest rozwarty, opisano okrąg o środku w punkcie S. Kąt środkowy BSC ma miarę \alpha, zaś kąt środkowy wypukły ASB miarę \beta. Oblicz miary kątów trójkąta ABC.

Podaj miarę stopniową najmniejszego z kątów tego trójkąta.

Dane
\alpha=46^{\circ}
\beta=200^{\circ}
Odpowiedź:
\gamma_{min}= (wpisz liczbę całkowitą)
Podpunkt 2.2 (1 pkt)
 Podaj miarę stopniową największego z kątów.
Odpowiedź:
\gamma_{max}= (wpisz liczbę całkowitą)
Zadanie 3.  4 pkt ⋅ Numer: pp-30300 ⋅ Poprawnie: 41/177 [23%] Rozwiąż 
Podpunkt 3.1 (2 pkt)
 « Spodek wysokości opuszczonej z wierzchołka kąta prostego trójkata prostokatnego leży w odległości d od środka okręgu opisanego na tym trójkącie, a wysokość ta ma długość h.

Oblicz długość promienia okręgu opisanego na tym trójkącie.

Dane
d=28=28.00000000000000
h=96
Odpowiedź:
R=
(wpisz dwie liczby całkowite)
Podpunkt 3.2 (2 pkt)
 Oblicz długość obwodu tego trójkąta.
Odpowiedź:
L= (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm