Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@zd-17-13-rownania-wielom-pr

Zadanie 1.  (3 pkt) [ Dodaj do testu ]  Numer zadania: pp-20979  
Podpunkt 1.1 (1 pkt)
 Rozwiąż równanie -x^3-7x^2+20x+140=0.

Podaj rozwiązanie całkowite tego równania.

Odpowiedź:
x_{\mathbb{Z}}= (wpisz liczbę całkowitą)
Podpunkt 1.2 (1 pkt)
 Podaj najmniejsze rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
min_{\not\in\mathbb{Z}}= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 1.3 (1 pkt)
 Podaj największe rozwiązanie tego równania, które nie jest liczbą całkowitą.
Odpowiedź:
max_{\not\in\mathbb{Z}}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  (3 pkt) [ Dodaj do testu ]  Numer zadania: pr-20228  
Podpunkt 2.1 (1 pkt)
 Wyznacz wszystkie wartości parametru m, dla których część wspólna przedziałów (-\infty, m^3-6m^2+12m-11 \rangle oraz \left\langle -5m^2+23m-26 ,+\infty\right) jest zbiorem jednoelementowym.

Podaj najmniejsze możliwe m, które jest liczbą całkowitą.

Odpowiedź:
min_{\mathbb{Z}}= (wpisz liczbę całkowitą)
Podpunkt 2.2 (1 pkt)
 Podaj największe możliwe m, które jest liczbą całkowitą.
Odpowiedź:
max_{\mathbb{Z}}= (wpisz liczbę całkowitą)
Podpunkt 2.3 (1 pkt)
 Podaj mnajwiększą wartość parametru m, która nie jest liczbą całkowitą.
Odpowiedź:
m_{max\not\in\mathbb{Z}}= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30159  
Podpunkt 3.1 (1 pkt)
 Dla jakich wartości parametru m suma wszystkich pierwiastków wielomianu x^3+(m^2-8m+14)x^2-(2m^2-16m+36)x+8=0 ma wartość równą -2?

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 3.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Podpunkt 3.3 (2 pkt)
 Wyznacz najmniejszy dodatni pierwiastek tego wielomianu.
Odpowiedź:
x_{>0}= + \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm