Matury CKEMatma z CKESprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@zd-17-13-rownania-wielom-pr

Zadanie 1.  (3 pkt) [ Dodaj do testu ]  Numer zadania: pp-20976  
Podpunkt 1.1 (1 pkt)
 « Rozwiąż równanie 6x^3-6x^2-18x+18=0.

Podaj rozwiązanie wymierne tego równania.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (1 pkt)
 Podaj najmniejsze rozwiązanie tego równania, które nie jest liczbą wymierną.
Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz dwie liczby całkowite)
Podpunkt 1.3 (1 pkt)
 Podaj największe rozwiązanie tego równania, które nie jest liczbą wymierną.
Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  (3 pkt) [ Dodaj do testu ]  Numer zadania: pr-20228  
Podpunkt 2.1 (1 pkt)
 Wyznacz wszystkie wartości parametru m, dla których część wspólna przedziałów (-\infty, m^3+9m^2+27m+24 \rangle oraz \left\langle -5m^2-27m-36 ,+\infty\right) jest zbiorem jednoelementowym.

Podaj najmniejsze możliwe m, które jest liczbą całkowitą.

Odpowiedź:
min_{\mathbb{Z}}= (wpisz liczbę całkowitą)
Podpunkt 2.2 (1 pkt)
 Podaj największe możliwe m, które jest liczbą całkowitą.
Odpowiedź:
max_{\mathbb{Z}}= (wpisz liczbę całkowitą)
Podpunkt 2.3 (1 pkt)
 Podaj mnajwiększą wartość parametru m, która nie jest liczbą całkowitą.
Odpowiedź:
m_{max\not\in\mathbb{Z}}= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 3.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30156  
Podpunkt 3.1 (2 pkt)
 » Liczby x_1, x_2 i x_3 są trzema różnymi pierwiastkami wielomianu W(x)=x^3+6x^2+(4-m)x-2m-8. Wiedząc, że x_1^2+x_2^2+x_3^2=30, wyznacz m.

Podaj największe możliwe m.

Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Podpunkt 3.2 (2 pkt)
 Dla jakich wartości parametru m suma dwóch pierwiastków wielomianu W(x)=x^3+6x^2+(4-m)x-2m-8 jest równa pierwiastkowi trzeciemu.

Podaj największe możliwe m.

Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)


Masz pytania? Napisz: k42195@poczta.fm