Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@zd-25-06-okrag-i-prosta-pr

Zadanie 1.  1 pkt ⋅ Numer: pr-10206 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt S=(-5,7) jest środkiem okręgu stycznego do prostej 4x-3y-5=0.

Oblicz długość promienia tego okręgu.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  2 pkt ⋅ Numer: pr-20402 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
» Okrąg o środku S=(x_s,y_s) jest styczny do prostych 2x+y+10=0 i 2x+y-10=0 i przechodzi przez punkt A=(-3,0).

Podaj najmniejsze możliwe x_s.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 2.2 (1 pkt)
Podaj największe możliwe y_s.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  4 pkt ⋅ Numer: pr-30304 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 3.1 (2 pkt)
Dane są proste k:x+y+5=0, l:7x-y-37=0 oraz punkt P=(6,5)\in l. Istnieją dwa okręgi styczne do prostej k i do prostej l w punkcie P.
Wyznacz równanie (x-a)^2+(y-b)^2=r^2 tego z okręgów, którego środek ma mniejszą odciętą.

Podaj a+b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 3.2 (2 pkt)
Podaj r.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm