Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Monotoniczność funkcji

Zadania dla liceum ogólnokształcącego - poziom podstawowy

 

Zadanie 1.  1 pkt ⋅ Numer: pp-10744 ⋅ Poprawnie: 184/392 [46%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Funkcja f opisana jest wzorem: f(x)=x^2.

Wówczas:

Odpowiedzi:
T/N : f\left(3\sqrt{3}\right)=9\sqrt{3} T/N : f\left(-4\sqrt{3}\right)=-48
T/N : iloczyn x\cdot f(x) jest liczba dodatnią T/N : funkcja ta jest monotoniczna
Zadanie 2.  1 pkt ⋅ Numer: pp-10699 ⋅ Poprawnie: 709/1322 [53%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji f.

Jaką długość ma najdłuższy przedział, w którym funkcja f jest rosnąca?

Odpowiedź:
d= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10700 ⋅ Poprawnie: 508/905 [56%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji h:

Jaką długość ma najdłuższy przedział, w którym funkcja h niemalejąca?

Odpowiedź:
d= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10698 ⋅ Poprawnie: 205/563 [36%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 «« Dziedziną funkcji f jest przedział \langle -5,4\rangle:

Jaką długość ma najdłuższy przedział, w którym funkcja f jest malejąca?

Odpowiedź:
d= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11533 ⋅ Poprawnie: 92/471 [19%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 (1 pkt) Na rysunku pokazano wykres funkcji określonej wzorem y=f(x):
Wskaż zdanie fałszywe:
Odpowiedzi:
A. funkcja f ma ujemne miejsce zerowe B. ZW_{f}=\langle -2, 3\rangle
C. D_{f}=\langle -5, 4\rangle D. funkcja jest rosnąca w co najmniej dwóch rozłącznych przedziałach
E. funkcja jest malejąca, gdy x\in\langle -5, -3\rangle\cup\langle 2, 4\rangle F. funkcja f nie jest różnowartościowa
Zadanie 6.  1 pkt ⋅ Numer: pp-12032 ⋅ Poprawnie: 93/186 [50%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Na wykresie przedstawiono wykres funkcji f:
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : dziedziną funkcji f jest przedzial (-4, 5) T/N : zbiorem wartości funkcji f jest przedział (-4, 5\rangle
Zadanie 7.  1 pkt ⋅ Numer: pp-12088 ⋅ Poprawnie: 45/142 [31%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Na poniższym rysunku przedstawiono wykres funkcji f określonej w zbiorze (-1,7).

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : funkcja f osiąga wartość największą równą 1 T/N : funkcja f jest monotoniczna w przedziale (-1,4)
T/N : zbiorem wartości funkcji f jest przedział [-1,1)  
Zadanie 8.  2 pkt ⋅ Numer: pp-20292 ⋅ Poprawnie: 254/946 [26%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Na rysunku przedstawiono wykres funkcji f.

Ile liczb całkowitych należy do zbioru wartości tej funkcji?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Jaką długość ma przedział o maksymalnej długości, w którym funkcja ta jest monotoniczna?
Odpowiedź:
d= (wpisz liczbę całkowitą)
Zadanie 9.  3 pkt ⋅ Numer: pp-21044 ⋅ Poprawnie: 713/1026 [69%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji określonej wzorem y=f(x):

Dziedziną tej funkcji jest zbiór:

Odpowiedzi:
A. [-3,5] B. (-6,5)
C. [-3,5) D. [-6,5]
Podpunkt 9.2 (1 pkt)
 Największa wartość tej funkcji w przedziale [-5,1] jest równa:
Odpowiedzi:
A. 2 B. 5
C. 3 D. 1
Podpunkt 9.3 (1 pkt)
 Funkcja f jest malejąca w zbiorze:
Odpowiedzi:
A. [-6,-3] B. (1,2]
C. [2,5] D. [-3,1]

☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm