Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Własności funkcji liniowej - zadania różne

Zadania dla liceum ogólnokształcącego - poziom podstawowy

 

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10801  
Podpunkt 1.1 (0.5 pkt)
 Dana jest funkcja f(x)=x+4.

Zbiór rozwiązań nierówności -4\leqslant f(x)\leqslant 5 jest przedziałem \langle a, b\rangle.

Odpowiedź:
a=\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
 Podaj liczbę b.
Odpowiedź:
b=\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10800  
Podpunkt 2.1 (0.8 pkt)
 Nierówności \left(3+\sqrt{10}\right)\left(\sqrt{10}-3\right)x > 2x-4 oraz (-2-3x)^2+3x\leqslant (3x-2)^2-5x+4 są spełnione przez każdą liczbę z pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 0 B. +\infty
C. -\infty D. -4
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10799  
Podpunkt 3.1 (0.8 pkt)
 Zbiorem wszystkich rozwiązań nierówności \left(\sqrt{40}-\frac{32}{5}\right)(-3+5x) > 0 jest pewien przedział.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 3.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 2 B. -\infty
C. 0 D. 4
E. +\infty F. 5
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10929  
Podpunkt 4.1 (0.8 pkt)
 Wykres funkcji liniowej określonej wzorem y=\frac{1}{10}(x+3)+4m-1 przecina dodatnią półoś Oy wtedy i tylko wtedy, gdy parametr m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 4.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -3 B. 4
C. -\infty D. -4
E. -12 F. +\infty
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10942  
Podpunkt 5.1 (0.8 pkt)
 Dana jest funkcja liniowa g(x)=\frac{5}{3}+\frac{1}{7}x . Funkcja g przyjmuje wartości ujemne dla argumentów należących do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -\infty B. +\infty
C. -7 D. 0
E. -9 F. -2
Zadanie 6.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10939  
Podpunkt 6.1 (1 pkt)
 « Dla argumentu x_0 wartości funkcji określonych wzorami f(x)=-6x-2 i g(x)=2x-7 są sobie równe i obie równe y_0.

Wyznacz y_0.

Odpowiedź:
y_0=
(wpisz dwie liczby całkowite)
Zadanie 7.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10930  
Podpunkt 7.1 (1 pkt)
 Funkcje określone wzorami f(x)=-\frac{2}{3}x+2 i g(x)=\frac{2}{3}x+4 przyjmują równą wartość dla argumentu x_0.

Wyznacz x_0.

Odpowiedź:
x_0=
(wpisz dwie liczby całkowite)
Zadanie 8.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10938  
Podpunkt 8.1 (1 pkt)
 Punkt A=(m^2+1,-3) należy do wykresu funkcji liniowej określonej wzorem g(x)=97-2x:
Odpowiedzi:
A. dla m\in\mathbb{R} B. dla m\in\{-7,7\}
C. tylko dla m=-14 D. dla m\in\emptyset
E. tylko dla m=-7 F. tylko dla m=7
Zadanie 9.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10925  
Podpunkt 9.1 (1 pkt)
 Wykres funkcji liniowej f(x)=\left(\frac{1}{2}m-6\right)x+\frac{1}{2}m+5 zawiera punkt M=(0,1).

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 19.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20310  
Podpunkt 19.1 (2 pkt)
 Rozwiąż równanie \frac{8x+3}{-3x+9}=-\frac{1}{3} .
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 20.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20311  
Podpunkt 20.1 (2 pkt)
 « Rozwiąż równanie 2x-3=\sqrt{3}x+2.

Podaj rozwiązanie.

Odpowiedź:
x= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 22.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30042  
Podpunkt 22.1 (2 pkt)
 « Funkcja liniowa g(x)=(-5m-2)x+2 spełnia warunek g\left(\frac{1}{2}\right)=0.

Podaj m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Podpunkt 22.2 (2 pkt)
 Rozwiąż nierówność g(x) \lessdot h(x), gdzie h(x)=-5+x. Rozwiązanie zapisz w postaci przedziału. Podaj sumę wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Zadanie 23.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30043  
Podpunkt 23.1 (2 pkt)
 « Dana jest funkcja f(x)=4x+4, której dziedziną jest zbiór rozwiązań nierówności (4x-3)(3+4x)\leqslant (4x-7)^2. Wyznacz ZW_f.

Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 23.2 (2 pkt)
 Ile liczb naturalnych należy do tego zbioru wartości?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 24.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30044  
Podpunkt 24.1 (2 pkt)
 « Dana jest funkcja f(x)=x-2, której dziedziną jest zbiór rozwiązań nierówności (5x-7)^2 \lessdot 25(x-2)^2. Wyznacz ZW_f.

Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 24.2 (2 pkt)
 Ile liczb naturalnych należy do tego zbioru wartości?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 25.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30045  
Podpunkt 25.1 (2 pkt)
 « Dana jest funkcja f(x)=x-2, której dziedziną jest zbiór rozwiązań nierówności (5\sqrt{5}-x)^2\geqslant (x-2\sqrt{5})^2. Wyznacz ZW_f.

Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.

Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz cztery liczby całkowite)
Podpunkt 25.2 (2 pkt)
 Ile liczb naturalnych należy do tego zbioru wartości?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 26.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30046  
Podpunkt 26.1 (2 pkt)
 Dana jest funkcja f(x)=-\frac{3}{4}x+8. Naszkicuj jej wykres. Dla jakich argumentów funkcja ta przyjmuje wartości dodatnie?

Odpowiedź zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 26.2 (2 pkt)
 Rozwiąż nierówność f(1-x)\leqslant 2x-7.

Odpowiedź zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)

Liczba wyświetlonych zadań: 16

Liczba pozostałych zadań dostępnych dla zarejestrowanych nauczycieli: 14

☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm