Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Zastosowania funkcji liniowej w zadaniach tekstowych

Zadania dla liceum ogólnokształcącego - poziom podstawowy

 

Zadanie 1.  1 pkt ⋅ Numer: pp-11920 ⋅ Poprawnie: 154/167 [92%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 W ciągu dwóch godzin trzy jednakowe maszyny produkują razem 3120 guzików.

Ile guzików wyprodukuje pięć takich maszyn w ciągu jednej godziny? Przyjmij, że maszyny pracują z taką samą, stałą wydajnością.

Odpowiedzi:
A. 2640 B. 2680
C. 2620 D. 2600
E. 2580 F. 2520
Zadanie 2.  2 pkt ⋅ Numer: pp-20299 ⋅ Poprawnie: 60/114 [52%] Rozwiąż 
Podpunkt 2.1 (2 pkt)
 Suma cyfr liczby dwucyfrowej jest równa 11. Jeśli zamienimy miejscami cyfry w tej liczbie, to otrzymamy liczbę o 9 większą.

Wyznacz tę liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  2 pkt ⋅ Numer: pp-20300 ⋅ Poprawnie: 121/174 [69%] Rozwiąż 
Podpunkt 3.1 (2 pkt)
 » Suma cyfr liczby dwucyfrowej jest równa 10. Jeśli zamienimy miejscami cyfry w tej liczbie, to otrzymamy liczbę o 54 mniejszą.

Wyznacz tę liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 4.  2 pkt ⋅ Numer: pp-20301 ⋅ Poprawnie: 150/365 [41%] Rozwiąż 
Podpunkt 4.1 (2 pkt)
 Trójkąt ograniczony osiami układu i prostą o równaniu -y=-8x-6 ma pole powierzchni równe P.

Oblicz P.

Odpowiedź:
P_{\triangle}=
(wpisz dwie liczby całkowite)
Zadanie 5.  2 pkt ⋅ Numer: pp-20302 ⋅ Poprawnie: 207/340 [60%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Zależność temperatury w skali Celsjusza \ ^{\circ}{C} od temperatury w skali Fahrenheita \ ^{\circ}{F} wyraża wzór T(f)=\frac{5}{9}f-\frac{160}{9}, gdzie f – temperatura w skali Fahrenheita, zaś T – temperatura w skali Celsjusza.

1 lipca termometr wskazywał 30^{\circ}C. Ile to było stopni Fahrenheita?

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (1 pkt)
 Ile stopni Celsjusza ma woda o temperaturze 54.5^{\circ}F?
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20303 ⋅ Poprawnie: 87/133 [65%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Zależność temperatury w skali Fahrenheita \ ^{\circ}{F} od temperatury w skali Celsjusza \ ^{\circ}{C} wyraża wzór f(c)=32+1,8\cdot c, gdzie f – temperatura w skali Fahrenheita, zaś c – temperatura w skali Celsjusza.

Oblicz, w jakiej temperaturze w skali Fahrenheita zażywasz kąpieli, jeśli termometr wskazuje, że temperatura wody wynosi wtedy 46^{\circ}C.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 W czajniku znajduje się woda o temperaturze 130^{\circ}F.

Jaką temperaturę w stopniach Celsjusza ma ta woda?

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20304 ⋅ Poprawnie: 14/75 [18%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Punkt P=(0,4) jest punktem przecięcia się prostych k i l. Prosta k wraz z osiami układu ogranicza trójkąt o polu równym 38, a prosta l trójkąt o polu równym 54. Oblicz pole trójkąta, którego wierzchołkami są: punkt P oraz punkty przecięcia obu prostych z osią Ox.

Podaj najmniejsze możliwe pole powierzchni tego trójkąta.

Odpowiedź:
P_{min}= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj największą możliwą długość boku tego trójkąta zawartego w osi układu współrzędnych Ox.
Odpowiedź:
a_{max}=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20305 ⋅ Poprawnie: 94/131 [71%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Miara kąta wewnętrznego wielokąta foremnego jest równa 168 stopnie.

Ile wierzchołków ma ten wielokąt?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20839 ⋅ Poprawnie: 17/35 [48%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Prosta k jest równoległa do prostej AB wyznaczonej przez punkty punkty A=(1,-5) i B=(-2,4) i przecina oś Oy w punkcie o rzędnej równej 2. Dla jakiej wartości parametru k punkt C=(-2k+14, 5k-30) należy do prostej k?

Podaj k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20328 ⋅ Poprawnie: 206/372 [55%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Kinga i Kamil są małżeństwem od 24 lat. W dniu ślubu mieli razem 54 lata, z za 7 lat Kinga będzie dwa razy starsza niż w dniu ślubu.

Ile lat ma teraz Kinga?

Odpowiedź:
wiek\ Kingi= (wpisz liczbę całkowitą)
Zadanie 11.  3 pkt ⋅ Numer: pp-21138 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Pusta puszka na farbę o pojemności 10 litrów ma masę 6,5 kg. Jeden litr farby ma masę 1,15 kg.
Niech x oznacza liczbę litrów farby w tej puszcze, a f(x) oznacza wyrażoną w kilogramach masę puszki wraz z farbą, gdzie x\in[0,10].

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : funkcja f jest różnowartościowa T/N : funkcja f jest rosnąca
Podpunkt 11.2 (1 pkt)
 Największa wartość funkcji f jest równa:
Odpowiedzi:
A. 17.6 B. 20.3
C. 18.5 D. 20.0
E. 16.1 F. 18.0
Podpunkt 11.3 (1 pkt)
 Funkcja f jest określona wzorem:
Odpowiedzi:
A. f(x)=1,2+6,50\cdot x B. f(x)=1,15\cdot x-6,5
C. f(x)=10,0+1,15\cdot x D. f(x)=6,5+1,15\cdot x
Zadanie 12.  2 pkt ⋅ Numer: pp-21198 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 W maju 2024 roku założono dwa sady: posadzono w nich łącznie 2560 drzew. Po roku stwierdzono, że uschło 70\% drzew w pierwszym sadzie i 85\% drzew w drugim sadzie. Uschnięte drzewa usunięto, a nowych nie dosadzano. Liczba drzew, które pozostały w drugim sadzie, stanowiła 30\% liczby drzew, które pozostały w pierwszym sadzie.

Oblicz, ile drzew posadzono w pierwszym sadzie w maju 2024 roku.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 13.  4 pkt ⋅ Numer: pp-30058 ⋅ Poprawnie: 41/63 [65%] Rozwiąż 
Podpunkt 13.1 (4 pkt)
 » Pan Kowalski wykonuje pewną pracę w ciągu p godzin. Tę samą pracę pan Nowak wykonuje w ciągu q godzin.

Ile godzin potrzeba, aby panowie pracując razem wykonali tę samą pracę.

Dane
p=8
q=24
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 14.  4 pkt ⋅ Numer: pp-30034 ⋅ Poprawnie: 92/188 [48%] Rozwiąż 
Podpunkt 14.1 (2 pkt)
 « Za kwotę 2000 zł Kamil kupił od kolegi telefon i konsolę. Po kilku miesiącach sprzedał telefon z dwudziestoprocentowym zyskiem, a następnęgo dnia sprzedał konsolę z dziesięcioprocentową stratą. Wówczas okazało się, że na obu tych przedmiotach zarobił p%.

Za jaką cenę Kamil zakupił telefon?

Dane
p=14
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 14.2 (2 pkt)
 Za jaką kwotę Kamil sprzedał konsolę?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 15.  4 pkt ⋅ Numer: pp-30035 ⋅ Poprawnie: 31/98 [31%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 « Koszt dostarczenia przesyłki pocztą kurierską w danym mieście wynosił 5 zł, a poza granicami miasta 10 zł. W ciągu tygodnia jeden kurier dostarcza średnio 1500 przesyłek, przy czym 80\% tych przesyłek dostarcza poza granice miasta.

Oblicz, jaki tygodniowy zysk miała firma kurierska zatrudniająca 10 kurierów, jeśli jej tygodniowe koszty były następujące: na reklamę firma przeznaczała 25\% przychodów, a na płace 8100 zł (zysk = przychód - koszty).

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 15.2 (1 pkt)
 Oblicz, o ile złotych podwyższono cenę za jedną przesyłkę poza miasto, jeśli przychód tygodniowy po tej podwyżce był równy 255000.00 zł.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 15.3 (2 pkt)
 O ile procent zwiększył się tygodniowy zysk firmy po podwyższeniu opłaty za przesyłki poza granice miasta o kwotę z punktu b). Wynik podaj z dokładnością do 1%.
Odpowiedź:
[\%]= (wpisz liczbę całkowitą)
Zadanie 16.  4 pkt ⋅ Numer: pp-30036 ⋅ Poprawnie: 18/64 [28%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 « Pewna firma zajmuje się dystrybucją filmów w internecie. Korzystając z usług tej firmy, za obejrzenie filmu bez kopiowania go na twardy dysk należało zapłacić 4 zł, zaś za skopiowanie go na twardy dysk 8 zł. W ciągu tygodnia film pobrało 2100 internautów, przy czym 80\% skopiowało film na twardy dysk.

Oblicz, jaki tygodniowy zysk miała firma z dystrybucji filmu, jeśli koszty działalności były równe 35\% przychodu (zysk = przychód - koszty).

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 16.2 (1 pkt)
 Oblicz, o ile zł należało podwyższyć cenę kopiowania filmu na twardy dysk, aby przychód z tego tygodnia był równy 26880.00 zł?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 16.3 (2 pkt)
 O ile procent zwiększyłby się zysk tej firmy z danego tygodnia, gdyby opłata za kopiowanie filmu była wyższa o kwotę z punktu b), a wysokość kosztów z punktu a) w złotych, by się nie zmieniła? Wynik podaj z dokładnością do 1%.
Odpowiedź:
[\%]= (wpisz liczbę całkowitą)
Zadanie 17.  4 pkt ⋅ Numer: pp-30037 ⋅ Poprawnie: 98/227 [43%] Rozwiąż 
Podpunkt 17.1 (2 pkt)
 Wypożyczenie skutera śnieżnego kosztuje 62 zł dziennie plus dodatkowo 1,5 złotego za każdy przejechany nim kilometr. Funkcja y=f(n)=an+b opisuje zależność pomiędzy ilością przejechanych kilometrów a kosztem wypożyczenia skutera na pięć kolejnych dni.

Podaj a+b.

Odpowiedź:
a+b=
(wpisz dwie liczby całkowite)
Podpunkt 17.2 (2 pkt)
 Kamil dysponuje kwotą 820.00 zł i zamierza wypożyczyć skuter na pięć dni.

Ile kilometrów może w tym czasie przejechać wypożyczonym skutertem?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 18.  4 pkt ⋅ Numer: pp-30056 ⋅ Poprawnie: 26/66 [39%] Rozwiąż 
Podpunkt 18.1 (4 pkt)
 « Z miejscowości A wyjechał autobus osobowy i dotarł do miejscowości B po t godzinach jazdy. Godzinę póżniej od autobusu osobowego na tę samą trasę wyjechał autobus pospieszny i dotarł do miejscowości B o godzinę wcześniej niż autobus osobowy.

Po ilu godzinach swojej jazdy autobus pospieszny wyprzedził autobus osobowy?

Dane
t=11
Odpowiedź:
t\ [h]=
(wpisz dwie liczby całkowite)
Zadanie 19.  4 pkt ⋅ Numer: pp-30057 ⋅ Poprawnie: 57/102 [55%] Rozwiąż 
Podpunkt 19.1 (2 pkt)
 « Dwie maszyny mają wytworzyć 4730 sztuk produktu. Pierwsza z nich w ciągu dnia wytwarza x sztuk tego produktu, druga y sztuk, przy czym x \lessdot y. Przy takim tempie produkcji zlecenie zostałoby wykonane w 22 dni. Jednak po pierwszym dniu maszyna pierwsza uległa awarii i pozostałe do wytworzenia sztuki wykonała maszyna druga, ale cały proces produkcji zajął 36 dni.

Podaj x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 19.2 (2 pkt)
 Podaj y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 20.  4 pkt ⋅ Numer: pp-30059 ⋅ Poprawnie: 99/146 [67%] Rozwiąż 
Podpunkt 20.1 (2 pkt)
 « Suma dwóch liczb wynosi s. Jeśli jedną z nich zwiększymy o 20%, a drugą zmniejszymy o 10%, to ich suma zwiększy się o p. Jakie to liczby?

Podaj mniejszą z tych liczb.

Dane
s=143
p=1
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 20.2 (2 pkt)
 Podaj większą z tych liczb.
Odpowiedź:
max= (wpisz liczbę całkowitą)

☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm