Funkcja f określona jest wzorem
f(x)=\frac{4}{x+3}+1 w zbiorze
\langle -5,-3)\cup(-3,1\rangle, a funkcja g
wzorem g(x)=-2\cdot f(x).
Zbiorem wartości funkcji g jest zbiór
\mathbb{R}-(p,q).
Wyznacz liczbę p.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 4.2 (1 pkt)
Wyznacz liczbę q.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 5.2 pkt ⋅ Numer: pr-20579 ⋅ Poprawnie: 18/24 [75%]
Dziedziną funkcji f jest przedział liczbowy
(-5,7), a jej jedynym miejscem zerowym liczba
-\frac{5}{2}. Funkcja g
określona jest wzorem g(x)=f\left(\frac{4}{3}x\right).
Dziedziną funkcji g jest zbiór
D_g=(x_1,x_2).
Podaj liczby x_1 i x_2.
Odpowiedzi:
x_1
=
(wpisz liczbę zapisaną dziesiętnie)
x_2
=
(wpisz liczbę zapisaną dziesiętnie)
Podpunkt 5.2 (1 pkt)
Podaj miejsce zerowe funkcji g.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 6.2 pkt ⋅ Numer: pr-20894 ⋅ Poprawnie: 21/31 [67%]
Dziedziną funkcji f jest przedział liczbowy
(-5,7), a zbiorem jej wartości przedział
(-5,3). Funkcja g
określona jest wzorem g(x)=-\frac{3}{2}f(x).
Dziedziną funkcji g jest zbiór
D_g=(x_1,x_2).
Podaj liczby x_1 i x_2.
Odpowiedzi:
x_1
=
(wpisz liczbę zapisaną dziesiętnie)
x_2
=
(wpisz liczbę zapisaną dziesiętnie)
Podpunkt 6.2 (1 pkt)
Zbiorem wartości funkcji g jest zbiór
ZW_g=(y_1,y_2).
Podaj liczby y_1 i y_2.
Odpowiedzi:
y_1
=
(wpisz liczbę zapisaną dziesiętnie)
y_2
=
(wpisz liczbę zapisaną dziesiętnie)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat