Matury CKEMatma z CKESprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Równania i nierówności kwadratowe z parametrem

Nierówności z pierwiastkami równania kwadratowego

Zadania dla liceum ogólnokształcącego - poziom rozszerzony

 

Zadanie 1.  (3 pkt) [ Dodaj do testu ]  Numer zadania: pr-20873  
Podpunkt 1.1 (2 pkt)
 (2 pkt) Dana jest funkcja określona wzorem y=\frac{9}{x^2}, dla każdego x\in\mathbb{R}-\{0\}, której wykres pokazano na rysunku, oraz punkt A=(6, -1):

Pozioma prosta przecina wykres tej funkcji w punktach o współrzędych B=(x_0, y_0) oraz C=(-x_0,y_0) gdzie x_0 > 0 i y_0 > 0.

Znajdź najmniejsze x_0\in(5;+\infty), dla którego P_{\triangle ABC}\geqslant 10.

Odpowiedź:
x_0= (wpisz liczbę całkowitą)
Podpunkt 1.2 (1 pkt)
 (1 pkt) Wyznacz największą liczbę nieujemną m o tej własności, że dla dowolnego x_0\in(0,+\infty) prawdziwa jest nierówność P_{\triangle ABC}\geqslant m.
Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 2.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20997  
Podpunkt 2.1 (0.4 pkt)
 «« Dla jakich wartości parametru m\in\mathbb{R} równanie 2x^2-4(m+7)x+(m+8)(m+7)=0 ma dwa rozwiązania spełniające warunek x_1 \lessdot m+1 \lessdot x_2?

Rozwiązaniem jest zbiór postaci:

Odpowiedzi:
A. (p, +\infty) B. (-\infty, +\infty)
C. (-\infty, p)\cup(q, +\infty) D. (-\infty, p\rangle
E. (-\infty, p) F. (p, q)
G. \langle p, q) H. (p, q\rangle
Podpunkt 2.2 (0.8 pkt)
 Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 2.3 (0.8 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 4.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30036  
Podpunkt 4.1 (2 pkt)
 «« Wyznacz te wartości parametru m, dla których równanie 4x^2-(m+a)x+1=0 ma dwa różne pierwiastki takie, że ich różnica jest liczbą z przedziału (0,4).

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Dane
a=4
Odpowiedź:
min= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 4.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 4.3 (1 pkt)
 Podaj najmniejszy z końców liczbowych, który jest liczbą całkowitą.
Odpowiedź:
min_Z= (wpisz liczbę całkowitą)
Zadanie 5.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30031  
Podpunkt 5.1 (2 pkt)
 « Wyznacz te wartości parametru m, dla których równanie (m+a)x^2-(3m+3a-3)x+m+a=0 ma dwa różne pierwiastki rzeczywiste.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj ten koniec tych wszystkich przedziałów, który nie jest liczbą całkowitą.

Dane
a=3
Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (1 pkt)
 Podaj sumę wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 5.3 (1 pkt)
 Wyznacz zbiór tych wszystkich wartości parametru m\in\mathbb{R}, dla których suma dwóch różnych pierwiastków tego równania jest nie większa od \frac{5}{2}.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj największy koniec liczbowy tych przedziałów.

Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 6.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30029  
Podpunkt 6.1 (2 pkt)
 «« Wyznacz te wartości parametru m, dla których dwa różne pierwiastki x_1 i x_2 równania (2-a-m)x^2+(m+a-2)x+2=0 spełniają nierówność \frac{1}{x_1}+\frac{1}{x_2} > 1.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy koniec liczbowy tych przedziałów.

Dane
a=3
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj największy koniec liczbowy tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Podpunkt 6.3 (1 pkt)
Ile jest tych przedziałów?
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 7.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30050  
Podpunkt 7.1 (2 pkt)
 » Dla jakich wartości parametru m kwadrat sumy dwóch różnych pierwiastków równania (m+a-4)x^2+(m+a)x-m-a=0 jest większy od 1?

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmiejszy z końców liczbowych tych przedziałów.

Dane
a=3
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj największy koniec liczbowy tch przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Podpunkt 7.3 (1 pkt)
Ile jest tych przedziałów?
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 8.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30049  
Podpunkt 8.1 (2 pkt)
 » Dla jakich wartości parametru m suma kwadratów różnych pierwiastków równania x^2+(m+a)x+m-1+a=0 jest większa od 7?

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy koniec liczbowy tych przedziałów.

Dane
a=4
Odpowiedź:
min= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj największy z koniec liczbowy tych przedziałów.
Odpowiedź:
max= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 8.3 (1 pkt)
 Podaj największą wartość parametru m, dla której równanie to nie ma dwóch różnych rozwiązań.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 9.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30354  
Podpunkt 9.1 (2 pkt)
 Zbiór M jest zbiorem tych wartości parametru m, dla których równanie x^2+kmx-k^2m^2+2km=0 nie posiada dwóch różnych rozwiązań rzeczywistych.

Podaj największe m\in M.

Dane
k=14
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Wyznacz zbiór tych wszystkich wartości parametru m, dla których rozwiązania x_1 i x_2 podanego równania spełniają warunek x_1^3+7x_1x_2+x_2^3 > 0.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 9.3 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 10.  (6 pkt) [ Dodaj do testu ]  Numer zadania: pr-30827  
Podpunkt 10.1 (2 pkt)
 (2 pkt) Dla jakich wartości parametru m\in\mathbb{R} równanie x^2-(m+6)x+m+5=0 spełnia tylko jedna liczba rzeczywista?

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 (2 pkt) Dla jakich wartości parametru m\in\mathbb{R} dwa różne rozwiązania rzeczywiste x_1 i x_2 tego równania spełniają nierówność (x_1+3x_2)(x_2+3x_1)\geqslant 16?

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj ten z tych wszystkich końców tych przedziałów, który jest liczbą całkowitą.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 10.3 (2 pkt)
 (2 pkt) Podaj ten z tych wszystkich końców liczbowych tych przedziałów, który należy do zbioru \mathbb{R}-\mathbb{Z} (różnica zbiorów).
Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 11.  (5 pkt) [ Dodaj do testu ]  Numer zadania: pr-30357  
Podpunkt 11.1 (1 pkt)
 «« Wyznacz te wartości parametru m, dla których równanie 4x^2+(-4m+4a+2)x+m^2-(2a+1)m+a^2+a-2=0 ma dwa rozwiązania.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Dane
a=2
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
 Wyznacz zbiór tych wartości parametru m, dla których równanie to ma dwa rozwiązania dodatnie.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 11.3 (2 pkt)
 Wyznacz zbiór tych wartości parametru m, dla których równanie to ma dwa rozwiązania dodatnie spełniające nierówność x_1^2+x_2^2\leqslant \frac{17}{4}.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 12.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30066  
Podpunkt 12.1 (2 pkt)
 «« Dana jest funkcja f(x)=x^2+2(m-a)x+6m-5-6a . Dla jakich wartości parametru m funkcja ma dwa różne miejsca zerowe o takich samych znakach?

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę tych końców przedziałów, które są liczbami całkowitymi.

Dane
a=3
Odpowiedź:
suma_Z= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Dla jakich wartości parametru m te miejsca zerowe spełniają warunek |x_2-x_1| \lessdot 3?

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj największy z końców liczbowych tych przedziałów.

Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 13.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30064  
Podpunkt 13.1 (2 pkt)
 « Dla jakich wartości parametru m równanie x^2+2(7-m+a)x+m^2-(13+2a)m+a^2+13a+42=0 ma dwa różne rozwiązania rzeczywiste x_1,x_2 spełniające warunek x_1\cdot x_2\leqslant 6m-6a-18\leqslant x_1^2+x_2^2?

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Dane
a=3
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 13.2 (2 pkt)
 Podaj sumę kwadratów wszystkich końców całkowitych tych przedziałów.
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 14.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30061  
Podpunkt 14.1 (2 pkt)
 « Dla jakich wartości parametru m\in\mathbb{R} dwa różne pierwiastki równania x^2-2(m-a)x-m+a=0 należą do przedziału (-2,0).

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=4
Odpowiedź:
m_L=
(wpisz dwie liczby całkowite)
Podpunkt 14.2 (2 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
m_P= (wpisz liczbę całkowitą)
Zadanie 15.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30072  
Podpunkt 15.1 (2 pkt)
 « Wyznacz te wartości parametru m\in\mathbb{R}, dla których suma kwadratów dwóch różnych pierwiastków równania x^2+(m-2-a)x+2=0 jest większa od 2m^2+(16-4a)m+2a^2-16a+19.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Dane
a=3
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 15.2 (2 pkt)
 Podaj sumę całkowitych końców tych przedziałów.
Odpowiedź:
suma_Z= (wpisz liczbę całkowitą)

Liczba wyświetlonych zadań: 14

Liczba pozostałych zadań dostępnych dla zarejestrowanych nauczycieli: 13

Masz pytania? Napisz: k42195@poczta.fm